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ABSTRACT

A theory is developed for quantifying fault detectabil-
ity and fault isolability properties of time discrete lin-
ear dynamic models. Based on the model, a stochas-
tic characterization of system behavior in different
fault modes is defined and a general measure, called
distinguishability, based on the Kullback-Leibler in-
formation, is used to quantify the difference between
the modes. An analysis of distinguishability as a func-
tion of the number of observations is discussed. This
measure is also shown to be closely related to the
fault to noise ratios in residual generators. Further,
the distinguishability of the model is shown to give
upper limits of the fault to noise ratios of residual
generators.

1 INTRODUCTION

Diagnosis and supervision of industrial systems con-
cerns detecting and isolating faults that occurs in the sys-
tem. When developing a diagnosis system, knowledge of
achievable diagnosability performance given the model of
the system, such as detectability and isolability, is useful.
Such information tells for example if a test with certain
properties can be created or if more sensors are needed to
get satisfactory diagnosability performance.

A main limiting factor of diagnosis performance is the
model uncertainty. Large uncertainties makes it difficult
to detect or isolate a small fault. Without sufficient infor-
mation of possible diagnosability properties, time could
be wasted on, for example, developing tests to detect a
fault that in reality is impossible to detect or isolate.

There exist systematic methods for analyzing isolability
performance in dynamic systems, e.g., (Pucel er al., 2009),
(Frisk et al., 2010) and (Trave-Massuyés er al., 2006),
however these approaches are deterministic and only give
qualitative statements whether a fault is isolable or not.
The methods tell nothing of how difficult it is to detect
or isolate the faults. This gives an optimistic result of
isolability performance because an isolable fault can be
hard to detect in practice due to low fault to noise ratio.

There are several works describing methods from clas-
sical detection theory, for example the books (Basseville
and Nikiforov, 1993) and (Kay, 1998), which can be used

for quantified detectability analysis using a stochastic char-
acterization of faults. A main contribution with respect
to these works is that here, isolability performance is also
considered.

A framework for quantified diagnosability analysis was
introduced in (Eriksson et al., 2011). The method uses a
stochastic characterization of noise and can analyze both
detectability and isolability. It was also shown that the
analysis could be used to design residuals which maxi-
mized the fault to noise ratio, FNR. The paper was focus-
ing on analyzing linear static models but the method was
also exemplified on a nonlinear dynamic model of a diesel
engine. This paper extends the static results in (Eriksson
et al., 2011) and presents a theory for quantified isolability
analysis of time discrete linear dynamic models.

2 PROBLEM FORMULATION

The purpose here is to develop a method for quantified
diagnosability analysis of time discrete linear dynamic
models. The linear dynamic model is represented by a
time-discrete descriptor model

Expy1 = Az, + Byuy + Bffk + B,

Y = Czxp + Dyuy + Dy fr, + Deey M
where x;, € Rl= are state variables, Yk € Rl are mea-
sured signals, u, € R! are input signals, f, € RY
are modeled faults, vy, ~ N(0,A,) and g, ~ N (0, A;)
are white Gaussian distributed random vectors with zero
mean and symmetric positive definite covariance matrices
A, € RlvXlv and A, € Rl<*!. The model matrices are
of appropriate dimensions. Note that matrix E can be
singular. It is assumed that noise-free residuals can not be
created. One sufficient criteria is that

D, has full row-rank and AE' — A has full rank, (2)

i.e. all sensors have measurement noise and the model has
a unique solution for a given initial state.

To describe the behavior of the system, the term fault
mode is used. A fault mode represents whether a fault
fi is present, i.e., f; # 0. With a little abuse of notation,
f; will also be used to denote the fault mode when f; is
the present fault. The mode when no fault is present, i.e.
f =0, is denoted NF.



A small example illustrates detectability and isolability
performance in the deterministic case before presenting
the problem formulation.

Example 1. Consider a simple linear dynamic model
Tpp1 = ug + fi
b = Tk + fi +ei (3)
i = or + fi + <5

where f}* is an actuator fault, f} and f? are sensor faults
and ¢},e7 ~ N(0,0?) are white Gaussian noise with
variance o2. It can be shown that all faults are detectable

and isolable from each other by creating the following
three residuals

Yk — e = fi+ f ey
"2 Yien —uk =i + f{ +ef )
rsyp = Uk = fp — i +en — ek

If a fault is present then the corresponding residuals will
have a non-zero mean. If f* is present then f* # 0 then
r1 and 79 will have non-zero mean and r3 has zero mean.
This can be explained by fault mode f* but not by fault
modes f! or f2 and thus f* is isolable from the other fault
modes. The same can be stated about the other faults f!
and f2. o

The example above illustrates detectability and isola-
bility performance using a set of residuals. How well the
residuals (4) will detect the faults depend on the ratio be-
tween fault size and the standard deviation of the noise
which is called the fault to noise ratio, FNR. The FNR is
defined as

A(0)
o

FNR = (5)
where A(6) is the fault amplification of the residual, 6 is
the fault amplitude and o is the standard deviation of the
noise, see (Eriksson et al., 2011). If the noise has a large
variance in relation to the fault size then it is harder to
detect the fault compared to a small noise variance.

The purpose here is, given a model (1), to quantify how
difficult it is to isolate a fault f; described by a fault vec-
tor f; = (Ok—n+1, .- .,0%) from another mode f; with an
unknown fault vector. Thus, the main objective is to ana-
lyze quantified detectability and isolability performance
directly from the model (1) and not from a set of residu-
als (4).

3 BACKGROUND THEORY

Before addressing the main goal in this paper, some back-
ground theory is introduced. First some definitions on
detectability and isolability are discussed. Then, to de-
velop the method for quantified diagnosability analysis for
time-discrete linear dynamic models, results used for static
linear models in (Eriksson et al., 2011) are presented.

3.1 Diagnosability Properties

Detectability and isolability performance was defined in
Section 2 as whether a test with a certain property can
be created or not. This is used for example in (Chen and
Patton, 1994). The diagnosability properties can also be
considered as model properties, see for example (Mas-
soumnia et al., 1989), (Nikoukhah, 1989) and (Frisk et al.,

2009). In (Frisk et al., 2009) detectability and isolability
are defined as follows: Consider a deterministic model
and a set of observations z. A fault f; is detectable if and

only if
O(fi) L O(NF)

where O(f;) is the set of all observations z consistent with
the fault mode f;. Thus a detectable fault will result in
observations z which can not be explained by a fault free
system. In the same way, a fault f; is isolable from another
fault f; if and only if

O(fi) € O(f5)-

One limitation is that the definitions do not state how diffi-
cult it is for a developed diagnosis system to fulfill these
properties because they do not take model uncertainties
into consideration.

3.2 Distinguishability of Linear Static Models

In (Eriksson et al., 2011), static linear models written in
the form
Lz=Hx+ Ff+ Ne, (6)

were considered where z € R!= are known variables, z €
R!= are unknown variables, f € R/ are additive faults
and e ~ N (0, A) is a white Gaussian distributed random
vector with zero mean and a symmetric positive covariance
matrix A € Rle*!e_If the number of equations in (6) is
b, the matrices have dimensions L € R?*!=| H ¢ RV*l
F € RP%f and N € Rbxle,

To guarantee that no noise-free residuals can be created,
it is assumed that

(H N)has full row-rank 7

which corresponds to (2) in the dynamic case. To simplify
the computations, it is assumed that the covariance matrix

¥ of variable Ny Lé is equal to the identity matrix, that is
Y= NgNANTNE =1 8)

where the rows of Ny forms an orthonormal basis for the
left null-space of H. Note that any model satisfying (7)
can be transformed into fulfilling > = I. The choice of an
invertible transformation matrix 7" is non-unique and one
possibility is

_ (T7'Ng
T = ( T, > C))
where I is non-singular and satisfying
NyNANTNE =117 (10)

and 75 is any matrix ensuring invertability of 7.
It is convenient to eliminate the unknown variables x in
(6) by multiplying with Nz from the left such that

NyLz = NyFf+ NyNe (11)

For any solution z, fo, g to (11) there exists an xg such
that it also is a solution to (6). Thus no information about
the model behavior is lost when rewriting (6) as (11).

To be able to make a quantitative statement about de-
tectability and isolability, model uncertainties must be
considered. Let r = Ny Lz € R4, which is the left hand
side in (11), be used to analyze diagnosability performance
of the model. The vector r describes the behavior of the



model and depends on faults and model uncertainties. Let
p(r; i) be the probability density function, pdf, describing
r defined as

7 Pl W =) (2

which is the multivariate normal distribution with unit
covariance matrix. The set of pdf’s of r, representing the
different fault sizes of f; that can be explained by fault
mode f;, is defined as

Zfi :{p(n/‘)‘afi :M:NHFifi}7 (13)

where F; is the ith column of F'. Each fault mode f; result
in a set Zy,. A fixed fault f; = 6 corresponds to one pdf
in Zy, denoted

p(h M) =

Py = p(r, Ny F;0). (14)

The difference between the pdf’s, pgl and péz, of r
for two faults f; = 6, and fo = 65 respectively, can be
seen as a measure of isolability. Thus, the isolability of
fi = 0 from a fault mode f; with unknown fault size
can be quantified by the smallest difference between pj,
and a pdf p’ € Zy,. The Kullback-Leibler information is
a measure of the difference between two pdf’s, and this
measure will be used here.

The Kullback-Leibler information, see (Kullback and
Leibler, 1951), between two pdf’s p; and ps is defined as

K%WﬂZ/mm@byﬂwngnhgﬂ

—o0 p2(v) D2
(15)
where E;,, [log 2—;] is the expected value of log % given

p1. Since all fault modes are described as multivariate
Gaussian pdf’s, the Kullback-Leibler information (15) of
two multivariate Gaussian pdf’s with the same covariance,
py, = p(r;pa) and p? = p(r; p2), can be written as

1
K(pllpi,) = 5l = paln A16)

Note that (16) is invariant to linear transformations which
allows that the model (6) is multiplied with (9) without
affecting the result of (16).

By using the stochastic characterization of fault modes
together with the Kullback-Leibler information to measure
the distance between a fault f; = 6 and a fault mode
f; with an unknown fault size, a measure for isolability
properties were defined.

Definition 1 (Distinguishability). Given a static linear
model (6) under assumption (7), distinguishability D; ;(6)
of a fault f; = 0 from a fault mode f; is defined as

Di;(6) = min K (sjlp’) (17)

J

where the set Z, is defined in (13) and pj, in (14). W
Distinguishability can be used to analyze either isola-
bility or detectability performance depending on whether
Zy, describes a fault mode or the fault free case.
To compute (17), an explicit expression of D; ;(0) is
needed which is provided by the following result.

Theorem 1. The distinguishability for a static linear model
(6) under assumption (8) is given by

1
Di;(0) = 5INg 0| (18)

where H = (H  F}) and the rows of Ny is an orthonor-
mal basis for the left null space of H. U

The proof of Theorem 1 is omitted here but can be
found in (Eriksson et al., 2011).

4 DISTINGUISHABILITY OF TIME DISCRETE
DYNAMIC MODELS

The basic idea to analyze time discrete models (1) is to
reformulate the dynamic model using a sliding window,
see (Gustafsson, 2002), similar to the parity space ap-
proach, see (Gertler, 1997). This results in an augmented
static model on a time window, where the results for static
models from Section 3.2 can be applied to compute distin-
guishability.

4.1 Sliding Window Model

Before analyzing the time-discrete descriptor model (1)
it is written as a sliding window model, i.e., a sliding
window of length n is applied to (1). Define the vectors

. T T T T\T
Z= Ykonitr- Yk Uhopilr---rUg)
- T T \T F T T\T
T=(Thopg1r s Thr1) > f = (Fomngts 5 i)
= T T _T T\T
e:(/kan+17"'7Uk:7€k7n+17"'75k) )

where z € R™bvtlu) 7z ¢ ROHDEL |« R and € €
N(0, A.) is a white Gaussian distributed random vector
with zero mean and where A, € R™(letlv)xnlletly) jg 5
positive definite symmetric covariance matrix. Then a
sliding window model of length n can be written as

L,z=H,z+ F,f + N,e (19)
where
0 0 .0 —-B, O 0
I 0 0-D, O 0
0o 0 0 —Bg 0
0o I 0 0 —Dy 0
L, = . L . )
0 00 O 0 —Ba
0... 011 0 0 —Dy
A-E 0 0 0 By 0 0
c 0 o0 0 o Dy 0 0
0 A -E 0 0 0 By 0
0o C o 0 0 0 Djf 0
H, = . . aFn, = ) 5
0O 0 0 A—-F 0 0 Bf
0 0 0 C o 0 0 Dy
B, 0 0 o0 0
0 o0 0 D. O 0
0 B, 0 0 0 0
0 o0 0 0 D. 0
N, = o _
0 o0 B, 0 0 0
0 0 ... 0 O O ...D.

The sliding window model (19) is a static representation
of the dynamic behavior on the window given the time
indexes (k —n+1,..., k).



Like in the static case in Section 3.2, without loss of
generality, it is assumed that the covariance matrix X,, of
variable Ny, L€ is equal to the identity matrix, that is

Nu, N,ANINE =1 (20)

This assumption is imposed since it will simplify the com-
putations in the following sections.

Note that any model (19) satisfying (2) can be trans-
formed into fulfilling 3,, = I. The choice of a non-
singular transformation matrix 7" corresponds to choosing
(9) in the static case.

4.2 Augmented Definition of Fault Models

By observing a system during several time samples, not
only constant faults but faults that varies over time can
be analyzed. A sliding window model (19) describes the
behavior of a system over a time window of length n
and therefore an augmented definition of fault modes in
Section 3.2 is needed.

The sliding window model (19) is in the same form as
(11). Multiplying with Ny, from the left eliminates the
unknown variables Z and gives

NHnan = NHnFTLf+ NHn,Nné- 21

As for (11), no model information is lost when rewriting
(19) as (21). Letr = Ny, Ly, Z, which is the left hand side
in (21). If &’ is the total number of equations in (1) then
the dimension of r is typically d’ = n(b’ — I, —1,,). The
vector 7 € RY depends on the fault vector f and the noise
€.

In Section 3.2 when analyzing distinguishability, only
one sample is considered. For dynamic models, the fault
time profile is affecting detectability and isolability per-
formance and therefore it is interesting to analyze a time
window of samples. The fault vector f describes how a
fault varies over time. The fault free case is described by
f=0=(0,...,0)T which is the zero vector. A fault

mode f; represents all fault vectors f; # 0 and f; = O for
all j # 4. Fig. 1 shows examples of possible fault vectors
fi representing different time profiles given a fault mode
fi. The definition of faults and fault modes are similar to
the static case but considers the behavior during the time
period given by the indexes (k —n + 1, ..., k).

Example fault vectors f; given a fault mode f;

filk)

fi(k)

Figure 1: Examples of possible realizations of fault vectors
fi given a fault mode f;.

Let p(r; i) be the probability density function, pdf, de-
scribing the vector r defined as

Ty i) = ! ex —lr—’Tr—’
i) = e (<5 -pTe ) e

which is the multivariate normal distribution with unit
covariance matrix. The set of pdf’s of r representing the
fault mode f;, corresponding to all fault vectors f; =
(fEpirs - ST is defined as

Zy, ={p(r;0)|3fi : i = Nu,, Fo i fi } (23)

where F,, ; are the columns of F;, corresponding to the

elements f; in f. The fault free mode, NF, is a special
case which is only described by a single pdf,

Znp = {pne} = {p(r;0)}

and corresponds to f = 0. Each fault mode f; result in a
set Z¢,. The vector 6 will be used to denote a non-constant

vector (0F_, .1,...,60)" and 6¢ will denote a constant
vector (7,....0T)T

A fixed fault vector f; = 6 corresponds to one pdf in
Zy,, denoted

Py =p(r; Ng, F:0) € Z,. (24)

The fault models in Section 3.2 can be seen as a special
case of the augmented definition here when n = 1.

4.3 Distinguishability of sliding window models

By rewriting the dynamic model (1) as a sliding window
model (19) of length n, distinguishability for a specific
fault vector f; from a fault mode f;, where fj can be any
fault vector of length n, is defined as:

Definition 2 (Distinguishability). Given a sliding win-
dow model (19) of length n, under assumption (2), dis-
tinguishability D; ;(0;n) of a fault vector f; = 6 =
(Ok—n+1, - - -, O%) from a fault mode f; is defined as

D;;(0;n) = min K (p§p’) (25)
pJGZf].

where the set Zy, is defined in (23) and pé in (24). |

Fig. 2 shows a graphical interpretation of distinguisha-
bility. The measure represents the smallest difference,
given the Kullback-Leibler information, between a pdf
p%, describing the influence of the fault vector f;, and all
possible pdf’s p’ € Zy,, that could be described by fault
mode f;.

Since the sliding window model (19) is static, the results
of distinguishability in the static case hold.

An explicit computation of (25) follows from Theorem
1 and is stated in the following proposition.

Proposition 1. Distinguishability for a sliding window
model (19) under assumption (20) is given by
_ 1 _
D;,j(0;n) = §\|NHnFn,z‘9||2 (26)

where H,, = (H, F, ;) and the rows of N is an
orthonormal basis for the left null space of H,,. (]
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Figure 2: A graphical visualization where distinguishabil-
ity represents the smallest difference between pj, € Zy,
and a pdf p’ € Zy,.

Note that it follows from Proposition 1 that if the ampli-

tude of the fault vector f; = 6 is varied by multiplying a
constant ¢ € R then D; j(cf;n) o 2.

A detectability and isolability analysis of the descriptor

model (1) can be made using distinguishability if written
as a sliding window model (1). The distinguishability de-
pends on the window length n and the fault time profile
defined by the fault vector f; = 6. The following example
shows how distinguishability can be used to analyze de-
tectability and isolability of constant faults, f; = 6, in a
small time discrete dynamic model.
Example 2. An example model of a DC motor used in
(Gustafsson, 2002) is considered. The system is sampled
with sample interval ¢, = 0.4s and is described by a
descriptor model (1) where

A=l 0 - (05 - ()
b= (% 9.0 Do) e

2=(o 1) (0 1) 2= (0 7):

The modeled faults are input voltage disturbance, f1, and
a velocity sensor offset, fo. In the analysis consider a
window length of n = 2 and fault modes where only one
fault is present. The window length n = 2 is chosen
as the model order. Distinguishability is computed for
constant faults f; = 6° = 1 from f; where f; can be
any fault vector. Distinguishability between the different
fault modes is summarized as the isolability matrix in
Table 1. A positive value represents if the fault in the row
is isolable from the fault mode f; in the column. The
NF column corresponds to fault detectability, i.e., when
f; = 0. A higher distinguishability corresponds to a fault
that is easier to detect which gives that f5 is easier to detect
than f;. Zeros represents that a fault can not be isolated
from the other fault mode and thus f; can not be isolated
from fs.

The results of using distinguishability on the model
when the window length is increased to n = 5 is shown
in Table 2. Detectability and isolability performance are
better than if n = 2, which can be interpreted as more
measurements should give more information about the
state of the system, i.e. isolating a fault should be easier.
The fault f; is only isolable from f5 for the longer window
length. Thus, isolating f; from f5 requires more measure-
ments than to isolate f> from f; assuming that the fault is
constant. o

Table 1: Results from analyzing a sliding window model
of length n = 2 of the example model (27) using distin-
guishability. A fault f; = 1 is not isolable from f5.

D, ;(1;2) NF f1 fo
il 0.0369 0 0
fa 0.0720 | 0.0384 O

Table 2: Results from analyzing a sliding window model
of length n = 5 of the example model (27) using dis-
tinguishability. Distinguishability is higher, compared to
Table 1, because the time window is longer. A fault f; = 1
is now isolable from f5.

D; ;(1;5) NF f1 fo
il 0.5931 0 0. 0403
fa 0.9153 | 0.5794 0

The example illustrates how distinguishability can be
used to get a quantified detectability and isolability anal-
ysis given the model (27). The analysis shows that some
faults are easier to detect and isolate than others and that
distinguishability increases with increasing window length
n. Notice that the results from the analysis show that fault
f1 is not isolable if the window length is too short, for ex-
ample when n = 2. The analysis shows some interesting
properties of distinguishability that will be investigated
further in the following sections.

5 ANALYZING DISTINGUISHABILITY OF
DIFFERENT FAULT TIME PROFILES

Consider a sliding window model (19) of length n. Dis-
tinguishability of a fault f; from another fault mode f;
depends on the fault time profile, i.e., how the fault varies
over time, represented by the vector f; = 6. Analyzing
distinguishability of the model (19) tells how difficult it is
to detect and isolate a fault f; depending on how it varies
over time. In the following example, distinguishability
will be used to analyze how different fault time profiles
affect detectability and isolability performance.

Example 3. Consider the example model (27) and a sliding
window model of length n = 5. Three different fault time
profiles, representing how fast a fault enters the system, are

analyzed, a step fi =0 =(0,0,1,1, 1)T,7a ramp f; =
gramP — (0,0.6,0.8,1,1)” and a constant f; = §°" =
0.77-(1,1,1,1,1)7. The fault vectors are selected to have

equal energy, i.e., f1 f; is equal for all faults.

Distinguishability is computed for each of the fault time
profiles. Table 3 shows the computed distinguishability
when a fault enters as a step, Table 4 as a ramp and Table 5
as a constant. The result from analyzing the different fault
time profiles shows that f; is easier to detect if it occurs
abruptly and f; if it is constant. It is easier to isolate any
of the faults f; if it is constant.

The conclusion for this model is that it is easier to detect
a fault f, if it enters abruptly but it is easier to detect a
fault f; orisolate any of the faults from the other if it is
constant. o

The result of analyzing different fault behaviors using
distinguishability, shows that the fault behavior can have a



significant impact on detectability and isolability perfor-
mance. Computing distinguishability is a straight forward
approach to analyze detectability and isolability perfor-
mance for different fault time profiles.

Table 3: Analyzing a sliding window model of length
n = 5 of the example model (27) using distinguishability
when the fault enters as a step.

DP(L5) [ NE | f fo
f 0.1943 0 0.0119
fo 1.2313 | 0.2857 0

Table 4: Analyzing a sliding window model of length
n = 5 of the example model (27) using distinguishability
when the fault enters as a ramp.

D; P(1;5) NF f fa
f 0.2494 0 0.0176
fa 1.0861 | 0.3370 0

Table 5: Analyzing a sliding window model of length
n = 5 of the example model (27) using distinguishability
when the fault is assumed constant.

DO(1;5) [ NF i 72
i 03559 [ 0 00242
b 0.5492 | 03477 0

6 STATIC VS DYNAMIC MODELS FOR FAULT
DIAGNOSIS

An interesting aspect when developing a diagnosis system
is the usage of a proper model. Here some non-trivial
results are presented when choosing a model to use for
fault diagnosis.

Assume for example that a system is modeled as a
descriptor model (1). If the system seldom deviates from
the equilibrium point, i.e. where 41 ~ x, the model
(1) can be simplified by replacing 1 with zj, and thus
creating a static model in the form

Fxp, = Axy, + Byuy, + Bffk + B,vg,
yr = Cxy + Dyuy + Dy fr + Deeg.

The question is which of the static model (28) and the
dynamic model (1) that would give a higher distinguisha-
bility. If the static model sufficiently describes the system
behavior then there is maybe no advantage in using the
dynamic model when creating a diagnosis system. That
a static model could be better than a dynamic model to
detect faults is non-trivial and the following example il-
lustrates such a case where a static model could be prefer-
able. In the example, FNR is computed to simplify the
computations but the same conclusions is made if ana-
lyzing distinguishability instead. The relation between
distinguishability and FNR will be discussed further in
Section 8.

Example 4. Consider a small time discrete dynamic model

(28)

1 u
Thtr = 5Tk Ukt fi (29

Yk = Tk + €k

where f* is an actuator fault and ey, ~ N(0, 02) is mea-
surement noise. Assume that the system seldom deviates
from its equilibrium point, i.e. x4+ ~ . A residual
shall be designed to detect the fault f* = 6, using as
few time samples as possible. Given the model (29) the
following residual can be created:

1 1
Ta Ykl — Uk — Uk = fi — 56k T el (30)

2
The FNR of the residual (30) is computed as
0 246
FNR, = ——= —=—. (€28)
%2 + 0-2 \/5 9

If also taking into considering that the system is close
to the equilibrium point, i.e. ;1 ~ z, the following
residual can be created:
Ty Yp — 2Up = 2f;€l' + ek. (32)

which has a FNR as

20 246

FNR, = — > —=— =FNR,

o Vho
which is higher than (31). The residual (30) have a FNR
which is higher than (32) and is therefore preferable when
detecting f*.

In this example creating a residual without taking into
consideration that the system is close to its equilibrium
point requires more measurements and will result in a
residual with more noise. Here the residual based on
the static model is more preferable to detect f* than the
dynamic model. o

The example illustrates that a simplified model can be
better for diagnosis purposes, even if the more complex
model is better at describing the system behavior, because
the more complex model gives lower FNR and distin-
guishability. Computing distinguishability can be used
in a wider sense to compare different models to evaluate
which is better when detecting or isolating a certain fault
type or behavior.

7 WINDOW LENGTH ANALYSIS

By using more measurements, measurement noise can be
reduced and this will improve diagnosability performance.
Increasing the window length n of a sliding window model
(19) results in increased distinguishability. The relation
between distinguishability and window length is discussed
in this section.

The following example compares distinguishability of
a time discrete dynamic model (1) to the corresponding
static model (28), i.e., when ;41 = z;. The fault is
assumed constant f; = 1.
Example 5. Consider again the example model (27). Fig. 3
shows the result of analyzing D; ;(6; n) for a constant fault

0° = 1 as a function of window length n. The solid line
represents the dynamic model and the dashed line repre-
sents the model (27) if ;41 = x, i.€., it is rewritten as a
static model in the form (28) which is observed for a time
window of length n. Asymptotically, distinguishability of
both models increases linearly. The slopes of the curves
in Fig. 3 are shown in Fig. 4 where the distinguishability
of the dynamic model converges to the distinguishability
of the static model. o
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Figure 3: The value of D; ;(6°;n) as a function of n for the
example model (27) (solid line) and when (27) is assumed
static, i.e. Tx4+1 = Tk, (dashed line).
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Figure 4: The slope of D; ; (6% n) as a function of n for the
example model (27) (solid line) and when (27) is assumed
static, i.e. Tx4+1 = 2k, (dashed line). The slope of the
dynamic model converges to the slope of the static model.

Comparing the two models in Fig. 3 and Fig. 4, it seems
that distinguishability of the faults in the dynamic model
converge to the same slopes as for the static model. The

asymptotic behavior of D; ;(f;n) for the dynamic model,

assuming a constant fault f; = #°, when the window
length n increases can be written as

lim Di,j (0_0; n —+ 1) - Di.,j (507 n)
n—o00

First consider the static model. It can be shown that
the asymptotic behavior of distinguishability when the
window length increases can be computed as

lim D; ;(0%n+1) — Dy;(0%n) =
n— 00

Distinguishability increases equally for each time step
since the static model has no connection between two
different samples due to the white noise assumption.

An analysis of dynamic models is illustrated by a small
example. Consider a stable system where only measure-
ment noise e ~ N (0, X.) is considered

Tpt1 = Ay, + Byug + By fi (33)
Yk = Crg + Deeg.

Let ¢ denote the shift operator, gz = xx1, then (33) can
be written as
yk — C(qf — A)™'Byuy, = C(qI — A)™' By fi + Deex

where the left hand side corresponds to r = Ny Lz. Then
if fr = f is constant, the right hand side can be written as

r=C(I — A)"'Byf + D.ey, + transient (34)

where the transient goes to zero when k — oco. If x5 41 =
Iy, 1.e. a static model , then (33) is written as

yp — C(I — A)"'Byuy, = O(I — A) ' By fx + D.ey,

where the right hand side is equivalent to (34) when the
transient goes to zero.

This special case shows that the slope of the distin-
guishability curve, when n increases, converges to the
slope of the corresponding static model. In such a case it
is enough to compute distinguishability of the static model,
for n = 1, to analyze whether the faults are detectable
and isolable or not. The result of analyzing the static
model also tells how much diagnosability performance
will increase asymptotically when the window length is
increased.

8 RELATION TO RESIDUAL GENERATORS

The previous sections have discussed how to analyze dif-
ferent diagnosability properties using distinguishability. It
will show that distinguishability is related to the maximum
FNR of residual generators.

A residual generator of (19) is any function of the
known variables z with zero mean in the fault free case. A
residual generator that isolates f; from f;, detects f; but is
not sensitive to f;. To design a residual generator isolating
faults from fault mode f; multiply (19) with YN(g, F, )
from the left where ~ is a row vector to obtain

YN, Fo ) lnZ =
YN, £ Fnf +7Nm,, £, ) Nne.

where the rows of Ny, F, ;) forms an orthonormal basis
of the left null-space of (H,, F}, ;), i.e. it decouples f;.
Here, YN(m,, F, ;)LnZ is a residual generator that isolates
Sfrom fault mode f;. If only detectability, and not isolability,
of f; is considered, Nz, Fnj) is replaced by Ny, .

The residual generator (35) can be seen as a scalar
model and thus distinguishability can be computed to ana-
lyze its performance. The relation between distinguisha-
bility and the FNR of the residual generator is described
by the following theorem.

Theorem 2. A residual (35), for a model (19) under as-
sumption (7), is N'(A(8), 02) and

. 1/A\?
D} (0;n) = B (>

g

(35)

where 0 = (0x—_pn41, - - ., 0k) is the fault vector of fault f;,
and \()/o is the fault to noise ratio with respect to fault
fiin (39). O

Because of the static model adaptation, a proof of The-
orem 2 can be found in (Eriksson et al., 2011). Distin-
guishability can be used to analyze diagnosability perfor-
mance of both the model (19) and the residual generator

(35). The relation between D; ;(f;n) and Dzj(é; n) is
described by the following theorem.

Theorem 3. For a window model (19) under assumption
(8), an upper bound for D} ; (6;7n) in (35) is given by

with equality if and only if v and N(g, Fn)j)Fn’ié are
parallel. (]



Because of the static model adaptation a proof to Theo-
rem 3 can be found in (Eriksson et al., 2011). Theorem
3 states that the maximum FNR a residual can have is
upper bounded by the distinguishability of the model. It
also tells how to choose + to create a residual with maxi-
mum FNR. An example will show how the performance
of residuals created to have maximum FNR, is related to
distinguishability of the model.

Example 6. Data is simulated using the example model
(27). A sliding window model of (27) with three different
window lengths, n = 10, 20, 30, is used. Residuals with
maximized FNR for detecting a constant fault f; = 6° are
created using Theorem 3 for each window length.

The three residuals are evaluated using simulated data.
Fig. 5 shows the result of a simulation of the three resid-
uals when the fault enters at 20 s. The residuals are nor-
malized so that the variance is 1 to visualize the FNR. For
a longer window length n, the FNR is higher which is
shown as a larger deviation in the figure, i.e. f; is easier
to detect. The FNR of the residuals are computed using
Theorem 2, and visualized by the horizontal dashed lines
in the figure, and are consistent with the deviations of the
residuals when the fault is present. o
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Figure 5: Residuals for different n. A constant fault
0° = 1 i simulated at 20 s. The maximum FNR of the
residual increases with increasing n. The vertical dashed
lines represents the computed FNR using distinguishabil-
ity which are consistent with the deviations of the residu-
als.

The residuals in the example are selected by choosing
7 parallel to Ny, F, ;) Fn 0, where 6° = 1, which max-

n,j

imizes the FNR of the residuals for a constant fault f;.
The results of the example shows that the maximum FNR,
computed using distinguishability, are consistent with the
performance of the residuals. The computed distinguisha-
bility of a model gives information of the maximum FNR
performance of a residual given the model and how to
design those residuals.

9 CONCLUSIONS

The method, distinguishability, is able to capture useful
detectability and isolability properties without the need
of first implementing a diagnosis algorithm. The theory
of diagnosability is exemplified in (Eriksson et al., 2011)
on an industrial sized model of a diesel engine for heavy
trucks. The definition is general but is here adapted to
time discrete linear dynamic models with white Gaussian
noise.

The framework of analyzing static models using distin-
guishability is applicable to time discrete linear dynamic
models. By writing the model as a sliding window model
distinguishability can be analyzed as a function of window
length and fault behavior.

Distinguishability can also be used to compare different
models, for example a dynamic and a static model, to see
which will give the best potential diagnosability perfor-
mance for a given fault signature and window length.

The connection between residual generators and dis-
tinguishability can be used to get information of how to
create an residual which maximizes the FNR for a specific
fault signature.

REFERENCES

(Basseville and Nikiforov, 1993) M. Basseville and I. V.
Nikiforov. Detection of abrupt changes: Theory and
application. Prentice Hall, 1993.

(Chen and Patton, 1994) J. Chen and R. J. Patton. A re-
examination of fault detectability and isolability in lin-
ear dynamic systems. In Fault Detection, Supervision
and Safety for Technical Processes, 1994.

(Eriksson et al., 2011) D. Eriksson, M. Krysander, and
E. Frisk. Quantitative stochastic fault diagnosability
analysis. Submitted to CDC’2011, 2011.

(Frisk et al., 2009) E. Frisk, M. Krysander, and J. Aslund.
Sensor placement for fault isolation in linear
differential-algebraic systems. Automatica, 45(2):364—
371, 2009.

(Frisk er al., 2010) E. Frisk, A. Bregon, J. Aslund,
M. Krysander, B. Pulido, and G. Biswas. Diagnosabil-
ity analysis considering causal interpretations for differ-
ential constraints. In Proc. 21st International Workshop
on the Principles of Diagnosis (DX-10), 2010.

(Gertler, 1997) J. Gertler. Fault detection and isolation

using parity relations. Control Engineering Practice,
5(5):653-661, 1997.
(Gustafsson, 2002) F. Gustafsson. Stochastic fault diag-

nosability in parity spaces. In Proc. 15th Triennal IFAC
World Congress on Automatic Control, 2002.

(Kay, 1998) S.M. Kay. Fundamentals of statistical signal
processing : detection theory. Prentice Hall, 1998.

(Kullback and Leibler, 1951) S. Kullback and R. A.
Leibler. On information and sufficiency. 1951.

(Massoumnia et al., 1989) M. A. Massoumnia, G. C.
Verghese, and A. S. Willsky. Failure detection and
identification. In IEEE Transactions on Automatic Con-
trol, 1989.

(Nikoukhah, 1989) R. Nikoukhah. Innovations genera-
tion in the presence of unknown inputs: Application to
robust failure detection. 1989.

(Pucel et al., 2009) X. Pucel, W. Mayer, and M. Stumpt-
ner. Diagnosability analysis without fault models. In
Proc. 20st International Workshop on the Principles of
Diagnosis (DX-09), 2009.

(Trave-Massuyés et al., 2006) L. Trave-Massuyés, T. Es-
cobet, and X. Olive. Diagnosability analysis based on

component supported analytical redundancy relations.
In IEEE Trans. Syst. Man Cy. A., 36(6), 2006.



