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Abstract— A theory is developed for quantifying fault de-
tectability and fault isolability properties of static linear
stochastic models. Based on the model, a stochastic characteri-
zation of system behavior in different fault modes is defined and
a general measure, based on the Kullback-Leibler information,
is proposed to quantify the difference between the modes. This
measure, called distinguishability, of the model is shown to
give sharp upper limits of the fault to noise ratios of residual
generators. Finally, a case-study of a diesel engine model shows
how the general framework can be applied to a dynamic and
nonlinear model.

I. INTRODUCTION

Diagnosis and supervision of industrial systems concerns
detecting and isolating faults that occur in the system. When
designing a diagnosis system, information of detectability
and isolability properties of the system, before actually
designing any diagnosis system, is useful. Such information
states whether a test with certain properties can be created
or if more sensors are needed to get satisfactory diagnos-
ability performance. Because of system noise, time could be
wasted on developing tests to detect a fault that in reality is
impossible to detect or isolate.

There are several works describing methods from classical
detection theory, for example the books [1] and [2], which
can be used for quantified detectability analysis using a
stochastic characterization of faults. A main contribution
with respect to these works is that here, isolability perfor-
mance is also considered.

There exist systematic methods for analyzing isolability
performance in dynamic systems, e.g., [3], [4] and [5],
however these approaches are deterministic and only give
qualitative statements whether a fault is isolable or not. This
gives an optimistic result of isolability performance because
an isolable fault can be hard to detect in practice due to low
fault to noise ratio.

In [7], a quantitative analysis of isolability performance
in dynamic linear models is made using parity spaces. Main
differences compared to this paper are that the analysis in
[7] assumes a known fault size, which is not assumed in this
work, and also focuses on the performance of a set of tests
rather than properties of the model.

This paper presents a theory for quantified isolability anal-
ysis of linear static models. The theory has close connections
to isolability performance of residual generators and the fault
to noise ratio of these. An example in Section II introduces
problems faced when analyzing isolability performance. The
problem formulation is specified in Section III. The method
and theory are presented in Section IV. A relation between
the theory and residual generators and how to choose optimal
residuals are shown in Section V. The method is then used
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{daner,matkr,frisk}@isy.liu.se

to analyze isolability performance of a diesel engine model
in Section VI.

II. AN INTRODUCTORY EXAMPLE

An academic example will be used to illustrate important
isolability properties encountered and to discuss limitations
in using only a deterministic analysis method. The discussion
will be used as a basis for the problem formulation in
Section III.

Consider a static model described by

x1 = u+ f1 + f2 + ε1

x2 = 2(x1 − f1) + f3 + ε2

y1 = x2 + f4 + ε3

y2 = x2 + ε4

(1)

where xi are unknown variables, yi are measured variables,
u is a known actuator variable, fi are modeled faults, and εi
are independent stochastic variables modeling uncertainty. A
fault mode represents if a fault fi is present, i.e., fi 6= 0.
With a little abuse of notation, fi will also be used to denote
the fault mode when fi is the present fault. For simplicity in
this example, let fi = 1 if fi is present and 0 otherwise. The
stochastic variables are assumed to be normally distributed
with means and variances given by ε1, ε2 ∼ N (0, 0.1) and
ε3, ε4 ∼ N (0, 1).

Given how the faults enter the model, information of
isolability performance is useful from a diagnostic perspec-
tive. Table I shows the results of a deterministic isolability
analysis of (1) obtained by neglecting the stochastic variables
εi and using for example the method described in [6]. An X
in the table marks if the fault in the row is not isolable from
the fault in the column. The NF (No Fault) column represents
if the fault mode is detectable. The analysis states that f1 is
not detectable, since no test sensitive to f1 can be created.
Therefore f1 is not isolable from the other faults. Fault modes
f2 and f3 are not isolable from each other because getting
information about f3 requires information about x1 which
is affected by f2 and vice verse. Fault mode f4 is isolable
from all other fault modes since comparing y1 and y2 gives
a test that is sensitive only to f4.

The deterministic analysis gives a rather coarse description
of the diagnosability properties of the set of residuals. Next,

TABLE I
A DETERMINISTIC DETECTABILITY AND ISOLABILITY ANALYSIS OF (1).

NF f1 f2 f3 f4
f1 X X X X X
f2 0 0 X X 0
f3 0 0 X X 0
f4 0 0 0 0 X



the analysis will be extended to also take the uncertainties,
modeled by the stochastic variables εi, into account. First,
consider a set of residuals based on (1),

r1 = y1 − 2u = 2f2 + f3 + f4 + 2ε1 + ε2 + ε3

r2 = y2 − 2u = 2f2 + f3 + 2ε1 + ε2 + ε4

r3 = y1 − y2 = f4 + ε3 − ε4.
(2)

The residuals in (2) are consistent with the results in Table I
which states that no test can detect f1, no test can detect f2

but not f3 or vice verse, and it is possible to isolate f4.
By taking noise into consideration when analyzing the

residuals, isolability and detectability performance can be
quantified using fault to noise ratio (FNR). FNR is, in the
normally distributed case, the ratio between fault influence
of the system, λ, and the standard deviation, σ, of the noise,
see e.g. [7]. For simplicity in this example, for each fault pair
the highest FNR of the residuals which isolate the fault pair
is used to quantify isolability. For example, both residuals
r1 and r3 can be used to detect fault f4, but residual r1 has
a higher FNR than r3. The FNR of r1 with respect to f4 is

FNRr1 =
λ

σ
=

f4√
var(2ε1 + ε2 + ε3)

=
1√
1.5
≈ 0.82.

The residual r2, which isolates f2 and f3 from f4, has a
FNR approximately 1.63 and 0.82 respectively for the two
faults. Thus a quantified isolability analysis using FNR of the
residuals (2) is summarized in Table II. A fault not isolable
from another fault is quantified as 0 and a high FNR value
represents an easily detectable fault. Table II gives more
detailed information of isolability performance compared to
Table I, for example that f2 and f3 are easier to isolate from
f4 than the opposite using the residuals (2).

III. PROBLEM FORMULATION
The example in Section II showed the advantages of taking

noise into consideration to give more detailed information
of detectability and isolability performance. The example
illustrated how to analyze a set of given residuals. Now, the
approach will be generalized to analyze the model equations
directly. Here, a static model in the form

Lz = Hx+ Ff +Ne (3)

is considered where z ∈ Rk are known variables, x ∈ Rl
are unknown variables, f ∈ Rn are additive faults, and e ∼
N (0,Λ) is a normally distributed random vector with zero
mean and a symmetric positive definite covariance matrix
Λ ∈ Rm×m. If q is the number of equations, the model
matrices have dimensions H ∈ Rq×l, L ∈ Rq×k, F ∈ Rq×n
and N ∈ Rq×m.

TABLE II
A QUANTIFIED ISOLABILITY ANALYSIS OF fi = 1, FOR i = 1, 2, 3, 4, BY

COMPUTING FNR OF THE RESIDUALS (2).

NF f1 f2 f3 f4
f1 0 0 0 0 0
f2 1.63 1.63 0 0 1.63
f3 0.82 0.82 0 0 0.82
f4 0.82 0.82 0.71 0.71 0

The example also indicates that the FNR of different
residuals are related to isolability performance. To avoid that
all stochastic variables can be eliminated in a residual giving
the possibility for infinite FNR:s, it is assumed that

(
H N

)
has full row-rank. (4)

This assumption is for example fulfilled if all sensors have
measurement noise. Without loss of generality, it is assumed
that the covariance matrix Σ̄ of variable NHNe equal the
identity matrix, that is

NHNΛNTNT
H = I (5)

where the rows of matrix NH forms an orthonormal basis
for the left null-space of matrix H . The notation, NA, will
be used henceforth in this paper to denote a matrix where the
rows form an orthonormal basis for the left null-space of any
matrix A. Assumption (5) is imposed since it will simplify
the presentation of the results in the following sections. To
see that no generality is lost, note that any model satisfying
assumption (4) can be transformed into fulfilling Σ̄ = I
by multiplying (3) from the left with a suitable, invertible,
transformation matrix T . The choice of T is not unique and
one possibility is

T =

(
Γ−1NH
T2

)
(6)

where Γ is a non-singular factorization matrix satisfying

NHNΛNTNT
H = ΓΓT (7)

and T2 is any matrix ensuring invertibility of T . The
factorization of (7) is always possible since the left hand
side, according to assumption (4), is positive definite and
symmetric. Thus, Γ can be found for example from a singular
value decomposition.

Deterministic detectability and isolability is a relation over
pairs of behavioral modes of the system as can be seen in
Table I and this motivates a formal discussion of how modes
and their behaviors are described. The behavior of the fault
free mode is given by (3) when f = 0. If only fault j is
present, the behavior is given by (3) when the fault size
fj 6= 0 is any non-zero value and fi = 0 for all i 6= j.

In a theory of quantified isolability also the size of faults
must be considered since faults are compared to noise levels.
For example, a large fault is easier to detect than a small one
and this should be reflected in the quantified detectability and
isolability analysis. Thus the goal of this paper is, given a
system description in the form (3), to quantify how easy it
is to isolate a fault fi of size fi = θ from another mode fj
with an unknown fault size.

IV. DISTINGUISHABILITY

To solve this problem, a method will be presented for an-
alyzing detectability and isolability performance of a model
where noise is taken into account. The method is exemplified
on (1) and the results are compared to the example in
Section II.



A. Stochastic Characterization of Fault Modes

It proves useful to write (3) in a different form. To motivate
the rewrite, a small example is considered.

Example 1: Consider a small model

x = u+ f
y = x+ ε

with an unknown variable x, a measured variable y, an
actuator variable u, a modeled fault f , and a stochastic
variable ε ∼ N (0, σ2). Both y and u are known and thus by
rewriting the model as,

y − u = f + ε, (8)

where x has been eliminated, the left hand side can be used
to analyze the fault detectability properties of the model, for
example to compute the FNR. �

The example shows that by eliminating the unknown
variables the relations between the known variables can be
used to get information about the modeled FNR. Elimination
of x in (3) is achieved by multiplying with NH from the left,
where the rows of NH are an orthonormal basis that spans
the left null-space of H .

Now, the model rewrite can in the general case be written
as

NHLz = NHFf +NHNe. (9)

For any solution z0, f0, e0 to (9) there exists an x0 such that
it also is a solution to (3). Thus no information about the
model behavior is lost when rewriting (3) as (9).

Let r = NHLz ∈ Rd, which corresponds to the left hand
side of (8) in the example, be used to analyze diagnosability
performance of the model. The dimension d of the signal r
corresponds to the degree of redundancy in the model and is
typically d = q−k. This representation can be related to the
definition of observation sets for the deterministic case, see
[11]. Note that the rows in NHL span all possible residual
generators.

The vector r depends on faults and noise, and describes
the behavior of the model, see [8]. The normal distribution of
r has a positive definite covariance matrix Σ̄ = NHΣNT

H , if
(4) is fulfilled. According to the assumption in Section III, it
holds that Σ̄ = I . In (9), all modeled faults f only affect the
mean of r. Let p(r;µ) be the probability density function,
pdf, describing r defined as

p(r;µ) =
1

|2π| d2
exp

(
−1

2
(r − µ)T (r − µ)

)
(10)

which is the multivariate normal distribution with unit covari-
ance matrix. The set of pdf’s of r, representing the different
fault sizes of fi that can be explained by fault mode fi, is
defined as

Zfi = {p(r;µ)|∃fi : µ = NHFifi} , (11)

where Fi is the i:th column of F . The fault free mode, NF,
is a special case which is only described by a single pdf,

ZNF = {pNF} = {p(r; 0)}

and corresponds to f = 0. Each fault mode fi results in a
set Zfi . A fixed fault fi = θ corresponds to one pdf in Zfi ,
denoted

piθ = p(r;NHFiθ). (12)

B. Quantified Detectability and Isolability
The difference between the pdf’s, p1

θ1
and p2

θ2
, of r for

two faults f1 = θ1 and f2 = θ2 respectively, can be seen as
a measure of isolability. Thus, the isolability of fi = θ from
a fault mode fj with unknown fault size can be quantified by
the smallest difference between piθ and a pdf pj ∈ Zfi . The
Kullback-Leibler information is a measure of the difference
between two pdf’s, and this measure will be used here.

The Kullback-Leibler information, see [9], between two
pdf’s p1 and p2 is defined as

K(p1‖p2) =

∫ ∞

−∞
p1(v) log

p1(v)

p2(v)
dv = Ep1

[
log

p1

p2

]
(13)

where Ep1
[
log p1

p2

]
is the expected value of log p1

p2
given pi.

Equation (13) is non-symmetric, i.e., K(p1‖p2) 6= K(p2‖p1)
in the general case, and has the following properties

K(p1‖p2) > 0 if p1 6= p2, K(p1‖p2) = 0 if p1 = p2.

These properties are consistent with Table II where isolable
fault modes have FNR > 0 and the FNR for isolability of
f3 from f4 is not the same as isolability of f4 from f3. The
Kullback-Leibler information thus have necessary properties
needed for a quantified isolability analysis.

All fault modes are described as multivariate normal pdf’s.
Thus the Kullback-Leibler information of two multivariate
normal pdf’s with the same covariance, p1 ∼ N (µ1, Σ̄) and
p2 ∼ N (µj , Σ̄), are considered. Then (13) can be written as

K(p1‖p2) =
1

2
‖µ1 − µ2‖2Σ̄−1 . (14)

Note that (14) is invariant to linear transformations. Let pT1 ∼
N (Tµ1, T Σ̄TT ) and pT2 ∼ N (Tµ2, T Σ̄TT ) where T is a
non-singular transformation matrix, then

K(pT1 ‖pT2 ) =
1

2
‖T (µ1 − µ2)‖2(T Σ̄TT )−1 =

=
1

2
‖µ1 − µ2‖2Σ̄−1 = K(p1‖p2).

(15)

By using the stochastic characterization of fault modes in
Section IV-A together with the Kullback-Leibler information
to measure the distance between a fault fi = θ and a fault
mode fj with an unknown fault size, a measure for isolability
properties can be defined.

Definition 1 (Distinguishability): Given a static linear
model (3) under assumption (4), distinguishability Di,j(θ)
of a fault fi = θ from a fault mode fj is defined as

Di,j(θ) = min
pj∈Zfj

K
(
piθ‖pj

)
(16)

where the set Zfj is defined in (11) and piθ in (12).
Figure 1 shows a graphical interpretation of distinguisha-

bility. Distinguishability can be used to analyze either isola-
bility or detectability performance depending on whether Zfj
describes a fault mode or the fault free case.



Fig. 1. A graphical visualization where distinguishability represents the
smallest difference between piθ ∈ Zfi and a pdf pj ∈ Zfj .

In [10], it is shown that (13) can be written as

K(piθ‖pj) = L(piθ, p
i
θ)− L(piθ, p

j) (17)

where L(piθ, p
i
θ) = Epiθ [log piθ] and L(piθ, p

j) = Epiθ [log pj ]
are log-likelihood functions. Thus minimizing the Kullback-
Leibler information is the same as maximizing the maximum
likelihood estimate of pj ∈ Zfj to piθ. Equation (17) gives
that if ∃pj ∈ Zfj such that K

(
piθ‖pj

)
= 0 then piθ ∈ Zfj ,

i.e., fault mode fi can be explained by fault mode fj and
thus fi is not isolable from fj .

Example 2: Consider the example in Section II. The
model can be written in the form (3) as



−1 0 0
0 0 0
0 1 0
0 0 1






u
y1

y2


 =



−1 0
2 −1
0 1
0 1



[
x1

x2

]
+




1 1 0 0
−2 0 1 0
0 0 0 1
0 0 0 0






f1

f2

f3

f4


+




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






e1

e2

e3

e4




(18)

where Λ = diag
([

0.1 0.1 1 1
])

.
To fulfill that the covariance matrix of NHNe is equal

to the identity matrix, (18) is multiplied with a matrix T ,
defined in (6), from the left. An example is

T =




0 0 − 1√
2

1√
2

2 1 1
2

1
2

1 0 0 0
0 1 0 0


 .

The analysis, computing Di,j(θ) with θ = 1, can be seen in
Table III. Comparing Table I and Table III, Di,j(θ) = 0 cor-
responds to an X in the deterministic analysis and represents
a non-detectable or non-isolable fault pair. A detectable or
isolable fault gives Di,j(θ) > 0 if |θ| > 0, where higher
distinguishability represents a fault that is easier to detect or
isolate.

TABLE III
DISTINGUISHABILITY OF THE FAULTS FROM THE OTHER FAULTS AND

THE FAULT FREE CASE WHEN fi = 1, FOR i = 1, 2, 3, 4.

Di,j(1) NF f1 f2 f3 f4
f1 0 0 0 0 0
f2 2.000 2.000 0 0 1.333
f3 0.500 0.500 0 0 0.333
f4 0.375 0.375 0.250 0.250 0

The results in Table III are consistent with Table II since
the calculated FNR:s in Table II give

D2,4(1) =
1

2
(1.63)

2
= 1.33

D3,4(1) =
1

2
(0.82)

2
= 0.33 (19)

D4,2(1) = D4,3(1) =
1

2
(0.71)

2
= 0.25

which are the same values as the corresponding elements in
Table III. However, distinguishability of f2, f3 and f4, from
the fault free case and f1 is higher in the model analysis
compared to the calculated FNR for the set of residuals (2),

D2,NF(1) = D2,1(1) = 2 ≥ 1

2
(1.63)

2
= 1.33

D3,NF(1) = D3,1(1) = 0.5 ≥ 1

2
(0.82)

2
= 0.33 (20)

D4,NF(1) = D4,1(1) = 0.375 ≥ 1

2
(0.82)

2
= 0.33,

The inequalities means that the residuals in Section II is not
an optimal set of residuals. These relations are discussed in
detail in Section V. The analysis shows that fault f2 is easiest
to detect and fault f4 is hardest to detect. Isolability of f2,
f3, and f4 from f1 is equal to their detectability because
Zf1 = ZNF . �

The example shows that distinguishability gives a quan-
tified isolability analysis by analyzing the model instead of
the set of residuals used in Section II.

C. Computation of Distinguishability

To compute (16), an explicit expression of Di,j(θ) is
provided by the following result.

Theorem 1: The distinguishability for a static linear
model (3) under assumption (5) is given by

Di,j(θ) =
1

2
‖NH̄Fiθ‖2 (21)

where H̄ =
(
H Fj

)
and the rows of NH̄ are an orthonor-

mal basis for the left null space of H̄ .
Before proving Theorem 1, note that the distinguishability

for a general model in the form (3) under assumption (4) can
be computed by:

1) applying the distinguishability invariant transforma-
tion (6),

2) redefining the matrices L, H , F , and N given the
transformed model fulfilling assumption (5), and

3) computing the distinguishability using (21).
Note also that distinguishability is proportional to the square
of the fault size, i.e., Di,j(θ) ∝ θ2. By varying θ, Di,j(θ)
can be used to analyze faults of different sizes which is more
realistic than just assuming a fixed fault size. For example, by
choosing θ as the minimum fault size required to be detected,
the minimum distinguishability is computed.

To prove Theorem 1, the following lemma will be used.
Lemma 1: For a matrix A ∈ Rn×m and a vector b ∈ Rn,

with n > m, it holds that

min
x
‖Ax− b‖2 = ‖NAb‖2. (22)



where the rows of NA is an orthonormal basis for the left
null space of A.

Proof: Minimizing the left hand side of (22) is equiv-
alent to projecting b into the orthogonal complement of A,
Ker(A), with the projection matrix P = NT

ANA. This gives
that

min
x
‖Ax− b‖2 = ‖Pb‖2 = bTPb = bTNT

ANAb = ‖NAb‖2.

Theorem 1 can now be proved using Lemma 1.
Proof: The set Zfj is parametrized by fj , thus mini-

mizing (16) with the respect to pj ∈ Zfj is equal to

Di,j(θ) = min
pj∈Zfj

K
(
piθ‖pj

)
=

= min
fj

1

2
‖NHFiθ −NHFjfj‖2Σ̄−1

Assumption (5) gives that Σ̄ = I . Then, with H̄ =
(
H Fj

)
,

min
fj

1

2
‖NHFiθ −NHFjfj‖2Σ̄−1 =

= min
fj

1

2
‖NH(Fiθ − Fjfj)‖2 =

= min
fj ,x

1

2
‖Hx− Fiθ + Fjfj‖2 =

= min
fj ,x

1

2
‖H̄
(
x
fj

)
− Fiθ)‖2 =

=
1

2
‖NH̄Fiθ‖2

where Lemma 1 is used in the second and fourth equalities.

V. RELATION TO RESIDUAL GENERATORS

A residual generator of a static model is any function
of the known variables z with zero mean in the fault free
case. A residual generator that isolates fault fi from fj , is
a residual that detects fi but is not sensitive to fault fj . To
design a residual generator isolating faults from fault mode
fj , multiply (3) from the left with γN(H Fj) where γ is a
row-vector to obtain

γN(H Fj)Lz = γN(H Fj)Ff + γN(H Fj)Ne (23)

Here, γN(H Fj)Lz is a residual generator that isolates from
fault mode fj . If only detectability, and not isolability, of
fi is considered, N(H Fj) is replaced by NH . The vector
γ parametrizes the space of all linear residual generators
decoupling fj , and is a design parameter selected to achieve
fault sensitivity. Note that (23) is in the same form as (3) and
can be seen as a scalar model. Therefore distinguishability
can directly be used to analyze isolability performance of a
residual. A superscript γ is used, Dγi,j(θ), to emphasize that
it is distinguishability of a residual with a given γ.

Theorem 2: A residual (23), for a model (3) under as-
sumption (4), is normally distributed N (λ(θ), σ2) and

Dγi,j(θ) =
1

2

(
λ

σ

)2

where θ is the size of fault fi, and λ(θ)/σ is the fault to
noise ratio with respect to fault fi in (23).

Proof: Assumption (4) on the model (3) directly implies
that (4) is fulfilled also for the residual generator (23).
However, there is no guarantee that (23) fulfills (5) and the
3 step procedure after Theorem 1 must be used. After the
transformation, the model is

γN(H Fj)L

σ︸ ︷︷ ︸
=:L

z =
γN(H Fj)F

σ︸ ︷︷ ︸
=:F

f +
γN(H Fj)N

σ︸ ︷︷ ︸
=:N

e (24)

where σ is the standard deviation of the residual in (23).
Note that the matrices L, F , and N are redefined in (24)
and the new H is the empty matrix. Model (24) fulfills (5)
and Theorem 1 gives that

Dγi,j(θ) =
1

2

∥∥∥∥
γN(H Fj)Fiθ

σ

∥∥∥∥
2

=
1

2

(
λ

σ

)2

where it has been used that NH̄ = 1 in the first equality.
Theorem 2 shows a direct relation between FNR in a resid-

ual isolating fault fi from fault fj and the distinguishability
Dγi,j(θ) for the residual. This also confirms the connection
between Table II and Table III.

Distinguishability can be used to analyze isolability per-
formance of both the model (3) and the residual generator
made of the model (23). The relation between Dγi,j(θ) and
Di,j(θ) is described by the following theorem.

Theorem 3: For a model (3) under assumption (5), an
upper bound for Dγi,j(θ) in (23) is given by

Dγi,j(θ) ≤ Di,j(θ)
with equality if and only if γ and N(H Fj)Fi are parallel.

Proof: Since both NH and N(H Fj) define orthonormal
bases and the row vectors of N(H Fj) are in the span of the
row vectors of NH , there exists an α such that N(H Fj) =
αNH and

I = N(H Fj)N
T
(H Fj)

= αNHN
T
Hα

T = ααT

Using this result and assumption (5), the variance σ2 in
Theorem 2 can be written as

σ2 = γN(H Fj)NΛNTNT
(H Fj)

γT =

= γαNHNΛNTNT
Hα

T γT = γγT

Finally, Cauchy-Schwarz inequality gives

Dγi,j(θ) =
1

2

(γN(H Fj)Fiθ)
2

γγT
=

1

2

〈γT , N(H Fj)Fiθ〉2
‖γ‖2 ≤

≤ 1

2
‖N(H Fj)Fiθ‖2 = Di,j(θ)

with equality if and only if γ and N(H Fj)Fi are parallel.
Theorem 3 shows that an optimal residual for isolating

a fault mode fi from a fault mode fj is obtained if γ =
kN(H Fj)Fi for any non-zero scalar k. Such residual has the
highest FNR of fault fi that any residual decoupling fj can
have. To implement a diagnosis algorithm with optimal isola-
bility to isolate n single faults from each other thus requires
at most n2 tests. It is also shown that distinguishability of a
residual can never exceed the distinguishability of the model.



Example 3: The residual r2 in (2) is the only test which
can isolate a fault f2 from a fault f4. Therefore, r2 is
an optimal test which was also confirmed in (19). There
are more possibilities to create a residual which detects
f2, for example both r1 and r2 in (2). The inequalities in
(20) states that none of the residuals in (2) has maximum
distinguishability compared to Table III. An optimal residual
to detect f2 is

r4 = y1 + y2 − 4u = 4f2 + 2f3 + f4 + 4ε1 + 2ε2 + ε3 + ε4.

The fault to noise ratio with respect to f2 is here

FNRr4 =
4√

42 · 0.1 + 22 · 0.1 + 1 + 1
= 2

which is equivalent to the corresponding model property in
Table III. Note that this residual also is optimal to detect f3.
Similarly, an optimal residual to detect f4 is

r5 = 3y1−y2−4u = 4f2 +2f3 +3f4 +4ε1 +2ε2 +3ε3−ε4.

since it has maximum distinguishability. �

VI. DIESEL ENGINE MODEL ANALYSIS

Distinguishability, as a measure of quantified isolability,
has been defined for a static linear model (3). Many industrial
systems contain dynamic behavior and non-linearities. The
purpose here is to show how the theory can be used also to
analyze dynamic nonlinear models.

A. Model Description

The considered model is an industrial model of a heavy
duty diesel engine. The model is documented in [12] and an
overview is shown in Fig. 2. The model has 11 internal states;
four actuators: fuel injection uδ , valve control uegr and uvgt,
and throttle control uth; and four measured signals: turbine
speed ωt, pressures pem and pim, and air mass-flow past the
compressor Wc. The model in [12] has been extended with
13 possible faults. The faults are briefly described in Table IV
and can be divided into four groups: f1, . . . , f4 are actuator
faults, f5, . . . , f8 are sensor faults, f9, . . . , f12 are leakages,
and f13 is degraded efficiency of the compressor. Actuator
faults and sensor faults are modeled as additive faults.
Leakage flow is modeled as proportional to the pressure
difference over the leaking hole. Degraded efficiency of the
compressor is modeled as as an additive negative fault to
the compressor efficiency map. The fault sizes fi = θi have
been selected in the order of 10% of a nominal value of the
corresponding variable.

Uncertainties must be introduced in the model, and it is
important how it is made because it can greatly affect the
result of the analysis. In this case, process noise, actuator
noise, and measurement noise have been modeled as inde-
pendent additive normally distributed noise. The standard
deviations of the process noise are selected proportional to
the uncertainties in the model according to [12]. The standard
deviation of actuator noise is 5% of maximum value and
sensor noise is 5% of a nominal value.
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Fig. 2. Overview of diesel engine model.

TABLE IV
IMPLEMENTED FAULTS IN THE DIESEL ENGINE MODEL

Fault Enters model Description
f1 uδ = unom

δ + f1 Actuator fault
f2 uegr = unom

egr + f2 Actuator fault
f3 uvgt = unom

vgt + f3 Actuator fault
f4 uth = unom

th + f4 Actuator fault
f5 yωt = ynom

ωt
+ f5 Sensor fault

f6 ypem = ynom
pem + f6 Sensor fault

f7 ypim = ynom
pim

+ f7 Sensor fault
f8 yWc = ynom

Wc
+ f8 Sensor fault

f9 Wc,leak = f9(pc − patm) Leakage
f10 Wegr,leak = f10(pem − patm) Leakage
f11 Wth,leak = f11(pc − patm) Leakage
f12 Wt,leak = f12(pem − patm) Leakage
f13 ηc = ηnom

c − f13 Degraded efficiency

B. Diagnosability Analysis of the Model

The dynamic nonlinear diesel engine model will be ana-
lyzed to see how distinguishability of the faults varies with
the operating point of the engine. The analysis is made by
computing distinguishability when the model is linearized at
different linearization points. The points are selected from the
World Harmonized Transient Cycle (WHTC), which covers
the whole operating range of the engine, see [13]. WHTC
is used world-wide in the certification of heavy duty diesel
engines.

Distinguishability depends on all actuators and states of
the model. To simplify visualization of how distinguishability
varies, it is compared to a single closely connected state
variable or actuator signal. As an example, Fig. 3 shows the
distinguishability of a leakage after the compressor, f9, from
the fault free case against the pressure after the compressor.
To clarify how the model behavior affects distinguishability,
the y-axis shows the square root of distinguishability. The
linear relation between

√
D9,NF(θ9) and pc is reasonable

since the leakage flow is proportional to pc − patm, see
Table IV, where patm is assumed constant.

Fig. 4 shows an example where distinguishability of an
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additive fault in the actuator signal uth from the fault free
case is compared to the amplitude of uth. Distinguishability
of the fault is high when the actuator signal is low. Note
that comparison of Fig. 3 and Fig. 4 shows that maximum
distinguishability of the leakage is higher than the maximum
distinguishability of the actuator fault. This implies that it
should be easier to detect a leakage after the compressor
than a fault in the throttle control signal.

There are also cases where the relation between distin-
guishability of a fault and a state variable or actuator signal
is not as simple as in Fig. 3 and Fig. 4. Fig. 5 shows distin-
guishability of compressor efficiency degradation from the
fault free case where the distinguishability has a maximum
at pc ≈ 1.5 · 105 Pa. Distinguishability goes to zero when
pc ≈ 101 kPa which is reasonable because pc ≈ patm implies
no flow in the compressor and then a degradation cannot be
detected.

Fig. 6 shows distinguishability of an additive sensor fault
measuring pim from the fault free case compared to the
actuator signal uvgt. Distinguishability of the sensor fault
does not have a clear relation to uvgt, but compared to Fig. 5
it is always higher than the distinguishability of a degradation
of the compressor and should thus be easier to detect.

All examples above concern detectability of faults from the
fault free case. An example of analyzing distinguishability
of a fault from another fault can be seen in Table V. The
table shows distinguishability of a fault in the fuel injector,
f1, from each of the other faults during idling. The highest
distinguishability value of f1 is from f2 and lowest value
from f12. An fault f1 is thus easiest to isolate from f2 and
hardest to isolate from f12 during idling.

VII. CONCLUSIONS

The basic question discussed in this paper is how to
quantify diagnosability properties of a given model. Here,
static linear models with normally distributed uncertainties

TABLE V
DISTINGUISHABILITY OF A FAULT IN THE FUEL INJECTION, f1 , FROM

EACH OF THE OTHER FAULTS. THE VALUES ARE ×10−3 .

10−3 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13
f1 0.0 8.1 6.8 6.7 7.5 4.0 8.0 7.9 8.0 7.7 6.7 1.4 6.8

are considered but the developed framework is general and
is applied to a non-linear dynamic model.

A key contribution is the definition of distinguishabil-
ity which is based on a distance measure of probability
distributions of observations for different faults. This is
formalized using a stochastic characterization of the system
behavior under different fault modes. Distinguishability is
a model property which means that diagnosis performance
can be evaluated without designing any diagnosis algorithms.
Based on the definition, a simple computational algorithm is
developed to efficiently compute distinguishability. Another
key contribution is an analysis of the relation between
distinguishability and residual generators. It is proved that
distinguishability has a direct relation to the fault to noise
ratio in a residual generator and that the model property
forms a tight upper bound on fault to noise ratio for any
residual generator.

An industrial sized model of a diesel engine for heavy
trucks is used to evaluate and exemplify applications of the
developed theory and algorithms. Here, as an example, non-
trivial results are derived on how detectability and isolability
performance varies with the operating point of the diesel
engine.
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