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Abstract— A number of residual generation methods have
been developed for robust model-based fault detection and
isolation (FDI). There have also been a number of offline (i.e.,
design-time) methods that focus on optimizing FDI performance
(e.g., trading off detection performance versus cost). However,
design-time algorithms are not tuned to optimize performance
for different operating regions of system behavior. To do
this, would need to define online measures of sensitivity and
robustness, and use them to select the best residual set online
as system behavior transitions between operating regions. In
this paper we develop a quantitative measure of residual perfor-
mance, called the detectability ratio that applies to additive and
multiplicative uncertainties when determining the best residual
set in different operating regions. We discuss this methodology
and demonstrate its effectiveness using a case study.

I. INTRODUCTION

Model based diagnosis methods use analytical redun-
dancy in the system model for fault detection and iso-
lation. Analytic residual generation and analysis methods
are typically used for fault detection, and analysis of non
zero residuals forms the basis for fault isolation in the
system [1]. However, the robustness and accuracy of residual
detection methods can be affected by uncertainties, such as
parameter uncertainty, structural uncertainty, measurement
noise, and disturbances generated by the environment that
affect system behavior. Structural uncertainty is attributed
to inaccuracies in the system model because of the lack
of complete knowledge of the real processes that make
up the system, or approximations that may be made to
simplify the computational aspects of the model. Parameter
uncertainties arise because of practical limitations in making
a sufficient number of measurements to accurately estimate
the parameters, and the fact that system parameters may vary
with operating conditions that are hard to quantify mathe-
matically. Other sources of uncertainties in system models
and behavior prediction can be attributed to computational
issues, such as the use of finite difference methods as an
approximation for solving partial differential equations, and
the need to find approximate solutions for stiff systems to
avoid computational complexity in online analysis [2], [3].

It is possible to reduce uncertainties in residual analysis
by developing more accurate and complex models but there
are no practical solutions to eliminating uncertainty in the
analyses. Therefore, uncertainties must be accounted for
in the design of any supervisory system. There are two
general approaches to deal with uncertainty in supervisory
systems. The first approach, active fault detection, identifies
uncertainties and applies an auxiliary input to decouple them
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{daner,frisk,matkr}@isy.liu.se

from the residuals. These approaches use different methods
such as Bayesian filters, optimization methods, geometric
control approaches, and robust control methods to perform
partial or complete decoupling. They work well if there are
few uncertainties in the system (see, for example, [1], [4],
[5] and [6]). The second method, passive fault detection, de-
velops robust decision making methods that utilize an adap-
tive threshold to achieve robustness [7], [8]. Performance
measures that tradeoff accuracy versus false alarm rates are
often used to derive the threshold values. Passive and active
methods used for robust fault detection are reviewed in [9].
In relation to previous work, the methodology described in
this paper quantifies a performance measure for each residual
in the presence of uncertainties. Online analytic optimization
methods may then be employed to select the most robust set
of residuals for each operating region.

A fault f , is detectable if there is at least one residual that
is sensitive to this fault. However, in most systems where a
sufficient number of measurements can be made, there are
usually multiple residual candidates that are sensitive to the
fault. For a model with no uncertainties, all residuals linked
to a fault will perform equally well, since deviations from
zero can only be attributed to faults. However, when uncer-
tainties are present, a non zero residual may be attributed to
fault and/or uncertainty effects. Moreover, the sensitivity of
residuals to faults and uncertainty effects can vary in different
operating regions of system behavior. Therefore, it is possible
that one residual has better detectability performance for
a fault in one operating region, but another residual has
better performance in another region of operation. Ideally,
a FDI system should switch between residuals to optimize
detectability performance over multiple operating regions.

Djeziri, et al. [7] present a method for handling parameter
uncertainties in the model by deriving adaptive thresholds to
avoid false alarms. The uncertainties in the parameters affect
the prediction of system dynamics, and this is accounted
for in the residuals. Therefore, the approach quantifies the
diagnosability performance of the different residuals.

For time-discrete descriptor models with additive faults
and noise, Eriksson, et al. [10] propose a diagnosability
measure which can be used for quantifying diagnosability
performance. This measure is used for online selection of the
best set of residuals for different conditions [11]. For time-
continuous dynamic systems with multiplicative faults and
uncertainties, the diagnosability performance varies over time
and depends on the operating regions and system dynamics.
With respect to previous work, a contribution here is a
measure for quantifying the performance of residuals in
different operating regions by using sensitivity analysis [12].

Our goal in this paper is to develop a quantitative measure
of diagnosability performance for residuals in the presence of



faults and uncertainties. By using a quantitative measure of
performance that takes into account sensitivity to faults over
that of uncertainties, appropriate residuals can be selected
for different operating regions of system behavior. This can
be used for offline analyses [13], but the focus in this paper
is on online test selection for fault detection across different
operating regions of system behavior.

The outline of this paper is as follows. In Section II,
we present a formal definition of the problem, and develop
a running example to illustrate the methodology that we
develop. Section III reviews the theoretical background of
the work and Section IV introduces the quantitative measure
for the residual performance, called the detectability ratio.
The applicability of the method is presented in Section V
through a case study. Section VI concludes the paper and
discusses future work.

II. PROBLEM FORMULATION

A. Model of the system
In this paper, we restrict our analyses to linear time-

invariant dynamic systems. Though the system parameters
for such a model are constant, their values may not be
accurately determinable because of lack of complete knowl-
edge about the system and the inability to make sufficient
measurements to estimate the parameters. Their values may
also be a function of the operating conditions, and change as
the system degrades. The state space representation of such
a system model may be described as:

ẋ = A(f, δ)x+Bu(f, δ)u+ bf (f, δ)

y = C(f, δ)x+ df (f, δ),
(1)

where x is the state vector, u is the input vector, y is the
output vector, f represents the vector of possible faults, and
δ represents the uncertainty and disturbance vector in the
system. As shown in Fig. 1, parameter uncertainties have
multiplicative effects on system behavior, whereas distur-
bances have additive effects. Faults can have additive (e.g.,
sensor and actuator faults) and multiplicative (parameter
faults) effects. Each component parameter in the system may
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Fig. 1. Linear dynamic system with multiplicative and addi-
tive faults and uncertainties.

vary from its nominally specified value due to uncertainties
and fault occurrences. This can be represented as: Cn(1 +
δn)(1+fn), where Cn is the presumed nominal value of the
component parameter, and δn and fn represent uncertainties
and faults associated with the component. It is also assumed
that each uncertainty δn magnitude has a known upper bound
∆n and each fault fn magnitude has a lower bound Fn:

|δn| ≤ ∆n |fn| ≥ Fn. (2)

B. Running example
As a running example for this paper, consider the follow-

ing dynamic system

ẋ1 = −(1 + δ1)x1 + u1 + f y1 = (1 + δ3)x1

ẋ2 = x1 − 2(1 + δ2)x2 + u2 y2 = (1 + δ4)x2,
(3)

where x1 and x2 are the system state variables, u1 and u2
represent the inputs to the system, y1 and y2 are the system
measurements, δ1 and δ2 represent system uncertainties, δ3
and δ4 represent model uncertainties in the sensors, and f is
an actuator fault. Fig. 2 illustrates the system model in block
diagram form.
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Fig. 2. Simple example diagram.

III. BACKGROUND

In this section, we briefly present the model-based diag-
nosis and sensitivity analysis approaches.

A. Model-based Fault Detection
A residual (also called an Analytic Redundancy Relation

(ARR)) is a function of a subset of observables of the system
(y and u in equation (1)). Under nominal conditions it has
a value 0, but may report non zero values in the presence
of faults, noise and uncertainties in the system [1]. In the
example, u1, u2, y1 and y2 represent the observed variables
from which sets of residuals can be created. These variables
are presented as circles in Fig. 2.

A possible residual to detect fault f , can be derived
from the relation between u1 and y1 (see equation (3)).
Using a derivative causality formulation, the residual can be
expressed as:

r1 = ẏ1 + y1 − u1. (4)

Another residual sensitive to fault f , can be derived from the
relation between u1, u2, and y2:

r2 = ÿ2 + 3ẏ2 + 2y2 − u1 − u2 − u̇2. (5)

When uncertainty is not a factor, both r1 or r2 are equally
effective in detecting f since any deviation from zero can
only be explained by the fault. The only difference in this
case would be the rise time of each residual, i.e., how fast
they react to the fault. But when there is uncertainty in
the system, the performance of the two residuals may differ
significantly. Consider the simple example when δ3 6= 0, and
δ1 = δ2 = δ4 = 0. In this case, r2 is preferred because it does
not use the first measurement y1, which is affected by the
uncertainty δ3. On the other hand, if δ1 = δ2 = δ3 = 0 and
δ4 6= 0, then r1 is the better choice, since r1 does not depend



on y2, which is affected by δ4. Thus, the performance of a
residual depends on how sensitive it is to a fault as compared
to uncertainties that also affect the residual. We build on this
simplistic example to develop a sensitivity analysis method
for evaluating residuals.

B. Sensitivity Analysis of ODEs
Sensitivity analysis [12] provides the basis for evaluating

the effect of faults and uncertainties on residuals of dynamic
systems. Consider a general dynamic system model of the
form:

g(ẋ, x, u, θ) = 0 h(y, x, θ) = 0, (6)

where x ∈ Rlx are state variables, u ∈ Rlu are actuator
signals, y ∈ Rly are measurement signals, and θ ∈ Rlθ are
model parameters.

Sensitivity analysis helps to evaluate how model behaviors
are affected by variations in model parameters θ [14]. When
performing sensitivity analysis, the derivative of (6) with
respect to each parameter θk is computed as:

∂g

∂ẋ
ṗθk +

∂g

∂x
pθk +

∂g

∂u

∂u

∂θk︸︷︷︸
=0

+
∂g

∂θk
= 0

∂h

∂y
qθk +

∂h

∂x
pθk +

∂h

∂θk
= 0,

(7)

where pθk = ∂x
∂θk

and qθk = ∂y
∂θk

represent the sensitivity of
state and measurement variables to a deviation in parameter
θk. ṗθk = ∂ẋ

∂θk
and it is assumed that u is an external control

signal which does not depend on θk, implying ∂u
∂θk

= 0.

IV. QUANTITATIVE ANALYSIS OF RESIDUAL
DETECTABILITY PERFORMANCE

In this section, we define a quantitative diagnosability
measure using the sensitivity analysis formulation. A small
example is used to show how to evaluate the performance of
different residuals.

A. Detectability Analysis
A residual, r(y, u) = 0, captures nominal system behavior.

Ideally, each residual should be zero in the fault-free case and
residuals sensitive to a fault become nonzero when it occurs.
Due to uncertainties and noise, the residual may deviate from
zero even in the fault-free case, and this complicates the
fault detection task. To design the fault detection scheme to
have a low false alarm rate, a threshold must be derived that
separates the uncertainties from the faults. Depending on the
relationship between fault and uncertainty magnitudes, the
likelihood of detecting a fault of a specified magnitude can
vary. If we can quantify this relation, we can use it to select
the best residual for detecting individual faults.

A common approach for evaluating detectability perfor-
mance is to compare the ratio between the signal to be
selected and the disturbance, for example the signal-to-noise
ratio (SNR). In this case the key factor is the fault magnitude
to noise ratio [10]. Also when designing robust residual
generators using the H∞ norm, the ratio between faults
and disturbances is optimized [15]. To achieve good fault
detectability performance with a low risk of false alarms,

the ratio of the fault magnitude to parameter uncertainties
should be large. A larger ratio corresponds to a fault that is
easier to detect since its impact relative to uncertainties will
be larger.

B. Detectability Ratio
Since the effect of uncertainties and faults in the residuals

are unknown, we estimate them using sensitivity analysis.
It is assumed that the fault magnitude and uncertainties are
small. So a first order linear approximation of the effect on
a residual with respect to f and δ is justified, and given by:

r(y, u) ≈ ∂r

∂f
f +

N∑
i=1

∂r

∂δi
δi, (8)

where the partial derivatives are given by:

∂r

∂f
=
∂r

∂y

∂y

∂f
=
∂r

∂y
qf ,

∂r

∂δi
=
∂r

∂y

∂y

∂δi
=
∂r

∂y
qδi .

The parameters qf and qδi represent the sensitivity of the
sensor signals to the fault and the uncertainties, respectively.
Faults and uncertainties are assumed to not affect the input
u. Note that the term ∂r

∂y is not a function of fault and
uncertainties, and the effects of faults and uncertainties on
the residuals are through the sensor signals.

Since the actual magnitudes of the fault and uncertainties
are unknown, the maximum values of the magnitude of
uncertainties and minimum magnitudes of the fault are used
to calculate the worst case scenario of the difficulty in
detecting a fault. A quantitative measure of detectability
performance is defined as follows.

Definition 1: (Detectability Ratio) Given the dynamic sys-
tem in equation (1) the detectability ratio of fault f for
residual r in the presence of uncertainties δi : i = 1, 2, ...N
is defined as:

D(f |r) =

∣∣∣ ∂r∂f Fmin∣∣∣∣∣∣ ∂r∂f Fmin∣∣∣+
N∑
i=1

∣∣∣ ∂r∂δi∆i

∣∣∣ , (9)

where ∆i is the absolute value of the upper bound on the
magnitude of uncertainty δi and Fmin is lower bound on the
magnitude of fault, f . If

∣∣∣ ∂r∂f Fmin∣∣∣ = 0, then D(f |r) = 0.
The detectability ratio lies in the interval [0, 1] where 0

corresponds to situation that the fault will not affect the
residual. The value 1 implies there are no uncertainties
affecting the residual. If the effect of a fault is larger than
the total effects of the uncertainties, i.e., D(f |r) > 0.5,
which means that the fault can be reliably detectable without
error. Note that the detectability ratio is not constant but
depends on the state and operating region of the system.
Higher detectability ratios imply lower thresholds can be
chosen to avoid missing alarms, and fault detection time can
be reduced.

1) System sensitivity to uncertainties and fault: Consider
the system (1) with N uncertainties δi : i = 1, 2, .., N and a
possible fault f in the system. For each of the uncertainties
δi we define pδi = ∂x

∂δi
and qδi = ∂y

∂δi
. Also for fault f we

have pf = ∂x
∂f and qf = ∂y

∂f . Therefore,



˙pδi = Apδi +
∂A

∂δi
x+

∂Bu
∂δi

u+
∂Bf
∂δi

qδi = Cpδi +
∂C

∂δi
x+

∂Df

∂δi
,

(10)

ṗf = Apf +
∂A

∂f
x+

∂B

∂f
u+

∂Bf
∂f

qf = Cpf +
∂C

∂f
x+

∂Df

∂f
.

(11)

Note that to perform sensitivity analysis for the system
in equation (1), partial derivatives of each of the matrices
A(f, δ), Bu(f, δ), C(f, δ) and vectors bf (f, δ) and df (f, δ)
with respect to fault f and uncertainty δ must be computable
and bounded. Moreover, since the state variables x appeared
in equation (10) and equation (11) the linear system repre-
sented in equation (1) should be stable and observable.

As an example we compute pδ1 = ∂x
∂δ1

, qδ1 = ∂y
∂δ1

, pδ2 =
∂x
∂δ2

and qδ2 = ∂y
∂δ2

for the running example in equation (3)
as:

ṗδ11 = −pδ11 − x1 ṗδ21 = −pδ21
ṗδ12 = pδ11 − 2pδ12 ṗδ22 = pδ21 − 2pδ22 − 2x2

qδ11 = pδ11 qδ21 = pδ21
qδ12 = pδ12 qδ22 = pδ22.

(12)

For sensor uncertainties δ3 and δ4 we have:

ṗδ31 = −pδ31 ṗδ41 = −pδ41
ṗδ32 = pδ31 − 2pδ32 ṗδ42 = pδ41 − 2pδ22
qδ31 = pδ31 + x1 qδ41 = pδ41
qδ32 = pδ32 qδ42 = pδ42 + x2,

(13)

where pδ3 = ∂x
∂δ3

, qδ3 = ∂y
∂δ3

, pδ4 = ∂x
∂δ4

and qδ4 = ∂y
∂δ4

. We
can see that state variables x1 and x2 serve as the inputs in
equations (12) and (13), and, therefore, the sensitivity of the
system to the uncertainties is a function of the trajectories of
x1 and x2. Since the system in equation (1) is observable, x1
and x2 or their estimates are computable at each operating
point and we have no problems in computing the sensitivity
of the system to the uncertainties. Sensitivity computations
to f is computed as:

ṗf1 = −pf 1 + 1 ṗf2 = pf 1 − 2pf 2
qf 1 = pf 1 qf 2 = pf 2.

(14)

Since the fault is additive the states do not appear in equation
(14), the sensitivity of residual r1 to fault f is not a function
of the operating region.

Even though the sensitivity of states to faults and uncer-
tainties are not part of the real system dynamics and we
only need to compute them to analyze the performance of
our residuals, it is important to prove the boundedness of
these dynamic variables. Unboundedness of these variables
increase computational expenses over time and eventually
can stop the computation process and supervisory system op-
eration. The stability of equations (10) and (11) is discussed
in the following theorem.

Theorem 1: Given a stable linear system (1), sensitivity
of states and outputs to uncertainties and faults represented
by equations (10) and (11) are stable.

Proof: Consider equations (10) and (11). We can
rewrite ˙pδi and ṗf as:

˙pδi = Apδi + ui, (15)
ṗf = Apf + uf , (16)

where ui = ∂A
∂δi
x + ∂Bu

∂δi
u +

∂Bf
∂δi

and uf = ∂A
∂f x + ∂B

∂f u +
∂Bf
∂f . Since the linear system (1) is stable, x is bounded and

consequently ui and uf are bounded and equations (15) and
(16) represent linear systems with stable system matrix A and
bounded inputs. Therefore, pδi and pf are stable. Considering
stability of x, qδi and qf are stable too.

2) Residual sensitivity to uncertainties and fault: Using
equations (10) and (11) we can derive sensitivity of residual
r(y, u) to fault f and uncertainty δi as:

∂r

∂δi
=
∂r

∂y

∂y

∂δi
=
∂r

∂y
qδi, (17)

∂r

∂f
=
∂r

∂y

∂y

∂f
=
∂r

∂y
qf . (18)

Note that it is assumed that ∂u
∂f = 0 and ∂u

∂δi = 0. Consider
the running example (3) and equations (12), (13) and (14).
We compute ∂r1

∂δ1
, ∂r1∂δ2

and ∂r1
∂f as:

∂r1
∂δ1

= −x1
∂r1
∂δ2

= 0
∂r1
∂δ3

= u1
∂r1
∂δ4

= 0
∂r1
∂f

= 1.

(19)
r1 is not sensitive to δ2 and δ4, its sensitivity to δ1 is a

function of the state variable x1 and its sensitivity to δ3 is a
function of the input u1. Also independent of the operating
point, its sensitivity to fault f is always 1. Considering |
δi |≤ ∆i for i = 1, 2, 3, 4 and Fm as the minimum absolute
value of f that we wish to detect, the detectability ratio of
f by r1 is:

D(f |r1) =
Fm

Fm + ∆1 | x1 | +∆3 | u1 |
. (20)

Considering r2 we have:

∂r2
∂δ1

= −x1
∂r2
∂δ2

= −2x1 + 2x2 − 2u2

∂r2
∂δ3

= 0
∂r2
∂δ4

= u1 + u2 + u̇2
∂r2
∂f

= 1.

(21)
We can see that both of the residuals have the same

sensitivity to fault f but their sensitivity to uncertainties
are different. The detectability ratio of f by r2 is given by
equation (22).

Fig. 3 represents two trajectories of the system corre-
sponding to u1 and u2 for the running example (3). In this
case fault f = 1 occurs at time t = 120s, δ1 = −0.095,
δ2 = 0.095, δ3 = 0.095 and δ4 = 0.04. Given ∆1 = ∆2 =
∆3 = 0.1, ∆4 = 0.05 and Fm = 0.5, the absolute value
of residuals r1 and r2 and the corresponding detectability
ratios are presented in Fig. 4. The fault occurs at t = 120s,
therefore, the residuals should both be zero for t < 120 in the



D(f |r2) =
Fm

Fm + ∆1 | x1 | +∆2 | −2x1 + 2x2 − 2u2 | +∆4 | u1 + u2 + u̇2 |
. (22)
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Fig. 3. Inputs of the system.

ideal case. But because of uncertainties the value of residuals
varies according to the state and input signal variations. An
interesting observation is that the detectability ratio for each
residual in this time interval is maximum when the residual
is close to zero, and decreases as the residual deviates from
zero. So we can say a residual with higher detectability
ratio is less likely to produce false alarms. After t = 120s,
when there is a fault in the system, the residual with higher
amplitude (r1 in this example) has a higher detectability ratio
as well. So we can say the residual with higher detectability
ratio is more likely to report the fault and also because of
higher sensitivity it can detect smaller fault magnitudes.
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Fig. 4. Residuals and their corresponding detectability ratios.

The main idea of this paper is to track the detectability
ratio online, and choose the best residual for each of the
operating regions of the system. If we use the following
hybrid residual for the system we will have a residual with
maximum robustness to the uncertainties and sensitivity to
the fault,

r =

{
r1 if D(f |r1) ≥ D(f |r2)
r2 otherwise. (23)

Fig. 5 represents r1, r2 and r. As we can see r obviously
has a better performance rather than r1 and r2.

V. CASE STUDY

In order to show how detectability ratio can be applied to
choose the best residual in real systems with uncertainties,
we analyze a two tank system shown in Fig. 6.

The system consists of an input flow source (S) with
volumetric flow rate u, two tanks ( T1 and T2 ) and two
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Fig. 6. Two tanks system configuration.

valves ( V1 and V2 ). Two sensors measure the pressure of
the first and the second tank ( p1 and p2 ). The first tank’s
nominal capacity is C1 and the second one’s is C2. Valves T1
and T2 have nominal resistances of R1 and R2, respectively.
Assume that there is δ1 uncertainty in C1, δ2 uncertainty in
C2, a possible fault f in R1 and δ3 is the uncertainty in
R2. Considering p1 and p2 as the system state variables the
system state space model is shown in equation (24), y1 and
y2 represent the measurements. Equation (25) represents a
simple proportional controller to regulate the pressure in the
first tank.

u = K(r(t)− y1), (25)

where K is the controller gain and r(t) is the desire trajectory
of the pressure in C1. To detect fault f two residuals r1 and
r2 are designed.

r1 : ẏ1 −
K(r(t)− y1)

C1
+
y1 − y2
R1

,

r2 : ẏ2 −
y1 − y2
R1C2

+
y2

R2C2
.

(26)

R1 appears in both of the residuals and if there is no
uncertainty in the model either r1 or r2 can be used to
detect f . In the presence of uncertainty each residual is
affected differently, and the sensitivity is also a function of
the operating region of the system. In order to evaluate the
performance of each residual as a function of the operating
region, we compute the detectability ratio in each region.
Step function u(t) is considered as the desired trajectory
for the first tank pressure. Three uncertainties δ1 = −.09
, δ2 = 0.08 and δ3 = 0.145, are considered. Also it is
assumed that we know, ∆1 = ∆2 = 0.1, ∆3 = 0.2 and
Fm = 1. Fault f = 1 is considered as a fault in R1 and it



(
ṗ1
ṗ2
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=

(
−K
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+ −1
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1
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1
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−1

R1(1+f)C2(1+δ2)
+ −1

R2(1+δ3)C2(1+δ2)

)(
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p2

)
+

(
K
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0

)
r(t),(
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)
=

(
1 0
0 1
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)
.
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Fig. 7. Residuals and the corresponding detectability ratios
for two tank system.

occurs at t = 100s. The absolute value of the residuals r1
and r2 and the detectability ratio of each is computed and
plotted in Fig. 7. We can see from this figure that residual
r1 has a lower amplitude than r2 before fault occurs and
higher value after the fault happens. So this residual shows
better performance to detect f and is less likely to cause false
alarms when there is no fault in the system. We can see this in
the detectability ratio of this residual, which is always higher
than detectability ratio of r2. The better performance of r1
over r2 is not surprising at all. Analyzing r1, we see that
the only source of uncertainty in this residual is uncertainty
in C1, and C1 is multiplied by (r(t)− p1) in the numerator,
which is the tracking error and is expected to be a small
quantity. But on the other hand in r2, R2 and C2 are two
sources of uncertainty and the terms in the numerators are
not expected to be a small quantity in this trajectory.

In the cases that the trajectory is known, we can do
all the analysis offline and find the best residual at design
time. Offline residual selection [13] can save computational
expenses associated with online residual selection. Because
we do not need to compute the sensitivity of state and
residuals to the fault and uncertainties at each operation
point. It is important especially when the systems has many
state variables and parameters with different sources of
uncertainty. Moreover, in the offline method the system does
not need to be observable because we run the analysis only
for the given trajectories, we do not need to measure or
estimate the state variables. For systems with fast dynamic
we believe that it is best to set a threshold in the switching
process to avoid chattering between the residuals.

VI. CONCLUSIONS

The detectability ratio is defined as a quantitative mea-
sure of the residual detectability performance. It provides a
measure to find the residual which is most sensitive to the
fault and robust to the uncertainties at different regions of
system operation. Two different examples are presented to

evaluate and demonstrate the effectiveness of this approach.
For online residual selection the detectability ratio is used
to select the best residual for different operating points. In
general, it is possible to achieve better detection by using
more than one residual. For future work, we will propose a
framework to consider all the potential residuals and design
an optimal residual with the highest sensitivity taking into
account that different faults may occur, and robustness to
the uncertainties may change in different operating regions
of system behavior. We can also extend the detectability
analysis to isolability analysis that involves a number of
potential single faults that can occur in the system.
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