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Abstract:
This paper presents a framework for distributed fault detection and isolation in dynamic systems.
Our approach uses the dynamic model of each subsystem to derive a set of independent, local
diagnosers. If needed, the subsystem model is extended to include measurements and model
equations from its immediate neighbors to compute its diagnosis. Our approach is designed to
ensure that each subsystem diagnoser provides the correct results, therefore, a local diagnosis
result is equivalent to the results that would be produced by a global system diagnoser. We
discuss the distribute diagnosis algorithm, and illustrate its application using a multi-tank
system.
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1. INTRODUCTION

Analytical redundancy methods have been applied ex-
tensively for model based fault detection and isolation
(FDI) of dynamic systems (Gertler, 1998; Bregon et al.,
2014). Traditional approaches develop centralized diag-
nosers, e.g., the Aircraft Diagnostic and Maintenance Sys-
tems (ADMS) used on modern aircraft systems (Spitzer,
2007). However, as the complexity and size of systems,
such as aircraft, automobiles, power plants, and manufac-
turing processes, have grown, distributed approaches to
fault detection and isolation in large dynamic systems with
many subsystems have become important (Leger et al.,
1999; Shum et al., 1988). Transferring all of the collected
sensor information to a central fault detection and isola-
tion unit can be expensive and error prone. Centralized
diagnosers may also be less reliable because they provide
a single point of failure. Networking delays can also affect
the timeliness of diagnosis decisions.

The computational intractability of centralized diagnosers
for large systems is another reason for developing dis-
tributed diagnosers. In this paper, we adopt the approach
of building individual diagnosers for each subsystem, tak-
ing into account that interactions with neighboring subsys-
tems may have to be modeled to achieve globally correct
diagnosis for each diagnoser.

The Dulmage-Mendelsohn (DM) decomposition (Dulmage
and Mendelsohn, 1958) is a popular structural approach
for designing FDI systems (Flaugergues et al., 2009;
Krysander et al., 2008). Krysander and Frisk (2008) have
used DM decomposition to address the sensor placement
problem. In this paper, we adapt the DM decomposition
approach to design and implement local diagnosers for
each subsystem of a large, complex dynamic system. Un-
like (Lafortune, 2007; Debouk et al., 2000) this method
does not use a centralized coordinator and reduces the
communication between subsystems to a minimum while

⋆ The work is partially supported by the Swedish Research Council
within the Linnaeus Center CADICS.

still producing globally correct diagnosis results. Moreover,
in the design process we do not need to have access to the
global model.

The outline of the paper is as follows. Basic definitions
and the multi-tank system as a running example are
presented in Section 2. Section 3 formulates the problem.
Our approach to distributed fault detection is presented
in Section 4. The extension of the method to distributed
fault isolation is presented in Section 5. Section 6 applies
the method to the running example, a four-tank system
and Section 7 concludes the paper.

2. BASIC DEFINITIONS AND RUNNING EXAMPLE

We use a four tank system (see Fig. 1) as a running
example to discuss our distributed diagnosis algorithms.
We assume each subsystem contains a tank, Ti; 1 ≤ i ≤ 4,
and the outlet pipe to its right Pi; 1 ≤ i ≤ 4. Two of
the subsystems, 1 and 3, also have inflows sources into
their tanks. The system has eight sensors. Three sensors
measure the pressure of T1, T2 and T4 (p1, p2 and p4,
respectively). Three sensors measure the flow rates of
P1, P2 and P3 (q1, q2 and q3, respectively). Two sensors
measure the input flow rates, qin1 and qin2. We assume
the subsystems are disjoint, i.e., they have no overlapping
components.
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Fig. 1. Four-tanks system.
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More generally, we assume a system, S is made up of n of
subsystems, S1, S2, ....Sn. Each subsystem is described by
a dynamic system model.
Definition 1. (Subsystem model). A subsystem model Mi
(1 ≤ i ≤ n) is a tuple of (Vi, Ci, Fi), where Vi is the set of
variables, Ci is the set of constraints and Fi is the set of
system faults associated with the subsystem.

The overall set of system faults, F =
⋃

i=1
nFi, is the union

of faults associated with each subsystem.

For illustration, the first subsystem in our running example
is described by the set of following equations:

c1 : ṗ1 =
1

CT1 + f1
(qin1 − q1)

c2 : q1 =
p1 − p2
RP1 + f2

c3 : p1 =

∫
ṗ1 dt

c4 : qin1 = u1

c5 : p1 = y1
c6 : q1 = y2.

(1)
CTi is the nominal capacity of tank Ti, RPi is the nominal
resistances of pipe Pi, C1 = {c1, c2, c3, c4, c5, c6} is the
set of behavior constraints associated with this subsystem,
V1 = {ṗ1, p1, p2, qin1, q1} is the set of variables for the first
subsystem model and F1 = {f1, f2} is the set of faults
for this subsystem. Note that V1 does not include known
variables such as measurements, (u1, y1, y2), or system
parameters, (CT1, RP1).

Similarly, the second subsystem model is defined by the
following equations:

c7 : ṗ2 =
1

CT2 + f3
(q1 − q2)

c8 : q2 =
p2 − p3
RP2 + f4

c9 : p2 =

∫
ṗ2 dt

c10 : p2 = y2
c11 : q2 = y4.

(2)

For this subsystem the set of constraints is C2 =
{c7, c8, c9, c10, c11}, the set of variable is V2 = {ṗ2, p2,
p3, q1, q2} and F2 = {f3, f4} is the set of faults. Note
that the initial conditions for constraints c3, c9 and other
integral equations in the paper are assumed to be known.
Definition 2. (Neighboring Subsystems). Two subsystems,
and, therefore, their corresponding models, Mi and Mj are
defined to be neighbors if and only if they have at least
one shared variable.

In the running example, subsystem models M1 and M2 are
neighbors and their shared variables are V1∩V2 = {p2, q1}.
The DM decomposition divides a system model into three
parts: (1) under-determined, (2) exactly determined and
(3) over-determined (Flaugergues et al., 2009). The over-
determined part introduces redundancy in the system
model and can be used for fault detection and isolation.
Fig. 2 represents DM decomposition of the first subsystem.
This subsystem model has a just determined part (M1

0)
and an over-determined part (M1

+). The shared variables
between a subsystem and the other subsystems in the
running example are circled in the figures.

In this work, we assume every fault parameter, f is
included in exactly one constraint equation, cf . This is
not a restricting assumption because if we have more than
a fault in a constraint we can consider the other faults as
new variables and then add new constraints for each of
these new variables making the variable equal to the fault.
Given that, the local detectability can be defined as:
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Fig. 2. DM decomposition of the first subsystem model.

Definition 3. (Locally detectable) A fault f ∈ Fi is locally
detectable if cf ∈ Mi

+, where Mi
+ is the over-determined

part of subsystem model Mi.

Consider Definition 3 and Fig. 2. Fault f1 is locally de-
tectable because c1 ∈ M1

+ but f2 is not locally detectable
since c2 /∈ M1

+. To detect f2, the diagnosis subsystem
needs to have an extra constraint.
Definition 4. (Augmented subsystem model ) Given sub-
system model Mi and constraint ck /∈ Mi, the augmented
subsystem model Mick

= (Mi|ck) is (Vick
, Cick

, Fick
),

where Vick
is the union of Vi and variables appear in ck,

Cick
is the union of Ci and ck and Fick

is the union of Fi

and the possible fault associated with ck.
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Fig. 3. DM decomposition of M1c10 = (M1|c10).
For example in the running example M1c10 = (M1|c10) is
(V1c10 , C1c10 , F1c10), where V1c10 = {ṗ1, p1, p2, qin1, q1},
C1c10 = {c1, c2, c3, c4, c5, c6, c10} and F1c10 = {f1, f2}.
Note that c10 did not add any new variables or faults to the
subsystem model. Fig. 3 represents the DM decomposition
of the augmented subsystem model M1c10 . This figure
shows that c2 ∈ M1c10

+, and, therefore, f2 is locally
detectable for the augmented subsystem model M1c10 .

Definition 5. (Locally isolable) A fault fi ∈ Fi is locally
isolable from fault fj ∈ F if cfi ∈ (Mi\cfj )+, where
(Mi\cfj )+ is the over-determined part of subsystem model
Mi without cfj .

Fig. 4 shows DM decomposition of the M1c10\c1.
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Fig. 4. DM decomposition of M1c10\c1.
c2 is in the overdetermined part of the augmented subsys-
tem model, therefore f2 is locally isolable from f1 in the
augmented subsystem model.
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3. PROBLEM FORMULATION

We formulate the problem and solution approach for
designing distributed diagnoser for a system, S made up of
a number of subsystems, S1, S2, · · ·Sn, such that there is
no overlap of components among the subsystems. However,
the subsystems may share variables at their interface,
e.g., liquid flowrate at outlet of pipe = liquid flowrate at
input to connected tank. In the ideal case, each subsystem
includes a sufficient number of measured variables, such
that the ensuing redundancy is sufficient to detect and
isolate all of its faults Fi locally. If so, we can associate
an independent diagnoser Di with each subsystem Si; 1 ≤
i ≤ n, with no centralized control, and no exchange of
information with other diagnosers. If the independence
among diagnosers does not hold, then we have to consider
the following additional cases:

(1) fk ∈ Fi is not locally detectable.
(2) fl ∈ Fi and fm ∈ Fi are not locally isolable from each

other.
(3) fn ∈ Fi is not locally isolable from fo ∈ Fj and

fo /∈ Fi.

Designing distributed diagnosers that account for these
three scenarios is the focus of our work in this paper. After
addressing each of these situations, we derive an integrated
approach to distributed FDI, and derive algorithms that
apply to complex, dynamic systems made up of a number
of subsystems.

Given subsystems, Si; 1 ≤ i ≤ n, with equation sets
represented as a set of constraints, Ci. Associated with
each subsystem are also a set of local fault candidates, Fi,
such that

⋃
i=1

nFi = F . We may need to augment each
subsystem with additional constraints that are typically
acquired from the neighbors of the subsystem, such that
all of the faults associated with the extended model of
this subsystem are detectable and isolable. In the worst
case, all of the constraints from a neighboring subsystem
may have to be included to make the current subsystem
diagnosable. When such a situation occurs, we say the
two subsystems are merged and represented by a common
diagnoser, therefore, the total number of independent
distributed diagnosers may be less than n.

For each subsystem Si with its model Mi, our goal is
to find minimal sets of constraints from the neighboring
subsystems that provide complete detectability and isola-
bility to that subsystem. A set of constraints is minimal
if there is no subset of constraints that provides the same
detectability and isolability.

More formally, the problem for designing a diagnoser for
a particular subsystem Si can be described as follows:

Consider Mi = {M1,M2, . . . ,Ml} as the set of neighbor-
ing subsystem models to subsystem Si. To address the
three situations mentioned above, we need to develop an
algorithm to find all the constraints sets co in Mi that
guarantees maximal structural detectability and isolability
for subsystems faults Fi and includes a minimal set of
constraints from its neighbors, i.e.,

min
co⊆Cn

|co|

D(Mi|co) = D(Mi|Cn),
I(Mi|co) = I(Mi|Cn),

(3)

where Cn represents the set of all the constraints, D
represent the set of detectable faults in Fi, and I represents
the set of isolable faults in Fi from the system faults F .

Consider the first subsystem of the running example M1,
c10 makes f1 and f2 detectable and isolable from all the
other faults in the system. Therefore, A1 = {c10} is a
minimal solution to the problem.

4. DISTRIBUTED APPROACH FOR FAULT
DETECTION

In this section we present our approach to find all the min-
imal sets of constraints from the neighboring subsystem
models to provide maximum possible fault detectability.
We illustrate the procedure by solving this problem for
subsystem model 2, and then develop a general algorithm
to solve this problem.

Consider subsystem model 2 whose constraints are listed
as equation (2). The corresponding structural decompo-
sition of this subsystem is shown in Fig. 5. This sub-
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Fig. 5. DM decomposition of M2.

system is just determined, therefore, none of the faults
are locally detectable. However, q1 is a shared variable
with subsystem model 1, and p3 is a shared variable with
subsystem model 3. Therefore, we have to find constraints
from one or both of the neighboring subsystems to make
f3 and f4 detectable. It is straight forward to show that by
adding a set of just determined constraints that include q1,
fault f3 becomes detectable. However, this set of equations
does not make f4 detectable. Fig. 5 shows there is no
path from c7 to c8, moving c7 to an over-determined part
does not affect c8, and, therefore, this does not make f4
detectable. However, augmenting the subsystem with a set
of just determined constraints that contains p3 makes f4
detectable.

Krysander and Frisk (2008) present an algorithm that
accepts a just determined subsystem and a set of measure-
ment candidates and provides a minimal set of measure-
ments that provide maximum detectability for the system.
We skip the details of their algorithm in this paper, and
assume, given the structure of the subsystem model and
set of shared variables with the neighboring subsystems,
we can derive a minimal set of variables that provides
maximum detectability performance.

To make f3 detectable, we have to find all of constraint sets
that include q1, and by adding them to M2 we can make q1
over-determined in this subsystem model. We start with
all equations in M1 that have q1. These equations are c1,
c2, and c6 as it is shown in Fig. 6. Then for the additional
variables in each equation that is not already in M0

2 we
need to add other equations. For c1 we need to add two
new constraints one with qin1 and the other one with ṗ1.
Finally we need to add a new constraint with p1 and since
p2 ∈ M2

0 we do not have to consider it.

To find the other minimal sets we keep adding the rel-
ative equations to the other sets using the same ap-
proach described above. As it is shown in Fig. 6, by
adding constraints to the system we eventually achieve
four sets of minimal constraints: A2 = {c1, c2, c3, c4},
A3 = {c1, c3, c4, c5}, A4 = {c2, c5}, and A5 = {c6}.
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Fig. 6. Finding the minimal sets of constraints in M1 to
make f3 locally detectable.

More formally, Fig. 6 represents a matching algorithm
whose general form is presented as Algorithm 1. If we
initialize the algorithm with the set of unknown variables
− in this example q1 is the unknown variable − it provides
a set of complete matching of variables and constraints in
the subsystem that includes the unknown variables.

Algorithm 1 Count-Matchings

1: input: current matching M
2: input: sets of determined variables D and undeter-

mined variables U
3: if U = ∅ then
4: return M as a feasible (minimal) matching.
5: for each x ∈ U do
6: for each y which can determine x do
7: Let M′ be M ∪ {x → y}
8: Let D′ be D ∪ {x}.
9: Let U ′ be U \ {x}.

10: Add all the undetermined variables of y to U ′.
11: Count-Matchings(M′,D′,U ′)

Fig. 7 shows that augmenting A2 with M2 makes f3
detectable. Subsystem model 2 is just determined but a
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Fig. 7. DM decomposition of (M2|A2).

subsystem can have an underdetermined part as well. For
example consider subsystem model M3 in equation (4).

c12 : ṗ3 =
1

CT3
(qin2 + q2 − q3)

c13 : q3 =
p3 − p4
RP3 + f5

c14 : p3 =

∫
ṗ3 dt

c15 : qin2 = u2

c16 : q3 = y5.

(4)
The DM decomposition of this subsystem model is shown
in Fig. 8. f5 is in the underdetermined part of the struc-

ture. qin2 and q3 are in the just determined part of the
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Fig. 8. DM decomposition of M3.

system and we can compute them using c15 and c16,
respectively. However, to compute the other four variables
in the subsystem, p3, q2, ṗ3, and p4, we only have three
constraints, which makes complete matching between con-
straint and variables impossible. To make this part of the
subsystem just determined, we need to augment a set of
constraints from the neighboring subsystems. We use max-
imum weighted bipartite matching algorithm (West, 2001)
to find the set of shared variables that are not already
matched with a constraint. Maximum weighted matching
is a polynomial algorithm and provides a matching with
maximum sum of the values of the weights. We give shared
variables in the under-determined part weight w1 and
non shared variables in the under-determined part weight
w2 > w1. Therefore, the algorithm gives priority to match
non shared variables with subsystem constraints and for
the unmatched set of shared variables, we augment a set
of constraints from the neighboring subsystems to match
with them. Fig. 9 shows the matching results for subsystem
model M3.
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Fig. 9. Weighted matching of the under-determined part
of M3.

q2 is the only unmatched variable in the under-determined
part of the subsystem. Therefore, to make the subsystem
just determined we need to augment a minimal set of just
determined constraints that include q2 from M2 to M3.
Algorithm 2 summarizes the procedure.

Algorithm 2 UnderDetermined

1: input: under-determined part of subsystem model
Mi

−

2: input: subsystem model shared variables Vs
3: Let w1 be Vs weights
4: Let w2 be V \ Vs weights
5: Apply weighthed matching algorithm to Mi

−

6: U = unmatched variables

It is shown in Fig. 10 that A6 = {c11} is the only minimal
set of constraint in M2 that includes q2. Therefore, we
first need to augment M3 with A6 to make the system just
determined and then apply the above method to make f5
detectable. Consider subsystem model from equation (5)
and structure of (M3|A6) shown in Fig. 11.
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c17 : ṗ4 =
1

CT4 + f6
(q3 − q4)

c18 : q4 =
p4
RP4

c19 : p4 =

∫
ṗ4 dt

c20 : p4 = y6.

(5)
Using this structure and Algorithm 1, we know that A7 =
{c17, c18, c19} and A8 = {c20} are the only minimal sets of
equations that we can augment from M4 to make the f5
locally detectable.
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Therefore, the minimal candidate sets that we can aug-
ment to M3 are A9 = {c11, c17, c18, c19} and A10 =
{c11, c20}. Fig. 12 shows DM decomposition of (M3|A9).
In some cases, it is possible that an augmented minimal
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Fig. 12. DM decomposition of (M3|A9).

set, Ai, adds a set of faults FAi to the subsystem model
Mi too. These faults can be sensor faults or faults in other
constraints. The following theorem states that these faults
are locally detectable in subsystem model Mi.
Theorem 1. Consider local subsystem modelMi = {Vi, Ci,
Fi} and Caugments a set of minimal constraints that makes
set of faults Fi detectable in the augmented subsystem
(Mi|Caugments) = {Vj , Cj , Fj}, then the set of faults Fj

in the augmented subsystem (Mi|Caugments) are locally
detectable.

Proof. The proof of this theorem is straight forward, since
the minimal set makes a part of the system that includes
the fault overdetermined, the set itself should be in the
overdetermined part as well. This means the associated
faults in the set are detectable.

For example, f6 is locally detectable in (M3|A9). There-
fore, as long as we are focused on fault detection the
augmented faults do not cause any problem. The fault
detection algorithm is summarized as Algorithm 3 below.

Algorithm 3 Detectability

1: C = {}
2: input: subsystem model Mi
3: subsystem model shared variables Vs
4: input: subsystem model neighbors M
5: if ∀f ∈ Fi ∴ cf ∈ Mi

+ then
6: return
7: if ∃f ∈ Fi and f ∈ Mi

− then
8: U = UnderDetermined(Mi

−,Vs)
9: D = Vi \ U

10: C = Count-Matchings (M , D, U)
11: U = minimal set of shared variables that makes all the

faults over-determined
12: D = Vi \ U
13: C = Count-Matchings (M , D, U) ∪ C

5. DISTRIBUTED APPROACH FOR FAULT
ISOLATION

In this section we assume the set of minimal constraints
to make all the faults locally detectable have been derived
based on the method presented in Section 4. It is clear that
the locally detectable faults in each subsystem are locally
isolable from the faults in the other subsystems.
Theorem 2. Consider local subsystem modelMi = {Vi, Ci,
Fi} if fi ∈ Fi is locally detectable in Mi, then fi is locally
isolable form fj if fj /∈ Fi.

Proof. Since fi is detectable we have cfi ∈ Mi
+ and

since fj /∈ Fi we can say cfj /∈ Mi
+. Therefore, Mi

+ =
(Mi\cfj )+ and cfi ∈ (Mi\cfj )+

For example, in subsystem model (M3|A9), f5 is isolable
from f1, f2, f3, and f4 because they are not in the subsys-
tem model and f5 is detectable in this subsystem model.
Considering Theorem 2, it is straight forward to address
the isolability problem. For each fault fi ∈ Fi, we remove
the associated equation cfi from Ci and all the neighboring
subsystems. Then we use Algorithm 1 to make all the
remaining faults in Fi detectable. For example, consider
(M3|A9). To make f5 isolable from f6, we remove c17 from
(M3|A9) and M4. DM decomposition of (M3|A9)\c17 is:
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Fig. 13. DM decomposition of (M3|A9)\c17.

Considering Fig. 13, each of variables q4, ṗ4 and p4 can
make f5 detectable. Applying Algorithm 1 to M4\c7 for
each of them gives us: {c18, c20}, {c19, c20}, and {c20}, re-
spectively. Therefore, we can say the augmented subsystem
(M3|A9, c20) will detect f5 and isolate it from all the other
faults in the global system M . The following algorithm
summarizes the method discussed above.

The proposed approach considers the neighboring sub-
systems M of subsystem Mi and augment minimal con-
straints from the M to maximize diagnosability. If the
set neighboring subsystems M does not have required
redundancies to achieve maximum diagnosability we have
to expand the search process to the next higher order of
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Algorithm 4 Diagnosability

1: input: subsystem model Mi
2: input: subsystem model neighbors M
3: C = Detectability(Mi, M)
4: for each c ∈ C do
5: M

′
= (Mi|c)

6: for each f ∈ M
′
do

7: M̄
′

i = M
′ \ (f and cf )

8: c̄ = Detectability(M̄
′

i , M\ c)
9: c = c̄ ∪c

10: Delete non-minimal constraint sets in C

neighborings subsystems of M . The expansion process will
stop when the distributed approach achieves maximum
diagnosability. Therefore, it is guaranteed that the method
has the same diagnosability performance as the best cen-
tralized diagnoser for the same set of measurements.

In the case that there is no independent subsystem diag-
nosers can be derived using our distributed approach, the
solution gradually expands to include all subsystems and
eventually derives the centralized diagnoser. Algorithm 5
summarizes this approach.

Algorithm 5 DistributedDiagnosis

1: input: subsystem model Mi
2: input: subsystem model neighbors M
3: C = Diagnosability(Mi, M)
4: for each co ∈ C do
5: if D(Mi|co) = D(Mi|Cn) and I(Mi|co) = I(Mi|Cn)

then
6: return
7: M =M ∪ (neighboring subsystems of M)
8: DistributedDiagnosis(Mi, M )

6. DISTRIBUTED DIAGNOSIS FOR FOUR TANK
SYSTEM

Table 1 shows the set of constraints that we need from its
neighbors to augment each subsystem model to achieve
maximum possible detectability and isolability. In the
cases that there were more than one possible minimal set of
constraints, we considered the one with minimum number
of constraints.

Table 1. Set of augmented constraints to each
subsystem model

Subsystem Model Set of augmented constraints

M1 c10
M2 c6, c12, c14, c15, c16
M3 c11, c20
M4 c16

A common way to validate a distributed fault detection
and isolation approach is to compare the result with
the maximum global detectability and isolability. Adopt-
ing the exoneration assumption, with a global diagnostic
method we can detect and isolate all the faults in the
running example. However, using the original subsystems
for distributed diagnosis does not provide the same results
as the centralized global diagnoser. In fact, only f1 can
be detected and isolated from the other faults. Using the
augmented subsystems in Table 1 we will have the same
performance as the global model. This demonstrates that
the distributed approach has the same performance with
the centralized approach for fault detection and isolation
in the running example.

7. CONCLUSIONS

A distributed approach to the problem of fault detection
and isolation is presented in this paper. The proposed
algorithm provides the maximum possible detectability
and isolability that can be achieved. The contribution
of work is that not only do not need a global model in
detecting and isolating the faults, but also we do not use
the global model in the design process of the supervisory
system. This makes the approach very feasible for complex
systems, such as aircraft and power plants where the global
systems models are likely to be unavailable or unknown.

In future work, we will consider the effect of model
uncertainty in the residuals (Khorasgani et al. (2014)) and
will extend the proposed method to robust distributed
fault detection and isolation.
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