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ABSTRACT

This paper considers the problem of selecting a set of
residual generators, fulfilling requirements in terms of
fault isolability and minimal cardinality, for inclusion
in a model-based FDI-system. Two novel algorithms
for solving the selection problem are proposed. The
first one provides an exact solution fulfilling both re-
quirements and is suitable for small problems. The
second one, which is the main contribution and suit-
able for large problems, relaxes the minimal cardinal-
ity requirement and provides an approximate solution
by means of a greedy heuristic. Both algorithms take
the realizability properties of the considered residual
generation method into account, but are general in
the sense that they support any computerized residual
generation method. In a case study the greedy algo-
rithm is applied to the problem of finding a suitable
set of residual generators for detection and isolation of
faults in a complex truck diesel engine system. In this
study a prior known sequential residual generation
method is considered.

1 INTRODUCTION
In the FDI-approach to model-based fault diagnosis, a diag-
nosis system typically contains three sub-systems: residual
generation, residual evaluation, and fault isolation, see
e.g. (Blanke et al., 2006). In this work, as in for exam-
ple (Svärd and Nyberg, 2010), (Nyberg, 1999), (Nyberg
and Krysander, 2008), design of the residual generation
sub-system is considered to be a two-step approach. In
the first step, a large set of candidate residual generators,
expressed as subsets of the model equations, are found
and in the second step, the equation sets considered most
suitable are selected and residual generators created from
these. This paper addresses the selection problem.

The selection problem is formulated by considering two
different requirements on the sought set of residual genera-
tors. Firstly, it is required that the set of residual generators
fulfills an isolability requirement stating which faults that
should be isolated from each other. Secondly, regarding
implementation aspects such as complexity and computa-
tional load, a set of residual generators of low cardinality
is preferred before a set of high cardinality, given that the

two sets have equal isolability properties. Therefore, it is
desirable that the set of residual generators is of minimal
cardinality.

Two novel algorithms for solving the selection problem
are proposed in this paper. The first one provides an exact
solution fulfilling both the isolability and the minimal car-
dinality requirements and is suitable for small problems.
The second one, which is the main contribution, relaxes
the minimal cardinality requirement and provides an ap-
proximate solution by means of a greedy-heuristic in an
iterative manner. This algorithm is suitable for large, real-
world, problems for which the approach used in the first
algorithm is intractable.

Both algorithms exploit a novel formulation of the se-
lection problem, in the form of an optimization problem,
which enables an efficient reduction of the search-space by
taking the realizability properties of the considered resid-
ual generation method into account. In this formulation the
isolability requirement is equivalently stated in terms of
properties of subsets of the model equations. The proposed
algorithms are general in the sense that they support any
computerized residual generation method.

The residual generator selection problem is formally
stated, in the form mentioned above, in Section 2. The first
selection algorithm is presented and discussed in Section 3.
The second, greedy, algorithm is presented and justified
in Section 4. Section 5 presents an application example
in which a specific, and prior known, residual generation
method is considered and the greedy selection algorithm
is applied to a truck diesel engine system. The paper is
concluded in Section 6.

2 THE RESIDUAL GENERATOR SELECTION
PROBLEM

In this section, the selection problem is formulated. Prereq-
uisites for the selection is a method for residual generation,
an isolability requirement, and a model. The residual gen-
eration method used for design of residual generators plays
a central role and before formulating the selection prob-
lem, the important concepts of isolability and realizability,
given a method, are considered.

2.1 Isolability and Realizability
In this work, model-based residual generators are of in-
terest. A model-based residual generation method, G, is
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defined to be a procedure taking as input a set of equations
S and giving as output a residual generator R, or an empty
set ∅. An equation set, S, is said to be realizable with the
method G if the output from G is not the empty set when
S is input.

Let G be a residual generation method and consider a
model, M = (E,X,Z, F ), defined in terms of a set of
equations E containing the unknown variables X , known
variables Z, and considered faults F . A fault fi ∈ F
is isolable from fault fj ∈ F in the model M with the
methodG if there exists an equation set S ∈ E such that S
is realizable with G and the residual generator R, obtained
as the output from G when S is input, is sensitive to fi
but not to fj . Further, a residual generator R is said to
be sensitive to fault f if the residual r, the output from R,
may respond, i.e., deviate from zero, when f is present.

To exemplify these concepts, consider a model contain-
ing the following set of differential and algebraic equations

e1 : ẋ1 − x1 − u− f1 = 0

e2 : x1 − y1 − f2 = 0

e3 : x1 − y2 − f3 = 0,

where x1 is an unknown variable, {u, y1, y2} known vari-
ables, and {f1, f2, f3} the considered faults. It can be
shown that the equation sets S1 = {e1, e2}, S2 = {e1, e3},
and S3 = {e2, e3}, all are realizable with the sequential
residual generation method described in (Svärd and Ny-
berg, 2010). The output from this method is the residual
generator R1 = {{x1 = y1}, {r = y2 − x2}}, when S3 is
input. Residual generator R1 is sensitive to both fault f1
and fault f2, but not to fault f3. Thus, fault f1 and fault f2
are both isolable from fault f3 in the above model with the
considered sequential residual generation method.

Assuming that each fault occurs in only one equation,
let ef denote the equation in an equation set containing
fault f . From now on, the following is assumed regarding
a residual generation method.
Assumption 1. Let S be an equation set realizable with
the residual generation method G, and R the residual
generator obtained as the output from G when S is input.
Then, if ef ∈ S then R is sensitive to fault f . Moreover, if
ef 6∈ S then R is not sensitive to f .

Note that if a fault f occurs in more than one equation,
the fault f can be replaced with a new variable xf in these
equations, and the equation xf = f added to the equation
set. This added equation will then be the only equation
where f occurs.

Also note that even though additive faults were consid-
ered in the example above, the framework in this paper is
general and independent on the fault model.

The following result establishes necessary and sufficient
condition for fault isolability, given a model and a residual
generation method.
Proposition 1. Let G be a residual generation method
and M = (E,X,Z, F ) a model. Fault fi ∈ F is isolable
from fault fj ∈ F in M with G if and only if there exists
an equation set S ⊆ E that is realizable with G, and for
which efi ∈ S and efj 6∈ S.

2.2 Formulation of the Selection Problem
Define an isolability requirement as a set, F , of ordered
pairs (fi, fj) ∈ F ×F , where the interpretation of (fi, fj)

is that fi should isolable from fj . From Proposition 1 it is
clear that to be able to satisfy the isolability requirement F
it is necessary, and sufficient, to find for each (fi, fj) ∈ F
a realizable set S ⊆ E for which efi ∈ S and efj 6∈ S. If
E is a small set, it may be tractable to evaluate all subsets
of E in the search for these sets. In the general case,
however, it is not.

In order to reduce the search-space, all subsets of E that
not by necessity are realizable are discarded. To this end,
consider a residual generation method G and an equation
set S. A constraint on the equation set S is said to be a
necessary realizability criterion for the method G if the
constraint is satisfied when S is realizable withG. Assume
now that for the method G, the necessary realizability
criterion is known and well-defined. A candidate equation
set for the method G is defined as an equation set S that
fulfills the necessary realizability criterion for G.

As an example, a candidate equation set for several
observer-based residual generation methods is an equa-
tion set in, or that trivially can be cast in, state-space
form, see e.g. (Blanke et al., 2006), (Chen and Patton,
1999) and references therein. An additional example
is given by the class of methods referred to as sequen-
tial residual generation, see e.g. (Staroswiecki and De-
clerck, 1989), (Cassar and Staroswiecki, 1997), (Pulido
and Alonso-González, 2004), (Ploix et al., 2005), (Travé-
Massuyès et al., 2006), (Blanke et al., 2006), (Svärd and
Nyberg, 2010), for which over-determined sets of equa-
tions, as for example Minimal Structurally Overdetermined
(MSO) sets (Krysander et al., 2008) or Minimal Test Equa-
tion Supports (MTES) (Krysander et al., 2010), constitute
candidate equation sets.

Let SG ⊆ 2E be the set of all candidate equation sets
for a residual generation method G. Given an isolabil-
ity requirement F , define the isolation class of SG for
(fi, fj) ∈ F as

Ififj =
{
S ∈ SG : efi ∈ S ∧ efj 6∈ S

}
, (1)

and the set
I =

{
Ififj : ∀ (fi, fj) ∈ F

}
, (2)

containing all isolation classes of SG for F . The next
result formulates the problem of fulfilling an isolability
requirement in terms of candidate equation sets.
Theorem 1. Let F be an isolation requirement, M =
(E,X,Z, F ) a model, andG a residual generation method.
Also, let SG ⊆ 2E be the set of all candidate equation sets
for M and I the set of all isolation classes of SG for
F , defined according to (1) and (2). Then, the isolation
requirementF is satisfied for the modelM with the method
G if and only if there existsM⊆ SG such that

∀I ∈ I, M∩ I 6= ∅, (3)
and each S ∈M is realizable with the method G.

In order to satisfy also the requirement regarding the
cardinality of the set of sought residual generators, the
cardinality of setM in Theorem 1 should be minimized.
To summarize this discussion, the selection problem is
stated as the minimization problem

min
M⊆SG

|M| (4a)

s.t. ∀I ∈ I, M∩ I 6= ∅ (4b)
∀S ∈M, realizeG (S) 6= ∅, (4c)
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where |·| returns the cardinality of a set, and the function
realizeG (S), taking an equation set as input and return-
ing a residual generator, denotes the procedure of creat-
ing a residual generator with method G. In particular,
realizeG (S) 6= ∅ denotes that S is realizable with G.

In fact, the isolability requirement onM, given by (4b),
implies thatM should be a hitting set for the set I. To
also satisfy the minimal cardinality requirement (4a),M
should be a minimal cardinality hitting set for I.

3 A NAIVE SELECTION APPROACH
The observation thatM should be a minimal cardinality
hitting set for I suggests the following naive, but neverthe-
less simple, selection approach. First find the collection
of all minimal hitting sets for I, denotedH, and then find
a set H ∈ H, of minimal cardinality, where all candidate
equation sets S ∈ H are realizable.

3.1 A MHS-Based Selection Algorithm
The naive selection approach outlined above is the basis
for the algorithm SELECTRESGENMHS presented below,
taking as input a residual generation method G, a model in
terms of a set of equations E, and an isolation requirement
F . The output from the algorithm is a set of residual
generatorsR.

To make the realizability evaluation of the minimal hit-
ting sets in H a bit more effective in SELECTRESGEN-
MHS, the candidate equation sets in a minimal hitting set
H ∈ H are evaluated in decreasing order, with respect to
cardinality. This relies on the assumption, which indeed
have shown to be valid in practice and in particular in the
application example presented in Section 5, that a candi-
date equation set of low cardinality is more likely to be
realizable than a set of high cardinality.
1: function SELECTRESGENMHS(G,E,F)
2: M := ∅
3: R := ∅
4: SG := FINDCES(G,E)
5: I := ISOLCLASSES(SG,F)
6: H := FINDMHS(I)
7: while H 6= ∅ do
8: H∗ := argminH∈H |H|, M := H∗

9: while H∗ 6= ∅ do
10: S∗ := argmaxS∈H∗ |S|
11: R := REALIZERESGEN(G,S∗)
12: if R 6= ∅ then
13: R := R

⋃
{R} , H∗ := H∗ \ {S∗}

14: if H∗ = ∅ then
15: return R
16: end if
17: else
18: H := H \ {M}
19: M := ∅, R := ∅, H∗ := ∅
20: end if
21: end while
22: end while
23: return R
24: end function

The function FINDCES is assumed to find all candidate
equation sets for the method G given a set of equations
E. The function ISOLCLASSES is assumed to return the
set of all isolation classes of a set of candidate equation
sets SG for the isolation requirement F according to (1)
and (2). The function FINDMHS is assumed to find all

minimal hitting sets for the collection of sets I given as in-
put. The function REALIZERESGEN is assumed to invoke
a call to a user-provided function for realizing a candidate
equation set with the residual generation method G. That
is, it implements the function realizeG (·). The input to
this function is, besides the residual generation method G,
a candidate equation set S for G. The output is a resid-
ual generator R, if S is realizable with G, otherwise ∅.
This function will be exemplified, for a specific residual
generation method, in Section 5.

Note that in an efficient implementation of algorithm
SELECTRESGENMHS, it is preferable to keep book of
those candidate equation sets that have been realized, suc-
cessfully or not, in previous iterations in order to avoid
unnecessary calls to REALIZERESGEN.

3.2 Properties of the MHS-Based Algorithm
It is easy to verify that if the outputR from algorithm SE-
LECTRESGENMHS is a non-empty set, the corresponding
setM of selected candidate equation sets is indeed a solu-
tion to the selection problem (4). The minimal hitting set
problem, or the equivalent set covering problem, is how-
ever known to be NP-complete, see e.g. (Karp, 1972), (Aho
et al., 1974), (Garey and Johnson, 1979). Thus, for large
problems, that is, cases when the number of candidate equa-
tion sets |SG|, as well as the number of isolation classes
|I|, is large it may be impossible, or at least intractable, to
obtain the collection of all minimal hitting sets for I.

There are nevertheless several algorithms that give ap-
proximate solutions, typically a subset of all minimal hit-
ting sets, see for example (Abreu and van Gemund, 2009)
and references therein. A complicating issue is however
that for large and complex models, typically, only a frac-
tion of the candidate equation sets are realizable. Indeed,
this situation described above applies to the truck diesel
engine system considered in Section 5. For additional
examples and a discussion regarding this, see (Svärd and
Nyberg, 2010). For the algorithm SELECTRESGENMHS,
this implies that a vast amount of the found minimal hit-
ting sets, possibly all, would be discarded since only a
fraction of the found minimal hitting sets contain realiz-
able candidate equation sets. To maximize the possibilities
of finding a minimal hitting set in which all candidate equa-
tion sets are realizable, it is important to start with as many
minimal hitting sets as possible. The reduced number of
minimal hitting sets found by an approximate algorithm
may therefore not be large enough.

One solution to the complexity issues is to find
the realizable subset of all candidate equation sets
S ′G = {S ∈ SG : realizeG (S) 6= ∅}, calculate I ′ accord-
ing to (1) and (2) using S ′G instead of SG, and then apply
a minimal hitting set algorithm to I ′ to obtainM. The
set S ′G can be computed by applying the function REAL-
IZERESGEN to each S ∈ SG. Realization of an equation
set in general requires analysis and manipulation of the
equations in the set which may be a complex and computa-
tional demanding task. It is therefore desirable to keep the
number of realizations, or realization attempts, at a mini-
mum. Consequently, this approach may not be preferable
if SG is a large set.

It should however be noted that for small problems,
where all minimal hitting set can be found, algorithm SE-
LECTRESGENMHS works satisfactory and in those cases
it provides an exact, and yet straightforward and simple,
solution to the selection problem (4).
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4 A GREEDY SELECTION APPROACH
Taking the issues regarding complexity and realizability
discussed above into account, a more appealing approach
is instead to build the set of candidate equation sets M
iteratively, and only realize those candidate equation sets
that are likely to be part of M. In this way, the com-
plexity problem associated with finding minimal hitting
sets is overcome and the number of needed realizations,
or realization attempts, is reduced. To employ this iter-
ative approach, a heuristic is needed for identifying and
selecting a candidate equation set in each iteration.

4.1 Greedy Heuristic
For the general minimal hitting set problem, or the equiva-
lent set covering problem, a greedy heuristic (Black, 2005)
has shown (Johnsson, 1974), (Lovász, 1975), (Chvatal,
1979) to provide an approximate solution at a reasonable
cost. Using a greedy approach, the candidate equation set
with the largest utility is selected in each iteration of the
algorithm and added to the solution. To fulfill the real-
izability requirement, only realizable candidate equation
sets are allowed to be added to the solution. The iterations
continue until the solution is complete. In order to use
this approach, a utility function must be defined, i.e., a
function that evaluates the usefulness of a given candidate
equation set, and the properties of a complete solution to
the selection problem, in this framework, must be stated.

Properties of a Complete Solution
Given a set of isolation classes I , define the isolation class
coverage of a setM⊆ SG as

σI (M) = {I ∈ I : ∃S ∈M, S ∈ I} . (5)

Basically, σI (M) states which of the isolation classes in
I that are covered by the candidate equation sets inM.
The isolability requirement (4b), or hitting set property,
can with the isolation class coverage notion be formulated
as σI (M) = I, which then characterizes a complete
solution to the selection problem.

Utility Function
To evaluate a specific candidate equation set, it is desirable
to take into account the isolability and cardinality require-
ments. In line with this, the following utility function will
be used

µI (S) = |σI ({S})| , (6)
reflecting how many of the isolation classes in I that are
covered by S. According to the greedy approach the candi-
date equation set that maximizes µI (S), i.e., covers most
isolation classes, should be selected at each iteration.

As in the algorithm FINDRESGENMHS, it is assumed
that a candidate equation set of low cardinality is more
likely to be realizable than a set of high cardinality. Conse-
quently, if there are several candidate equation sets with
equal utility, the one among these of lowest cardinality will
be selected.

4.2 A Greedy Selection Algorithm
The algorithm SELECTRESGENGREEDY for greedy selec-
tion and design of residual generators is given below. Input
to the algorithm is a method G, model in terms of an equa-
tion set E, and an isolation requirement F . The output
from the algorithm is a set of residual generatorsR. The
functions FINDCES, ISOLCLASSES, and REALIZERES-
GEN are the same as in algorithm SELECTRESGENMHS.

1: function SELECTRESGENGREEDY(G,E,F)
2: M := ∅
3: R := ∅
4: SG := FINDCES(G,E)
5: I := ISOLCLASSES(SG,F)
6: while I 6= ∅ do
7: if SG 6= ∅ then
8: H := {S′ ∈ SG : S′ = argmaxS∈SG µI (S)}
9: S∗ := argminS∈H |S|

10: R := REALIZERESGEN(G,S∗)
11: if R 6= ∅ then
12: R := R

⋃
{R}

13: M := M
⋃

{S∗}
14: I := I \ σI ({S∗})
15: end if
16: SG := SG \ {S∗}
17: else
18: return R
19: end if
20: end while
21: return R
22: end function

Note that the complexity of algorithm SELECTRESGEN-
GREEDY is linear in the number of elements of SG, in
comparison with the NP-completeness of algorithm SE-
LECTRESGENMHS originating from the search for all
minimal hitting sets. For a further comparison of the com-
plexity of algorithm SELECTRESGENGREEDY with the
complexity of algorithm SELECTRESGENMHS, only the
complexity of FINDCES is of interest since both ISOL-
CLASSES and REALIZERESGEN are used in similar man-
ner in both algorithms. For the residual generation method
exemplified in Section 5, the function corresponding to
FINDCES has nice complexity properties, see (Krysander
et al., 2008).

4.3 Properties of the Greedy Selection Algorithm
This section explores the properties of algorithm SELEC-
TRESGENGREEDY in terms of providing a solution to the
selection problem (4). The algorithm is partly justified by
the following result.
Proposition 2. Let G be a residual generation method,
E a set of equations, and F an isolability requirement.
Further, let G, E, and F , be input to SELECTRESGEN-
GREEDY and the output be a non-empty R. If the isola-
bility requirement F can be fulfilled with G, then the
set M, where R = {R : R = realizeG (S) ,∀S ∈M},
fulfills the isolability and realizability requirements (4b)
and (4c), respectively. If the isolability requirement F not
can be fulfilled with G, then the set M fulfills the real-
izability requirement and gives the maximum attainable
isolability for G, with respect to F .

Proof. Due to space limitations, only the first claim is
shown. Let n denote the total number of iterations per-
formed by SELECTRESGENGREEDY in which the con-
dition on line 11 is met. Further let Mi, Ri, Ii, S∗i ,
and Ri, denote the values of the variablesM, R, I, S∗,
and R, respectively, after iteration i. It then holds that
M0 = R0 = ∅, and I0 = I. By assumption R 6= ∅, and
therefore Rn = R 6= ∅, Mn = M 6= ∅, and In = ∅,
due to rows 6, 12, and 13, in SELECTRESGENGREEDY.
In fact, due to rows 12 and 13 it can be concluded that
Rn =

⋃n−1
i=1 {Ri}, andMn =

⋃n−1
i=1 {S∗i }. Consider now

the realizability requirement (4c). From rows 10,11, and
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13, it can be deduced that for each S∗i ∈Mn it holds that
REALIZERESGEN (G,S∗i ) 6= ∅ and thus each S∗i ∈ Mn
is realizable withG and (4c) is satisfied. Consider the isola-
bility requirement (4b). From row 14, it can be deduced
that I = I0 =

⋃n−1
i=1 σI ({S∗i }). From (5), it follows

that for i = 1, 2, . . . , n − 1 and for all I ∈ σI ({S∗i })
it holds by definition that S∗i ∈ I . Therefore, since
M =Mn =

⋃n−1
i=1 {S∗i }, it holds thatM

⋂
I 6= ∅ for all

I ∈ I =
⋃n−1

i=1 σI ({S∗i }) and the proof is complete.

The Minimal Cardinality Requirement
In Proposition 2, nothing is said about the cardinality of
M, that is, how well the objective (4a) is met when algo-
rithm SELECTRESGENGREEDY is employed for solving
the selection problem. The purpose of this section is to
analyze this. To be able to exploit a previous result re-
garding the qualification of the greedy heuristic used in
the algorithm, a different but equivalent formulation of the
minimal hitting set problem is considered. To this end,
define the set

UG = σI (SG) , (7)

that is, UG contains the isolation classes covered by each
candidate equation set in SG. Consider now the problem
of finding the smallest subset U ⊆ UG that covers UG, i.e.,

min
U⊆UG

|U|, s.t.
⋃
U∈U

U =
⋃

U∈UG

U. (8)

The problem (8) is referred to as a set covering problem,
and can be shown to be equivalent to the previously con-
sidered minimal hitting set problem

min
M⊆SG

|M|, s.t. ∀I ∈ I, M
⋂
I 6= ∅, (9)

that is, the selection problem (4) with the realizability
condition (4c) relaxed. In fact, if U∗ is a solution to the set
covering problem (8), then

M∗ = {S ∈ SG : σI ({S}) ∈ U∗} (10)

is a solution to minimal hitting set problem (9). The con-
verse is given by (7) with UG and SG replaced by U∗ and
M∗, respectively.

Consider now solving (8) approximately with a greedy
heuristic equivalent to the one described in Section 4.
Namely, in each iteration, until all isolation classes in
UG are covered, select the one U ∈ UG that covers most
uncovered isolation classes, i.e., the U ∈ UG of highest
cardinality. Denote the resulting solution Û . It can be
shown (Johnsson, 1974), (Lovász, 1975), that∣∣∣Û∣∣∣

|U∗|
≤

k∑
j=1

1

j
≤ ln k + 1, (11)

where U∗ is the exact solution to (8) and k is the cardinality
of the largest set in UG.

As said, the greedy heuristic described above for solv-
ing problem (8) coincide with the heuristic described in
Section 4 for solving problem (9). Since the two prob-
lems are equivalent, it can be concluded that the worst
case bound (11) also holds for approximate solutions to (9)
obtained by usage of the greedy heuristic described in
Section 4. This fact is summarized in the following result.

Proposition 3. LetM∗ denote the exact solution to (9),
M̂ the solution obtained by appliance of algorithm SELEC-
TRESGENGREEDY, and k the cardinality of the largest
set in UG, defined according to (7). Then, it holds that∣∣∣M̂∣∣∣

|M∗|
≤

k∑
j=1

1

j
≤ ln k + 1. (12)

Proposition 3 provides a measure, by means of a worst-
case error bound, of how well the objective (4a) is met
when solving the selection problem (4) with the algorithm
SELECTRESGENGREEDY. Proposition 3 and Proposi-
tion 2 together provide a theoretical justification of the
algorithm SELECTRESGENGREEDY, with respect to how
well its output solves the selection problem (4).

Note that if each candidate equation set in SG only
covers a few of the isolation classes in I, i.e., k is small,
then algorithm SELECTRESGENGREEDY performs well
in the sense that the cardinality of its output is close to the
cardinality of the exact solution to (4). However, the larger
the coverage, the worse the performance. Nevertheless,
the approximation ratio (12) increases slowly with k, due
to the function ln().

5 APPLICATION EXAMPLE
In this section, the greedy selection algorithm presented
in Section 4 is applied to a truck diesel engine system.
The residual generation method used in this study is de-
scribed in (Svärd and Nyberg, 2010) and belongs to a class
of methods referred to as sequential residual generation,
which has shown to be successful for real applications
and also has the potential to be automated to a high ex-
tent. These methods are based upon the ideas originally
described in (Staroswiecki and Declerck, 1989), where
unknown variables in a model are computed by solving
equation sets one at a time in a sequence and a residual
is obtained by evaluating a redundant equation. Simi-
lar approaches are described and exploited in for exam-
ple (Cassar and Staroswiecki, 1997), (Pulido and Alonso-
González, 2004), (Ploix et al., 2005), (Travé-Massuyès et
al., 2006), (Blanke et al., 2006). Before presenting the
actual application study, the residual generation method
is briefly recapitulated and its use in the framework of
Section 2 is discussed.

5.1 Sequential Residual Generation
Recall the model M = (E,X,Z, F ) considered in Sec-
tion 2, where E is a set of equations, X a set of unknown
variables, Z a set of known variables, and F the set of
considered fault. As said above, the main idea in sequen-
tial residual generation is to compute unknown variables
in the model by solving equation sets one at a time in a
sequence, and then evaluate a redundant equation to ob-
tain a residual. An essential component in the design of
a residual generator is therefore a computation sequence,
describing the order and from which equations variables
are computed. In (Svärd and Nyberg, 2010), to which is
referred for technical details, a computation sequence is
defined as an ordered set of variable and equation pairs

C = ((V1, E1) , (V2, E2) , . . . , (Vk, Ek)) , (13)

where Vi ⊆ X
⋃
D, Ei ⊆ E, and D contains the first-

order derivatives of the variables in X . The computation
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sequence C implies that first the variables in V1 are com-
puted from equations E1, then the variables in V2 from
equations E2 and so forth.

Sequential Residual Generator
Having computed the unknown variables in
V1
⋃
V2
⋃
. . .
⋃
Vk according to the computation

sequence C in (13), a residual can be obtained by evaluat-
ing a redundant equation e, i.e. e ∈ E \E1

⋃
E2 . . .

⋃
Ek

with varX(e) ⊆ varX(E1

⋃
E2 . . .

⋃
Ek), where the

operator varX(·) returns the unknown variables that are
contained in an equation set. A residual generator based
on a computation sequence C and redundant equation e is
referred to as a sequential residual generator.

Realization Algorithm
The algorithm REALIZESEQRESGEN presented below re-
alizes, or attempts to realize, an equation set, S, with
the sequential residual generation method briefly outlined
above.
1: function REALIZESEQRESGEN(S)
2: x := varX(S)
3: for all e ∈ S do
4: S′ := S \ {e}
5: C := FINDCOMPUTATIONSEQUENCE(S′, x)
6: if C 6= ∅ then
7: R := {C ∪ e}
8: return R
9: end if

10: end for
11: return ∅
12: end function

The realization relies heavily on the function FINDCOM-
PUTATIONSEQUENCE, which finds a minimal and irre-
ducible computation sequence C for the variables x, and is
described in detail in (Svärd and Nyberg, 2010). Whether
it is possible or not to find a computation sequence for a
set of variables depends naturally on the properties of the
equations. Equally important are however prerequisites
in terms of causality assumption, i.e. regarding integral
and/or derivative causality, and the properties of the com-
putational tools, that are available for use.

The following result shows that the residual generation
method given by the algorithm REALIZESEQRESGEN sat-
isfies Assumption 1, and thereby is suitable to use in the
framework described in Section 2.1.
Proposition 4. Let S be an equation set. If S is used
as input to the algorithm REALIZESEQRESGEN and the
output is a non-empty R, then R is sensitive to fault f if
ef ∈ S. Moreover, if ef 6∈ S then R is not sensitive to
fault f .

Proof. If the output R from the algorithm REALIZESE-
QRESGEN is non-empty, then R = {C ∪ e} where e ∈ S
and C is a minimal and irreducible computation sequence
for the variables x = varX(S), see Theorem 4 in (Svärd
and Nyberg, 2010). Under the assumption that ef ∈ S
the residual generator R = {C ∪ e} is sensitive to fault f
if ef is used in the computation sequence C or if e = ef .
Since the latter case is trivial due to the fact that e ∈ S,
consider the former and assume that ef is not used in C.
This implies that there exists a computation sequence C′
for x such that C′ ⊂ C. This contradicts the minimality of
C and hence it follows that ef must be used in C and con-
sequently R is sensitive to f . The second part of the claim,

that is, if ef 6∈ S then R is not sensitive to fault f trivially
follows from the facts that R = {C ∪ e}, e ∈ S, and that C
is a computation sequence for the variables varX(S).

5.2 Necessary Realizability Criterion
In Theorem 2 in (Svärd and Nyberg, 2010), it is shown that
the equations in a minimal and irreducible computation
sequence together with a redundant residual equation, in
fact correspond to a Minimal Structurally Overdetermined
(MSO) set, see (Krysander et al., 2008). It is also shown
(as was exploited in the proof of Proposition 4) that a non-
empty computation sequence returned by FINDCOMPUTA-
TIONSEQUENCE in the algorithm REALIZESEQRESGEN
indeed is minimal and irreducible. Thus, if an equation
set S is realizable with the sequential residual generation
method then S is an MSO set. Consequently, a necessary
realizability criterion for the method is that the equation
set used as input is an MSO set and hence an MSO set is a
candidate equation set for the method. Fortunately, there
are efficient algorithms for finding all MSO sets in a large
set of equations, see e.g. (Krysander et al., 2008).

As a side remark, note that the maximal number of se-
quential residual generators that can be constructed from
an MSO set equals the number of equations in the set.
All residual generators created from the same MSO set
however have equal fault sensitivity properties according
to Section 2.1. Nevertheless, their actual fault sensitivity
may differ due for example different sensitivity for noise,
etc. To make the final selection of which of the residual
generators created from an MSO set that should be in-
cluded in the final diagnosis system, evaluation by means
on execution using real measurements from different fault
cases might be needed. For this purpose, algorithm RE-
ALIZESEQRESGEN can be trivially modified to return all
residual generators that can be created from the MSO set
used input, and not only one.

5.3 The Truck Diesel Engine System
In this study, a 13-L six-cylinder Scania diesel engine
equipped with Exhaust Gas Recirculation (EGR), Variable
Geometry Turbine (VGT), and intake throttle, is consid-
ered. Stricter emission legislation requirements for heavy-
duty truck diesel engines implies stricter on-board diagno-
sis (OBD) legislation requirements. The OBD-legislation
states that all manufactured vehicles must be equipped
with an OBD-system capable of detecting faults in all
components that, if broken, result in emissions above pre-
defined OBD-thresholds during a specified test cycle. Con-
sequently, the diagnosis system must be able to detect and
isolate faults in all emission critical components.

Isolability Requirement
For the considered truck diesel engine, emission criti-
cal components include all actuators and sensors. It is
therefore required that, at least, single faults can be de-
tected and isolated. Other emission critical components
are pipes and hoses. In particular, a broken pipe or
hose may lead to gas-leakage which may increase emis-
sions. Leakages in or near the intercooler, intake man-
ifold, and exhaust manifold are considered. It is desir-
able that these leakages can be detected and isolated,
from each other, but also from all sensor and actuator
faults. All considered faults for the truck diesel engine
system along with their description can be found in Ta-
ble 1. Since it is required that all considered faults can
be isolated from each other, the isolability requirement F
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for the truck diesel engine system consists of all unique
pairwise combinations of the faults in Table 1. That is,
F =

{
(fWic , fWim) , (fWic , fWem) , . . . ,

(
fyTim

, fypem

)}
, and

|F| = 12× 11 = 132.

Table 1: Considered Faults
Fault Description
fWic Leakage, intercooler
fWim Leakage, intake manifold
fWem Leakage, exhaust manifold
fuxth

Fault, throttle position actuator
fuxegr Fault, EGR-valve position actuator
fuxvgt

Fault, VGT-valve position actuator
fypamb

Fault, ambient pressure sensor
fyTamb

Fault, ambient temperature sensor
fypic

Fault, intercooler pressure sensor
fypim

Fault, intake manifold pressure sensor
fyTim

Fault, intake manifold temperature sensor
fypem Fault, exhaust manifold pressure sensor

Truck Diesel Engine Model
The model of the truck diesel engine used in this work is
described in (Wahlström and Eriksson, 2011) and relies on
both fundamental first principle physics and gray-box mod-
eling. The model describes the behavior of the system in
the no-fault case, i.e., it is a nominal model. To incorporate
fault information in the nominal model, faults are modeled
as additive signals in corresponding equations. For exam-
ple, fault fypim

, representing a fault in the intake manifold
pressure sensor ypim , is modeled by simply adding fypim

to the equation describing the relation between the sen-
sor value ypim and the actual intake manifold pressure pim
according to ypim = pim + fypim

.
The model contains in total 46 equations, 43 unknown

variables, 11 known variables, of which 3 are actuators, 6
sensors, and 2 control inputs, and the 12 faults in Table 1.
Of the 46 equations, 5 are differential equations and the
rest algebraic equations. The model contains several non-
linear functions.

5.4 Results and Discussion
To find all candidate equation sets, i.e., MSO sets, the
algorithm in (Krysander et al., 2008) was employed and
implemented in the function FINDCES in the selection al-
gorithms. In total, 270 MSO sets, were found in the truck
diesel engine model, i.e., |SG| = 270. Given the isolability
requirement defined above, the 270 candidate equation sets
were ordered into 132 isolation classes according to (1)
and (2) so that |I| = 132. Due to the complexity of the
selection problem, especially in terms of the cardinalities
of the sets SG and I, it was impossible to find the col-
lection of all minimal hitting sets for I, see Section 3.2.
Thus, usage of selection algorithm FINDRESGENMHS in
Section 3.1 was unfeasible and consequently the greedy
selection algorithm FINDRESGENGREEDY from Section 4
was used instead.

The algorithm SELECTRESGENGREEDY was imple-
mented in MATLAB. The function REALIZESEQRESGEN
was implemented according to the algorithm in Section 5.1,
and the function FINDCOMPUTATIONSEQUENCE, for find-
ing computation sequences, was implemented according to
the corresponding algorithm in (Svärd and Nyberg, 2010).

Table 2: Isolability Matrix
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fWic x x x
fWim x x x
fWem x x x
fypamb

x x
fyTamb

x x x
fypic

x x x
fypim

x x x
fyTim

x x x
fypem x x x
fuxth

x x x
fuxegr x x x
fuxvgt

x x

Table 3: Fault Signature Matrix
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R1 x x x x x x x x x
R2 x x x x x x x x x x
R3 x x x x x x x x x x
R4 x x x x x x x x x x
R5 x x x x x x x x x x
R6 x x x x x x x x x x
R7 x x x x x x x x x x
R8 x x x x x x x x x x
R9 x x x x x x x x x x
R10 x x x x x x x x x x
R11 x x x x x x x x x x

The output from the selection algorithm was a set con-
taining 11 residual generators. All of the 11 selected resid-
ual generators were dynamic, 3 used only integral causality
and the remaining 8 both integral and derivative causality,
i.e., mixed causality. Before terminating, the algorithm
discarded in total 119 non-realizable candidate equation
sets, mainly due to non-invertible non-linear functions in
the model.

Table 2 shows the resulting isolability matrix for the set
of selected residual generators. Table 3 shows the fault
signature matrix for the 11 selected residual generators
with respect to the faults in Table 1. The fault signature
for a residual generator R contains a “x” in the column
corresponding to fault f , if R is sensitive to f .

As seen in Table 3, all of the selected residual genera-
tors are sensitive to the faults fypamb

and fuxvgt
, which is

also indicated in Table 2. Thus, faults fypamb
and fuxvgt

are not isolable from the other faults and the isolability re-
quirement F , defined in Section 5.3, is not met. However,
according to Proposition 2, Table 2 shows the maximum
attainable isolability in the truck diesel engine model with
the considered sequential residual generation method.

6 CONCLUSIONS
Two novel algorithms for solving the residual generator
selection problem have been proposed. The foundation for
both algorithms was a formulation of the selection problem
which enabled an efficient reduction of the search-space
by taking the realizability properties of the residual gen-

7



22nd International Workshop on Principles of Diagnosis

eration method into account, and in which the isolability
requirement was equivalently stated in terms of properties
of subsets of the model equations. Both algorithms are
general in the sense that they support any computerized
residual generation method.

The algorithm FINDRESGENMHS, based on the naive
approach of finding all minimal hitting sets, gives an ex-
act solution fulfilling both the isolability and the minimal
cardinality requirements but is intractable for large prob-
lems. The iterative algorithm FINDRESGENGREEDY is
suitable for large, real-world, problems and is based on a
greedy heuristic. It provides an approximate solution in
terms of fulfilling the minimal cardinality requirement. A
theoretical characterization of the approximation error, in
the form of a worst-case bound, was given in Proposition 3,
and that the solution provided by FINDRESGENGREEDY
indeed fulfills the isolability requirement was guaranteed
by Proposition 2.

In an application example, the greedy algorithm FIND-
RESGENGREEDY was applied to the problem of finding a
set of suitable residual generators for detection and isola-
tion of faults in a complex truck diesel engine system. In
the application example, a prior known sequential residual
generation method was employed for design of residual
generators.
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