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Abstract residual generation for diagnosis is not the same as a fault esti-
mation problem, thus e.g. minimum variance estimation of fault

A polynomial design algorithm for innovation/residual gen- Signals is not necessarily a good idea. o
eration for fault diagnosis is given. The class of systems  The main algorithmic tool isJ-spectral co-factorization
considered is linear stochastic state-space and descriptor Which is shown to quite nicely handle the stochastic problem.
of residual generators based on stochastic models is defined€cently received much attention since it plays a fundamental role
and design algorithms are derived. The algorithms is based in the solution of polynomial{.. and H.-standard problems.

on standard operations such as null-space computation and T herefore, feasible and numerically appealing algorithms and
spectral factorization of polynomial matrices for which nu- implementations has been proposed (Kwakernaak Setuek,
merically reliable implementations is readily available. 1994; Kwakernaak, 2000).

1 Introduction

This work deals with residual generation for fault diagnosis
in linear systems. A residual is a fault-sensitive signal that is
produced by filtering known signals, i.e. the control signals and )
measured signals. The residual should, ideally, be zero in the & = Az + Byu+ Bad + Bpyn + By f (1a)
fault-free case regardless of any unknown disturbances and non- y=Cx+ Dyu+ Dgd+ D,n+ Dy f (1b)
zero in case of a fault.

For deterministic systems, this is a well studied area (Chowherey € R™ is the measurement vectar,c R* control sig-
and Willsky, 1984; Gertler, 1991; Nikoukhah, 1994) to name bufals,d € R** unknown disturbances, € R*/ faults,n € Rk~
a few. In previous works, (Frisk and Nyberg, 2001), design ahoise, and4, B, C, andD are constant matrices of suitable di-
gorithms and analysis tools were developed based on polynomigénsions. Further oG, (s), Ga(s), G4(s), andG,,(s) will
methods, instead of parity-space based approaches or obsergerused to denote transfer functions frami, f,n to y respec-
based approaches. The polynomial approach proved to be, apR@ly. The difference between the disturbandesnd the noise
from a numerically sound design tool, very well suited to answey is that the disturbances is assumed to have no stochastic de-
many fundamental questions regarding e.g. complexity of resigeription and must be decoupled while the noise is modeled as
ual generators, simple parameterization of residual generatorsa white stationary stochastic process with unit covariance. The

For stochastic linear systems, here noise affected linear syfise is not decoupled but is handled otherwise. From now on it
tems, there is not as much work published. A common approaghassumed that perfect decoupling of the naise not possible.
for these systems is to use Kalman-filters as residual generatgrgiiscussion on the singular case that arises when the noise is
which then produces residuals that is zero-mean and white wigrfectly decouplable is included in (Frisk, 2001).
known covariance. The drawback of this approach is that sys- For linear models with no unknown inputs (i.e. djp the
tems subjected to unknown inputs which cannot, in any reasoinovations process associated with the Kalman filter is often
able way, be modeled as random processes with known stafiged as a residual because of its zero-mean and whiteness proper-
tics, is not handled. This is often the case for the fault isolatiofies in the fault-free case. Once the innovations is generated, the
task were a subset of the faults must be decoupled in the resigult decision problem reduces to a whiteness test of the residual.
ual. Detailed stochastic information about fault signals is rarelxiso, other more elaborate decision algorithms can be used based
available and often, just modeling the fault influence on the pren more deep utilization of stochastic properties of the residual
cess is difficult enough. This means that the diagnosis decisigBasseville and Nikiforov, 1993).
should not be based on any residual that is “corrupted” by these Nikoukhah (1994) included unknown inputs in a definition
unknown signals, i.e. they should be decoupled in the residualof residual generators for stochastic systems where the white-

A fundamental contribution to this problem is given byness property of the residual is achieved without restricting the
Nikoukhah (1994) wherénnovation filterswas defined. Here, number of linearly independent residuals and thereby (possibly)
the aim is to use and extend the polynomial methods that proveghiting fault detectability properties.
beneficial in the deterministic case to the stochastic case and ad-
dress the problems posed in (Nikoukhah, 1994). Also, the proBefinition 1 (Innovation filter). A finite-dimensional linear
lem formulation is extended to solve a more general design protime-invariant syster)(s) is called an innovation-filter for sys-
lem. As a consequence of the approach, extensions to handle dat&gn (1) if it is stable with the least number of outputs such that,
stochastiadescriptor systemis immediate. Worth noting is that in the absence of failure,

2 Problem formulation

The system under consideration is described by:



1. its output 3.2 Example 2: Infinite zeros

y Consider the scalar system:
r=ee (1) o
v= 5—|—1u+f+ (s—|—2)2n

is zero-mean, white and decoupled frarandd,

All residual generator§)(s) can be written
2. ifQ’'(s) is any finite-dimensional linear time-invariant sys-

tem such that Qs) =¢(s)[s+1 —1]
P =Q(s) (g) for which the internal form is
_ s+1 5
is decoupled from andd, then there exists a linear system r=¢(s) (s+272" 2

L(s) such that'(s) = L(s)Q(s).
| on filters d | <t and this leads to & 1S clear that forr to be whitey(s) = (‘f:fl)z which gives an
nnovation filters does not always exist and this leads 10 @, ,,her and thus non-realizable, residual generator
relaxation of the conditions of Definition 1 which will be shown

to be useful. ) (s +2)2
Pl - CEA(Y)

Definition 2 (Whitening residual generator). A stable and
proper linear filter Q(s) is a whitening residual generator for Ang this was caused by the infinite zero of the transfer function

(1) if and only if whenf = 0 it holds that (szl)z in (2).
( Now, with these cases in mind, a design algorithm is de-
r=Q(s) <y) scribed in the next section.
u
4 Design algorithm
is zero mean and white for adl, d. Previous works (Frisk and Nyberg, 2001) give that any resid-
ual generator = Q(s) (¥ ) based on a deterministic model can
3 Introductory examples be written ag)(s) = ¢(s) Ny, (s) P, where
Before going into detail, describing a design algorithmV/,(s) = —(sIO _ A gd} AN Pp= [O T _g“}
and existence conditions, two small illustrative examples are e d ne X km “3

presented, illustrating the two cases when innovation fil- . . . :
ters/whitening residual generators do not exist. andn, is the number of states i.e. the sizezofnd Ny, (s) is

a minimal polynomial basis for the left null-spaceldf, (s). All
available design freedom lies in the choice of the rational row-

3.1 Example 1: Zeros on the imaginary axis vector/matrixy(s) which here will be used to realize whitening
Consider the model: residual generators and innovation filters. One constraipt(eh
) is that@(s) must be realizable and stable.
y = { s11 } wt <1> i+ <0) I (nl) Now, existence conditions and design procedures will be de-
D) 0 1 N3 rived. Due to space constraints, this presentation is focused on in-

novation filters and only briefly state results on whitening resid-

Straightforward calculations gives that all disturbance decoy@l generators. For detailed results on whitening residual gener-
pling residual generator@(s) can be parameterized by the ra-ators, see (Frisk, 2001).

tional parametep(s) as Lemma 1. A transfer matrixQ(s) is an innovation filter for sys-
tem(1) if and only if there exists a matrix(s) such that
Qs) = ¢(s)[0 s(s +1) —1]

Q(s) = @(s)Nar, () Pe
is proper, stable and it holds that

r=¢(s)s(s + 1)ns Vs.H(s)H" (—s) = W

for which the fault-free internal form is given by

Here it is clear that no strictly stablg(s) exists making: white, D, o
all because of the finite zero on the imaginary axis in the transféihere H(s) = ¢(s)Naz, (s) (Bn , ¥ € R™" is a constant
function fromn to r. i T

This also shows a link to non strongly detectable faults(Che{ﬁg {Z‘Qﬁmﬁgg;;nz ma(tl;&j\(%)('Ms ())- No(Ms(s)) denotes
and Patton, 1994). A zero at= 0 will appear in the transfer
function fromn to r if n enters the system in the same way as roof. All disturbance decoupling residual generators can be
non strongly detectable fayftwhich was the case in the examplewritten as
above. Q(s) = @(5)Na, (5) P



Insertion of (1) intor = Q(s) (¥) gives Now, we are ready to present the main theorem on design of
innovation filters.

— v\ — Dy,
r = ¢(s)Nu. (5) P <U) = ¢(s)Nu.(5) [Bn] " @ Theorem 3. if Z(s) is full rank, an innovation filter exists if and

Whiteness of- is equivalent tad,.(jw) constant for allu which, only if

since®.,.(s) is rational, is equivalent t®,.(s) is constant for all D
s. The problem is assumed normalized such thats) = I, Vi.row-deg Ny, (s) <B”> = row-deg Ny, (s)
then the spectruri®,.(s) can be written as "

and Z(s) has no roots on the imaginary axis. Furthermore, if an

T
®,.(s) = ¢(s) N (s) {gn] [gn] NT (—=8)pT (=s) = innovation filter exist, all innovation filters can be parameterized
n n i as
= H(s)H (—s) Q(s) = n(s)P~ (s) N, (s) P
and the theorem follows immediately. m WwhereP(s)is aspectral co-factor af (s) andn(s) is any strictly

_ _ stable, full-rank matrix, such that(s)n? (—s) is constant.
Now, for sake of notational convenience, let

Z(s) € R™*™[s] denote Proof. According to Lemma 1 and Lemma 2, an innovation filter
. exists if and only if there exists aj(s) such that
_ Dn Dn T (_
Z(S) - N]MS(S) |:Bn:| |:Bn:| NJWS( S) (5) Q(S) — U(S)Pil(S)N]uS(S)Px
Then, the spectrum ofcan be written is stable, proper;(s)n” (—s) is constant and full-rank of dimen-
B, (s) = ¢(s)Z(s)T (—s) sionr x r with r = dim N (M;s(s)).

_ o _ _ _ ~ First, assumé)(s) is an innovation filter and thaf(s) has
This also implies that the assumption made in Section 1, thatgtzero ats) = jwp. SinceQ(s) is strictly stable}im;_, ., Q(s)
is not possible to perfectly decouple the stochastic naises  exists. But,Z(s) has a zero at, implies thatP(s,) is rank defi-
equivalent toZ(s) being full-rank. If Z(s) would be rank defi- cient. Since, according to assumptiai(s,) exists, it must hold
cient, there_woul_d exista non—ze,rac_Qs) such that the spectrum of thatr)(s) looses rank at, sinceN);. (s)P, is irreducible. How-
r would be identically), i.e. the noise would be perfectly decou-eyer, this contradict® — n(s)n' (—s) being full-rank which
pled. Therefore, in this section it is assumed, unless otherwigf/es that full-rank ofZ(s) on the imaginary axis is a necessary
noted, thatZ(s) is full-rank. Further discussions on the casegndition forQ(s) to be stable.
whenZ(s) is not full-rank is found in (Frisk, 2001). ~ Now, assume)(s) is an innovation filter and that there exists

Before the main result can be stated, a lemma characteriziggl; such that

the parameterization matrix(s) in Lemma 1 is needed:

Lemma 2. AssuméZ(s) full-rank. Then there exists@(s) such row-deg Ny, (s) (g”) < row-deg Ny, (s) 9)
that the linear time-invariant filte€)(s) = (s) Ny, (s) P, pro- n

duces white residuals if and onlyf(s) can be written Partition Nas_(s) = [Vi(s) Va(s)] according to the block-

©(s) =n(s)P71(s) structure of (3). It is possible to shéwthat V;(s) is row-

. reduced, row-dedvV,, (s) = row-degV;(s), and thatls(s) =
whereP(s) is a spectral co-factor off (s) andn(s)n” (=s) = ¥ Vi(s)C(sI — A)%giVNésiglc)em(s) is rogv—rle(dfjced we cazn( rzawrite
for some constant matri. (9) as ’ '

Proof. The spectrum of can be written .

row-deg Sv, (8)V1,hrDr4+V1(8)Dp+Va(s)B,, < row-deg Vi (s)

D,(s) = p(s)Z(s)p" (=5) (6)
Note thatZ(s) is a p.h. polynomial matrix. Now, leP(s) be a WhereVy . is the high-degree-coefficient matrix 8§ (s) and
spectral co-factor and a signature ofZ(s), i.e. Sv, (s) is a diagonal matrix witfs" in the diagonal ang; is the
. i:th row-degree ot/ (s).
Z(s) = P(s)JP" (—s) (7 Since the row-degrees bf (s) andVa(s) is strictly less than

whereP(s) is a square, full-rank matrix with invariant zeros inthe row-degrees dfy, (s), the inequality can only be fuffilled if
the closed left half-plane. Sinc&(s) is assumed positive definite V1,n-D» do€s not have full row-rank. This also gives that
it has signature/ = I,,,. Insertion of (7) into (6) and denotin . .
n(s) = <Pg(8)P(s) gives ) © ) Jm Vi(s)Dn = Jim. Svi(5)Vi e Dr (10)

®,.(s) = @(s)P(s)JP" (=5)p" (=5) = n(s)n" (—s) does not have full row-rank. Now, sin¢¥s) is an innovation fil-
Thus,®,.(s) is constant for alk if and only if (s)y” (—s) = &  ter, there exist an(s) such tha(s) = n(s)P~" (s) Ny, (5) P
for some constan. The parameterization matrix(s) is found ~@ndH (s)H" (—s) is square, full-rank, and constant where
by solving forp(s) in the equation D

n(s) = o(s)P(s) (8) H(s) =n(s)P~" (s)Nar, (s) [ Bﬂ

which has only one unique solutign(s) = n(s)P~1(s). [ !See (Frisk and Nyberg, 2001) for proofs




But, whens goes to infinity, it holds that Relations to solution in (Nikoukhah, 1994)
Since the solution provided by Theorem 3 solves the prob-

Jim H(s) = lem posed in (Nikoukhah, 1994), equivalent (but not identical)
o 1 -1 . results can be found in Nikhoukhah's paper. The main differ-
o sliI»rolo ()P~ ($)Vi(s) (C(sT = A) ™' Bu + D) = ences between the solutions is that the algorithm provided here

= lim n(s)P~(s)Vi(s) Dy has been generalized to solve the more general whitening resid-

ual generator design problem and also applies to descriptor sys-
which does not have full row-rank due to (10) and the fact thaems.
n(s) andP(s) is square and full-rank. Thubm;_, ., H(s) does
not have full rank which contradicts thﬂ(S)HT(—S) is con- 4.1 Design of Whitening residual generators
stant and full-rank. - The design procedure for whitening residual generators is
Now it has been proven that the two conditions in the thegq bit more complex due to the increased design freedom, re-
rem, Z(s) full-rank and the row-degree condition, is necessaryylting in a possibly more involved design procedure; especially

conditions for the existence of an innovation filter. Next, Sufﬁwhen Z(S) has zeros on the imaginary axis and/or if no row of
ciency will be proven. SinceZ(s) does not have zeros on the p~1(5)N,, (s)P, is proper.

imaginary axis, a spectral co-facté¥(s) will be strictly stable Due to space constraints, the interested reader is referred to
and row-reduced with row-degrees satisfying (Frisk, 2001) for details, here only a sufficient condition for the
D existence of a whitening residual generator is included. This re-
row-deg P(s) = row-deg N, (s) iBZi sult is however enough to illustrate whitening residual generators

in the examples in Section 5.

See (Kwakernaak an8ebek, 1994) for proofs of these claims. i ) ) )
Then, (Kailath, 1980, Theorem 6.3-12) gives that Theorem 4. If Z(s) is full rank with no zeros on the imaginary
. axis, a whitening residual generator exists if
Q(s) = P77 (s) N, (s) Ps

will be proper, strictly stable and fulfill all requirements in Defi- 3i.row-deg Ny, (s) (Dn) — row-deg Ny, (s)
nition 1, i.e.Q(s) is an innovation filter. co B, :

Finally, if Q(s) is an innovation filter, it is immediate that _ _ o
Q'(s) is an innovation filter if and only i)’ (s) = n(s)Q(s) Proof. Since, according to assumption in the theorefts) has
wherer(s) is a square, full-rank, all-pass link i.g(s)n’ (—s)is  no zeros on the imaginary axis, strict stability of the residual gen-

constant and full rank. B erator is assured. By (Kwakernaak aBdbek, 1994)P(s) is
row-reduced and the row-degreesi(fs) equals the row-degrees
Matlab-code for innovation filter design D, ; ) )
To illustrate the simplicity of the design algorithm, a com-Of Nat, (5) B, ) Then (Kailath, 1980, Theorem 6.3-12) as

plete Matlab-session (requires control and polynomial toolboxgures the existence of a whitening residual generator. N
for design of an innovation filter is given by:

1 Ms = [C Dd;-(s*eye(nx)-A) Bd];

2 Px = [eye(m) -Du;zeros(nx,m) -Bul; 5 Design examples

3 Nms = null(Ms.").);
4+ Z = Nms*[Dn;Bn]*[Dn;Bn]*Nms’;
5
6
7

PJ] = spfz); P = P.: This section includes 3 design examples that illustrates dif-
[Qa,Qb,Qc,Qd] - |mf233iNmS*pX’p); feren_t aspects of the design problem and the_ prop_osed _deS|gn
Q = ss(Qa,Qb,Qc,Qd); algorithm. The examples are based around a linearized airplane
- - — model which has been used previously in e.g. (Frisk and Ny-
As shown above, no diagnosis specific code need to be devgkrg, 1999) to demonstrate the deterministic design problem. In
oped and the design procedure solely relies on high performangg first example, a complete design of an innovation filter and
numerical routines in established Matlab toolboxes. The numef-whitening residual generator is shown. In the second example
ical performance in diagnosis applications of the above codetige noise environment is changed and it is shown that no inno-

illustrated in (Frisk, 2001). vation filter or whitening residual generator exists. In the third
example, using a third noise setup, it is shown that an innovation
Descriptor systems filter does not exists but a whitening residual generator exists that
An extension of the above design algorithm for descriptdnas acceptable fault sensitivity.
systems All calculations is done in Matlab using Polynomial Toolbox

2.5 for Matlab 5 (2001). All functions used is included in the

Bt = Av+ Byu+ Bad + Ban+ By f toolbox and no diagnosis specific code is needed.

y=Cx+ Dyu+ Dgd+ Dyn+ Dy f

whereE is non-singular or non-square is immediate by letting 5.1 Design Example: Aircraft Dynamics
C D The model used in these examples is taken from (Ma-
M(s) = i—(sE _4) Bdi ciejowski, 1989) and represents a linearized model of vertical-
d plane dynamics of an aircraft. The model Fastates3 inputs,
instead of (3). Design of innovation filters for descriptor examand 3 outputs. The nominal model is given in state-space form
ples is thoroughly described in (Frisk, 2001). and parameter value can be found in (Maciejowski, 1989).



Here, assume additive sensor-faults (dengted>, andf;), a3:rd order realizable and strictly stable residual generator is ob-
and additive actuator-faults (denotgg f5, and fs). Also, as- tained. The order of the residual generator is, due to the choice
sume that the process is influenced by additive white noise, bathn(s), equal to the sum of row-degrees®(s). Figure 1 shows
in the dynamic and measurement equations. The model can nbaw the faults influence the residual and that the fault-free spec-
easily be written on the form (1). The noise is assumed whiteum ®,.(jw) is 1 for all w as expected. Especially note that the
with unit covariance. desired decoupling of faulfs; has succeeded while keeping the

The design goal in all the three examples based on this modglectrum of- constant for allu. Note that the DC gain from fault
are a residual generat@)(s) that decouples faults in the eleva-
tor angle actuator, i.efs, and produces a white residual in the
fault-free case. The difference in the designs are different noi —— e ——
assumptions. The motive for the decouplingfefis fault isola- /
tion by structured residuals (Gertler, 1991).

15,3108
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Process and measurement noise . .
In this first example, both measurement noise and proce \ \ o
noise is considered and state-space mati,eand D,, is set to i

16,65} i¢8]

B, = [I5 O5x3] D,, = [03x5 I3] o R o N s "

First, an innovation filter design is performed. Calculations in (2) Magnitude bode plots for th (b) Spectrump, (ju)
; a) Magnitude bode plots for the pectrumd,. (jw

MATLAB give faults to the residual

Nar,(s) = —0.07s —s—0.054 . ) _ ) ]
M.S) = | 0.09s2 4+ 0.64s —0.07s% — 0.049s — 0.3 - - - Figure 1: Result of the first design
) —0.091 —0.07 T f1 to the residual is zero which of course is bad for detectability,
0.0445% —0.048s —0.73  0.99s +0.64 - however it can easily be shown that there exists no strictly stable
-1 0 0 0 linear residual generator with non-zero DC-gain.

—0.07s —0.045 0.044s+1.1 0044 —1 | @D

' . o Only process noise
Thus, the dimension of the null-spabk, (M;(s)) is 2, i.e. there In this second example, only process noise is considered and
exists exactly two linearly independent numerators that decogtate-space matricds, andD,, is set to:
ples fs.
Then, matrixZ(s) is computed and it is easy to verify that it B, =15 Dp=03xs5
is full-rank, i.e. it is not possible to perfectly decouple the nois

A J-spectral co-factorization df(s) gives the spectral factor: “The null-space basi&Vyy, (s) is identical to the first example

(11). The row-degrees d¥,,. (s) is {1,2} and the row-degrees

P(s) = —0.99s — 1 —0.125 — 0.084 of N, (s) [g"} is {0,1}, i.e. no innovation filter exists ac-
0.12s2 + 0.32s + 0.068 —0.99s%2 — 2.25 — 1.8 _ n _ o
cording to Theorem 3. In (Frisk, 2001) it is also shown that no
The spectral factoP(s) is strictly stable which can be seen bywhitening residual generator exists either.
computing the zeros of the invariant polynomials. Matlab gives
the zeross = —1.0196 ands = —1.1124 + 50.7305 which lies Noise on all states and sensor 3
in the open left-half plane. In this final case the process is subjected to noise on all states
Checking for existence of innovation filter according to Theand on sensa, i.e. the matrices®3,, and D,, are given by

orem 3 gives:
0 00 0O

I’OW—degNMS (S) = {1,2} B, = [I5 O5><1] D,=1(0 0 0 0 O
0

0
0
D 0 0 0O 1
row-degN . (s) [B"} ={1,2}

n Now, computingNy,, (s) and Z(s) as before gives that(s) is

i.e. an innovation filter exists and can be formed@s) = strictly stable and that the row-degrees/6fy, (s) is (as before)

P=1(s)Nyy(s)Py. {1,2} and row-degrees oW, (s) {g”] is {0,2}. This gives

Next, a scalar whitening residual generator is to be designeﬂ. . L . ;
A whitening residual generator can be formed as that no innovation filter exists according to Theorem 3. But be-

causeZ(s) has no imaginary zeros and the row-degree of the

Q(s) = n(s)P~(8)Nas, (s) Py second row ofN,,. (s) does not decrease when multiplied by
the noise distribution matrices, Theorem 4 proves existence of a
wheren(s)n’ (—s) is constant. With whitening residual generator. A whitening residual generator can

be formed by

1
n(s) = ﬁ[l 1] Q(s) =n(s)P~"(s)Nas, () Py



which is proper when selecting 7 Conclusions

n(s) = [-0.0994 0.995] A polynomial design algorithm for linear residual generation
for stochastic state-space and descriptor systems in both contin-
. . . uous and discrete time has been considered. The problem for-
Figures 2 shows the fault influence on the residual and the Spefiy,|ated is based on innovation filters formulated by Nikoukhah
trum of the fault-free residual. Here it is clear that the re5|d(1994)' The problem formulation is further developed to a new
class of residual generators, whitening residual generators.
The two main steps in the design algorithm is computation
) . of a polynomial basis for the left null-space of a polynomial ma-
/ = = ’ trix followed by a J-spectral co-factorization of a para-hermitian
s - | polynomial matrix. For both these operations, good numerical
tools exists and the algorithm is successfully demonstrated on a
number of non-trivial examples.
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