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Abstract: An algorithm for designing linear residual generators is presented. A main result
is that the algorithm is able to design residual generators forany model described by
general linear differential-algebraic equations. Previous algorithms have been restricted to
models on transfer function, state space, or descriptor form. The presented algorithm can
handle all these types of models, but also more general model descriptions not handled
by previous algorithms. This is important since more general linear differential-algebraic
equations models are often the result of object-oriented equation-based modeling. Also
included is an extension to the stochastic case. Since the algorithm is based on well studied
algebraic manipulations of polynomial matrices, it will have good numerical performance.
The algorithm is demonstrated on a linearized model of a three-link robot.
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1. INTRODUCTION

Fault diagnosis consists of detecting and isolating
faults acting on a process. In many methods, e.g.struc-
tured residuals(Gertler, 1998), the concept of residuals
play a central role. Commonly, a set of residuals is
used, where different subsets of residuals are sensitive
to different subsets of faults and in this way isolation
between several faults is achieved.

In this paper, residual generation based on linear
models is considered. Previous works on linear residual
generation has primarily dealt with models on trans-
fer function form (Gertler, 1998; Viswanadhamet al.,
1987), state space form (Frisk and Nyberg, 2001; Chow
and Willsky, 1984; Chen and Patton, 1999), or descrip-
tor form (Hou, 2000; Kratzet al., 1995). In contrast,
the key result of this paper is that we consider all mod-
els that are described by any set of linear differential-
algebraic equations. The three previous cases become
special cases of this more general model class.

An algorithm for constructing residual generators for
this more general model class will be presented. For the
common special cases of models described by transfer
functions, state space, or descriptor form, the algorithm
becomes especially straightforward. The algorithm is
based on polynomial matrix algebra for which efficient
computational tools are commercially available.

The ability to handle this more general class of mod-
els is also beneficial from a modeling perspective. This
is because models not on state-space, descriptor, or
transfer function form are often the result when using
a physically based object-oriented modeling approach
(Åström et al., 1998). Typically, different components
are modeled by separate models and then connected
together via algebraic constraints. Each component is
modeled by specifying physical laws that connect inter-
nal variables to each other. Such a modeling strategy
will naturally produce models that contain algebraic
constraints, and also derivatives of higher order than

one. Thus, these kinds of models are often not in trans-
fer function, state space, or descriptor form.

In contrast to control, fault diagnosis from a principle
point of view, does not distinguish between process
inputs and outputs. The only thing that should matter
in fault diagnosis is whether a variable is unknown or
known. This is the point of view taken in this paper. All
known signals, e.g. inputs and outputs, are collected in a
vectorz(t) and all unknown signals, e.g. internal states
and disturbances, are collected in a vectorx(t). Also
this issue is closely related to object-oriented modeling.
The reason is that object-oriented modeling languages
(Mattson et al., 1998; Pielaet al., 1991) are often
equation based, meaning that no notion of causality is
contained in the models, e.g. it is not specified if a signal
is an input or an output to a component.

The paper starts by in Section 2 more formally de-
scribe the residual-generation problem for systems de-
scribed by linear differential-algebraic equations. Sec-
tion 3 contains the description of the design algorithm
including motivating examples and proofs. A general
detectability condition is then presented in Section 4.
Section 5 discusses an extension of the basic algorithm
to cover also the stochastic case, where the system is
also affected by stochastic signals. The specific cases
transfer functions, state space, or descriptor form, are
discussed in Section 6. Section 7 finally illustrates the
algorithm on a linearized model of a three-link robot.

2. PROBLEM FORMULATION
This paper only deals with the time-continuous case,

and we will usep to denote the differentiation operator.
A similar algorithm for the time-discrete case can also
be constructed by changingp to the time-shift operator
q. In the presentation that follows, both the operator
p and the Laplace variables will be used and care
has been devoted to use the two correctly which is the
reason for repeated switching between the two.



It is assumed that the model of the system to be
diagnosed is linear and on the general form

H(p)x(t) + L(p)z(t) + F (p)f(t) = 0 (1)

wherex(t) is a any signal vector,z(t) is the observed
vector,f(t) the vector of fault signals, andH(p), L(p),
andF (p) arbitrary polynomial matrices in the operator
p. The signal vectorx(t) contains all unknown signals
which includes internal system states and unknown
inputs such as disturbances. We assume that the goal is
to detect faults included in thef(t)-vector, while faults
that will be decoupled are included among the unknown
signals in x(t). The signal vectorz(t) contains all
known signals, such as sensor and actuator values.

The general form (1) contains the more common
cases transfer function, state-space system, and descrip-
tor systems as special cases. All these special cases will
be exemplified in Section 6.

2.1 Residual Generators and Consistency Relations
As said in the introduction, the goal is to design linear

residual generators, which we define as follows:

Definition 1.(Residual Generator). The rational poly-
nomial vectorR(p), of dimension1 × nz, is aresidual
generatorif the filter R(p) is proper and for all signals
z(t), and any signalr(t) fulfilling r(t) = R(p)z(t), it
holds that

∃x(t) . H(p)x(t) + L(p)z(t) = 0 =⇒ lim
t→∞ r(t) = 0

The residual generatorR(p) can be written as

R(p) =
K(p)
c(p)

whereK(p) is a polynomial vector andc(p) is a scalar
polynomial. If c(s) has only stable zeros and it holds
that K(p)z(t) → 0 for eachz(t) that satisfies the
model, thenR(p) will be a residual generator. It can
also be realized that ifR(p) is a residual generator,
it must hold thatK(p)z(t) → 0 for eachz(t) that
satisfies the model. This is the motivation to suggest the
following design strategy for residual generators:
(1) Find aK(p) for which it holds thatK(p)z(t) → 0

for eachz(t) that satisfies the model.
(2) Find a stablec(s) that together withK(p) makes

R(p) proper.
The difficult part is of course step 1, i.e. to findK(p).
The rest of the paper will therefore be devoted to this
problem. To findK(p) is equivalent to finding so called
consistency relationsor parity equations. We define
consistency relation as follows:

Definition 2.(Consistency Relation). The scalar expres-
sionK(p)z(t)∞=0, whereK(p) is polynomial, is acon-
sistency relationif for all signalsz(t) it holds that

∃x(t) . H(p)x(t) + L(p)z(t) = 0 ⇒ lim
t→∞K(p)z(t) = 0

In the next section we will present a design algorithm
that for any system described by the general model (1),
produces consistency relationsK(p)z(t)∞=0.

3. GENERAL DESIGN ALGORITHM FOR
CONSISTENCY RELATIONS

The design algorithm below is based on polynomial
matrix algebra, e.g. see (Kailath, 1980). The basic ideas
are similar to the method presented in (Frisk and Ny-
berg, 2001), but here we consider a more general class

of models. Given is a model on the general form (1).
The algorithm will then find aQr(p), and possible con-
sistency relations can be obtained asγ(p)Qr(p)z(t)∞=0
whereγ(p) is any polynomial vector.
Design Algorithm
(1) If [H(p) L(p)] has not full row rank, premultiply

[H(p) L(p)] with unimodular matrices to obtain[
H̃(p) L̃(p)

0 0

]

where[H̃(p) L̃(p)] has full row rank. This can for
example be performed by taking[H(p) L(p)] to
column Hermite form.

(2) Find a minimal polynomial basis for the left null-
space ofH̃(p), denotedNH̃(p).

(3) FormQ(p) = NH̃(p)L(p).
(4) FactorizeQ(p) asQ(p) = Qstab(p)Qr(p), where

Qstab(s) is square and full rank, andQr(s) has no
strictly stable zeros andQstab(s) has no instable
zeros (i.e. no zeross0 whereRe{s0} ≥ 0).

Theorem 1.Assume that the design algorithm above is
used. Then
(a) Qr(p) has full rank
(b) For all polynomial vectorsγ(p), γ(p)Qr(p)z(t)∞=0

will be a consistency relation.

All lemmas needed to prove Theorem 1 will be given
later in Section 3.3. The reason for this is to be able
to focus on principles and main ideas and return to the
technicalities later.

The proof of Theorem 1 follows:

PROOF. It is easily proven that a matrix[A(p) B(p)]
has full row rank if and only ifNA(p)B(p) has full
row rank. Thus,Q(p) will have full row rank. Since
Q(p) = Qstab(p)Qr(p) and Qstab(p) is square and
full rank, it is obvious that alsoQr(p) has full rank
which proves the a)-part. The b)-part follows directly
from Lemma 3. 2

The algorithm can be easily implemented in Matlab
using (The Polynomial Toolbox 2.5, 2001), which con-
tains functions for each of the steps in the algorithm.

Remark 1.Although not a part of the theorem, from
Lemma 4 it also follows thatQr(s) is a polynomial
basis for allf(p) such thatf(p)z(t)∞=0 is a consistency
relation.

Remark 2.In some cases it may be desirable only to
obtain consistency relations for which it also holds that

∃x(t) . H(p)x(t) + L(p)z(t) = 0 ⇒ K(p)z(t) = 0
(2)

By removing step 4 from the algorithm, only consis-
tency relations fulfilling (2) are obtained.

3.1 Motivation of the Design Algorithm
The first step in the algorithm consists of removing

dependent equations from the model. If this is not done,
Q(p) = NH̃(p)L(p), and therefore alsoQr(s) will not
have full rank. That is, to fulfill part (a) in Theorem 1,
dependent rows in[H(p) L(p)] must be removed. As
long as this is done using only unimodular matrices
no solutions will be lost since unimodular matrices are
polynomially invertible.



We will now present two examples motivating the
4:th step of the algorithm concerning zeros ofQ(s).
If the original model equations are given in state-space
form, the origin of any zeros ofQ(s) is uncontrollable
modes of the original state-space realization. Therefore,
for most casesQ(s) has no zeros. But for the case when
Q(s) has zeros, stable and unstable zeros need to be
handled differently. First consider the model equation:

(p + 1)z1(t) = (p + 1)z2(t) (3)

for which Q(s) = [s + 1 − (s + 1)], i.e. Q(s) has a
stable zero ats = −1 which givesQr(s) = [1 − 1].
Then, according to Theorem 1,z1(t) − z2(t)

∞=0 is a
consistency relation. It is easily proven that this is a
consistency relation by solving the differential equation
(3) which gives that

z1(t) − z2(t) = e−t(z1(0) − z2(0)) (4)

which clearly satisfies Definition 2. This example shows
how factoring out a stable polynomial fromQ(s) is
safe.

Assume now, contradictory to the algorithm, that for
the model (3),(s + 1) is not factored out fromQ(s).
That means that the output from the algorithm will be
Qr(s) = [s + 1 − (s + 1)]. We saw in (4) that
z1(t) − z2(t)

∞=0 is a consistency relation. The problem
is that this consistency relation is no longer possible
to obtain from the matrixQr(s), i.e. there exists no
polynomialγ(p) such thatγ(p)Qr(p) = [1 − 1]. This
is the motivation to why we in step 4 of the algorithm,
factor out all stable parts ofQ(p).

To see why it is not safe to factor out an unstable
polynomial, consider the model

(p − 1)z1(t) = (p − 1)z2(t) (5)

For this system,Q(s) = [s − 1 − (s − 1)]. Factoring
out s − 1, contrary to what is stated in step4 of the
algorithm, results in a relationz1(t) − z2(t)

∞=0. This is
however not a consistency relation. This can be seen by
solving the differential equation (5), which gives

z1(t) − z2(t) = et(z1(0) − z2(0))

which clearly does not satisfy Definition 2 ifz1(0) 6=
z2(0).

The discussion above have motivated all the steps
of the algorithm presented. To obtain a stable residual
generator, we have seen that we can not factor out un-
stable parts fromQ(s). To obtain aQr(s) such that also
the most simple consistency relations can be written
γ(p)Qr(p)z(t)∞=0, we have seen that stable parts of
Q(s) must be factored out.
3.2 Simplified Algorithm

In many cases, matrix[H(p) L(p)] will already be
full rank and irreducible. Thus step 1 is not needed
since[H(p) L(p)] is already full rank. Consider now the
following result (included without proof due to space
limitations):

Lemma 1.If [H(s) L(s)] is full row-rank for alls, then
NH(s)L(s) has full row-rank for alls.

This lemma implies thatQ(s) will have full rank for
all s, i.e. Q(s) has no zeros and step4 becomes un-
necessary. Thus, when[H(p) L(p)] is irreducible, a
simplified algorithm consisting of only steps 2 and 3
can be used.

For most systems, it actually holds that[H(p) L(p)]
is irreducible. Section 6 will give quite mild conditions

on when the simplified design algorithm can be used
together with models on transfer function, state space,
or descriptor form.
3.3 Theoretical Justifications of the Algorithm

The following lemma is used in step 2 and 3 of the
algorithm.

Lemma 2.Assume the double-sided Laplace transform
of NA(p)B(p)z(t) exists. Then

∃x(t) . A(p)x(t) + B(p)z(t) = 0 (6)

if and only if

NA(p)B(p)z(t) = 0 (7)

PROOF. The only-if part follows by premultiply-
ing (6) with NA(p). For the if-part, apply first the
double-sided Laplace transform to (7). This results
in NA(s)B(s)z(s) = 0 which is equivalent to that
∃x(s). A(s)x(s) + B(s)z(s) = 0. Now the application
of the inverse Laplace transform results in (6). 2

The following lemma is used to prove part (b) in Theo-
rem 1.

Lemma 3.All rows in Qr(p)z(t)∞=0 are consistency
relations.

PROOF. From Lemma 2, we know thatQ(p)z(t) = 0.
Applying the single-sided Laplace transform results in

Q(s)z(s) + Q(s)z̄0 = 0

where z̄0 = [z(d−1)(0), z(d−2)(0), . . . ż(0), z(0)]T
andd = deg(Q(s)). Further on, we also know that

Qstab(s)Qr(s)z(s) + Q(s)z̄0 = 0

SinceQstab(s) is square and full rank, its inverse exists
and thus

Qr(s)z(s) + Q−1
stab(s)Q(s)z̄0 = 0

The inverse Laplace transform of this expression is

Qr(p)z(p) + ∆(t) + g(t) = 0

where ∆(t) contains only Dirac functions and some
orders of derivatives of Dirac functions, andg(t) → 0
whent → ∞. That is,Qr(p)z(p) → 0 whent → ∞
and all rows inQr(p)z(t)∞=0 are therefore consistency
relations. 2

The following lemma is used in Remark 1, and to
prove the detectability condition and the stochastic ex-
tension in Sections 5 and 4 respectively.

Lemma 4.If f(p)z(t) = 0 is a consistency relation,
then there exists a rationalφ(p) such thatf(p) =
φ(p)Qr(p).

PROOF. DefineM(s) to be a matrix whose columns
form a polynomial basis for the right null-space to
Qr(s). Let thenf(s) be written as

f(s) = α(s)Qr(s) + β(s)MT (s)

Multiplying from the right withM(s) implies

f(s)M(s) =α(s)Qr(s)M(s) + β(s)MT (s)M(s) =
=β(s)MT (s)M(s) (8)

The inverse Laplace transform ofQr(s)M(s) = 0
becomesQr(p)M(p)δ(t) = 0. By multiplying from the
left with Qstab(p) we obtainQ(p)M(p)δ(t) = 0.



Now consider the signaly(t) =
∑∞

i=0 M(p)δ(t). It
holds thatQ(p)y(t) = 0. Sincef(p)z(t) = 0 is a
consistency relation, it must hold thatf(p)y(t) → 0
whent → ∞. The only possibility to fulfill this is that
f(p)M(p)δ(t) = 0 for t ≥ 0. The Laplace transform of
this expression becomesf(s)M(s) = 0.

Equation (8) can now be written

0 = f(s)M(s) = β(s)MT (s)M(s)

Since MT (s)M(s) has full rank, this implies that
β(s) = 0, which proves the theorem. 2

4. DETECTABILITY CONDITION
A fault is said to be detectable in a system if there

exists any residual generator that is sensitive to that
fault. With the presented theory it is possible to state
a detectability condition for systems described by the
general model form (1).

Theorem 2.There exists a residual generatorR(p) pro-
ducing the residualr(t) such that the transfer function
Grf (s) from the faultf(t) to r(t) is non-zero if and
only if

Rank [H(s) F (s)] > RankH(s) (9)

PROOF. If (9) is fulfilled, it holds thatNH(p)L(p)z(t) =
−NH(p)F (p)f(t) andNH(p)F (p) 6= 0. Choosing any
row in NH(p)L(p)z(t), and adding stable poles, will
result in aGrf (s) 6= 0.

According to Lemma 4, all consistency relations can
be written asφ(p)NH(p)L(p) whereφ(p) is rational.
This also means that all possible residual generators
can be written asφ′(p)NH(p)L(p) with φ′(p) rational.
If (9) is not fulfilled, it holds thatNH(p)F (p) = 0 and
also thatGrf (p) = φ′(p)NH(p)F (p) = 0. Thus there
cannot exist any residual generator withGrf (s) 6= 0. 2

5. STOCHASTIC CASE
To show the generality of the design methodology, we

will now present a small extension to cover also residual
generation for stochastic differential-algebraic models.
To the model (1), add a stochastic term, i.e.

H(p)x(t) + L(p)z(t) + V (p)n(t) + F (p)f(t) = 0
wheren(t) is assumed to be white noise. The residual
generation problem for stochastic systems is addressed
in (Nikoukhah, 1994) from which the following defini-
tion is taken.

Definition 3.(Innovation filter). A finite-dimensional lin-
ear time-invariant filterR(p) is called an innovation
filter if it is stable with the least number of outputs such
that, in the absence of failure,
(1) its outputr = R(p)z(t) is zero-mean, white and

decoupled fromu(t) andd(t),
(2) if R′(s) is any finite-dimensional linear time-

invariant system such thatr′(t) = R′(s)z(t) is
decoupled fromu(t) andd(t), then there exists a
linear systemT (p) such thatR′(s) = T (s)R(s).

Assumption. From now on it is assumed that perfect
decoupling of both the noisen and unknown signalsx
is not possible. Also, for sake of brevity, it is assumed
that the conditions for the simplified algorithm is ful-
filled, i.e. [H(s) L(s)] is assumed to be full-rank and
irreducible.

Let R(p) be a residual generator. Lemma 4 then gives
that there exists a rationalϕ(s) such thatR(s) =

ϕ(s)NH(s)L(s). Straightforward calculations give that
the spectrum of the residual can be written

Φr(s) = ϕ(s)NH(s)V (s)V T (−s)NT
H(−s)ϕT (−s)

(10)
Before the main result on innovation filter design is
presented, we introduce the notation

W (s) = NH(s)V (s)V T (−s)NT
H(−s)

Theorem 3.Let R(s) = P−1(s)NH(s)L(s) where
P (s) is a spectral co-factor ofW (s). Then it holds that
R(p) is an innovation filter ifR(p) is stable and proper.
If R(p) is not an innovation filter, no innovation filter
exists.

PROOF. Since it was assumed that perfect decoupling
of the noise was not possible,W (s) will have full rank.
Then ifP (s) is a J-spectral co-factor ofW (s), W (s) =
P (s)PT (−s). Now, if R(s) = P−1(s)NH(s)L(s) is
a residual generator, equation (10) directly gives that
the spectrum ofr(t) is constant sinceϕ(s) = P−1(s).
Thus,R(s) is an innovation filter ifR(s) is also stable
and proper.

Assume R(s) is not stable and proper and that
R′(s) is an innovation filter. SinceR′(s) is a distur-
bance decoupling residual generator it can be written
R′(s) = ϕ′(s)NH(s)L(s). Also, sinceR′(s) produces
white residuals, Equation (10) gives that there exists an
η(s) such thatϕ′(s) = η(s)P−1(s) andη(s) satisfies
η(s)ηT (−s) constant. Since this holds for alls and also
in the limit whens → ∞. This gives that bothη(s) and
η−1(s) is proper. Also, sinceR′(s) is stable, so isη(s).
But R(s) = η−1(s)R′(s) which is a contradiction to
R(s) not being an innovation filter. Thus, it is proven
that if R(s) is not an innovation filter, no innovation
filter exists. 2

For more details on innovation filter design using poly-
nomial methods, see (Frisk, 2001).

6. SPECIAL CASES
In this section, three common special cases of model

descriptions are addressed: models on state-space form,
descriptor form, and transfer function form. In particu-
lar it will be shown under what conditions the simplified
algorithm from Section 3.2 can be used.
6.1 State Space Model

First, consider models given by state-space equations
on the form:

ẋ(t) = Ax(t) + Buu(t) + Bdd(t) + Bff(t) (11a)
y(t) = Cx(t) + Duu(t) + Ddd(t) + Dff(t) (11b)

To state the state-space description on the general
form (1), matricesH(p), L(p), andH(p) becomes:

H(p) =

[
C Dd

−(pI − A) Bd

]
, L(p) =

[−I Du

0 Bu

]
(12a)

F (p) =

[
Df

Bf

]
(12b)

It will now be shown that mild controllability conditions
on (11) is sufficient to be able to use the simplified
design algorithm. The first step in the design algorithm
is immediate; a state-space description always render
full row-rank [H(s) L(s)]. This can be seen directly in

[H(s) L(s)] =
[

C Dd −I Du

−(sI − A) Bd 0 Bu

]
(13)

which is full row-rank.



Now, assume that the pair{A, [Bu Bd]} is control-
lable. Then the PBH test gives that[−(sI −A) Bd Bu]
has full row-rank for alls which in turn gives that

[H(s) L(s)] =
[

C Dd −I Du

−(sI − A) Bd 0 Bu

]

has full row-rank for alls. Lemma 1 then gives that
Q(s) computed in step3 of the design algorithm has
no zeros and no factorization in step4 is necessary
(or even possible). Thus, the controllability assump-
tion is sufficient for the simplified design algorithm,
from Section 3.2, to be valid. Further, in (Frisk and
Nyberg, 2001) it is also proven thatQ(s) is with the
controllability assumption also aminimal polynomial
basis.

6.2 Descriptor Form
Another common special case is so called descriptor

systems which can be modeled by equations on the form

Eẋ(t) = Ax(t) + Buu(t) + Bdd(t) + Bff(t) (14a)
y(t) = Cx(t) + Duu(t) + Ddd(t) + Dff(t)

(14b)

The only difference from the state-space form is the
matrix E which can be singular or even non-square.
Collecting the model equations on form (1) is similar
to the state-space matrices (12) with the difference that
H(p) is given by

H(p) =
[

C Dd

−(pE − A) Bd

]

For this case, similar to the state-space case, assume
R-controllability (Yip and Sincovec, 1981) fromu and
d. Then the matrix[sE − A Bu Bd] will have full
row-rank for alls (Yip and Sincovec, 1981) which, by
similar reasoning as for the state-space case, implies
that [H(s) L(s)] is irreducible. Therefore, also in the
descriptor case a mild controllability assumptions is
sufficient for the simplified design algorithm to be valid.

6.3 Transfer Function Model
A third common model description is transfer func-

tions:

y(t) = Gu(p)u(t) + Gd(p)d(t) + Gf (p)f(t)

whereGu(s), Gd(s), andGf (s) are rational functions
in s. To get a polynomial description like in (1), derive a
polynomial matrix fraction description (MFD), i.e. find
polynomial matricesD(s), Nu(s), andNd(s) such that

D(s)[Gu(s) Gd(s)] = [Nu(s) Nd(s)]

Then, the fault-free transfer-function model can be
stated on the form

Nd(p)d(t) + [−D(p) Nu(p)]
[
y(t)
u(t)

]
= 0

If the MFD is irreducible, meaning thatD(s) and
[Nu(s) Nd(s)] are co-prime, similar reasoning as for
the other two special cases gives that the simplified
design algorithm is applicable.

7. ILLUSTRATIVE EXAMPLE
The example used to illustrate the design procedure

is based on, but not identical to, a descriptor model
described in (Hou and M̈uller, 1996) and used for di-
agnosis in (Hou, 2000). The model is an idealized de-
scription of a three-link planar manipulator/robot. The
process works by moving the end effector repeatedly,

e.g. cleaning a facade. The manipulator is equipped
with three actuators that can apply torques at all three
joints. Three sensors is used measuring the height of
the end effector, the contact force in the x direction,
and a tracking signal. The fault-free model is stated on
descriptor form in (Hou and M̈uller, 1996) where also
numerical values for model parameters can be found.
The model has8 states: Cartesian coordinates of the end
effector (3 states), derivatives of the Cartesian coordi-
nates (3 states), and two Lagrangian multipliers.

In Section 1, the benefits and consequences of com-
ponent and object-oriented based modeling is dis-
cussed. To illustrate these matters, an additional sen-
sor and two fault models are added. The first statex1

is the height of the end effector. Now, assume that
an accelerometer is also attached to the end-effector,
thus ẍ1(t) is measured. Also, two faults are modeled,
one fault acting on the first actuator and a sensor fault
on the first sensor. Collecting the original model, the
additional sensor, and the fault models results in the
following model description:

pEx(t) = Ax(t) + Buu(t) + B1f1(t) (15a)
y1(t) = x2(t) + f2(t) (15b)
y2(t) = x7(t) (15c)
y3(t) = x8(t) (15d)

y4(t) = p2x1(t) (15e)

whereB1 is equal to the first column inBu. Note that
the new sensor-equation (15e) was straightforward to
introduce and no parts of the model equations had to
be modified. In a state-space/descriptor setting, addi-
tional states would have been necessary all depending
on the original system. This illustrates the modeling
principles discussed in Section 1 regarding modular-
ity, object-oriented, and component based modeling. If
the model was to be used for control, perhaps a state-
space/descriptor formulation would have been prefer-
able, but for diagnosis applications this general class of
models is equally useful.

Now, the model (15) can easily be stated on form (1)
with unknown variablesx(t), and observablesz(t) =
[yT (t) uT (t)]T . It is obvious that the model above is
not on state-space form and it can easily be verified that
it can not be transferred to state-space form either. The
model is not on descriptor form either. Although it is
possible to transfer the model to a descriptor form, it
is not a trivial operation and with the proposed design
algorithm, model equations (15) can be used directly
without any additional transformations.

In this example, two residual generatorsR1(p) and
R2(p) are to be designed, used for detection and isola-
tion of the two faultsf1 andf2. In the residual genera-
tors faultf1 andf2 should be decoupled inR1(p) and
R2(p) respectively, i.e. residualr1 should only react to
fault f2 and vice versa. For both designs, by computing
rank and greatest left divisor, matrix[H(s) L(s)] is seen
to have full row-rank and no zeros. This fact, together
with Lemma 1 gives that the simplified algorithm from
Section 3.2 is applicable. Full Matlab code for design
of a residual generator is given below. The code uses
two toolboxes, (The Polynomial Toolbox 2.5, 2001)and
control toolbox. Note that all operations are standard
operations in these toolboxes and no diagnosis specific
algorithms need to be developed and/or written. The
model matricesH(s) andL(s) are assumed to be de-
fined and the resulting residual generatorR(s) is in
state-space form (an LTI object in control toolbox).



1 Q = null(H.’).’*L;
2 gamma = [1 1 1];
3 c = (s+2)ˆ3;
4 [Ra,Rb,Rc,Rd] = lmf2ss(gamma*Q,c);
5 R = ss(Ra,Rb,Rc,Rd);

All steps are self explanatory except maybe line4 which
transforms a left MFD to a state-space description. For
both designs,Q(s) is a polynomial matrix of degree
2 with 3 rows, i.e. there exists exactly3 linearly in-
dependent consistency relations wheref1 respectively
f2 are decoupled. The two design choices that exists
in the design are the choice ofγ(s) (property b in
Theorem 1) and the choice of denominatorc(s) such
that the residual generator is stable and realizable on
state-space form. Here these choices are done ad-hoc
since no additional design specifications are given. The
row vectorγ(s) is selected to use all consistency rela-
tions withγ(s) = [1 1 1] and all poles of the residual
generator, i.e. zeros ofc(s), are placed ins = −2. For
the residual generator to be proper, it turns out that the
denominator polynomial need to be of at least degree
two, here a third order denominator polynomial is used.

A first step when evaluating the designs is to val-
idate that the desired decoupling properties are sat-
isfied. Computing the sizes of the transfer functions
from the decoupled faults to residuals in Matlab we
get ‖Gr1f1(s)‖∞ = 0 and ‖Gr2f2(s)‖∞ = 0. This
verifies that faultsf1 andf2 are decoupled inr1 andr2

respectively according to design specifications. Figure 1
shows transfer functions from faults to the residuals,
and it is clear that each residual will react according
to design specifications. Also, the cut-off frequency is,
as specified by the denominator polynomial, approxi-
mately2 rad/s. One important thing that has not been
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Fig. 1. Transfer function from faultf2 to residual
r1 (solid line), and from faultf1 to residualr2

(dashed line).

mentioned is numerical performance of the design pro-
cedure. This is not pursued further here, interested read-
ers is referred to previous works on both state-space
and descriptor models that shows good numerical per-
formance (compared to other approaches) on example
models (Frisk and Nyberg, 2001).

8. CONCLUSIONS
An algorithm for designing linear consistency rela-

tions has been presented. It is also shown how con-
sistency relations can be used to form residual gener-
ators. A main result is that the algorithm designs con-
sistency relations for any model described by general
linear differential-algebraic equations. Previous algo-
rithms have been restricted to models on transfer func-
tion, state space, or descriptor form. In other words,
the presented algorithm can handle all types of models
handled by earlier algorithms, but also a more general
class of models not handled by previous algorithms. To
be able to handle general linear differential-algebraic
models is important since they are often the result of
object-oriented equation-based modeling.

Also included is an extension to the stochastic case,
i.e. when the system is affected by noise with known
distributions. Here the goal becomes to find innovation
filters instead of consistency relations.

For most models, the algorithm becomes very simple;
it basically consists of one Matlab-command. Since the
algorithm is based on well studied algebraic manipu-
lations of polynomial matrices, the suggested Matlab-
implementation will also have good numerical perfor-
mance.
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