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Abstract— An important step in fault detection and isolation
is residual evaluation where residuals, signals ideally zero in
the no-fault case, are evaluated with the aim to detect changes
in their behavior caused by faults. Generally, residuals deviate
from zero even in the no-fault case and their probability dis-
tributions exhibit non-stationary features due to, e.g., modeling
errors, measurement noise, and different operating conditions.
To handle these issues, this paper proposes a data-driven
approach to residual evaluation based on an explicit comparison
of the residual distribution estimated on-line and a no-fault
distribution, estimated off-line using training data. The com-
parison is done within the framework of statistical hypothesis
testing. With the Generalized Likelihood Ratio test statistic as
starting point, a more powerful and computational efficient test
statistic is derived by a properly chosen approximation to one of
the emerging likelihood maximization problems. The proposed
approach is evaluated with measurement data on a residual for
diagnosis of the gas-flow system of a Scania truck diesel engine.
The proposed test statistic performs well, small faults can for
example be reliable detected in cases where regular methods
based on constant thresholding fail.

I. INTRODUCTION

Fault Detection and Isolation (FDI) typically contains three
essential steps: residual generation, residual evaluation, and
fault isolation, see e.g. [1]. In the first step, a model of
the system is used together with measurements to generate
residuals. In the second step, the residuals are evaluated with
the aim to detect changes in the residual behavior caused by
faults, and in the third step the detected faults are isolated.
This paper addresses the second step, residual evaluation.

Ideally, residuals are signals that are zero when the system
is fault-free, and non-zero otherwise. However, in practice
residuals deviate from zero even in the no-fault case due to
uncertainties such as modeling errors and measurement noise.
Furthermore, the magnitude of uncertainties is time-varying
because of changes in operating conditions, which causes
the probability distributions of residuals to be non-stationary.
For a real-world illustration, consider Figure 1 in which a
model-based residual for diagnosis of the gas-flow system in
a truck engine is shown. Clearly, the residual is not zero in
the no-fault case and it is obvious that the distribution of the
residual exhibit non-stationary features. Moreover, it can be
noted that the difference between the residual in the no-fault
and fault cases is time-varying. Nevertheless, the incidence
of a difference implies that the fault is potentially detectable.

Apparently, when facing the problem of evaluating a
residual as the one depicted in Figure 1, approaches based
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on solely detecting changes in the mean or variance of
the residual by means of constant thresholding may not
be successful. A potential solution is to consider adaptive
thresholds [2], where additional system knowledge, either
qualitative [3], [4], [5] or quantitative [6], [7], are exploited
to derive non-constant thresholds that take time-varying
uncertainties into account. The viewpoint taken in this work
is however that all information regarding the system that can
be used for modeling has been used and incorporated in the
model. Thus, no additional system knowledge is available
and uncertainties must be handled in some other way. In this
paper, a data-driven and probabilistic approach is proposed.

The main contribution is to base the residual evaluation
on an explicit comparison of the probability distribution
of the residual estimated on-line using current data, and
the distribution of the no-fault residual, estimated off-line
using no-fault training data. To handle the non-stationarity,
the distribution of the no-fault residual is continuously
adapted by characterizing it as a mixture of different no-fault
distributions. The comparison is done in the framework of
statistical hypothesis testing by application of the Generalized
Likelihood Ratio (GLR). The approach is data-driven and
no assumptions regarding the properties of the residual
distributions nor the faults to be detected are made.

In Section II, the problem formulation is stated and cast as a
statistical hypothesis test. In Section III the GLR is utilized to
design a preliminary test statistic for the hypothesis test, and
the likelihood function together with the emerging likelihood
maximizations are discussed. Section IV explores how the
likelihood maximizations can be computed. In Section V,
the preliminary test statistic is improved, in terms of test
power and computational efficiency, by instead considering
a properly chosen approximation to one of the likelihood
maximization problems. In Section VI, the proposed residual
evaluation method is applied to a residual for diagnosis of the
gas-flow system of a Scania truck diesel engine. The paper
is concluded in Section VII.

II. PROBLEM FORMULATION

Let the discrete random variable R with range R =
{x1, x2, . . . , xm} represent the discretized and sampled
value of a residual. It is assumed that the probability
distribution of R is described by the probability mass
function (pmf) fR (r|θ), which is fully parameterized by
θ = (θ1, θ2, . . . , θm) and given by

fR (r|θ) = θj , if r = xj , (1)

for j = 1, 2, . . . ,m, where θj ≥ 0 and
∑m
j=1 θj = 1.
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Fig. 1. A model-based residual for diagnosis of the gas-flow in a truck engine in the no-fault (solid) and fault (dashed) cases.

As a prerequisite, it is assumed that representative no-fault
data, quantified in terms of estimated probability distributions
describing the residual in the no-fault case, are available.
Consequently, let ΘNF represent a set of no-fault distributions
parameterized according to (1). Typically, a certain θ ∈ ΘNF

characterizes the distribution of the residual under some
specific operating conditions.

Consider now a set of N observed residual values
r1, r2, . . . , rN , i.e., a sample R1, R2, . . . , RN of the joint
residual distribution fR(r1, r2, . . . , rN |θ) where the outcome
of Ri is ri. Throughout this work, it is assumed that
the sample R1, R2, . . . , RN is independent and identically
distributed (iid) with pmf fR(ri|θ) according to (1).

Note that the iid assumption may not be valid since
residuals often are obtained as output from dynamic systems
and thereby exhibit Markovian properties. The assumption is
still necessary to make subsequent derivations tractable, or
even possible. It can however often be fulfilled in practice
by sampling the residual at a sufficiently low rate, and the
approach has nevertheless shown to be applicable in practical
settings, for example in the experimental evaluation presented
in Section VI.

Given the iid sample R1, R2, . . . , RN of the distribu-
tion (1), the problem of residual evaluation is to determine
if θ ∈ ΘNF or not. This problem can be formulated as the
hypothesis test

H0 : θ ∈ ΘNF , H1 : θ 6∈ ΘNF , (2)

where the null hypothesis H0 corresponds to the no-fault case
and the alternative hypothesis H1 to the faulty case. Next
section deals with the problem of designing a test statistic
for the hypothesis test (2).

III. DESIGN OF TEST STATISTIC

A standard approach when encountering a hypothesis test
with non-simple hypotheses is to utilize the Generalized Like-
lihood Ratio (GLR), see e.g. [8], [9]. For testing hypothesis
H0 versus H1 in (2) the GLR test statistic is

Λ(r) =
maxθ∈Θ L(θ|r)

maxθ∈ΘNF
L(θ|r)

, (3)

where r = (r1, r2, . . . , rN ) and L(θ|r) is the likelihood
function. The sets Θ and ΘNF denote the entire parameter
space and the no-fault parameter space, respectively. The
hypothesis H0 is rejected in favor of H1, i.e., a fault is
present in the system, if the test statistic Λ(r) > J , where

J is a (constant) threshold. Note that for on-line use, the
residual observations in r may be taken by using a sliding
window, i.e., at time instant t the observations are given by
rt = (rt−N+1, rt−N+2, . . . , rt).

In order to employ the test statistic Λ(r), the maximizations
in the denominator and numerator of (3) must be performed.
Before considering these maximization problems, the objec-
tive function, i.e., the likelihood function L(θ|r), will be
studied in more detail.

A. The Likelihood Function

Consider now the iid sample R1, R2, . . . , RN of the
distribution (1), where the outcome of Ri is ri. Let nj denote
how many of the residual values r1, r2, . . . , rN that have value
xj , i.e.,

nj = |{rk ∈ {r1, r2, . . . , rN} : rk = xj , xj ∈ R}| , (4)

for j = 1, 2, . . . ,m. Since the sample R1, R2, . . . , RN is iid,
the random variables Ri are mutually independent and thus
the joint residual distribution can be written as fR (r|θ) =
fR (r1, r2, . . . , rN |θ) =

∏N
i=1 fR (ri|θ), where fR (ri|θ) is

given by (1). Consequently, the likelihood function L(θ|r) =
fR (r|θ) takes the form

L(θ|r) =

N∏
i=1

fR(ri|θ). (5)

Using (1) and (4), the likelihood function (5) reduces to

L(θ|r) =

N∏
i=1

fR(ri|θ) =

m∏
j=1

θ
nj

j . (6)

In order to simplify calculations, the log-likelihood function

l(θ|r) = logL(θ|r) =

m∑
j=1

nj log θj , (7)

will instead be considered, where it, for j = 1, 2, . . . ,m, is
assumed that nj > 0 and θj > 0.

Note that the assumption nj > 0 can be done without loss
of generality. If nk = 0, i.e., there are no observations with
value xk, the corresponding term in (7) is 0 · log θk ≡ 0, inde-
pendent of θk. Thus, this term can be neglected and the log-
likelihood function written as l(θ|r) =

∑m
j=1,j 6=k nj log θj .

The assumption θj > 0 is just a technicality due to the usage
of log(·). It however turns out, see Section IV-A, that nj > 0
implies θj > 0.



B. The Maximization Problems

Since log(·) is a strictly increasing function, it is equivalent
to maximize the likelihood and log-likelihood functions. By
utilizing (7), the two maximizations in (3) can be re-stated as

max
θ∈Θ

l(θ|r) = max
θ∈Θ

m∑
j=1

nj log θj (8)

and

max
θ∈ΘNF

l(θ|r) = max
θ∈ΘNF

m∑
j=1

nj log θj . (9)

Both (8) and (9) involves finding a θ that (globally) maxi-
mizes the log-likelihood function l(θ|r) given the observations
in r, i.e., finding the Maximum Likelihood Estimator (MLE)
of θ based on r, see e.g. [8]. The two problems differ by
the space in which the maximizing θ should be contained.
In (8) the maximization should be performed over the entire
parameter space defined by

Θ = {θ ∈ Rm : θj ≥ 0,

m∑
j=1

θj = 1}, (10)

that is, any θ such that fR(r|θ) is a pmf is valid. In (9),
however, the maximization should be performed over the
space ΘNF ⊂ Θ, containing all θ that describes the behavior
of the residual in the no-fault case. The space ΘNF will be
properly defined in Section IV-B.

IV. LIKELIHOOD MAXIMIZATIONS
This section is devoted to explore in detail how to find the

distribution estimates that solve the two MLE problems (8)
and (9), corresponding to the numerator and denominator of
the GLR test statistic (3), respectively.

A. MLE for the Numerator of the GLR Test Statistic

Consider first the maximization problem (8). With Θ given
by (10), (8) can be equivalently stated as

max
θ∈Rm

m∑
j=1

nj log θj , s.t. θj ≥ 0,

m∑
j=1

θj = 1, (11)

which is a general non-linear constrained maximization
problem. An important property of (11) is given by the
following result.

Lemma 1: The maximization problem (11) is a concave
maximization problem.

Proof: The problem (11) is a concave maximization
problem if f(θ) ,

∑m
j=1 nj log θj is a concave function,

gj(θ) , −θj , j = 1, 2, . . . ,m, are convex functions, and
h(θ) ,

∑m
j=1 θj − 1 is affine. The last two conditions

are trivially satisfied since both gj(θ) and h(θ) are linear
functions. Since ∂

∂θk
f(θ) = nk

θk
, for k = 1, 2, . . . ,m, it

follows that

∂2

∂θk∂θl
f(θ) =

{
−nk

θ2k
, l = k

0, l 6= k.
(12)

Thus the eigenvalues of the Hessian of f(θ), whose (k, l)-
element is given by (12), are strictly negative, since by

assumption nj > 0, and consequently the Hessian of f(θ) is
negative definite and f(θ) is a concave function.

It turns out that (11), and equivalently (8), can be solved
explicitly.

Proposition 1: The global solution to (11) is given by

θ∗ =
1

N
(n1, n2, . . . , nm) . (13)

Proof: Since, according to Lemma 1, the maximization
problem (11) is concave it is sufficient to show that there exist
constants µj , j = 1, 2, . . . ,m, and λ such that θ∗ satisfies the
Karuhn-Kuhn-Tucker (KKT) conditions, see e.g. [10], [11],

∇f(θ∗) +

m∑
j=1

µj∇gj(θ∗) + λ∇h(θ∗) = 0, (14a)

gj(θ
∗) ≤ 0, j = 1, 2, . . . ,m (14b)

h(θ∗) = 0, (14c)
µj ≥ 0, j = 1, 2, . . . ,m (14d)
µjgj(θ

∗) = 0, j = 1, 2, . . . ,m, (14e)

where f(θ) ,
∑m
j=1 nj log θj , gj(θ) , −θj , and h(θ) ,∑m

j=1 θj − 1. Consider first condition (14c) which is trivially
satisfied since

∑m
j=1

nj

N = 1 by definition of nj in (4). By
assumption and without loss of generality, see Section III-
A, it holds that nj > 0 and thus condition (14b) is
satisfied with strict inequality since θ∗j =

nj

N > 0 for
j = 1, 2, . . . ,m. This implies, due to condition (14e), that
µj = 0 for j = 1, 2, . . . ,m and thereby also (14d) is
satisfied. Differentiation of f(θ) =

∑m
j=1 nj log θj , gj(θ) =

−θj , and h(θ) =
∑m
j=1 θj − 1, gives that ∇f(θ) =(

n1

θ1
, n2

θ2
, . . . , nm

θm

)T
, ∇gj(θ) = −eTj , j = 1, 2, . . . ,m, and

∇h(θ) = (1, 1, . . . , 1)
T , where ej denotes the j:th unit vector.

With θ = θ∗ and µj = 0, for j = 1, 2, . . . ,m, condition (14a)
reduces to N+λ = 0 and hence (14a) is satisfied by λ = −N
and the proof is complete.

Since (11) is equivalent to (8), Proposition 1 states that θ∗

given by (13) is the MLE of θ, under the assumption that
the sample R1, R2, . . . , RN is iid so that the derivations in
Section III-A are valid.

Note that if the MLE of θ as given by (13) is considered,
nj > 0 implies θj > 0, which justifies the technical
assumption θj > 0 posed in Section III-A.

Also note that the MLE of θ given the observations in r,
can be obtained from the normalized histogram, with m bins,
calculated from r.

B. MLE for the Denominator of the GLR Test Statistic

Consider now the maximization problem (9) and let
θ1, θ2, . . . , θp, where θj ∈ Rm is a column vector, character-
ize distributions that describe the residual in the no-fault case.
In the ideal case, one set of observations can be described
by exactly one of the given distributions. In this ideal case it
would be natural to define ΘNF =

{
θ1, θ2, . . . , θp

}
and the

problem (9) would be reduced to simply picking one θj from
the set ΘNF that maximizes the log-likelihood in l(θ|r).

In the general case, the observations however origins from
more than one of the distributions in ΘNF as defined above.



A typical situation is illustrated in Figure 2, where a sudden
change of the operating conditions after 30 seconds causes
the distribution of the residual to change. Note that this
change should not result in detection of a fault. If the set
of observations contains samples from both before and after
the change, the approach described above will not yield a
satisfactory result.
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Fig. 2. A typical fault situation where the residual is distributed in one
way the first 30 seconds, in another way the last 70 seconds, and the fault
occurs after 70 seconds.

Note however that if the distribution of the residual in
Figure 2 is described by θ1 the first 30 seconds, and by θ2

the last 70 seconds, the complete distribution can be described,
in the no-fault case, by the mixture distribution characterized
by θ1γ1 + θ2γ2, where γ1 = 0.3 and γ2 = 0.7. Under the
assumption that the time spent between two distributions is
short, this observation suggests that the set ΘNF of no-fault
distributions is extended to also include convex combinations
of the original distributions characterized by the parameters
θ1, θ2, . . . , θp, i.e.,

ΘNF = {θ ∈ Θ : ∃γ ∈ Γ; θ = ∆γ}, (15)

where Γ = {γ ∈ Rp :
∑p
i=1 γi = 1, γ ≥ 0} and

∆ =
[
θ1 θ2 · · · θp

]
(16)

is a m× p matrix whose columns consist of the distribution
parameters θ1, θ2, . . . , θp.

With this extension of ΘNF , the original problem (9) can
be equivalently formulated as

max
γ∈Rp

m∑
j=1

nj log (∆jγ) , s.t. γi ≥ 0,

p∑
i=1

γi = 1, (17)

where ∆j =
[
θ1
j , θ

2
j , . . . , θ

p
j

]
denotes the j:th row of the

matrix ∆. As well as (11), problem (17) exhibits the following
important property.

Lemma 2: The maximization problem (17) is a concave
maximization problem.

Proof: The proof can be carried out in the same manner
as the proof to Lemma 1 with f(γ) ,

∑m
j=1 nj log (∆jγ),

g(γ) , −γ, and h(γ) ,
∑p
i=1 γi − 1. As an alternative to

differentiate f(γ), which may be cumbersome, it suffices to
note that the log(·) function is a concave function.

In the general case, it is unfortunately not possible to obtain
an explicit solution to (17), as was the the case for (11).
There are however several efficient numerical approaches,
see e.g. [11]. The concavity property of (17) facilitates the
solving since it implies that if a local maximum can be found,
then it is also a global maximum.

V. IMPROVED TEST STATISTIC

Even though the problem (17) can be solved, at least to
some specified tolerance degree, it is in fact better to use
an approximate solution. It is in this section shown that
the considered approximation to (17), and equivalently (9),
improves the test statistic (3) in terms of test power, and may
also reduce the required computational effort.

A. The Approximative Problem

Consider now instead of (17) the minimization problem

min
γ∈Rp

‖∆γ − θ∗‖22, s.t. γi ≥ 0,

p∑
i=1

γi = 1, (18)

where θ∗ = 1
N (n1, n2, . . . , nm), i.e., the solution to (11) and

equivalently (8). Intuitively, it makes sense to chose γ so
that θ = ∆γ is as close as possible to θ∗, in terms of the
Euclidean norm, but still is contained in ΘNF , since θ∗ is the
solution to (11) which is equivalent to (17) if θ = ∆γ. Usage
of (18) as an approximation to (17) is formally justified by
the following result.

Lemma 3: Let θ∗ = 1
N (n1, n2, . . . , nm) be an element in

ΘNF , then γ∗ is the solution to (17) if and only if γ∗ is the
solution to (18).

Proof: First note that from the assumptions regarding θ∗,
Proposition 1, and Lemma 2, it holds that there always exists
a unique γ so that θ∗ = ∆γ and γ is a solution to (17). Hence,
if γ∗ is the solution to (17) it follows that ∆γ∗− θ∗ = 0 and
γ∗ is also a solution to (18). Conversely, let γ∗ be a solution
to (18). Since the Euclidean norm ‖ · ‖2 defines a convex
function and the conditions in (18) are linear the minimization
problem (18) is a convex optimization problem, see the proof
to Lemma 1 for more details. Due to the convexity, γ∗ is
a unique solution. From the assumption θ∗ ∈ ΘNF and the
uniqueness of γ∗ it follows that θ∗ = ∆γ∗ and hence θ∗ is
the solution to (17).

B. Improving the Test Statistic

Recall the GLR test statistic

Λ(r) =
maxθ∈Θ L(θ|r)

maxθ∈ΘNF
L(θ|r)

=
L(θ∗|r)

L(θ∗NF |r)
, (19)

where θ∗ is the solution to (11), θ∗NF = ∆γ∗ and γ∗ is the
solution to (17), and the likelihood L(θ|r) is given by (6).
Consider now instead the test statistic

Λ̂(r) =
L(θ∗|r)

L(θ̂|r)
, (20)

where θ̂ = ∆γ̂ and γ̂ is the solution to (18).
The important implication of Lemma 3 is that if θ∗ ∈ ΘNF ,

i.e., under H0, the solution θ̂ coincides with θ∗NF and hence
Λ̂(r) ≡ Λ(r). If instead θ∗ 6∈ ΘNF , i.e., under H1, it holds



that L(θ̂|r) ≤ L(θ∗NF |r), due to the concavity property of
L(θ|r), or equivalently l(θ|r) = logL(θ|r), see Lemma 1.
Therefore, under H1, it holds that Λ̂(r) ≥ Λ(r). Thus, by
using the test statistic Λ̂(r) instead of Λ(r) in the test Λ(r) >
J , the probability of rejecting H0 in general increases, that
is, the test Λ̂(r) > J is more powerful than Λ(r) > J .

The power of a statistical test Λ(r) > J is measured by
the power function

β(θ) = Pr(reject H0|θ) = Pr(Λ(r) > J |θ), (21)

which gives the probability of rejecting the hypothesis H0

given a fixed θ and a fixed threshold J , see e.g. [8]. With
this notion, the discussion above can be compiled into the
following result.

Proposition 2: Let Λ(r) be given by (19), Λ̂(r) by (20),
and let β(θ) and β̂(θ) denote the power functions of the tests
Λ(r) > J and Λ̂(r) > J , respectively. Then β̂(θ) ≥ β(θ),
with equality if θ ∈ ΘNF .

C. Implementation Issues

The optimization problem (18) is equivalent to a linear least
squares problem with equality and non-negative constraints
for which efficient algorithms exist, see e.g. [12]. A further
approximation can be obtained by relaxation of the constraint∑p
i=1 γi = 1 in (18), which then may be incorporated in the

objective function. This relaxed problem can be stated as a
Non-Negative Least Square (NNLS) problem, see e.g. [13],
[14]. In MATLAB, these two approximations can be solved
with the commands lsqlin and lsqnonneq, respectively.

D. Parameters

The parameters involved in the design of the test Λ̂(r) > J
in (20) are the size N of the residual sample, the discretization
m of the residual, the number p of no-fault distribution
parameters in (16), and the detection threshold J .

1) Sample Size: The sample size N is a trade-off between
detection performance and complexity. A large N will give
the test statistic smoothed, low-pass, characteristics. This
makes it possible to detect small changes in the residual, but
on the other hand a large N may increase the detection time.
Moreover, a large N requires more memory and is more
computationally demanding.

2) Distribution Resolution: Choosing the discretization
m of the residual, or likewise the resolution m of the
residual distribution (1), in fact corresponds to the well-
studied, but nevertheless difficult, problem of choosing the
number of bins in a regular histogram given a sample of
data. Numerous approaches for solving this problem exist,
see for example [15] and references therein. Regardless of
the method used to solve the problem, the choice of m
is a trade-off between accuracy and complexity, in terms of
computational load and memory. A larger m results in a more
accurate discretization of the residual and higher resolution
of the probability distributions. On the other hand, a large
m requires more memory and involves more computations.
The choice of m is also related to the choice of N , since a
small N together with a large m will result in an inadequate
estimation of the distribution, i.e., a sparse histogram.

3) Number of No-Fault Distributions: The value of p
determines the number of no-fault distribution parameters
in the set ∆ defined according to (16). Typically, a θi ∈ ∆
characterizes the distribution of the no-fault residual under
some specific operating condition. Thus, the value of p is
determined by the total number of considered operating
conditions of the studied system. In general, determination
of p requires expert knowledge regarding the system. For a
systematic approach, which is out of the scope of this work,
machine learning approaches such as clustering, see e.g., [16],
may also be exploited. Using a clustering approach, a given
set of no-fault data can be automatically partitioned into an
appropriate number of clusters, where each cluster contains
data of the same distribution.

4) Detection Threshold: The choice of detection threshold
J , is a trade-off between detection time and probability
of false detections. The higher the threshold, the longer
the detection time and the lower the probability of false
detections. The value of J is also related to the choice of
N . A larger N implies in general that the sampled residual
origins from several distributions, e.g., the system may be
used under several different operating conditions during the
sampling period, c.f. Figure 2. If the time spent between two
distributions is long, this may result in an increase of the test
statistic. Therefore, a larger N may imply usage of a larger
threshold J in order to avoid false detections.

VI. EXPERIMENTAL EVALUATION
The proposed residual evaluation method has been applied

to the problem of fault detection in the gas-flow system of a
Scania 6 cylinder, 13 liter, truck diesel engine equipped with
Exhaust Gas Recirculation (EGR), Variable Geometry Turbine
(VGT) and intake throttle. The purpose of the evaluation is
to analyze the performance of the proposed test statistic (20)
using measurement data, and also to see how the performance
is influenced by different choices of the involved parameters,
mainly the window size N .

A. Gas-Flow Diagnosis
The gas-flow system, or rather the truck itself, is a complex

system that operates under a variety of conditions, for
example high-way and city drive, different ambient conditions,
different loads and truck drivers, etc. Diagnosis of the gas-
flow system consists of detecting and isolating faults in
sensors (pressure, temperature, mass-flow), actuators, as well
as detection of, e.g., manifold leakages and clogged air filters.
The main incentives for gas-flow diagnosis are fault tolerant
control, and On-Board Diagnosis (OBD) regulations.

The model of the system, which is described in [17], relies
on both fundamental first principle physics and gray-box
modeling. For diagnosis of the gas-flow system, a set of
residual generators based on the engine model were designed
with the method described in [18]. Naturally, the model does
not describe all aspects of the system, i.e., under all operating
conditions, leading to that all residuals exhibit properties
similar to those illustrated in Figure 1.

The residual considered in this study is sensitive to 10
faults: 3 leakages, 6 sensor faults, and 1 actuator fault. The



residual is the output from a non-linear residual generator
using both integral and derivative causality, and which has
9 input signals. The value of the residual is based on a
comparison of two modeled values of the temperature before
the cylinders.

B. Estimation of Residual Distributions
For the gas-flow system, the magnitude of uncertainties

and therefore also the properties of the residual distributions,
depend on numerous factors. The approach used in this case
study relies on expert knowledge regarding the considered
system and utilizes that operating conditions for the gas-
flow system, and thereby the residual distributions, can be
approximately parameterized by the engine torque. This
approximation enables the use of a basic and straightforward
approach for estimating the distributions, but nevertheless
shows the potential of the method.

The engine torque is not measured directly but the boost
pressure is, which is approximately proportional to the engine
torque. By partitioning the range of the boost pressure into
intervals and partition the residual accordingly, all residual
values originating from the same distribution, i.e., operating
condition, can be picked out. Having partitioned the residual
data according to distribution, the parameters θi in (16) must
be estimated. One option, which has been used in this paper,
is to use the MLE of θi, for which an explicit expression is
given in Proposition 1.

Two data sets were used to estimate the distributions.
The first data set is about half an hour long and contains
engine test bed measurements from a World Harmonized
Transient Cycle (WHTC) test cycle. The second data set
is approximately 3 hours long and contains measurements
from a part of a test drive, including both city and high-way
driving, from Södertälje to Arvidsjaur in Sweden. The two
data sets were concatenated and then split into 25 partitions,
i.e., 25 distributions. This number is a good trade-off between
the coverage of all different features of the residual data and
complexity, i.e., memory requirements and computational
load.

For each of the 25 partitions of the residual data, the
MLE of the parameter θi was computed using normalized
histograms. The resolution m of the distributions, i.e. the
discretization of the residual and likewise the number of
bins in the histograms, was chosen as m = 30. For this
application, this is a good trade-off between complexity, in
terms of required memory and computational effort, and
accuracy. In Figure 3, the resulting distributions are shown.
Note that the characteristics of the estimated distributions
are different, some are multi-modal and some have only one
single mode.

C. Evaluation Setup
The data set used in the evaluation contains road measure-

ments from a four hour drive that includes both high-way
and city parts. This data set is a different data set than the
two sets used for estimating the residual distributions.

The fault considered in this case study is a fault in the
boost pressure sensor. The relation between the boost pressure
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Fig. 3. The 25 estimated residual distributions used in the evaluation.

sensor signal ypim and the considered residual is dynamic
and highly non-linear. The residual value r depends on the
derivative of the boost pressure sensor signal, as well as the
actual sensor signal, i.e., r = F (ypim , ẏpim , . . .), where F (·)
is a non-linear function. The considered fault scenario is a
gain fault in the sensor, that is, the sensor signal ypim fed
to the residual generator is ypim = δ · pim, where pim is the
actual boost pressure, and δ 6= 1 indicates a gain fault. Gain
faults in the range δ ∈ [0.2, 1.8] were implemented off-line
by modification of the sensor signal.

1) Evaluation Metrics: The main metric considered in this
study is the power function, in this context defined as

β(δ) = Pr(detection|δ) = Pr(λ(r) > J |δ). (22)

If δ 6= 1 the power function (22) gives the probability of
fault detection and also the probability of missed detection,
as 1 − β(δ), given a fixed δ. If δ = 1, the power function
gives the probability of false detection, see for example [8].
Note that δ = 1 in (22) corresponds to θ ∈ ΘNF in (21). To
study another important aspect of the detection performance,
the Mean Time to Detection (MTD) will also be considered.
Note that the choices of the values of the parameters N and
J , i.e. the sample size and detection threshold, are a trade-off
between the metrics measured by the power function and the
MTD, see Section V-D.

In order to be able to say something about the relative
performance of the proposed test statistic, it will be compared
to the often in practice used test statistic s(r) = 1

N

∑N
i=1 r̄

2
i

where r̄ = (r̄1, r̄2, . . . , r̄N ) is a low-passed filtered version of
the sample r, and N is the sample size. Note that the purpose
of this comparison is merely to give a feeling of the relative
performance of the proposed test statistic, and the comparison
is not claimed to be exhaustive. The low-pass filtering was in
this study performed with a first-order Butterworth filter and
for comparison, four different cut-off frequencies, f1 = 0.005
Hz, f2 = 0.05 Hz, f3 = 0.5 Hz, and f4 = 4.5 Hz, were used.
The corresponding test statistics are denoted s1(r), s2(r),
s3(r), and s4(r). The residual is sampled with a frequency



of fs = 10 Hz.
2) Implementation Details: All test statistics were imple-

mented and run off-line in a MATLAB environment. The
test statistic λ(r) = log Λ̂(r), where Λ̂(r) is given by (20)
was utilized, and the optimization problem (18) solved with
the command lsqnonneq, see Section V-A. The residual
observations were taken by using a sliding window, see
Section III. The thresholds for all test statistics were computed
based on the two data sets used in the estimation of the
residual distributions and chosen in order to give a probability
of false detection of 5%.

D. Results

To illustrate how the power of the test λ(r) > J varies
with the window size N , Figure 4 shows the power function
for the test for different values of N . Figure 4 clearly shows
that the power of the test increases with N . Moreover, it
can be seen that as small faults as δ ≈ 0.95 and δ ≈ 1.05,
corresponding to gain faults in the boost pressure sensor of
about ± 5%, may be reliably detected if N is sufficiencly
large.
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Fig. 4. Power function for the test λ(r) > J for different window sizes
N . The power increases with N .

Figure 5 shows the residual and the test statistics λ(r) and
s1(r), corresponding to f1 = 0.005 Hz, with N = 2048 for
a data sequence where δ = 0.85. First of all, it may be noted
that as in Figure 1, the residual is non-zero in the no-fault
case and its distribution is non-stationary in both the no-fault
and fault cases. Moreover, the difference between the no-fault
and fault residuals is also time-varying and the residuals even
coincide at some occasions. It can also be seen that there
is a significant difference between the test statistic λ(r) in
the no-fault and fault cases, and also that λ(r) is above the
threshold in the fault case and thus the present fault can be
detected. The fault can however not be detected with the
test statistic s1(r), which in this case performed better than
each of s2(r), s3(r), and s4(r). It may be noted that s1(r)
is larger in the no-fault than the fault case.

Figure 6 shows a comparison of the power functions for
the tests based on the test statistics λ(r), s1(r), s2(r), s3(r),
and s4(r), for different values of the parameter N . First, note
that the power of all tests increases with N and that the
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Fig. 5. Residual (top) and test statistics λ(r) (middle) and s1(r) (bottom)
with N = 2048 during a test sequence where δ = 0.85. Quantities are
solid in the no-fault case, and dashed in the fault case.

differences between the power of the tests seem to decrease
with an increasing N . Second, it can be seen that the power
function for the λ(r) test is near symmetric for all N , while
the power functions for the other tests are asymmetric and
tend to be less powerful for faults sizes δ < 1. For e.g.
N = 128, the difference in power for δ < 1 is significant.
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Fig. 6. Comparison of power functions for the tests based on λ(r) (solid
with dot markers), s1(r) (solid), s2(r) (dashed), s3(r) (dash-dotted), and
s4(r) (dotted), for different window sizes N .

The mean time to detection (MTD) for the tests based on
λ(r), s1(r), s2(r), s3(r), and s4(r), for different values of
N and fixed false detection probability, is shown in Figure 7.
The MTD was computed as the mean of the detection time
for all considered fault sizes δ ∈ [0.2, 0.8], where each fault
of fixed size was injected in the test sequence at 10 time
instances. It can be seen that the MTD increases with N for
λ(r) but tend to decrease with N for s1(r), s2(r), s3(r), and
s4(r). It is also worth noting that for smaller values of N ,
the MTD for λ(r) is shorter than for s1(r), s2(r), s3(r), and
for larger N the MTD for all test statistics are almost of the
same magnitude.



When the MTD shown in Figure 7 was computed, missed
detections were not taken into account. Although the number
of missed detections can be deduced from the power functions
in Figures 4 and 6, this metric is explicitly shown in Figure 8,
in the same format and as a contrast to the results in
Figures 4, 6, and 7. In Figure 8 it can be seen that for
all test statistics, the number of missed detection decreases
with N and also that λ(r) has less missed detections than
s1(r), s2(r), s3(r), and s4(r), independent of N .
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Fig. 8. Comparison of the number of missed detection for test statistics λ(r)
(solid with dot markers), s1(r) (solid), s2(r) (dashed), s3(r) (dash-dotted),
and s4(r) (dotted), for different window sizes N .

VII. CONCLUSIONS

As clearly illustrated in Figure 1, residuals in practice
often deviate from zero even in the no-fault case due to
uncertainties such as modeling errors and measurement
noise. Furthermore, since uncertainties are time-varying the
probability distributions of residuals exhibit non-stationary
features, and the difference between residuals in the no-fault
and fault cases are time-varying.

To handle these issues, this paper has proposed a novel ap-
proach to residual evaluation based on an explicit comparison
of the residual distribution estimated on-line using current
data, and the distribution of the no-fault residual, estimated
off-line using no-fault training data. In the approach, the non-
stationarity is handled through a continuous adaption of the
no-fault distribution to current residual data, which is done
by characterizing the distribution as a mixture of the a priori
known no-fault distributions. With the GLR test statistic as
starting point, a more powerful and computational efficient
test statistic has been derived by considering a properly chosen

approximation to one of the emerging likelihood maximization
problems.

The proposed test statistic has been evaluated with mea-
surement data on a residual for diagnosis of the gas-flow
system of a Scania truck diesel engine. The results are
promising, and the proposed test statistic performs well
despite non-conventional properties of the considered residual.
For example, small faults can be reliable detected in cases
where regular methods based on constant thresholding fail.

Future work includes an analysis of how the properties of
the given no-fault distributions influence the performance of
the method and how these distributions should be chosen and
obtained, in order to maximize performance. A more thorough,
theoretical, study of how different parameters influence the
detection performance and an investigation regarding the
implementation issues and computational complexity of the
proposed approach is also desirable, as well as a more
exhaustive comparison of the proposed approach with other
state-of-the-art methods.
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