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Fault isolability refers to the question of which faults that are
possible to distinguish from other faults, given the knowledg
of available sensor and actuator signals. This information i
important when designing diagnostic systems but also whe
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Abstract

Fault isolability plays a significant role and could
be critical with respect to many aspects such as
safety and maintenance for a process to be diag-
nosed. In the development of processes including
diagnosis, design decisions are taken, e.g. sen-
sor configuration selection, which affects the fault
isolability possibilities. In this paper an algorithm
for predicting fault isolability possibilities using a
structural model describing the process is proposed.
Since only a structural model is needed as input, the
algorithm can easily predict fault isolability possi-
bilities of different design concepts. In contrast to
previous algorithms using structural models no as-
sumption is imposed on the model. The algorithm
computes faults that cannot be distinguished from
other faults, which can be used to exclude design
alternatives with insufficient isolability possibility.

Introduction

designing the process to be diagnosed.

eghecking models with the results relating checking models

Isolability analysis has previously been studied
in [O. Dressler, 2003 but only for qualitative models.
Furthermore, a structural method for computing the isola-
bility of different sensor configurations was presented
in [Travé-Massugs et al, 2003. This and other earlier
works using structural models for diagnosis, ¢Rulido and
Alonso, 2002, [Frisket al,, 2003, [Cassar and Staroswiecki,
1997, and[Blanke et al, 2003, have imposed analytical
assumptions on the systems, e.g. that only subsystem with
more equations than unknowns, i.e. only over-constrained
subsystems, can be invalidated and therefore contribute to
detection and isolation. However these assumptions are
difficult to verify in most larger models. If these assumptions
are not satisfied, faults that are predicted to be isolable from
other faults can be not isolable and vice verse. In contrast,
the method presented in this paper does not require any
analytical assumptions.

In Section 2 a modeling framework for model based di-
agnosis is recapitulated. In Section 3 the central concepts
detectability and isolability are recalled. These concepts are
related to structural properties of the model through the new
concept ofchecking modepresented in Section 4. We de-
scribe how checking models can be computed by using a
structural model. By combining the algorithm for finding

ﬁnd isolability, an algorithm for isolability prediction is de-
veloped in Section 5. An example shows how the obtained

isolability prediction can be interpreted. Furthermore, in Sec-

In the development of processes, different design dec'S'Orﬁ‘on 6 illustrative examples show how isolability prediction

are taken, e.g. how different parts are connected, which age )0\ e 6 identify additional fault modeling and support
tuators to use, and which sensors to use. All these des

| . L . L .
decisions may influence the isolability possibilities. In addi%]ensor selection to meet given isolability requirements.

tion, when designing the diagnostic system, there is a choic .

of different fault modeling s?rategiesyand which diagnosticE Example Introduction and Models

tests to include. As a guidance when taking these design d&-hroughout the paper, we will exemplify concepts and tech-

cisions, it is desirable to know exactly how different designniques on the same example, i.e. the water-tank process de-

choices affect the isolability possibilities. picted in Figure 1. The water-tank process consists of a pump,
To find the isolability of a given model of a process is a a tank, a water-level sensor, and a flow sensor. These compo-

difficult problem in general since it is related to the problemnents are denotef, T, W, and(@ respectively and are il-

of solving large systems of non-linear differential equationslustrated in the figure by the four dashed boxes. The pump

In this paper we attack the problem by an algorithm that take$s pumping water into the top of the tank. The water flows

a structural model of a process as input and computes faulgut of the tank through a pipe connected to the bottom of the

that are not isolable from other faults. Since only a structuratank. The pump is controlled by a control signathe water-

model is used, no precise analytical equations are needeldvel in the tank is measured with the sensor signaland

This implies that the algorithm can be used early in the dethe outflow from the tank is measured with the sensor signal

sign phase and thus serve as a guidance when taking differept. The true flows into and out of the tank are denatgénd

design decisions. However, if we need to know exactly whichthe actual water level in the tank is denoted

faults that are isolable from others, the algorithm also helps A physical model of the process is shown in Table 1.

braking down the large problem into smaller and easier probThe model is organized according to the modeling princi-

lems to analyze. ples given in[Dressleret al, 1993; Nyberg and Krysander,
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; Poq 1 Table 1: A model for the water-tank process in Figure 1.
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Figure 1: The process to be diagnosed. The location of pos- 11 oo
. . q
sible faults are denoted with a red flash. Q=NF e12 fqa=0

2003. The equatior; describes the pump; the conserva- 3 Detectability and Isolability Prediction
tion of volume in the tank; ande, the outflow fromthe tank  First some definitions are briefly introduced. Abservation
caused by the gravity and with a possible clogging fdult s here considered to be a snap-shot of all known variables
e a fault model for the clogging fault; the no-fault value  and possibly also some derivatives of known variables. For
for fault variablef:; ez andes the fault free water-level mea-  the water-tank process an observation is a value of the vec-
surementgy andeo the outflow measurement with a POSSi- tor [u(t), yu(t), #u (t), y4(t), 74(t)] at timet. A diagnosisat
ble bias faultf,; ande;; ande;, the outflow-measurement time ¢ is a system behavioral-mode such that its behavioral
fault f,. Note that both arbitrary faults, e.g. the water-levelmodel is consistent with the observation at titneA system
S_ensor fault, and faults modeled by fault parameters, e.g. th%havioraj_modéi is said to besolablefrom another sys-
bias fault of the outflow measurement, can be handled by thigem behavioral-mode; if there exists some observation such
modeling principle. thatb; is a diagnosis bub; is not. A faultb; is said to be
By including analytically differentiated equations, i€,,  detectabléf it is isolable from the no-fault system behavioral
eg, andeyq in the example, the derivatives of the unknownsmode.
can be replaced with new algebraic variables. Thus a deriva- It could be argued that the proposed definition of de-
tive 2 is eliminated by substituting a so callddmmy deriva- tectability is relatively weak in the sense that a fault is de-
tivez’ [Mattson and 8derlind, 1993for 4 whereveritoccurs tectable if there exists only one single observation that distin-
in the model. Although we assume thét= 4, this is not  guish the fault from the no-fault mode. However, by using
true by definition, instead this relationship should be impliedthis relatively weak definition, a non-detectable fault would
by the augmented algebraic model containing differentiateé@lso be non-detectable with any stronger definition of de-
equations. For exampke’ is an algebraic variable, i.e. it is tectability.
not defined as the derivativeof w, but should be equal to. . -
The algebraic equations andes together with the differen- 31  Predicting Detectability
tial equationy,, = dy,,/dt imply thatw’ = dw/dt = w. In  Inthis section we will describe how detectability information
this way it is possible to transform an over-constrained systeman be derived without knowing the exact analytical equations
of differential-algebraic equations into an algebraic systemof a model like the one in Table 1. It can be realized that
The price paid for converting a differential algebraic modelb is not detectable iiVing € M,. However detectability
into an algebraic model is that the number of equations growsanalysis by this naive idea comparing behavioral models is
The conversion from a differential algebraic model to an al-not particularly powerful. Here a refinement of this idea will
gebraic model can be done using an algorithrikirysander  be presented.
and Nyberg, 200R Consider first the no-fault system behavioral-model. As
The assumption of the first equation, i.— NF, means N [Blankeet al, 2003, a fault canviolate some equations
thatu = ¢, is valid if the behavioral modeof component N the no-fault system—be_haworal model, i.e. some equations
P is in the no-fault mode, which is abbreviatsg. Forthe N no-fault system-behavioral model can be false for variable

water-tank example all components are assumed to be eith¥plues consistent with the behavioral model of the fault. For
in no-fault modeNF or in faulty modeF. Equations with no  €Xample the fault of the outflow sens@yin the water-tank
assumptions are always true. A mode assignment for all conf£X@mple can violate,» in the no-fault system behavioral-
ponents of a process is calledystem behavioral-mod&he model M- . o "
no-fault system behavioral-mode for the water-tank process EVen if & fault can violate an equation in a model, it is not
will be denotedNF and fault modes will be denoted by their SUre that the fault is detectable as the next small illustrative
faulty components, e.gPT for the behavioral mode where €X@mple shows. Consider a no-fault behavioral madgie

components® andT are in faulty mode an@ andQ arein  definedas
no-fault mode. U = I (1a)
The set of equations that are valid in a given system y = 21 (1b)

behavioral-modé, i.e. itsbehavioral modetlenoted\/,, de-
fines the behavior of process in system behavioral-niode
For an example, the set of all equations exeepandes is whereu andy are known variables angd, andz, are un-
the behavioral model of behavioral-mowé. knowns. The set of observations consistent with (1a)-(1c),

0 = z1+x (1C)



MnNF 3.2 Predicting Isolability

Since detectability is a special case of isolability, the results
M, of Theorem 1 concerning detectability can be generalized to
isolability as follows. A behavioral modg, that is isolable
from a behavioral modé;, violates some equations in a
checking modelC,; of the behavioral modé;. Figure 2
could represent this situation as wellNF is changed ta;
Figure 2: Venn-diagram representation of equation sets. andbtob;. Then it can be seen that if all equationsin a check-
ing modelCy, hold in behavioral modg; then it follows that
. . b; is not isolable fromb;. Hence by computing a checking
i.e. M Is model of Cy,, it can be concluded which behavioral modes
{(u,y) € R?|lu =y} (2)  thatare notisolable frorh.

which will be called thebservation sefor My and denoted  Theorem 2 A system behavioral-modgis not isolable from

O(Mnr). A fault violating either (1a) or (1b) is detectable, 5 gystem behavioral mode if there exists a checking model
because: # y if either (1a) or (1b) is violated, i.e(u, y) C, ofb; such that

belongs not to the observation set (2). A fault which only

violates (1c) cannot be detected because a violation of (1c) Ch, < M, (3)
leads to different values af; butu = y still holds. Equa- In conclusion, by computing a checking model for each
tion (1c) is therefore said to ben-monitorablén [Blankeet ~ system behavioral-mode, Theorem 1 and Theorem 2 give an
al., 2004. explicit method to compute if a faulty behavioral mode is not

A difference between the first two equations where a fauldetectable and if a behavioral mode is not isolable from an-
can be detected and (1c) where a fault can not be detectexiher behavioral mode. The algorithm presented later will be
is that the first two equations define the observation set (2pased on these results.
and (1c) is not needed to define (2). Observation set is next N )
defined to formalize this discussion. M is a set of equa- 3.3 Isolability and Checking Models

tions, x a vector of unknowns, anza vector of known vari- - There might exist several checking models of a system
ables, then the observation set faris defined byO(M) = pehavioral-modé; as seen previously. Assume that one

t{ZFX AelgM ?(Xﬁ_)}h- The ‘;_OHOW”_‘QI dt_efinition vgill getustec:j checking modelC} is a proper subset of another check-
o formalize in which equations violations can be detected. | * (2. e C} C C2. If G2 C M, then

Definition 1 (Cy, Checking Model ofb) A model C;, is a 1 - i ; )
checking model ob if C}, is a subset of the behavioral model ij - Mb but the_ opp05|t.e does no; h_OId'_ This and_ The
My andO(Cy) = O(My). orem 2 imply that if checking model‘bj implies thatb; is

: ‘ 1
Note that behavioral models trivially are checking models."°" isolable fromb; thenC’,, does that too. Now assume that

Note also that checking models need not be over-constrainefls, C My, C Cj . By usingC; as checking model far;, it
As examples of checking models, the two checking models ois concluded from Theorem 2 thétis not isolable fronb;.
NF in (1) are the set$(1a), (1b} and{(1a),(1b), (1c). A However ifCl?j is used as checking model then no conclusion
detectable fault violates at least one equation in every checkean be drawn. Hence the strongest conclusion is given by the
ing model Cnr for the no-fault behavioral mode. A de- smallest checking model. By finding smaller checking mod-
tectable fault must therefore violate (1a) or (1b) in (1), be-els thanis, more faults can be concluded to not be isolable
cause{(1a), (1b} is a checking model dNF. from others.

An illustration of the equation sets involved in the discus-
sion is shown in Figure 2 as a Venn d_iagram. The rectany Finding Checking Models
gle represents the set of all equations in the no-fault behav-
ioral model My, i.e. (1a)-(1c) in the small example. The The minimal checking models of a system behavioral-mode
right circle contains a checking modél\g of the no-fault ~are unknown and depends on the analytical expressions of the
behavioral mode, i.e. (1a)-(1b) in the example. The left cir-equations in the model. A brute-force approach to compute
cle contains the behavioral mod#{, for some behavioral the minimal checking models would be to compute observa-
modeb. The grey-shaded area represents the set of equatiotion sets for subsets of equations and compare it to the obser-
which can be violated in behavioral moblg.e. the equations Vvation set of the behavioral model. Even for models of the
that render detection of behavioral mddgossible. Hence if ~ size and complexity like the water-tank example, automatic
the grey-shaded area is empty, theis not detectable. If computation of observation sets by using computer algebra,
M, = {(1a),(1b} in the example withMnr equal to (1) like for example Mathematica, is computationally demand-
thenb is not detectable, because both (1a) and (1b) hold ifng. For a large industrial example this approach would be
b. From this discussion the next theorem follows which sum-computationally intractable. Instead of requiring an exact de-
marizes how checking models will be used for detectabilitytermination of all minimal checking models bfwe propose
analysis. to compute the smallest checking modeltofthat can be
obtained with the structural method to be presented in Sec-
: . tion 4.3. This model will in the continuation be called the
E\P}ere exists a checking modekr of NF such thatlnre & gqjjest checking model fér The strategy to find the small-

b est checking model dfwill be to start with the corresponding

The proof of Theorem 1 and the proofs of all following the- behavioral model and remove equations which are not needed
orems can be found ifKrysander and Nyberg, 2005How  to define the observation set for the behavioral model, i.e. to
to find checking models will be described in Section 4. remove non-monitorable equations.

Theorem 1 A system behavioral-modes not detectable if



4.1 Excluding Non-monitorable Equations The modelM; = {e2} is {q; }-satisfiable andW/; = {e4}

If X is any set of variables, theawill denote the vector of IS {w'}-satisfiable.  Now, sinceles} and {e,} are dis-
the variables inX. If M is a set of equations with variables 10int andg, is hot included iney, Theorem 4 implies that
X then M (x) will denote the conjunction of the analytical {€2;€4} i {q1,w'}-satisfiable. Furthermore, the variables
equations in\/ where the values of the variablasare setto N {¢1, w'} are notincluded i/pw\{ez, €4} which means
x. Consider a set of equationg with unknown variablesy  thatMpw\{es, es} is a checking model odPW, according

and known variableg. If X is partitioned intaX; andX, 0 Theorem 3. In this way, it is possible to find the smallest
and checking model by finding a non-monitorable equation and

VZVx23x1 : M(X1,X2,2) (4)  remove them from the model.

then the sef\/ of equations is said to h&,-satisfiable For

example, letV = {e3} andX; = {w}. For arbitrary values Table 2: The structure of the model in Table 1.
of f; andgo there exists a value = (1 — f;)q3 such thak;

. . . e Equation Unknowns Knowns
is true, i.e.{es} is {w}-satisfiable. @ 0w 20s fo fifufl | 4 Yuiuyada
Theorem 3 If a modelM C M, is X;-satisfiableand no e1 X X
variable in X is contained inM;\M, then M,\M is a €2 X XX
checking model df. es X 0 O
_ , , - es X0000

An alternative formulation of Theorem 3 is thaflif is X;- es X
satisfiableand no variable inX; is contained im,\ M, then e X
M is non-monitorable. This means that a checking model er X X
smaller than the behavioral model can be computed by re- es X X
moving equation sed/ from the behavioral modelz,. To €9 X X X
give an example of how this is done, consider the behavioral €10 X X X
mode W for the water-tank example. Sindes} is {w}- 2; XX

satisfiable and; is the only equation inV/\y wherew is

included, Mw\{es} is a checking model oW according

to Theorem 3. Ir{BIarake et al, 2003; Frisket al, 2003;

Pulido and Alonso, 20Q2analytical assumptions imply that .

the minimal checking model for a behavioral modds 4.3 Algorithm

equal to the equations included in the vertical rM;j of Next we will present a recursive algorithm for computing

the Dulmage-Mendelsohn decomposition of the behaviorathe smallest possible checking model of a behavioral mode

model M. The smallest checking model that can be derived given the type of information given in Table 2. The input to

using Theorem 3 is not related 1d,. the algorithm is a structure as the one shown in Table 2 with
“O"sand“X"s.

4.2 Structural Method Algorithm 1 Fi '

A structural method will be used to compute non-monitorablqn ggtr}t_rhme Stli,l:g;jfeh g;&;mgMOdel

equation sets for a behavioral model. The structure of a model put br

is an abstraction of the model in the sense that it includes  if there exists ar € M, with an unknowrz only ine

which variables that are included in each equafiGassar and the entry(e, ) is marked “X” do

and Staroswiecki, 1997 The structure of the water-tank M, — FindCheckingModel (M :
model in Table 1 is shown in Table 2 ad@djacency ma- _ b indCheckinglodel(Mp\{e});
trix [Asratianet al, 1994. An “X” or an “O” in row e and end if

columnz means that is included ine. An entry correspond-  return: The checking model/,,.

ing to equatiore and variabler is marked X" if {e}is {z}- ) o

satisfiable and otherwis@". Insights of the physics can be ~ The correctness of the algorithm is implied by Theorem 3
used to specify where to puf™:s. and Theorem 4. For a checking modg| obtained by Algo-

By using this additional information together with the fithm 1, it holds that\/,” C C, C M. Note that the output
structure it is possible to find non-monitorable equation setgnodel of Algorithm 1 contains all algebraic loops contained
with cardinality one as follows. I¢ is the only equation in in the input model. However, by deriving a checking model
M, that contains a variableand this variable is marked with using Theorem 3 and Theorem 4 directly, not all equations
an “X” in the biadjacency matrix, thefe} satisfies the con- containing algebraic loops need to be contained in the check-
ditions in Theorem 3, i.e{e} is non-monitorable. The next ing model.
theorem will give theoretical results needed for computing Consider for the water-tank example the behavioral mode
non-monitorable equation set with cardinality greater than 1P'W. The structure is seen in TableRindCheckingModel
is first called with inputM, = Mpw. The variableg; is
among the equations iMpw only included ine; and the
corresponding entry is markedX™, i.e. the if-condition

Theorem 4 Let M; and M, be disjoint sets of equations.
If M, is X,-satisfiable,M; is X,-satisfiable, and does not

contain any variable iny, then it follows thatM/; U Mz IS 5" gagisfied andFindCheckingModel is called with input

(X1 U X)-satisfiable. Mpw\{e2}. Now the if-condition is also satisfied, because

This theorem provides a recursive computation of a nonw is only included ines and(es, w) is marked X™”. Contin-
monitorable set of equatiord that satisfies Theorem 3. To uing the recursion in this walindCheckingModel(Mpw )
exemplify Theorem 3 consider the behavioral mofig| = returns the empty set which is the checking model @WwW
Mpw in the water-tank example. The mod&lpw con- to be used in the isolability computation later. This means
sists of all equations in Table 1 except far, e;, andes. thatPW is always a diagnosis.



5 Isolability Prediction Algorithm

Algorithm 1 computes the smallest checking modg| of

. . . PW,PTW,PWQ,PTWQ
a behavioral modeé; given the structure of the behavioral

model M,,. If (3) is true for the computed checking model PTQ TWQ

Cy; and a behavioral modéll;, of another behavioral mode /I\/I\
b;, Theorem 2 implies thdt; is not isolable fronb;. This is PT PQ TQ W wQ
the idea used in the next algorithm for computing behavioral S50 >
modes that are not isolable from other behavioral modes. Let P T Q w

B be the set of all system behavioral-modes and’l€t B x \/

B be a set of pairs of behavioral modgs, b;) such that if NE

(bi, b;) € T thenb; is not isolable fromb,.

Algorithm 2 TsolabilityPrediction Figure 3: An isolability prediction of the water-tank process.

input: The structure of a diagnostic model and a set of system
behavioral-modes. 6.1 Fault Modeling Specification

IT=0: Assume safety or legislative requirements state demands on
the fault isolability. Given a diagnostic model including fault
models, it can be determined by applying Algorithm 2 to the
Cy, = FindCheckingModel(My)); diagnostic model if the proposed fault modeling is insufficient
forall b € B do for the fault isolability demands.

’ Assume that all double faults must be isolable from each

forall b; € Bdo

if Cyp; € M, do other in the water-tank process. The result shown in Figure 3
T =TuU{(b;,b))}; implies that the isolability demands cannot be fulfilled with
end if the proposed model in Table 1. For example no double fault

is isolable fromP'W. To make any behavioral mode isolable

end for from PW the behavioral model/pw must be improved for
end for example by additional fault modeling. The faulty components
in PW are the pumg and the water-level sensdr and non
return: 7 of these components have fault models.

. . Assume that it is reasonable to use a constant bias fault
Algorithm 2 computes the largest sBthat can be derived model for the water-level sensor. Lt be the size of the

using only the type of information given in Table 2. The in- . : -
terpretation of the output of the algorithm is discussed in theb"’JIS fault. Equation; can now be replaced by, = w + fu

X . andeg by ¢, = w’' + f/ which both hold in any system
next section. The purpose of Algorithm 2, as stated her DY Yo w é 1€
is to illustrate the idea and not to explain additional featur behavioral-mode. Furthermore, the new equataps f., =

€ 1 — . ! i
that can lower the computational complexity. However one?) which holds wher’ = NF andey, : f,, = 0 which always

such improvement is to use the fact ttids, C M), implies is true are added to the model in Table 1. By applying Algo-

C,. C C,. and in each step compute a checking model for a;ithm 2 to the model including the new fault model, a smaller
b; = “b; i i i
maximal behavioral model. et7 is obtained. This means that some faults that were not

isolable from some other faults without the fault model, now
- - . might be isolable. The result with the additional fault model
5.1 Isolability Prediction Interpretation is that it might be possible to isolate all double faults from
The isolability property can be seen as a partial order on thall other double faults. For this example it is also possi-
set of equivalence classes generated by mutually not isolabfe to analyze the true isolability using the analytical expres-
behavioral modes. Two equivalence classes of behavior&ions. For example consider the behavioral mdei®¥ and
modesB; andBj are related as: when for allb; € B; and PT. Without the additional fault modeP T was not isolable

for all bj c Bj, b; is not isolable fron‘bj_ Figure 3 shows from PW. When including the fault model the observation
the partial order computed by Algorithm 2 when all multiple S€tO(Mpw ) for PW is defined byj.,, — 2y,9, = 0 and
faults of the water-tank process are considered. For exampl@(Mpr) is defined byj., y; — 2yw gy = 0 and ify, = 0

the four behavioral modes in the top are an equivalence claggeny., = 9., = 0. Both these expressions can be computed
and are therefore not isolable from each other. In Figure ®Y elimination of all unknowns in their corresponding check-
it can also be seen that no fault is isolable from faults with dng models respectively. Since these checking models are
superset of faulty components. This is not surprising since ngmaller than the corresponding behavioral model, the elim-
equation in the model holds only in a faulty behavioral mode ination problem is reduced. The mo#eI is isolable from
Furthermore, since the top element is an upper bound for aP W if O(Mpr) \ O(Mpw) # @. An example of observa-
behavioral modes, it means that these faults will always be ditions inO(Mpr) \ O(Mpw) isy, # 0, 9g # 0, yuw # Y7,
agnoses, in fact they all have the empty set as their checkingndy., = 2y., ¥4/y,.- HenceO(Mpr) \ O(Mpw) # @, i.e.
models. PT is isolable fromP'W. According to the result of Algo-
rithm 2, it is possible that all double faults are isolable from

. all other double faults and it can be shown to be so.

6 lllustrative Examples

Previous sections have described Algorithm 2 that predict?‘2 Design Alternative Selection

the isolability. Here, two examples illustrate how Algorithm 2 Suppose there are different design alternatives, e.g. different
can be used. possible sensor configurations. Since only a course model



is needed as input to Algorithm 2, the isolability aspects ofputes faults that are not isolable from others without any ana-
different design alternatives can easily be evaluated. lytical assumptions.
Let the isolability demands be the same as in the previ-
ous section and assume that there are two design alternativBeferences
for the water-tank process, one as described in Section 2 a

one with an additional flow sens@exirameasuring:. We I’[gsratlanet al, 1999 Armen Asratian, Tristan Denley, and

know from the previous discussion that it is not possible to Roland Figgkvist. Bipartite Graphs and their Applica-

. ; tions Cambridge University Press, 1998.

isolate all double faults from each other by using the model

in Figure 1. The result of applying Algorithm 2 to an ex- [Blankeetal, 2003 M. Blanke, M. Kinnert, J. Lunze, and
tended model including the additional sengsyirganswers M. Staroswiecki. Diagnosis and Fault-Tolerant Control
the question if the model with the additional sensor can be Springer-Verlag, 2003.

sufficient to meet the isolability demands. [Cassar and Staroswiecki, 1997. P.  Cassar  and
The extended model is obtained by adding the equation M. Staroswiecki. A structural approach for the de-

e13 : y = ¢1 With the assumptio®exira = NF. Note that sign of failure detection and identification systems. In

an extra sensor will change the set of all system behavioral |FAC Control of Industrial SystemsBelford, France,

modes. In this example the number of componentsis 5 and 1997.

the original model has only 4 components. By including the,

additio%al sensor, all dougle faultg, includingythe new%nce[DrGSSleret al, 1993 O. Dressler, C. Bttcher, M. Montag,

. ; ; and A. Brinkop. Qualitative and quantitative models in a
introduced byQextrg Might be isolable from any other dou- i ; .
ble fault according to the result of Algorithm 2. Analytical model-based diagnosis system for ballast tank systems. In

analysis can be done as in Section 6.1 to conclude that all Int. Conf. on Fault Diagnosis (TOOLDIAGpages 397—

double faults are isolable from all other double faults. ‘."05’ Toulouse, Fr:.;mce, _1993' _ .

To summarize the results of the examples, without any faultFrisket al, 2003 Erik Frisk, Dilek Dgegor, Mattias
model or any additional sensor, this analysis shows that there Krysander, and Vincent Cocquempot. Improving fault
are double faults which are not isolable from other double isolability properties by structural analysis of faulty be-
faults. However, by adding the proposed fault model or the havior models: application to the DAMADICS benchmark
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