
Path-Dependent Rollover Prevention for Critical Truck Maneuvers

K. Lundahl, C.F. Lee, E. Frisk & L. Nielsen
Division of Vehicular Systems, Department of Electrical Engineering, Linköping University, Sweden

ABSTRACT: Predicting rollover is usually performed using rollover indices, where rollover
is anticipated when the indices reach certain threshold values. If knowledge about the vehicle
driving path is available, rollover can be detected and prevented earlier. In this work, the rollover-
prediction and rollover-prevention abilities for simple vehicle models are evaluated and compared
against a high-fidelity vehicle model. The analysis is performed by using the models in critical and
rollover-prone maneuvers, generated with optimal control methods. The main conclusion is that a
simple point-mass model would be sufficient in a velocity based rollover-prevention controller.

1 INTRODUCTION

The push towards autonomously driven vehicles, with ambition to operate on public roads and
within enclosed sites, opens up a wide area of research questions that need to be addressed. For
this particular purpose, the iQMatic project was initiated in 2013 as a joint collaboration between
Scania, Saab, Autoliv, Linköping University and the Royal Institute of Technology. The aim is to
develop fully autonomous heavy vehicles, which implies problems regarding vehicle navigation,
obstacle avoidance, and decision making, to name a few, has to be solved. In this paper, the
isolated problem of vehicle rollover is investigated.

Predicting rollover is usually performed using rollover indices, continuously calculated on-
board from sensor data, where rollover is anticipated when the indices reach certain threshold
values (Winkler et al., 2000; Liu et al., 1997). If knowledge about the vehicle driving path is
available, the risk of rollover can be detected earlier, and avoidance action can be initiated with
greater chance of preventing the accident. For example, if a vehicle overspeeds into a road curve,
it might be to late to take action when the rollover indices indicate a risk of rollover. However,
this could have been anticipated if information about the road curvature was available, and may
be avoided by reducing the vehicle speed in advance.

Motivated by the above, we investigate the use of a path-dependent approach to rollover pre-
vention. Since the application is aimed towards on-board control systems, vehicle models of low
complexity are preferred due to the often limited computational power. However, with reduced
modeling complexity there is always a risk of losing model precision. Therefore, a comparison
is presented for two low-complexity models versus a high-fidelity vehicle dynamics model, with
respect to their ability to foresee vehicle rollover. To support this analysis an optimal-control
based approach is presented, using maximum-speed and minimum-time problem formulations to
generate rollover-critical scenarios.

2 METHOD

The aim is to evaluate the potential simple models have with respect to rollover prediction, when
compared to a complex and more versatile vehicle model. The models of interest are a point-mass
model, an inverted pendulum model, and a double-track model. The latter will here be used as the
reference model against which the former two are evaluate.

The analysis is performed by formulating optimal control problems in which the models are
used. In these problems, the vehicle models are subject to follow a predefined path constructed
by clothoids. The first out of two problem formulations is a maximum-speed problem, where



the vehicle is constrained to constant velocity. The obtained result declare the maximum speed
the vehicle can drive through the given road path. For example, if an on-board controller detects
the current vehicle speed is above this threshold, the control system has to take action to prevent
rollover. The second problem formulation address this situation. A minimum-time problem for-
mulation is used, implying the vehicle will maintain the highest possible speed, for as long as
possible. When only braking is allowed, this will return an optimal solution describing the very
last moment action needs to be taken to avoid rollover.

3 MODELING

The vehicle dynamics are represented by three different models, here referred to as the point-mass
model, the pendulum model, and the double-track model. These models are here presented in
detail, followed by a description of the vehicle path formulation. The vehicle and tire parameters
used for these models are listed in Table 1 and 2.

3.1 Double-Track Model

The double-track model (sometimes referred to as a two-track model) is depicted in Figure 1.
This model consists of a single inertia body representing the vehicle’s total mass m and moment
of inertia Ixx, Iyy , and Izz . The body is suspended as an inverted pendulum, with the freedom to
revolve about the x-axis around the roll center (at height hrc), and about the y-axis around the
pitch center (located in the ground plane, right beneath the center of gravity). These degrees of
freedoms represents the roll and pitch motions respectively. The body position rb with respect to,
and resolved in, the vehicle frame (represented by x, y, z in Figure 1) can therefore be described
as

rb = Rθ

(

Rφ

[

0
0

hcg − hrc

]

+

[

0
0
hrc

])

(1)

where Rφ and Rθ are roll and pitch rotation matrices according to

Rφ =

[

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

]

, Rθ =

[

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

]

. (2)

The motion dynamics are derived using Lagrange’s equations, with the generalized motion vari-
ables longitudinal velocity vx, lateral velocity vy, roll angle φ, pitch angle θ, and yaw angle ψ.
The motion dynamics for the vehicle body can thus be expressed as

d

dt

∂L

∂vx
− ψ̇

∂L

∂vy
= (Fx,1 + Fx,2) cos δ − (Fy,1 + Fy,2) sin δ + Fx,3 + Fx,4 (3)

d

dt

∂L

∂vy
+ ψ̇

∂L

∂vx
= (Fy,1 + Fy,2) cos δ + (Fx,1 + Fx,2) sin δ + Fy,3 + Fy,4 (4)

d

dt

∂L

∂φ̇
−
∂L

∂φ
+
∂F

∂φ
= 0 (5)

d

dt

∂L

∂θ̇
−
∂L

∂θ
+
∂F

∂θ
= 0 (6)

d

dt

∂L

∂ψ̇
−
∂L

∂ψ
= lf ((Fy,1 + Fy,2) cos δ + (Fx,1 + Fx,2) sin δ) − lr(Fy,3 + Fy,4)+

+ w((−Fx,1 + Fx,2) cos δ + (Fy,1 − Fy,2) sin δ + Fx,3 + Fx,4) (7)

where the right-hand side are the generalized forces, composed by the longitudinal and lateral
tire forces in Equation 3, 4, and 7. In Equation 5 and 6 the generalized forces are zero, since road



profile variations are neglected. The Lagrangian L is formed by the kinetic T and potential energy
V , according to

L = T − V (8)

T =
1

2
mv

T
b vb +

1

2
ω
T
b Iωb (9)

V =
1

2
(Kφ,f +Kφ,r)φ

2 +
1

2
Kθθ

2 +mg(hrc cos θ + (hcg − hrc) cosφ) (10)

where vb and ωb are the translational and rotational velocities of the vehicle body, resolved in the
vehicle frame, and I = diag(Ixx, Iyy, Izz) the inertia matrix. The vehicle’s suspension system is
modeled as a rotational spring-and-damper system, with front and rear roll stiffness Kφ,f ,Kφ,r,
and pitch stiffness Kθ. Similarly, the suspension damping is represented by rotational dampers,
denoted Dφ,f ,Dφ,r,Dθ , embedded in the motion equations by the dissipation function F as

F =
1

2
(Dφ,f +Dφ,r)φ̇

2 +
1

2
Dθθ̇

2. (11)

The longitudinal and lateral load transfer between the wheels are represented by

(Fz,1 + Fz,2)lf − (Fz,3 + Fz,4)lr = Kθθ +Dθθ̇ ,

4
∑

i=1

Fz,i = mg (12)

− w(Fz,1 − Fz,2) = (Fy,1 + Fy,2)hrc +Kφ,fφ+Dφ,f φ̇ (13)

− w(Fz,3 − Fz,4) = (Fy,3 + Fy,4)hrc +Kφ,rφ+Dφ,rφ̇ (14)

where Fz are the vertical tire forces and the indices 1, 2, 3, 4 denote the respective wheel.
The slip angle α and slip ratio κ are defined as in (Pacejka, 2006),

α̇i
σ

vx,i
+ αi = − arctan

(

vy,i

vx,i

)

, κi =
Rwωi − vx,i

vx,i
(15)

where ωi is the wheel angular velocity, σ the relaxation length, and vx,i, vy,i are the longitudinal
and lateral velocities resolved in the wheel specific coordinate systems. The notation i represents
the wheel number, where i ∈ {1, 2, 3, 4}. This is also used in the remaining equations for the
double-track model.

The wheel dynamics are given by

Ti − Iwω̇i − Fx,iRw = 0 (16)

where Ti is the wheel driving/braking torque, Iw the wheel inertia, and Rw the wheel radius.
The longitudinal and lateral tire forces are computed according to (Pacejka, 2006). First, the

nominal tire forces Fx0,i, Fy0,i are calculated for pure slip. Subsequently, the final tire forces
Fx,i, Fy,i are determined, taking combined slip in consideration by using the weighting functions
Gxα,i, Gyκ,i. The complete tire force equations follows from

Fx0,i = µx,iFz,i sin(Cx,i arctan(Bx,iκi − Ex,i(Bx,iκi − arctanBx,iκi))) (17)

Fy0,i = µy,iFz,i sin(Cy,i arctan(By,iαi − Ey,i(By,iαi − arctanBy,iαi))) (18)

Gxα,i = cos(Cxα,i arctan(Bx1,i cos(arctan(Bx2,iκi))αi)) (19)

Fx,i = Fx0,iGxα,i (20)

Gyκ,i = cos(Cyκ,i arctan(By1,i cos(arctan(By2,iαi))κi)) (21)

Fy,i = Fy0,iGyκ,i. (22)

3.2 Point-Mass Model

The second model is a planar model, consisting of a single inertia body with mass m, velocity
v, and yaw direction ψ. The acceleration ax and yaw acceleration uψ are considered as inputs,
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Figure 2. Pendulum model.

Table 1. Vehicle model parameters.

Notation Value Unit

lf 2.45 m
lr 2.55 m
w 1.05 m
m 16 200 kg
Ixx 24 500 kgm2

Iyy 152 800 kgm2

Izz 207 900 kgm2

Rw 0.5 m

Iw 100 kgm2

σ 0.5 m

g 9.807 m/s2

hcg 1.66 m
hrc 0.50 m

Kφ,f ,Kφ,r 706 kNm/rad
Dφ,f , Dφ,r 103 kNms/rad

Kθ 2 450 kNm/rad
Dθ 1 170 kNms/rad

Table 2. Tire
model parameters.

Notation Value

µx 0.85
Bx 11.7
Cx 1.69
Ex 0.377
µy 0.75
By 8.86
Cy 1.19
Ey -1.21
Bx1 12.4
Bx2 -10.8
Cxα 1.09
By1 6.46
By2 4.20
Cyκ 1.08

forming the simple equations of motion

v̇ = ax (23)

ψ̈ = uψ. (24)

The lateral load transfer for the rear axle is derived by assuming stationary roll dynamics and
taking the front and rear roll stiffness into consideration, resulting in

∆F̄z,r = −
1

Fz,r

may

w

(

hcg
lf

l
+ (hcg − hrc)

Kφ,r

Kφ,f +Kφ,r −mg(hcg − hrc)

)

(25)

where the wheel base l is given by l = lf + lr, and the lateral acceleration by ay = vψ̇. The
longitudinal load transfer will change the load on the rear axle during braking and acceleration.
The vertical load on the rear axle Fz,r, is therefore computed according to

Fz,r = mg
lf

l
+max

hcg

l
. (26)



3.3 Pendulum Model

The pendulum model is similar to the point-mass model, however, with added roll dynamics
according to

(Ixx +m(hcg − hrc)
2)φ̈+ (Dφ,f +Dφ,r)φ̇+ (Kφ,f +Kφ,r)φ =

= may(hcg − hrc) cos φ+mg(hcg − hrc) sinφ (27)

The lateral load transfer for the rear axle is determined similarly to Equation 25, but with added
roll dynamics according to

∆F̄z,r = −
1

Fz,r

may

w

(

hcg
lf

l
+ (hcg − hrc)

Kφ,r

Kφ,f +Kφ,r −mg(hcg − hrc)

)

(28)

where Fz,r is given by Equation 26.

3.4 Driving Path

The predetermined driving path is described by a curvilinear abscissa s (Cossalter et al., 1999;
Limebeer and Rao, 2015). The vehicle position is represented by s, describing the traveled dis-
tance along the path, and the perpendicular deviation e from the path. The path dynamics are
formulated according to

ṡ =
v cos(ψ − ψs)

1− eC
(29)

ψ̇s = ṡC (30)

ė = v sin(ψ − ψs) (31)

where ψs is the tangential direction of the path, ψ the vehicle yaw angle, and v the absolute
vehicle velocity. The path curvature (i.e., inverse of curve radius) is described by the s dependent
function C . The path is divided into several segments, where sk defines the start of segment k,
and Ck represent the curvature over this segment. The path segments are then stitched together
using sigmoid functions hk to a single continuous function C , according to

hk =
1

1 + e−(s−sk)
−

1

1 + e−(s−sk+1)
(32)

C =

N
∑

k=1

hkCk (33)

The total number of segments N varies depending on the path of interest.

4 OPTIMAL CONTROL PROBLEM

The vehicle and path models described in Section 3 are formulated as ordinary differential equa-
tion systems according to ẋ(t) = f(x(t), u(t)), with x representing the model states and u the

control variables. The control variables are u = [δ̇, T1, T2, T3, T4]
T for the double-track model,

and u = [uψ, ax]
T for the point-mass model and the pendulum model. The optimal control

problem to solve is formulated as

minimize J

subject to ẋ(t) = f(x(t), u(t)), (34)

g(x(t), u(t)) ≤ 0,

x(0) = x0, x(tf ) = xtf , t ∈ [0, tf ]

where J is the objective function and tf the terminal time. The continuous constraints are
described by g(x, u), while the initial and terminal constraints are formulated with x0 and xtf .



Wheel lift is prevented with the constraints Fz,i ≥ 0, i ∈ {1, 2, 3, 4} for the double-track model,
and |∆Fz,r| ≤ 1 for the remaining two models.

Two different cases are considered. In the first, the vehicle velocity is kept constant by intro-
ducing the constraint v̇ = 0, and the objective is to maximize the initial velocity v(0) = v0. The
cost function is formulated according to

J1 = −v0 + η

∫ tf

0
uTQu dt (35)

where u is added to prevent unnecessary and oscillating control actuation. However, the contri-
bution is kept comparatively small with a weight factor of η = 10−3. The constant matrix Q is
normalizing the control inputs to equivalent measures for the different models.

The second case of study is formulated as a time-optimal problem, with a fixed initial velocity.
The constraints ax ≤ 0 for the point-mass model and Ti ≤ 0, i ∈ {1, 2, 3, 4} for the double track
model are introduced. This implies the vehicle velocity can vary, but only braking is allowed (i.e.,
the vehicle can not accelerate). Accordingly, the objective function is

J2 = tf + η

∫ tf

0
uTQu dt . (36)

The continuous optimal-control problems formulated above are solved with numerical meth-
ods, using the software platform CasADi (Andersson, 2013). First, the problem is discretized over
the time horizon into 200 elements using Radau collocation. In each element, the state dynamics
are approximated with third order polynomials using three collocation points, while the control
variables are constant over each discretization interval. The resulting discrete-time nonlinear pro-
gram is solved with Ipopt (Wächter and Biegler, 2006) using the linear solver HSL MA57 (HSL,
2013).

5 RESULTS

Solutions to the optimal control problems specified in Section 4, applied to the vehicle models
in Section 3, are here presented. The optimal control problems derived from Equation 35 and 36
are studied separately. Two different path functions are considered, both described by clothoid
shapes. The first is a single clothoid curve, having a minimum curve radius of 30 m. The second
path consists of two consecutive clothoid curves forming an S-like shape, with minimum radii of
10 m.

5.1 Constant Velocity

Figure 3 and 4 show the optimal solutions obtained for the objective defined by Equation 35,
where the vehicle is constrained to a constant velocity. The solutions represent the maximum
vehicle velocity predicted by the different models.

For the clothoid shaped path in Figure 3, the most prominent differences in the variable trajec-
tories occur in the beginning of the maneuver, around s = 50 m. This can be derived to the roll
dynamics, since it is visible for the pendulum model and the double-track model. However, the
predicted maximum velocity are still very similar for all models, differing by only 0.2% at most.

In Figure 3, solutions to the path composed by two successive clothoid curves are shown. Here,
the maximum velocity found for the double-track model is significantly lower, and the variable
trajectories are clearly differing, compared to the pendulum model and the point-mass model.
This is a consequence of the tire forces, in the double-track model, being unable to excite the
yaw dynamics quickly enough. This is also verified by the later load-transfer ∆Fz,r not being a
limiting factor at any point in the maneuver. This means the double-track model is not limited by
rollover, but rather road friction and vehicle inertia properties.

5.2 Braking

Figure 5 presents the solutions obtained with the cost function defined by Equation 36, for the
double-track model and the point-mass model. The path is the same clothoid-shaped curve as in
Figure 3. The vehicle is given an excessive initial velocity of v0 = 72 km/h (compare with the
maximum velocities presented in Figure 3). The minimum-time formulation implies the vehicle
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will maintain the highest possible velocity and initiate deceleration as late as possible, using
minimal brake actuation.

The double-track model is seen to activate braking later, by barely 4 m, and with a larger
deceleration magnitude. This is particularly evident for the longitudinal acceleration ax shown
in Figure 5. Nevertheless, the velocity profiles for both models align well throughout the brak-
ing phase. Following the braking phase, the double-track model is seen to scrub off additional
velocity. This is a result of the front lateral tire-forces contributing to forces in the longitudinal
direction, due to a non-zero steering angle δ.

Assume the above results are satisfying enough to motivate the use of a rollover-prevention
controller based on the point-mass model. The controller would be able to compute the velocity
profile, and subsequently the needed braking effort. However, the scheme for distributing the
braking effort between the wheels is not evident. Therefore, a more straightforward strategy for
braking-force distribution is here compared to the optimal distribution.

In the optimal braking distribution employed by the double-track model in Figure 5, the braking
effort on each wheel is chosen individually. This strategy will here be referred to as Individual
braking. The alternative braking strategy, which is denoted Fz-coupled braking, distributes the
braking torque T proportionally to the vertical tire force Fz , according to

T1

Fz,1
=

T2

Fz,2
=

T3

Fz,3
=

T4

Fz,4
.
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Figure 6 shows the velocity profile and wheel braking torque obtained for these two braking
strategies when employed in the same time-optimal problem as in Figure 5. The Fz-coupled
braking initiates braking earlier here, however, only by 1.6 m.

6 CONCLUSIONS

Three different vehicle models of different complexity were employed in optimal control prob-
lems, aimed at evaluating the rollover-prediction and rollover-prevention abilities. Optimization
problems were solved where the maximum velocity for a given path was obtained, granted rollover
was avoided. Subsequently, a second optimal control problem was formulated to address the
situation of overspeeding into a road curve.

For paths with larger road curve radii, the simple models have the same ability to predict
rollover in terms of maximum speed for a given path, as the high-fidelity vehicle model. For
narrower turns, the complex and simple models starts to deviate. However, this is rather coupled
to the yaw dynamics, road friction, and yaw inertia, than the rollover characteristics.

The point-mass model also shows promising results for velocity-control based rollover pre-
vention. Compared to the much more complex vehicle model, the resulting velocity profile and
braking actuation are remarkably similar. With the simplified model, information about the opti-
mal braking distribution is lost. However, with a straightforward braking distribution, based on
the vertical tire forces, only a minor loss in performance is seen, when compared to the optimal



braking distribution. This indicates the brake-force distribution is not essential for this application,
as long as the total braking effort is maintained.
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