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Abstract: To be able to evaluate quantitative fault diagnosability performance in model-based
diagnosis is useful during the design of a diagnosis system. Di↵erent fault realizations are more
or less likely to occur and the fault diagnosis problem is complicated by model uncertainties
and noise. Thus, it is not obvious how to evaluate performance when all of this information
is taken into consideration. Four candidates for quantifying fault diagnosability performance
between fault modes are discussed. The proposed measure is called expected distinguishability
and is based of the previous distinguishability measure and two methods to compute expected
distinguishability are presented.
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1. INTRODUCTION

In model-based diagnosis, there are several measures for
analyzing fault diagnosability performance given a math-
ematical model of the system or a set of residuals. Two of
the most common model properties related to fault diag-
nosis are fault detectability and isolability (Patton et al.,
2000; Blanke and Schröder, 2006), which tell whether a
fault can be detected or isolated from another fault or
not. Methods for analyzing di↵erent types of mathematical
models of systems are described in for example Frisk et al.
(2009) for linear systems or in Krysander (2006); Travé-
Massuyes et al. (2006); Bregon et al. (2014) for non-
linear systems using structural analysis. In these previous
works, fault detectability and isolability are considered as
deterministic properties where model uncertainties, mea-
surement noise, and fault realizations are not taken into
consideration. Thus, the deterministic diagnosability anal-
ysis only give yes/no answers to the question whether a
fault is detectable or isolable or not.

Analysis of fault detectability and isolability performance
based on a model is useful during the diagnosis system
design, for example the sensor placement problem (Frisk
et al., 2009; Sarrate et al., 2012) or to find a suitable set
of diagnosis tests (Travé-Massuyes et al., 2006; Bregon
et al., 2014). However, if the design methodologies are
based on deterministic performance measures, such as
fault detectability and isolability, it is not certain that a
solution will fulfill the given quantitative fault detection
and isolation performance requirements in practice due to
model uncertainties and measurement noise. In this case,
the achieved performance of the diagnosis system, such as
fault-to-noise ratio or probability of detection, is evaluated
first when the diagnosis system has been developed. Since
model uncertainties and noise will have a negative impact
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on performance, this should be taken into consideration
early in the design process to avoid unnecessary delays
during the development.

In Eriksson et al. (2013); Harrou et al. (2014), a quan-
titative measure of detectability and isolability perfor-
mance is proposed, called distinguishability, which takes
fault time profiles and model uncertainties into consid-
eration. The distinguishability measure has been applied
to, for example, the sensor placement problem (Eriksson
et al., 2012b; Huber et al., 2014) and the test selection
problem (Eriksson et al., 2012a). In Huber et al. (2014),
distinguishability was used to find a set of sensors for
an extended Kalman filter to estimate faults in an IC
engine. Other works proposing quantitative diagnosability
measures taking uncertainties into consideration are, for
example (Bhushan et al., 2008; Wheeler, 2011; Cui et al.,
2014).

Distinguishability quantifies how di�cult it is to isolate
a fault mode fi, with a specific fault time profile, or
fault realization, ✓ from another fault mode fj of any
fault time profile. Note that di↵erent fault time profiles
will give di↵erent distinguishability values and that a
particular fault mode typically covers many di↵erent fault
profiles. Examples of fault time profiles are constant or
ramp faults with di↵erent sizes and increase rate. Thus,
a single fault mode consists of many, possibly infinitely
many, di↵erent cases and analyzing each case separately is
not feasible. The main objective of this work is to not only
consider a specific fault time profile in the analysis, but
to compute distinguishability performance for isolating
a fault mode fi, taking all possible fault realizations
into consideration. Here, probability distributions over the
set of fault time profiles are used to describe the set
of possible fault profiles. The proposed measure should
take the information that di↵erent fault time profiles
have di↵erent probabilities to occur into consideration.
Therefore, the goal is to quantify isolability performance
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between fault modes instead of having to select specific
fault time profiles.

A question when defining such a performance measure is
how to represent the di↵erent fault modes and how to
quantify the separation between the fault modes. In this
work, four di↵erent candidates based on the distinguisha-
bility measure in Eriksson et al. (2013) are analyzed based
on how well they can be used to quantify the separation.

The outline is as follows. First, the problem formulation is
discussed using an example in Section 2. Some background
theory is summarized in Section 3. Then, a probabilistic
modeling of fault modes is presented in Section 4 and the
di↵erent measure candidates are described in Section 5.
The measure candidates are discussed in Section 6, and
some additional results regarding computation of one of
the measures, expected distinguishability, are presented in
Section 7. Finally, a case study is analyzed in Section 8
and some conclusions are given in Section 9.

2. PROBLEM FORMULATION

The problem in this work is introduced by first considering
the following example.

Example 1. A simple, normalized, discrete-time dynamic
model of a spring-mass system used in Eriksson et al.
(2013) is considered,

x1[t+ 1] = x1[t] + x2[t]
x2[t+ 1] = x2[t]� x1[t] + u[t] + f1[t]+ f2[t]+ "1[t]

y1[t] = x1[t] + f3[t] + "2[t]
y2[t] = x1[t] + f4[t] + "3[t],

(1)

where x1 is the position and x2 the velocity of the mass,
y1 and y2 are sensors measuring the mass position, u
is a control signal, fi are additive faults, and "i are
model uncertainties modeled as i.i.d. Gaussian noise where
"1 ⇠ N (0, 0.1), "2 ⇠ N (0, 1), and "3 ⇠ N (0, 0.5). N (µ,�)
denotes a Gaussian random variable with mean µ and
standard deviation �. The faults are modeled as unknown
additive signals in the model and represent faults in the
control signal, f1, a change in rolling resistance, f2, and
sensor biases, f3 and f4.

To analyze the performance using distinguishability (Eriks-
son et al., 2013), a time window model of length N = 10
samples is here selected. It is assumed that for each
fault mode fi, the fault can have any non-zero fault
magnitude. A fault time profile or fault realization given
a fault mode fi is here referring to a vector ✓ =
(✓[t�N + 1], ✓[t�N + 2], . . . , ✓[t]) describing the fault
signal fi in (1). Distinguishability Di,j(✓) is computed for a
specific fault time profile, in this case a constant fault with
magnitude one, and the result is presented in Table 1. The
notation 1̄n denotes a column vector of length n with ones,
for example 1̄4 = (1, 1, 1, 1)T. A positive value at position
(i, j) in Table 1 corresponds to that the fault fi = ✓ is
isolable from another fault fj of any fault time profile. A
higher value corresponds to that a fault is easier to isolate,
and zero otherwise. Table 1 shows, for example, that it is
easier isolate a constant fault f1 from f3 than vice versa,
since 6.59 > 3.33, and the faults f1 and f2 are not isolable
from each other.

Table 1. Computed distinguishability of (1) for
✓ = 1̄10.

Di,j(✓) NF f1 f2 f3 f4
f1 9.07 0 0 6.59 3.62

f2 9.07 0 0 6.59 3.62

f3 4.34 3.33 3.33 0 3.62

f4 7.36 3.33 3.33 6.59 0

Table 2. Distribution of fault time profiles for
di↵erent fault modes.

Fault p(✓)
f1 ✓ ⇠ N (0, I)
f2 ✓ =

¯110↵ where ↵ ⇠ N (0, 0.5)
f3 ✓ =

¯110↵ where ↵ ⇠ N (1, 0.5)
f4 ✓ =

¯110↵ where ↵ ⇠ 0.2N (0.5, 0.5) + 0.8N (�1, 0.3)

However, Table 1 only shows distinguishability given a
specific fault time profile, here constant faults. Each fault
mode fi is represented by non-zero values of fi in (1)
and the fault-free case is usually when all fault signals
are zero. Assume that, for example, during fault mode
f2 the fault time profile is almost always constant with
a fault magnitude ↵ that is N (0, 0.5)-distributed. Then a
probabilistic description of the fault profile ✓ is

✓ = 1̄10↵, ↵ ⇠ N (0, 0.5)

Table 2 shows an example how the fault modes in Exam-
ple 1 can be represented using probability distributions.
Di↵erent fault time profiles of each fault can occur and
some are more likely than others. This is taken into consid-
eration by modeling a probability to each fault time profile
✓ describing the conditional probability of observing that
fault time profile ✓ given the system being in the given
fault mode. The faults f2, f3, and f4 are assumed constant
where the magnitude is random and the magnitude of f4 is
modeled as a Gaussian mixture (Hastie et al., 2009). The
fault f1 is modeled as additive noise.

The distinguishability measure used in this example does
not take the information about the distributions of the
fault time profiles in Table 2 into consideration. The
result in Table 1 is not representative of the isolability
performance of the whole fault mode since it is computed
only for a constant fault time profile. Thus, di↵erent fault
time profiles would result in di↵erent distinguishability
values compared to Table 2. ⇤

The example shows that it is di�cult to get an overview
of overall diagnosability performance between fault modes
by only using distinguishability for a given fault profile.
The probabilities of di↵erent fault profiles should be taken
into considerations to get a measure which represents the
expected performance when taking all fault time profiles,
and their probabilities, into considerations.

The purpose of this work is to derive a quantitative fault
diagnosability measure candidate to evaluate quantitative
detectability and isolability performance between fault
modes. The measure should take di↵erent fault time pro-
files, and the conditional probability that a given fault
profile will occur when the system is in a given fault mode,
into consideration. To compute the measure, information
such as Table 2 will be taken into consideration and the
result should be presented similar as Table 1.
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3. BACKGROUND

Before discussing how to quantify diagnosability perfor-
mance between fault modes, a summary of the results in
Eriksson et al. (2013), including the definition of distin-
guishability, is presented in this section.

3.1 Model

The models considered here are time-discrete linear de-
scriptor models in the form

x[t+ 1] = Ax[t] +Buu[t] +Bff [t] +Bvv[t]
y[t] = Cx[t] +Duu[t] +Dff [t] +D""[t]

(2)

where v ⇠ N (0,⌃v) and " ⇠ N (0,⌃").

If observing the system modeled as (2) during a time
interval of n samples, the system can be represented using
a sliding window model, or batch model, in the form

Lz = Hx+ Ff +Ne (3)

where

z =
�
y[t� n+ 1]T , . . . , y[t]T , u[t� n+ 1]T , . . . , u[t]T

�T

x =
�
x[t� n+ 1]T , . . . , x[t]T , x[t+ 1]T

�T
,

f =
�
f [t� n+ 1]T , . . . , f [t]T

�T

e =
�
v[t� n+ 1]T , . . . , v[t]T , "[t� n+ 1]T , . . . , "[t]T

�T
,

and e ⇠ N (0,⌃e).

3.2 Modeling fault modes as sets of probability density
functions

Without losing any information about the system, (3) is
multiplied from the left by NH , where NM spans the
left null space of a matrix M . For the analysis, define
⌧ = NHLz = NHFf + NHNe which is a function of
the faults and model uncertainties. Then, the conditional
distribution of ⌧ given a fault mode fi and fault time
profile ✓ is described by the pdf p(⌧ |✓) = p(⌧ ;NHFi✓)
which is Gaussian distributed with mean NHFi✓, where
Fi represents the columns in F corresponding to fault fi,
and covariance matrixNHN⌃eN

TN T
H . Note that since the

covariance of ⌧ is not a↵ected by the fault, it is omitted
for convenience when denoting the pdf p(⌧ ;NHFi✓). Then,
each fault mode fi is represented by a set of pdf’s as
follows.

Definition 2. Let Zfi denote the set of all pdf’s p(⌧ ;NHFi✓),
for all fault time profiles ✓ 2 ⇥i, describing ⌧ which could
be explained by the fault mode fi, i.e.

Zfi = {p(⌧ |✓)|8✓ 2 ⇥i}. (4)

⇤

The definition can be interpreted as if the pdf of ⌧ is pi

and pi 2 Zfi then the observations ⌧ can be explained by
the system being in fault mode fi.

A specific fault time profile fi = ✓ corresponds to one pdf
in Zfi and is denoted

pi✓ = p(⌧ |✓) = p(⌧ ;NHFi✓). (5)

3.3 The Kullback-Leibler divergence

The Kullback-Leibler divergence between two pdf’s pi and
pj is defined as

K(pikpj)=
Z 1

�1
pi(v) log

pi(v)

pj(v)
dv = Epi


log

pi

pj

�
(6)

and is zero if and only if pi = pj . The Kullback-Leibler di-
vergence can be interpreted as the expected log-likelihood
ratio when the pdf of ⌧ is pi, see Eguchi and Copas (2006).
Thus, if pi represent the pdf of ⌧ given a fault fi and pj the
pdf given another fault mode fj , a larger Kullback-Leibler
divergence can be interpreted as it is easier to isolate fi
from fj .

3.4 Distinguishability

Distinguishability is defined in Eriksson et al. (2013) based
on the Kullback-Leibler divergence as follows.

Definition 3. (Distinguishability). Given a sliding window
model (3), distinguishability Di,j(✓) of a fault fi with a
given fault time profile ✓ from a fault mode fj is defined
as

Di,j(✓) = min
pj2Zfj

K
�
pi✓kpj

�
(7)

where Zfj is defined in Definition 2 and pi✓ in (5). ⇤

Theorem 1 in Eriksson et al. (2013) states that for models
in the form (3), distinguishability can be computed explic-
itly as

Di,j(✓) =
1

2
kN(H Fj)Fi✓k2 (8)

given the assumption that, without loss of generality, ⌃ is
equal to the identity matrix, that is

⌃ = NHN⌃eN
TN T

H = I. (9)

Distinguishability quantifies how di�cult it is to isolate a
fault fi with a specific fault time profile ✓ from another
fault mode fj , and is related to the maximum fault to
noise ratio of any linear residual generator (Eriksson et al.,
2013). Since the Kullback-Leibler divergence is minimized
with respect to pj 2 Zfj , distinguishability can be viewed
as the minimum Kullback-Leibler divergence from the pdf
pi✓ to any pdf that can be explained by the system being
in fault mode fj as graphically represented in Fig. 1. The
Kullback-Leibler divergence is computed between two spe-
cific pdf’s as shown in the figure, while distinguishability
gives the smallest Kullback-Leibler divergence from a given
pdf in Zfi to any pdf in Zfj . Based on this, it is later
shown that the distinguishability measure is related to the
performance of the generalized log-likelihood ratio test.

Zfi

Zfj

pi✓

Di,j(✓)

pi

pj

K(pikpj)

Fig. 1. A graphical representation of distinguishability
which is the minimum Kullback-Leibler divergence
from pi✓ to any pdf pj 2 Zfj .
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4. REPRESENTING FAULT MODES USING
PROBABILITIES OF FAULT TIME PROFILES

In its basic form (Eriksson et al., 2013), distinguishability
is computed without taking any distribution of ✓ into
consideration. Since distinguishability is computed for a
given fault time profile ✓, there will be di↵erent distin-
guishability values for di↵erent fault time profiles.

Consider the situation where the occurrence of di↵erent
fault realizations is modeled using probabilities as in
Table 2. In order to describe a fault mode, the information
that di↵erent fault realizations of a specific fault are more
or less likely to occur can be taken into consideration using
probabilities. For example, some faults are more likely to
be constant with small magnitudes and less likely with
higher magnitudes. Another case could be that a fault
mostly occurs as one of a few specific fault realizations
where some realizations are more likely than others. This is
modeled by considering the conditional probability of each
fault time profile given that the fault fi has occurred. The
probability of ⌧ distributed as the pdf pi✓ 2 Zfi given that
the system being in fault mode fi is denoted q(✓|fi) whereR
✓2⇥i

q(✓|fi)d✓ = 1. Thus, the probability that a fault of
di↵erent magnitudes or fault time profiles can occur is
represented by the conditional pdf q(✓|fi) where a high
probability represents a more probable fault realization ✓.
An example of how di↵erent q(✓|fi) can be described is
shown in Table 2.

By taking the distribution of ✓ for a given fault mode fi
into consideration, the distribution of ⌧ given the fault
mode fi can be written as

p(⌧ |fi) =
Z

✓2⇥i

p(⌧, ✓|fi)d✓ =

Z

✓2⇥i

p(⌧ |✓)q(✓|fi)d✓.

(10)
This means that the distribution of ⌧ given that the system
is in fault mode fi can be described by one pdf p(⌧ |fi).
For convenience p(⌧ |fi) is sometimes denoted pfi(⌧). Note
that here, instead of representing a fault mode with a set of
pdf’s for the observation ⌧ , a single pdf is used to represent
the complete fault mode.

In many cases, fault realizations with small magnitudes
close to zero are significantly more probable compared to
fault realizations with larger fault magnitudes. That is,
small faults are more probable than bigger faults. This
will result in a pdf of ⌧ , p(⌧ |fi), where most observations
⌧ will be close to zero even in the faulty case. That is,
when a fault occur it will almost always be small. This
gives that the pdf p(⌧ |fi) in (10) will be similar to the pdf
in the fault-free case since large faults are relatively rare,
i.e. p(⌧ |fi) ⇡ 0.

In many applications, the pdf q(✓|fi) is not known. Some
knowledge might be from previous experiences of occurred
faults but q(✓|fi) could also be used to represent the
type of faults that a diagnosis system is expected to
detect. That is, instead of representing the probabilities
of di↵erent fault time profiles, the pdf q(✓|fi) can be used
as a design parameter when representing di↵erent fault
modes in the fault diagnosability analysis. For example,
fault realizations and magnitudes that are required to be
detected can have high probabilities and small otherwise.
Thus, the diagnosability analysis can be designed such that

the focus is on fault realizations that are required to be
detected by a diagnosis system.

5. CANDIDATE MEASURES OF
DISTINGUISHABILITY BETWEEN FAULT MODES

Two di↵erent ways of representing fault modes has been
presented. Either as a set of pdf’s (4) or as a single
pdf (10). Therefore, there are more than one way of
defining distinguishability between fault modes. Here, four
candidates are discussed and a graphical representation of
the candidates are shown in Fig. 2. The first two measures,
a) and b) use a single pdf of ⌧ to represent a fault
mode. A fault mode that is represented by a single pdf
is shown as a dot in the figure and otherwise a circle if
the fault mode is represented by a set of pdf’s. The third
measure c), called minimum distinguishability, computes
the worst-case distinguishability between two fault modes,
and the last, called expected distinguishability, uses the
conditional probabilities of ⌧ given ✓.This is represented by
an arrow between the closest elements in each set in Fig. 2.
The last measure d) is called expected distinguishability
and is the expected value of the distinguishability measure
in (7) weighed with the probability of having that fault
time profile.

a) Zfi

Zfj

Di,j

b) Zfi

Zfj

K
(p

f
i
kp

f
j
)

c)

Zfi

Zfj

Dmin
i,j

d)

Zfi

Zfj

pi✓1

Di,j(✓1) . . .

pi✓k

Di,j(✓k)

Di,j

Fig. 2. Graphical representation of the quantitative diag-
nosability measures described in a) (11), b) (15), c)
(16), and d) (17).

5.1 Modeling fault modes using mixture models

If the pdf pfi(⌧) in (10) represents fault mode fi then a
candidate to compute distinguishability of a fault mode fi
from another fault mode fj can be formulated as given by
the following definition.

Definition 4. Given a sliding window model (3), distin-
guishability of a fault mode fi from another fault mode fj
is defined as

Di,j = min
pj2Zfj

K
�
pfikpj

�
. (11)

⇤

Note that the pdf pi✓ for a given ✓ in (7) is here replaced
by the pdf of the fault mode pfi in (11). Then, (11) could
be viewed as the minimum Kullback-Leibler divergence
from the pdf pfi to any pj 2 Zfj . However, a problem
with this formulation is for example when Zfi = Zfj and
q(✓|fi) = q(✓|fj), i.e., the two fault modes are identical as
described in the following example.

Example 5. Consider the small example

⌧ = f1 + f2 + e (12)

with e ⇠ N (0,�2) and

f1, f2 =

⇢
1 with probability q
2 with probability 1� q, (13)
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where the faults modes are represented by the sets
Zf1 ,Zf2 = {N (1,�2),N (2,�2)}. To compute (11), pfi ⇠
qN (1,�2) + (1 � q)N (2,�2). Since Zf1 = Zf2 , and also
pfi = pfj , the distribution of ⌧ given the two fault modes
are identical, it is not possible to isolate the fault modes
from each other. However, (11) will be non-zero since
pj 6= pfi for all pj 2 Zfj since pj is Gaussian distributed
while pfi is given by (10). ⇤

In Example 5, the fault modes fi and fj should be non-
distinguishable since the two fault modes result in identical
pdf’s of ⌧ . However, Di,j 6= 0 since (11) does not take the
whole fault mode Zfj into consideration but only the ele-
ment pj which minimizes K

�
pfikpj

�
. Then, distinguisha-

bility computed using (11) is a measure which gives non-
intuitive results and is therefore not a suitable candidate
for quantitative diagnosability performance between fault
modes.

A solution to the problem with (11) is to also represent
Zfj as one distribution (10), i.e.

pfj (⌧) =

Z

✓2⇥j

p(⌧, ✓|fj)d✓ =

Z

✓2⇥j

p(⌧ |✓)q(✓|fj)d✓,

(14)
which gives the following definition.

Definition 6. Given a sliding window model (3), distin-
guishability of a fault mode fi from another fault mode fj
is defined as

Di,j = K
�
pfikpfj

�
. (15)

⇤

Then given Definition 6, Di,j = 0 in Example 5 since
pfi(⌧) = pfj (⌧). Also, since there is no minimization,
(7) can be simplified to the Kullback-Leibler divergence.
Note that the same notation is used for distinguishability
between fault modes in (11) and (15) since the di↵erence
is how the set Zfj is defined. The set Zfj describing fault
mode fj only contains one element in (15). Therefore to
distinguish between the measures in (11) and (15), the
notation K

�
pfikpfj

�
is used for (15).

When representing each fault mode using only one pdf as
in Definition 6, the Kullback-Leibler divergence between
the fault modes in (15) mainly depends on the conditional
pdf’s pi✓ 2 Zfi and pj✓ 2 Zfj that have high probabilities
q(✓|fi) and q(✓|fj) respectively. If a specific pdf pi✓ has a
low probability q(✓|fi) it will have almost no impact on
pfi . Thus, the measure in Definition 6 will mainly depend
on the fault time profiles which have a higher probability.

However, it can also be observed that the pdf of ⌧ for a
specific fault realization ✓ is given by the conditional pdf
pi✓ and not pfi . Assume the case where the pdf pi✓ can be
explained by both fault modes fi and fj , i.e. pi✓ 2 Zfi and
pi✓ 2 Zfj . This means that if ⌧ has the pdf pi✓ then none
of the two fault could be rejected as the true fault mode.
Then the measure in Definition 6 could give a positive
value even if it is considered that the two fault modes can
not be isolated from each other. However, if ⌧ is assumed
to have the pdf of either pfi or pfj , defined in (10) and
(14), instead of the conditional probability pi✓, one fault
mode could be more likely compared to the other one.
Then, a test can be designed to reject the less likely fault

mode. This corresponds to the distinguishability measure
in Definition 6 which gives the expected value of the log-

likelihood ratio test log
pfi

(⌧)
pfj

(⌧) when ⌧ has the pdf pfi .

However, for the candidate measure (15) to be accurate,
requires that the conditional pdf’s q(✓|fi) and q(✓|fj)
resemble reality. If q(✓|fi) and q(✓|fj) are used as design
parameters for the analysis, then it is di�cult to interpret
the result of (15) since pfi and pfj do not resemble the
true pdf’s.

5.2 Minimum distinguishability

A third alternative is to consider the worst case perfor-
mance for any fault time profile given fault mode fi, i.e.,
the element pi✓ 2 Zfi that minimizes (7). Then, minimum
distinguishability would be the minimal Kullback-Leibler
divergence with respect to both fault modes Zfi and Zfj
which gives the following definition.

Definition 7. (Minimum distinguishability). Given a slid-
ing window model (3), minimum distinguishability of a
fault mode fi from a fault mode fj is defined as

Dmin
i,j = min

pi2Zfi
,pj2Zfj

K
�
pikpj

�
. (16)

⇤

If fault magnitudes can be close to zero, or if there
exists a pi 2 Zfi such that pi 2 Zfj , (16) will be

zero. Thus, a subset Z̃fi ✓ Zfi should be considered
such that Z̃fi \ Zfj = ;. That is, the two fault modes
can not result in the same pdf pi of ⌧ . For example,
considering minimum required magnitudes of fault fi
to be detected by a diagnosis system. In cases where
the probabilities of di↵erent fault realizations are not
known, minimum distinguishability can be a candidate for
quantifying performance between fault modes. However
since the probability of di↵erent fault realizations are used
here to describe the fault modes, (16) is not a suitable
measure of the separation between the fault modes in this
case.

5.3 Expected distinguishability

In Section 5.1, the fault modes are represented by one pdf
(10). The candidate measures proposed in Section 5.1 can
give di↵erent results compared to the distinguishability
measure for a given fault time profile (7). For example,
distinguishability for each specific fault time profile can
be zero while distinguishability between fault modes, when
representing each fault mode using one pdf, could be non-
zero. This means that a fault mode can be isolable from
another fault mode but not when considering a specific
fault time profile.

Here, a candidate measure is sought which is consistent
with the results of using the distinguishability measure for
a given fault time profile (10). That is, if no fault time
profile is isolable then the fault mode can not be isolable
and if there exist an isolable fault time profile then the
fault mode is isolable.

Instead of modeling each fault mode as one pdf as in
Section 5.1, one candidate measure is to compute expected
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distinguishability where the fault time profile ✓ is dis-
tributed as qi✓ = q(✓|fi) and is defined as follows.

Definition 8. (Expected distinguishability). Given a slid-
ing window model (3), expected distinguishability Di,j of a
fault mode fi from a fault mode fj , where the distribution
of fault time profile ✓ given fi has the pdf qi✓, is defined as

Di,j = Eqi
✓
[Di,j(✓)] . (17)

⇤

To motivate expected distinguishability as a candidate
measure, distinguishability (7) is interpreted using the
generalized log-likelihood ratio test (GLLRT) based on N
i.i.d. samples of ⌧ where ⌧ ⇠ pi✓ 2 Zfi and N ! 1.

�N (⌧) = max
pi2Zfi

min
pj2Zfj

log

QN
n=1 p

i(⌧n)QN
n=1 p

j(⌧n)
=

= max
pi2Zfi

min
pj2Zfj

 
NX

n=1

log pi(⌧n)�
NX

n=1

log pj(⌧n)

!
.

(18)
Consider the GLLRT when �N (⌧) is normalized by the
number of samples N and N goes to infinity, i.e.

max
pi2Zfi

min
pj2Zfj

lim
N!1

1

N

 
NX

n=1

log pi(⌧n)�
NX

n=1

log pj(⌧n)

!
.

(19)
Note that the factor 1

N will not a↵ect which elements in
the sets that will solve the maximization and minimization
in (19). Since the pdf that maximizes the first sum in (19)
is pi✓ 2 Zfi ,

max
pi2Zfi

lim
N!1

1

N

NX

n=1

log pi(⌧n) = lim
N!1

1

N

NX

n=1

log pi✓(⌧n)

(20)
which gives that

max
pi2Zfi

min
pj2Zfj

lim
N!1

1

N

 
NX

n=1

log pi(⌧n)�
NX

n=1

log pj(⌧n)

!
=

= min
pj2Zfj

lim
N!1

1

N

 
NX

n=1

log pi✓(⌧n)�
NX

n=1

log pj(⌧n)

!
=

= min
pj2Zfj

lim
N!1

1

N

NX

n=1

log
pi✓(⌧n)

pj(⌧n)
=

= min
pj2Zfj

Epi
✓


log

pi✓(⌧n)

pj(⌧n)

�
= Di,j(✓)

(21)
where the forth equality is based on the asymptotic rela-
tion (Bishop, 2006)

lim
N!1

1

N

NX

n=1

log
pi✓(⌧n)

pj(⌧n)
= Epi

✓


log

pi✓(⌧n)

pj(⌧n)

�
(22)

since ⌧ ⇠ pi✓ 2 Zfi . Thus, distinguishability (7) measures
the mean contribution of each sample ⌧n to the GLLRT if
the true pdf of ⌧ is pi✓ 2 Zfi when N ! 1.

Then, expected distinguishability could be interpreted as
the expected asymptotic gain of each new sample in the
generalized log-likelihood ratio test given that the system
being in fault mode fi. In Definition 8, only the pdf of
✓ given fi is taken into consideration but not the pdf

✓ given fj . The argument for this is the same as for
distinguishability (7), i.e. to be sure to isolate fi from
fj we want to quantify how di�cult it is to isolate fi
from fj independent of realization of fj . If the pdf of ⌧
is p(⌧ |✓) which is an element in both sets Zfi and Zfj ,
then Di,j(✓) = 0. This is the case, independent of q(✓|fi),
since the pdf of ⌧ can be explained by both fault modes fi
and fj .

6. DISCUSSION

Based on the previous discussions in Sections 5.1 and
5.2, the candidate measures (11) and (16), graphically
represented by a) and c) respectively in Fig. 2, are not
considered here as measures to quantify diagnosability
performance between fault modes. The other two candi-
date measures, (15) and (17), represented by b) and d)
respectively in Fig. 2, are here further analyzed.

A conceptual di↵erence between (15) and (17) is that (15)
quantify diagnosability performance based on the pdf’s of
⌧ while (17) uses the conditional pdf’s of ⌧ given ✓.

Example 9. Consider the same model as in Example 5 but
with the small di↵erence that

f1 =

⇢
1 with probability q1
2 with probability 1� q1,

f2 =

⇢
1 with probability q2
2 with probability 1� q2,

(23)

where q1 6= q2. As before, the faults modes are represented
by the sets Zf1 ,Zf2 = {N (1,�2),N (2,�2)} which contains
the same two elements but the pdf’s pf1 and pf2 are
di↵erent. ⇤

The candidate measure (15) will give that the two fault
modes are isolable from each other. The measure (15) can
be seen as the expected value of the log-likelihood ratio test

log
pf1 (⌧)
pf2 (⌧)

when pf1 is the true pdf. Since di↵erent values

of ⌧ are more or less likely given the two fault modes it is
possible to identify the most probable fault mode.

Given Example 9, expected distinguishability (17) will be
zero since each pdf in Zf1 also exist in Zf2 . This can
be interpreted as there are no observations given any
fault time profile ✓ in fault mode fi that cannot also
be explained by the system being in fault mode fj . This
would correspond to the generalized log-likelihood ratio
test in (18) equal to 0 for all pdf’s in p1✓ 2 Zf1 . Thus,
expected distinguishability (17) will only be non-zero if
there exists a pdf p1✓ 2 Zf1 that does not exist in Zf2 and
the probability for that pdf is q(✓|f1) > 0.

Both candidate measures, (15) and (17) can be used
to quantify isolability performance between fault modes.
However, the measure (15) requires that the true pdf’s
q(✓|fi) and q(✓|fj) are known which is usually not the
case. For expected distinguishability, q(✓|fi) does not have
to represent the true pdf but can, for example, be chosen
to represent the importance of di↵erent fault realizations
in the analysis. Also, since the result of expected distin-
guishability is consistent with the results of the previous
distinguishability measure for a given fault time profile it is
here selected as the quantitative measure of diagnosability
performance between fault modes.
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7. COMPUTATION OF EXPECTED
DISTINGUISHABILITY

Here, some methods to compute expected distinguisha-
bility Di,j in (17), both analytically and numerically are
presented. For a linear descriptor model in the form (3)
and a fault time profile ✓ = ✓̄↵ where ✓̄ is a fixed fault
time profile and ↵ is a stochastic fault magnitude with a
defined mean and variance and described by a pdf qi↵, (17)
can be computed explicitly given the following proposition.

Proposition 10. Given a sliding window model (3) with
Gaussian distributed random vector e, under assumption
(9), and ✓ = ✓̄↵ where ↵ is a random variable with pdf qi↵.
The expected distinguishability defined in Definition 8 is
given by

Di,j =
1

2

��N(H Fj)Fi✓̄
��2 ⇥µ2

↵ + �2
↵

⇤
(24)

where µ↵ = Eqi↵
[↵] and �2

↵ = Eqi↵

⇥
(↵� µ↵)2

⇤
. ⇤

Proof. Equation (8) gives that expected distinguishabil-
ity (17) can be written as

Di,j = Eqi
✓
[Di,j(✓)] = Eqi

✓


1

2
kN(H Fj)Fi✓k2

�

=
1

2
kN(H Fj)Fi✓̄k2Eqi↵

⇥
↵2
⇤

=
1

2

��N(H Fj)Fi✓̄
��2 ⇥µ2

↵ + �2
↵

⇤

where the last equality follows from

Eqi↵

⇥
↵2
⇤
= µ2

↵ + �2
↵ (25)

which finishes the proof. ⇤

Proposition 10 gives that expected distinguishability is a
function of the mean and variance of qi↵ if the fault time
profile is fixed with random magnitude.

Expected distinguishability can also be computed using
Monte Carlo sampling (see for example Bishop (2006)) as

Di,j(q
i
✓) = lim

N!1

1

N

NX

k=1

Di,j(✓k) where ✓k ⇠ qi✓. (26)

where Di,j(✓k) is computed using (8). Equation (26) gives
an approximation of expected distinguishability which,
compared to (24), can be used for any pdf qi✓ and not only
for fixed fault time profiles with random magnitudes which
is required for the analytical expression (24). Both (24) and
(26) are used to compute expected distinguishability in the
case study which is presented in the following section.

8. CASE STUDY

Here, the example described in Section 2 is analyzed where
a window model of length N = 10 is considered. Expected
distinguishability in Definition 8 is used to quantify di-
agnosability between fault modes. The pdf’s of di↵erent
fault time profiles are given in Table 2. The fault time
profiles given f2, f3, and f4, are here assumed constant
with random magnitudes. For these cases, expected dis-
tinguishability can be computed analytically using (24).

The fault time profiles given fault mode f1 are here
assumed to be random with zero mean and covariance
matrix I as described in Table 2. Therefore, expected
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Fig. 3. Computed expected distinguishability of fault mode
f1 from the other fault modes using Monte Carlo
sampling.
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Fig. 4. Computed expected distinguishability of fault mode
f2 from the other fault modes using Monte Carlo
sampling (solid) and analytical solution (dashed).

distinguishability is computed using Monte Carlo sampling
(26). Expected distinguishability is computed using Monte
Carlo sampling for the other faults too, i.e. f2, f3, and
f4, to analyze the convergence of (26). For the Monte
Carlo sampling in this case study, the number of samples
is selected to N = 10000.

The results when computing distinguishability for each
fault mode from all other fault modes are shown in Fig. 3-
6 respectively. The solid curves represent the computed
expected distinguishability using Monte Carlo sampling
as a function of the number of samples. The analytically
computed expected distinguishability values are presented
by the dashed curves and when using Monte Carlo sam-
pling are given by the solid lines. The figures show that
the Monte Carlo sampling seems to converge within 5000
samples in all cases and the results are consistent with the
analytical results.

A summary of the results from the analysis are shown in
Table 3. Note that the first row is based in the approxima-
tions of the Monte Carlo sampling in Fig. 3 while the rest
are computed using (17). The results show for example
that it is easier to isolate fault mode f3 from f1 than
vice versa and it is easier to detect f3 and f4 compared
to f1 and f2 which is reasonable since the expected fault
magnitudes are higher.
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Fig. 5. Computed expected distinguishability of fault mode
f3 from the other fault modes using Monte Carlo
sampling (solid) and analytical solution (dashed).
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Fig. 6. Computed expected distinguishability of fault mode
f4 from the other fault modes using Monte Carlo
sampling (solid) and analytical solution (dashed).

9. CONCLUSIONS

Four candidate measures are discussed to quantify fault
diagnosability performance between fault modes where
probabilities of di↵erent fault realizations are taken into
consideration. Expected distinguishability is proposed as
the best candidate and the measure is based on the
previous definition of distinguishability and can be related
to the performance of the generalized log-likelihood ratio
test.

The expected distinguishability measure takes knowledge
about di↵erent fault realizations, model uncertainties and
noise into consideration to evaluate how di�cult it is to
isolate one fault mode fi from another fault mode fj . This
is important when analyzing fault diagnosability perfor-
mance during the design of the diagnosis system. Two
methods are presented to compute expected distinguisha-
bility, one analytical and one numerical, and both are used
on a case study.

Table 3. Computed expected distinguishability
of (1) given the fault distributions in Table 2.

Di,j(✓) NF f1 f2 f3 f4
f1 4.29 0 0 3.08 1.68

f2 4.53 0 0 3.29 1.81

f3 6.51 5.00 5.00 0 5.43

f4 8.76 3.97 3.97 7.84 0
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