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Abstract

A polynomial design algorithm for innovation/residual gen-
eration for fault diagnosis is given. The class of systems
considered is linear stochastic state-space and descriptor
systems in both continuous and discrete time. A new class
of residual generators based on stochastic models is defined
and design algorithms are derived. The algorithms is based
on standard operations such as null-space computation and
spectral factorization of polynomial matrices for which nu-
merically reliable implementations is readily available.

1 Introduction
This work deals with residual generation for fault diagnosis

in linear systems. A residual is a fault-sensitive signal that is
produced by filtering known signals, i.e. the control signals and
measured signals. The residual should, ideally, be zero in the
fault-free case regardless of any unknown disturbances and non-
zero in case of a fault.

For deterministic systems, this is a well studied area (Chow
and Willsky, 1984; Gertler, 1991; Nikoukhah, 1994) to name but
a few. In previous works, (Frisk and Nyberg, 2001), design al-
gorithms and analysis tools were developed based on polynomial
methods, instead of parity-space based approaches or observer-
based approaches. The polynomial approach proved to be, apart
from a numerically sound design tool, very well suited to answer
many fundamental questions regarding e.g. complexity of resid-
ual generators, simple parameterization of residual generators.

For stochastic linear systems, here noise affected linear sys-
tems, there is not as much work published. A common approach
for these systems is to use Kalman-filters as residual generators
which then produces residuals that is zero-mean and white with
known covariance. The drawback of this approach is that sys-
tems subjected to unknown inputs which cannot, in any reason-
able way, be modeled as random processes with known statis-
tics, is not handled. This is often the case for the fault isolation
task were a subset of the faults must be decoupled in the resid-
ual. Detailed stochastic information about fault signals is rarely
available and often, just modeling the fault influence on the pro-
cess is difficult enough. This means that the diagnosis decision
should not be based on any residual that is “corrupted” by these
unknown signals, i.e. they should be decoupled in the residual.

A fundamental contribution to this problem is given by
Nikoukhah (1994) whereinnovation filterswas defined. Here,
the aim is to use and extend the polynomial methods that proved
beneficial in the deterministic case to the stochastic case and ad-
dress the problems posed in (Nikoukhah, 1994). Also, the prob-
lem formulation is extended to solve a more general design prob-
lem. As a consequence of the approach, extensions to handle also
stochasticdescriptor systemsis immediate. Worth noting is that

residual generation for diagnosis is not the same as a fault esti-
mation problem, thus e.g. minimum variance estimation of fault
signals is not necessarily a good idea.

The main algorithmic tool isJ-spectral co-factorization
which is shown to quite nicely handle the stochastic problem.
Algorithms for spectral factorization of polynomial matrices has
recently received much attention since it plays a fundamental role
in the solution of polynomialH∞ andH2-standard problems.
Therefore, feasible and numerically appealing algorithms and
implementations has been proposed (Kwakernaak andS̆ebek,
1994; Kwakernaak, 2000).

2 Problem formulation

The system under consideration is described by:

ẋ = Ax + Buu + Bdd + Bnn + Bff (1a)

y = Cx + Duu + Ddd + Dnn + Dff (1b)

wherey ∈ R
m is the measurement vector,u ∈ R

ku control sig-
nals,d ∈ R

kd unknown disturbances,f ∈ R
kf faults,n ∈ R

kn

noise, andA, B, C, andD are constant matrices of suitable di-
mensions. Further on,Gu(s), Gd(s), Gf (s), andGn(s) will
be used to denote transfer functions fromu, d, f, n to y respec-
tively. The difference between the disturbancesd and the noise
n is that the disturbances is assumed to have no stochastic de-
scription and must be decoupled while the noise is modeled as
a white stationary stochastic process with unit covariance. The
noise is not decoupled but is handled otherwise. From now on it
is assumed that perfect decoupling of the noisen is not possible.
A discussion on the singular case that arises when the noise is
perfectly decouplable is included in (Frisk, 2001).

For linear models with no unknown inputs (i.e. nod), the
innovations process associated with the Kalman filter is often
used as a residual because of its zero-mean and whiteness proper-
ties in the fault-free case. Once the innovations is generated, the
fault decision problem reduces to a whiteness test of the residual.
Also, other more elaborate decision algorithms can be used based
on more deep utilization of stochastic properties of the residual
(Basseville and Nikiforov, 1993).

Nikoukhah (1994) included unknown inputs in a definition
of residual generators for stochastic systems where the white-
ness property of the residual is achieved without restricting the
number of linearly independent residuals and thereby (possibly)
limiting fault detectability properties.

Definition 1 (Innovation filter). A finite-dimensional linear
time-invariant systemQ(s) is called an innovation-filter for sys-
tem(1) if it is stable with the least number of outputs such that,
in the absence of failure,



1. its output

r = Q(s)
(

y
u

)

is zero-mean, white and decoupled fromu andd,

2. if Q′(s) is any finite-dimensional linear time-invariant sys-
tem such that

r′ = Q′(s)
(

y
u

)

is decoupled fromu andd, then there exists a linear system
L(s) such thatQ′(s) = L(s)Q(s).

Innovation filters does not always exist and this leads to a
relaxation of the conditions of Definition 1 which will be shown
to be useful.

Definition 2 (Whitening residual generator). A stable and
proper linear filterQ(s) is a whitening residual generator for
(1) if and only if whenf ≡ 0 it holds that

r = Q(s)
(

y
u

)

is zero mean and white for allu, d.

3 Introductory examples

Before going into detail, describing a design algorithm
and existence conditions, two small illustrative examples are
presented, illustrating the two cases when innovation fil-
ters/whitening residual generators do not exist.

3.1 Example 1: Zeros on the imaginary axis
Consider the model:

y =
[ 1

s+1
1

s(s+1)

]
u +

(
1
0

)
d +

(
0
1

)
f +

(
n1

n2

)

Straightforward calculations gives that all disturbance decou-
pling residual generatorsQ(s) can be parameterized by the ra-
tional parameterϕ(s) as

Q(s) = ϕ(s)[0 s(s + 1) − 1]

for which the fault-free internal form is given by

r = ϕ(s)s(s + 1)n2

Here it is clear that no strictly stableϕ(s) exists makingr white,
all because of the finite zero on the imaginary axis in the transfer
function fromn to r.

This also shows a link to non strongly detectable faults(Chen
and Patton, 1994). A zero ats = 0 will appear in the transfer
function fromn to r if n enters the system in the same way as a
non strongly detectable faultf which was the case in the example
above.

3.2 Example 2: Infinite zeros
Consider the scalar system:

y =
1

s + 1
u + f +

1
(s + 2)2

n

All residual generatorsQ(s) can be written

Q(s) = ϕ(s)[s + 1 − 1]

for which the internal form is

r = ϕ(s)
s + 1

(s + 2)2
n (2)

It is clear that forr to be whiteϕ(s) = (s+2)2

s+1 which gives an
improper, and thus non-realizable, residual generator

r = [(s + 2)2 − (s + 2)2

s + 1
]
(

y
u

)

And this was caused by the infinite zero of the transfer function
s+1

(s+2)2 in (2).
Now, with these cases in mind, a design algorithm is de-

scribed in the next section.

4 Design algorithm

Previous works (Frisk and Nyberg, 2001) give that any resid-
ual generatorr = Q(s) ( y

u ) based on a deterministic model can
be written asQ(s) = ϕ(s)NMs

(s)Px where

Ms(s) =
[

C Dd

−(sInx
− A) Bd

]
∧ Px =

[
Ikm

−Du

0nx×km
−Bu

]

(3)
andnx is the number of states i.e. the size ofx andNMs

(s) is
a minimal polynomial basis for the left null-space ofMs(s). All
available design freedom lies in the choice of the rational row-
vector/matrixϕ(s) which here will be used to realize whitening
residual generators and innovation filters. One constraint onϕ(s)
is thatQ(s) must be realizable and stable.

Now, existence conditions and design procedures will be de-
rived. Due to space constraints, this presentation is focused on in-
novation filters and only briefly state results on whitening resid-
ual generators. For detailed results on whitening residual gener-
ators, see (Frisk, 2001).

Lemma 1. A transfer matrixQ(s) is an innovation filter for sys-
tem(1) if and only if there exists a matrixϕ(s) such that

Q(s) = ϕ(s)NMs
(s)Px

is proper, stable and it holds that

∀s.H(s)HT (−s) = Ψ

whereH(s) = ϕ(s)NMs
(s)

(
Dn

Bn

)
, Ψ ∈ R

r×r is a constant

full-rank matrix, andr = dim NL(Ms(s)). NL(Ms(s)) denotes
the left null-space of matrixMs(s).

Proof. All disturbance decoupling residual generators can be
written as

Q(s) = ϕ(s)NMs
(s)Px



Insertion of (1) intor = Q(s) ( y
u ) gives

r = ϕ(s)NMs
(s)Px

(
y
u

)
= ϕ(s)NMs

(s)
[
Dn

Bn

]
n (4)

Whiteness ofr is equivalent toΦr(jω) constant for allω which,
sinceΦr(s) is rational, is equivalent toΦr(s) is constant for all
s. The problem is assumed normalized such thatΦn(s) = I,
then the spectrumΦr(s) can be written as

Φr(s) = ϕ(s)NMs
(s)

[
Dn

Bn

] [
Dn

Bn

]T

NT
Ms

(−s)ϕT (−s) =

= H(s)HT (−s)

and the theorem follows immediately. �

Now, for sake of notational convenience, let
Z(s) ∈ R

m×m[s] denote

Z(s) = NMs
(s)

[
Dn

Bn

] [
Dn

Bn

]T

NT
Ms

(−s) (5)

Then, the spectrum ofr can be written

Φr(s) = ϕ(s)Z(s)ϕT (−s)

This also implies that the assumption made in Section 1, that it
is not possible to perfectly decouple the stochastic noisen, is
equivalent toZ(s) being full-rank. IfZ(s) would be rank defi-
cient, there would exist a non-zeroϕ(s) such that the spectrum of
r would be identically0, i.e. the noise would be perfectly decou-
pled. Therefore, in this section it is assumed, unless otherwise
noted, thatZ(s) is full-rank. Further discussions on the case
whenZ(s) is not full-rank is found in (Frisk, 2001).

Before the main result can be stated, a lemma characterizing
the parameterization matrixϕ(s) in Lemma 1 is needed:

Lemma 2. AssumeZ(s) full-rank. Then there exists aϕ(s) such
that the linear time-invariant filterQ(s) = ϕ(s)NMs

(s)Px pro-
duces white residuals if and only ifϕ(s) can be written

ϕ(s) = η(s)P−1(s)

whereP (s) is a spectral co-factor ofZ(s) andη(s)ηT (−s) = Ψ
for some constant matrixΨ.

Proof. The spectrum ofr can be written

Φr(s) = ϕ(s)Z(s)ϕT (−s) (6)

Note thatZ(s) is a p.h. polynomial matrix. Now, letP (s) be a
spectral co-factor andJ a signature ofZ(s), i.e.

Z(s) = P (s)JPT (−s) (7)

whereP (s) is a square, full-rank matrix with invariant zeros in
the closed left half-plane. SinceZ(s) is assumed positive definite
it has signatureJ = Im. Insertion of (7) into (6) and denoting
η(s) = ϕ(s)P (s) gives

Φr(s) = ϕ(s)P (s)JPT (−s)ϕT (−s) = η(s)ηT (−s)

Thus,Φr(s) is constant for alls if and only if η(s)ηT (−s) = Ψ
for some constantΨ. The parameterization matrixϕ(s) is found
by solving forϕ(s) in the equation

η(s) = ϕ(s)P (s) (8)

which has only one unique solutionϕ(s) = η(s)P−1(s). �

Now, we are ready to present the main theorem on design of
innovation filters.

Theorem 3. If Z(s) is full rank, an innovation filter exists if and
only if

∀i.row-degiNMs
(s)

(
Dn

Bn

)
= row-degiNMs

(s)

andZ(s) has no roots on the imaginary axis. Furthermore, if an
innovation filter exist, all innovation filters can be parameterized
as

Q(s) = η(s)P−1(s)NMs
(s)Px

whereP (s) is a spectral co-factor ofZ(s) andη(s) is any strictly
stable, full-rank matrix, such thatη(s)ηT (−s) is constant.

Proof. According to Lemma 1 and Lemma 2, an innovation filter
exists if and only if there exists anη(s) such that

Q(s) = η(s)P−1(s)NMs
(s)Px

is stable, proper,η(s)ηT (−s) is constant and full-rank of dimen-
sionr × r with r = dim NL(Ms(s)).

First, assumeQ(s) is an innovation filter and thatZ(s) has
a zero ats0 = jω0. SinceQ(s) is strictly stable,lims→jω0 Q(s)
exists. But,Z(s) has a zero ats0 implies thatP (s0) is rank defi-
cient. Since, according to assumption,Q(s0) exists, it must hold
thatη(s) looses rank ats0 sinceNMs

(s)Px is irreducible. How-
ever, this contradictsΨ = η(s)ηT (−s) being full-rank which
gives that full-rank ofZ(s) on the imaginary axis is a necessary
condition forQ(s) to be stable.

Now, assumeQ(s) is an innovation filter and that there exists
ani such that

row-degi NMs
(s)

(
Dn

Bn

)
< row-degi NMs

(s) (9)

Partition NMs
(s) = [V1(s) V2(s)] according to the block-

structure of (3). It is possible to show1 that V1(s) is row-
reduced, row-degiNMs

(s) = row-degiV1(s), and thatV2(s) =
V1(s)C(sI − A)−1. SinceV1(s) is row-reduced, we can rewrite
(9) as

row-degi SV1(s)V1,hrDn+Ṽ1(s)Dn+V2(s)Bn < row-degi V1(s)

whereV1,hr is the high-degree-coefficient matrix ofV1(s) and
SV1(s) is a diagonal matrix withsµ

i in the diagonal andµi is the
i:th row-degree ofV1(s).

Since the row-degrees of̃V1(s) andV2(s) is strictly less than
the row-degrees ofSV1(s), the inequality can only be fulfilled if
V1,hrDn does not have full row-rank. This also gives that

lim
s→∞V1(s)Dn = lim

s→∞SV1(s)V1,hrDn (10)

does not have full row-rank. Now, sinceQ(s) is an innovation fil-
ter, there exist anη(s) such thatQ(s) = η(s)P−1(s)NMs

(s)Px

andH(s)HT (−s) is square, full-rank, and constant where

H(s) = η(s)P−1(s)NMs
(s)

[
Dn

Bn

]

1See (Frisk and Nyberg, 2001) for proofs



But, whens goes to infinity, it holds that

lim
s→∞H(s) =

= lim
s→∞ η(s)P−1(s)V1(s)

(
C(sI − A)−1Bn + Dn

)
=

= lim
s→∞ η(s)P−1(s)V1(s)Dn

which does not have full row-rank due to (10) and the fact that
η(s) andP (s) is square and full-rank. Thus,lims→∞ H(s) does
not have full rank which contradicts thatH(s)HT (−s) is con-
stant and full-rank.

Now it has been proven that the two conditions in the theo-
rem, Z(s) full-rank and the row-degree condition, is necessary
conditions for the existence of an innovation filter. Next, suffi-
ciency will be proven. SinceZ(s) does not have zeros on the
imaginary axis, a spectral co-factorP (s) will be strictly stable
and row-reduced with row-degrees satisfying

row-degi P (s) = row-degi NMs
(s)

[
Dn

Bn

]

See (Kwakernaak and̆Sebek, 1994) for proofs of these claims.
Then, (Kailath, 1980, Theorem 6.3-12) gives that

Q(s) = P−1(s)NMs
(s)Px

will be proper, strictly stable and fulfill all requirements in Defi-
nition 1, i.e.Q(s) is an innovation filter.

Finally, if Q(s) is an innovation filter, it is immediate that
Q′(s) is an innovation filter if and only ifQ′(s) = η(s)Q(s)
whereη(s) is a square, full-rank, all-pass link i.e.η(s)ηT (−s) is
constant and full rank. �

Matlab-code for innovation filter design
To illustrate the simplicity of the design algorithm, a com-

plete Matlab-session (requires control and polynomial toolbox)
for design of an innovation filter is given by:

1 Ms = [C Dd;-(s*eye(nx)-A) Bd];
2 Px = [eye(m) -Du;zeros(nx,m) -Bu];
3 Nms = null(Ms.’).’;
4 Z = Nms*[Dn;Bn]*[Dn;Bn]’*Nms’;
5 [P,J] = spf(Z.’); P = P.’;
6 [Qa,Qb,Qc,Qd] = lmf2ss(Nms*Px,P);
7 Q = ss(Qa,Qb,Qc,Qd);

As shown above, no diagnosis specific code need to be devel-
oped and the design procedure solely relies on high performance
numerical routines in established Matlab toolboxes. The numer-
ical performance in diagnosis applications of the above code is
illustrated in (Frisk, 2001).

Descriptor systems
An extension of the above design algorithm for descriptor

systems

Eẋ = Ax + Buu + Bdd + Bnn + Bff

y = Cx + Duu + Ddd + Dnn + Dff

whereE is non-singular or non-square is immediate by letting

Ms(s) =
[

C Dd

−(sE − A) Bd

]

instead of (3). Design of innovation filters for descriptor exam-
ples is thoroughly described in (Frisk, 2001).

Relations to solution in (Nikoukhah, 1994)
Since the solution provided by Theorem 3 solves the prob-

lem posed in (Nikoukhah, 1994), equivalent (but not identical)
results can be found in Nikhoukhah’s paper. The main differ-
ences between the solutions is that the algorithm provided here
has been generalized to solve the more general whitening resid-
ual generator design problem and also applies to descriptor sys-
tems.

4.1 Design of whitening residual generators
The design procedure for whitening residual generators is

a bit more complex due to the increased design freedom, re-
sulting in a possibly more involved design procedure; especially
whenZ(s) has zeros on the imaginary axis and/or if no row of
P−1(s)NMs

(s)Px is proper.
Due to space constraints, the interested reader is referred to

(Frisk, 2001) for details, here only a sufficient condition for the
existence of a whitening residual generator is included. This re-
sult is however enough to illustrate whitening residual generators
in the examples in Section 5.

Theorem 4. If Z(s) is full rank with no zeros on the imaginary
axis, a whitening residual generator exists if

∃i.row-degiNMs
(s)

(
Dn

Bn

)
= row-degiNMs

(s)

Proof. Since, according to assumption in the theorem,Z(s) has
no zeros on the imaginary axis, strict stability of the residual gen-
erator is assured. By (Kwakernaak andS̆ebek, 1994),P (s) is
row-reduced and the row-degrees ofP (s) equals the row-degrees

of NMs
(s)

(
Dn

Bn

)
. Then (Kailath, 1980, Theorem 6.3-12) as-

sures the existence of a whitening residual generator. �

5 Design examples

This section includes 3 design examples that illustrates dif-
ferent aspects of the design problem and the proposed design
algorithm. The examples are based around a linearized airplane
model which has been used previously in e.g. (Frisk and Ny-
berg, 1999) to demonstrate the deterministic design problem. In
the first example, a complete design of an innovation filter and
a whitening residual generator is shown. In the second example
the noise environment is changed and it is shown that no inno-
vation filter or whitening residual generator exists. In the third
example, using a third noise setup, it is shown that an innovation
filter does not exists but a whitening residual generator exists that
has acceptable fault sensitivity.

All calculations is done in Matlab using Polynomial Toolbox
2.5 for Matlab 5 (2001). All functions used is included in the
toolbox and no diagnosis specific code is needed.

5.1 Design Example: Aircraft Dynamics
The model used in these examples is taken from (Ma-

ciejowski, 1989) and represents a linearized model of vertical-
plane dynamics of an aircraft. The model has5 states,3 inputs,
and3 outputs. The nominal model is given in state-space form
and parameter value can be found in (Maciejowski, 1989).



Here, assume additive sensor-faults (denotedf1, f2, andf3),
and additive actuator-faults (denotedf4, f5, andf6). Also, as-
sume that the process is influenced by additive white noise, both
in the dynamic and measurement equations. The model can now
easily be written on the form (1). The noise is assumed white
with unit covariance.

The design goal in all the three examples based on this model
are a residual generatorQ(s) that decouples faults in the eleva-
tor angle actuator, i.e.f6, and produces a white residual in the
fault-free case. The difference in the designs are different noise
assumptions. The motive for the decoupling off6 is fault isola-
tion by structured residuals (Gertler, 1991).

Process and measurement noise
In this first example, both measurement noise and process

noise is considered and state-space matricesBn andDn is set to

Bn = [I5 05×3] Dn = [03×5 I3]

First, an innovation filter design is performed. Calculations in
MATLAB give

NMs
(s) =

[ −0.07s −s − 0.054 · · ·
0.99s2 + 0.64s −0.07s2 − 0.049s − 0.3 · · ·

· · · −0.091 −0.07 · · ·
· · · 0.044s2 − 0.048s − 0.73 0.99s + 0.64 · · ·

· · · −1 0 0 0
· · · −0.07s − 0.045 0.044s + 1.1 0.044 −1

]
(11)

Thus, the dimension of the null-spaceNL(Ms(s)) is 2, i.e. there
exists exactly two linearly independent numerators that decou-
plesf6.

Then, matrixZ(s) is computed and it is easy to verify that it
is full-rank, i.e. it is not possible to perfectly decouple the noise.
A J-spectral co-factorization ofZ(s) gives the spectral factor:

P (s) =
[ −0.99s − 1 −0.12s − 0.084
0.12s2 + 0.32s + 0.068 −0.99s2 − 2.2s − 1.8

]

The spectral factorP (s) is strictly stable which can be seen by
computing the zeros of the invariant polynomials. Matlab gives
the zeross = −1.0196 ands = −1.1124 ± j0.7305 which lies
in the open left-half plane.

Checking for existence of innovation filter according to The-
orem 3 gives:

row-degNMs
(s) = {1, 2}

row-degNMs
(s)

[
Dn

Bn

]
= {1, 2}

i.e. an innovation filter exists and can be formed asQ(s) =
P−1(s)NMs

(s)Px.
Next, a scalar whitening residual generator is to be designed.

A whitening residual generator can be formed as

Q(s) = η(s)P−1(s)NMs
(s)Px

whereη(s)ηT (−s) is constant. With

η(s) =
1√
2
[1 1]

a3:rd order realizable and strictly stable residual generator is ob-
tained. The order of the residual generator is, due to the choice
of η(s), equal to the sum of row-degrees ofP (s). Figure 1 shows
how the faults influence the residual and that the fault-free spec-
trum Φr(jω) is 1 for all ω as expected. Especially note that the
desired decoupling of faultf6 has succeeded while keeping the
spectrum ofr constant for allω. Note that the DC gain from fault
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Figure 1: Result of the first design

f1 to the residual is zero which of course is bad for detectability,
however it can easily be shown that there exists no strictly stable
linear residual generator with non-zero DC-gain.

Only process noise
In this second example, only process noise is considered and

state-space matricesBn andDn is set to:

Bn = I5 Dn = 03×5

The null-space basisNMs
(s) is identical to the first example

(11). The row-degrees ofNMs
(s) is {1, 2} and the row-degrees

of NMs
(s)

[
Dn

Bn

]
is {0, 1}, i.e. no innovation filter exists ac-

cording to Theorem 3. In (Frisk, 2001) it is also shown that no
whitening residual generator exists either.

Noise on all states and sensor 3
In this final case the process is subjected to noise on all states

and on sensor3, i.e. the matricesBn andDn are given by

Bn = [I5 05×1] Dn =


0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 1




Now, computingNMs
(s) andZ(s) as before gives thatZ(s) is

strictly stable and that the row-degrees ofNMs
(s) is (as before)

{1, 2} and row-degrees ofNMs
(s)

[
Dn

Bn

]
is {0, 2}. This gives

that no innovation filter exists according to Theorem 3. But be-
causeZ(s) has no imaginary zeros and the row-degree of the
second row ofNMs

(s) does not decrease when multiplied by
the noise distribution matrices, Theorem 4 proves existence of a
whitening residual generator. A whitening residual generator can
be formed by

Q(s) = η(s)P−1(s)NMs
(s)Px



which is proper when selecting

η(s) =
[−0.0994 0.995

]

Figures 2 shows the fault influence on the residual and the spec-
trum of the fault-free residual. Here it is clear that the resid-
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(a) Magnitude bode plots for the
faults to the residual
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Figure 2: Result of the second design

ual still is able to detect all faults, besides from faultf6 which
should be decoupled according to design specifications. Thus,
even though an innovation filter didn’t exist, a whitening residual
generator with satisfactory fault detectability properties existed.
This residual generator could not have been designed algorithm
proposed in (Nikoukhah, 1994).

It is straightforward to realize that innovation filters preserve
any fault detectability properties sinceϕ(s) is invertible, i.e. the
number of outputs of an innovation filter equals the dimension of
NL(Ms(s)). However, if an innovation filter does not exist, there
may very well exist a whitening residual generator with desirable
fault detectability properties which was the case in this example.

6 Discrete-time systems

In the deterministic case, time-discrete systems and time-
continuous systems could be handled analogously by replacing
s with z and proper with causal (Frisk and Nyberg, 2001). In
the stochastic case, small but important differences exists. The
main difference between the time-continuous and time-discrete
cases is that properness/causality of the residual generator can
always be achieved by e.g. inserting a number of time-delays in
the residual generator. Thus, it is immediate to prove that the ex-
istence conditions for full-rank innovation filters and whitening
residual generators is identical to the time-continuous case where
the properness condition has been removed, thus, a time-discrete
version of Theorem 3 becomes:

Theorem 5. If Z(z) is full rank, an innovation filter exists if and
only if Z(z) has no roots on the imaginary axis.

When existence has been ensured, the design procedure is
identical to the time-continuous case (using discrete-time spec-
tral factorization algorithms).

7 Conclusions

A polynomial design algorithm for linear residual generation
for stochastic state-space and descriptor systems in both contin-
uous and discrete time has been considered. The problem for-
mulated is based on innovation filters formulated by Nikoukhah
(1994). The problem formulation is further developed to a new
class of residual generators, whitening residual generators.

The two main steps in the design algorithm is computation
of a polynomial basis for the left null-space of a polynomial ma-
trix followed by a J-spectral co-factorization of a para-hermitian
polynomial matrix. For both these operations, good numerical
tools exists and the algorithm is successfully demonstrated on a
number of non-trivial examples.
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