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1. INTRODUCTION AND OBSERVER
FORMULATION

State observation for nonlinear ODE models is
a standard problem and has been studied for
quite some time and is still an active area of
research. The focus of this work is to design
observers for models containing both dynamic
and algebraic equations, so called differential-
algebraic equations (DAE) or descriptor models.
State observation for linear DAEs has been stud-
ied by e.g. (Nikoukhah et al., 1992) using the
Kalman filter. Non-linear DAEs are considered in
e.g. (Becerra et al., 2001) where an extension
of the Extended Kalman Filter is used and also
by (Zimmer and Meier, 1997), where the original
DAE model is rewritten as an ODE on a restricted
manifold (Rheinboldt, 1984). Other works include
(Boutayeb and Darouach, 1995) that uses lin-
earization techniques and (Kidane et al., 2003)
that, in addition to a linearization procedure,
employs index reduction techniques to cope with
high index models. In (Kaprielian and Turi, 1992)
a Lyapunov based approach is used in the design
of the observer.

1 Funding support from the Swedish Foundation for
Strategic Research and the Center for Industrial Informa-
tion Technology are gratefully acknowledged.

Now, our approach is introduced and the observer
structure is presented. Usually, an observer is
formulated as an ODE, ˙̂x = k(x̂, u, y), for some
vector field k. However, this work is an extension
of (Nikoukhah, 1995; Nikoukhah, 1998) where it
is noted that the requirement that the observer
must be formulated as an ODE can be relaxed
to a class of index 1 DAEs. This is due to the
fact that low index DAEs are no more difficult to
integrate than ODEs (Hairer and Wanner, 1996).
First, we briefly present the idea proposed in
(Nikoukhah, 1998) for ODE models, and then our
observer formulation for DAE models.

Consider the state-space model given by

ẋ = f(x, u)

y = h(x)

where x ∈ R
n is the state, y ∈ R

m the measure-
ment vector and u ∈ R

k the known control input.
An often used observer is then

˙̂x = f(x̂, u) + g(λ)

0 = y − h(x̂) + λ

using a, perhaps not so common, formulation
using a slack variable λ, i.e. the function g(λ)
is the observer feedback used to ensure stability
of the estimator. In (Nikoukhah, 1998), such a



formulation is used to to define a class of observers
in the form

˙̂x = f(x̂, u) + hx(x̂)T λ̇ + G(x̂, u)λ (1a)

0 = y − h(x̂) (1b)

This observer is, under some mild technical as-
sumptions, shown to be a DAE of index 1. The ob-
server has some connections to reduced observers
but does not inherit the possibly poor noise prop-
erties of reduced order observers. A discussion on
this and other properties of the observer can be
found in (Nikoukhah, 1995; Nikoukhah, 1998).

Here, a similar approach is adopted for designing
state estimators for the following class of semi-
explicit models

ẋ1 = f(x1, x2, z, t) (2a)

0 = h(x1, x2, z, t) (2b)

where x1 ∈ R
n1 and x2 ∈ R

n2 are state-variables
and z ∈ R

nz the vector of known signals, and h ∈
R

m. The vector z includes both measurements and
control signals and possibly other known quanti-
ties. Equation (2b) can include both measurement
equations and algebraic constraints. Exact condi-
tions on f and h are given in Section 3 and it is
for example assumed that the model (2) has index
1.

The observer formulation used here for estimating
xi in (2), based on the known z, is

˙̂x1 = f(x̂1, x̂2, z, t) + F (t)λ̇ + G(t)λ (3a)

0 = h(x̂1, x̂2, z, t) (3b)

where λ ∈ R
r and r = m−n2. The observer gains

F and G are the available design variables, which
have to be chosen such that the observer has index
1 and provides a stable state estimate.

The outline of the paper is as follows. First,
Section 2 shows how to ensure that the observer
has index 1 such that the numerical integration
of the observer is generally possible. Secondly,
local estimator stability is explored in Section 3.
In Section 4, the design method is summarized
and exemplified on a simulation example based
on components in an air suspension system of a
heavy duty truck.

2. OBSERVER INDEX

The objective of this section is to give conditions
on F such that the observer (3) is a DAE with
index 1. Before we can do that, some auxiliary
subspaces of R

n1 have to be introduced. First,
define the space

V = {x1 : (x1, x2)
T ∈ N(hx) for some x2} (4)

This means that V is the truncation of the null
space N(hx) to R

n1 where hx denotes the partial

derivative of h with respect to x. The first lemma
shows that the dimension of the space is preserved
under this truncation.

Lemma 1. If hx has full row rank and hx2
has full

column rank, then dimV = dimN(hx).

PROOF. Since hx has full row rank and r = m−
n2, we have

N(hx) = span {x1, . . . , xn1−r} (5)

where {x1, . . . , xn1−r} is a linearly independent
set. Using the notation

xi =

(

xi
1

xi
2

)

it follows from the definition of V that

V = span {x1

1
, . . . , xn1−r

1
}

We have to prove that x1

1
, . . . , xn1−r

1
are linearly

independent, so assume therefore that
∑

i

µixi
1

= 0 (6)

It follows from (5) that
∑

i

µixi ∈ N(hx)

and consequently

hx1

(

∑

i

µixi
1

)

+ hx2

(

∑

i

µixi
2

)

= 0

Using that hx2
has full column rank and assump-

tion (6) we obtain
∑

i

µixi
2

= 0

Together with assumption (6), this implies that
∑

i

µixi = 0

It follows that µ1 = . . . = µn1−r = 0, since
x1, . . . , xn1−r are linearly independent. Hence
x1

1
, . . . , xn1−r

1
are linearly independent as well,

which proves the lemma. �

Let W be an algebraic complement of V in R
n1 ,

i.e. W is a subspace such that each u ∈ R
n1 has

a unique representation u = v + w where v ∈ V
and w ∈ W. Let Pv and Pw denote the associated
projections defined by v = Pvu and w = Pwu.
Now we can state and prove the main result of
this section.

Theorem 1. Suppose that hx has full row rank
and that hx2

has full column rank. If F (t) is
chosen so that

Im F (t) = W (7)

then observer (3) has index 1.



PROOF. Differentiate (3b) with respect to t

hx1

˙̂x1 + hx2

˙̂x2 + hz ż + ht = 0

which combined with (3a) can be written as

[

I 0 −F
hx1

hx2
0

]





˙̂x1

˙̂x2

λ̇



 =

(

f + Gλ
−hz ż − ht

)

(8)

That the observer has index 1 is equivalent to that
the matrix on the left hand side is invertible. It is
therefore sufficient to show that the homogeneous
problem

x1 − Fλ = 0 (9a)

hx1
x1 + hx2

x2 = 0 (9b)

only has the trivial solution x1 = 0, x2 = 0 and
λ = 0. It follows from (9b) that x1 ∈ V, and
Fλ ∈ W according to (7). This together with (9a)
implies that x1 = Fλ = 0 since W is an algebraic
complement of V. Moreover λ = 0 since Fλ = 0
and F has full column rank. Finally, x1 = 0 and
(9b) implies that hx2

x2 = 0 and consequently
x2 = 0 since hx2

has full column rank. This proves
that the matrix is invertible and that the index of
the DAE is equal to 1. �

3. STABILITY ANALYSIS

Given that F is chosen according to Theorem 1,
we here present results that give conditions on G
such that local observer stability is ensured. The
main result of this section is Theorem 2 where it is
shown that, under certain conditions, local stabil-
ity of the non-linear DAE can be deduced from the
stability of the linearizations of the error dynamics
in either Lemma 2 or Lemma 3. Lemma 2 presents
a straightforward expansion of the estimation er-
ror about the origin. In Lemma 3 a change of
variables is introduced in this expansion and the
stability problem is reduced to study an ordinary
differential equation.

Lemma 2. Assume that f and h have bounded
first and second order partial derivatives with
respect to x. If the estimation error x̃i = xi − x̂i

is sufficiently small, then

[

I 0 F
0 0 0

]





˙̃x1

˙̃x2

λ̇



 =

[

fx1
fx2

−G
hx1

hx2
0

]





x̃1

x̃2

λ



+O(‖x̃‖2)

(10)

PROOF. Straightforward expansion of the func-
tions f and h about (x̂1, x̂2) gives the result. �

In the stability analysis we make the following
assumptions:

Assumptions 1. Let x denote the solution of (2).

• (hxhT
x )−1, (hT

x2
hx2

)−1 exist and are bounded
in a neighborhood of (x, z) uniformly in t.

• The functions f and h have bounded first and
second order partial derivatives with respect
to x in a neighborhood of (x, z) uniformly in
t.

• F , Ḟ , G, (FT F )−1, Pv and Pw are bounded
uniformly in t.

Note that the first assumption imply that hx has
full row rank and hx2

has full column rank which
in turn implies that the model (2) has index 1.
The geometrical interpretation of the conditions
on the projections Pv and Pw is that the angle
between the subspaces V and W is bounded from
below.

With the objective to reduce the stability problem
into a study of an ordinary differential equation,
we introduce a change of variables. The following
transformation is considered:





x̃1

x̃2

λ



 = Q





ξ1

ξ2

ξ3



 (11)

where

Q =





Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33



 =





Pv 0 −F
Pe I 0

(FT F )−1FT Pw 0 I





(12)
Here Pv and Pw are the projections introduced in
the previous section and Pe is a matrix such that

Im

[

Pv

Pe

]

= N(hx)

The choice of new state-variables is motivated by
the following result.

Lemma 3. Assume that Assumptions 1 are ful-
filled and that ξ is defined by the transformation
(11) with the transformation matrix (12). Then

ξ̇1 = A1(t)ξ1 + O(‖ξ1‖2)

with

A1 = fx1
Q11 + fx2

Q21 − GQ31 − Q̇11 − FQ̇31

and

ξi = O(‖ξ1‖2), i = 2, 3

PROOF. See (Åslund and Frisk, 2004). �

It is not always the case that stability of a lin-
earization of a non-linear DAE implies local stabil-
ity of the original DAE. However, under Assump-
tions 1 either one of the linearizations

[

I 0 F
0 0 0

]





˙̃x1

˙̃x2

λ̇



 =

[

fx1
fx2

−G
hx1

hx2
0

]





x̃1

x̃2

λ



 (13)



ξ̇1 = (fx1
Q11 + fx2

Q21 − GQ31 − Q̇11 − FQ̇31)ξ1

(14)
from Lemma 2 and Lemma 3 can be used to ensure
local observer stability.

Theorem 2. Suppose Assumptions 1 are fulfilled,
x̃(0), λ(0) are sufficiently small, and that the lin-
earized error dynamics (13) or (14) is asymptoti-
cally stable. Then x̃ and λ tend to 0 as t tends to
infinity.

PROOF. According to Lemma 3 it holds that
stability of

ξ̇1 = A1(t)ξ1 + O(‖ξ1‖2)

implies local stability of the error dynamics. For
ODEs, contrary to DAEs, it is always the case that
stability of the linearization implies local stability
of the non-linear ODE. Thus, local stability of error
dynamics is implied by the stability of

ξ̇1 = A1(t)ξ1

i.e. stability of (14).

The change of variables from Lemma 3 in the
linearization (13) gives

ξ̇1 = A1(t)ξ1 + A2(t)ξ2 + A3(t)ξ3 (15a)

0 = hx

(

−Fξ3

ξ2

)

(15b)

It can be shown that (15b) implies ξ2 = 0 and
ξ3 = 0. Thus, stability of (13) implies stability of
(14) which completes the proof. �

4. DESIGN SUMMARY AND A SIMULATION
EXAMPLE

This section will briefly summarize the design pro-
cedure and apply the method on a small example
inspired by an air suspension system in a truck
and also provide some simulation results.

4.1 Design summary

Initially it is assumed that the model is on form
(2) and that Assumption 1 is fulfilled, then the
observer is given by (3). There are two design
variables in the observer, observer gains F and
G, where the former is used to ensure that the
observer has index 1 and the latter is used to
ensure stability of the state estimator. The design
of F and G can be done in two steps:

• The design of F is done using Theorem 1
by computing an algebraic complement W
to the space V defined in (4) and letting
Im F (t) = W.

• When F has been determined, G is chosen
such that the conditions in Theorem 2 are
satisfied. There are essentially two ways to
perform the design.

A first design approach is to directly use a
linearization of the observer dynamics which
results in a linear DAE (13) for which linear
DAE observer methodology can be applied.

A second approach is to compute a trans-
formation, given in the proof of Theorem 2,
which finds an ODE (14) for which any ob-
server design technique can be employed. It
is also clear from Theorem 2 that a constant
F is advantageous since then both Q̇11 and
Q̇31 in (14) vanishes which makes the design
easier.

4.2 A small simulation example

A principle sketch of the example system is shown
in Figure 1. The system consists of a bellows
and interconnected components. Basic operation

Pressure
Feed

ζ

Ambient
Pressure

Mg

V,p

Fig. 1. Principle sketch of the bellows.

is such that using a height sensor, a control
system, actuating valves and a pump, the bellows
is controlled at a user controlled preset height.
The model equations can be written as

Mζ̈ = −Mg + Fb(p, ζ) − µζ̇ (16a)

pV (p, ζ) = mairRT (16b)

ṁair = u1

Pfeed√
RT

Ψ(
p

Pfeed

) − u2

p√
RT

Ψ(
Patm

p
)

(16c)

0 = y − ζ (16d)

where ζ is the height of the bellows, M the
mass load, µ a friction/damping coefficient, p the
pressure inside the bellows, and mair the mass of
air inside the bellows. The signals u1 and u2 are
control signals for valves letting air in and out
of the bellows and y is the height measurement
signal. The functions Fb(p, ζ) and V (p, ζ) are non-
linear maps of the force and volume respectively
of the bellows as a function of pressure and height.



These nonlinear maps are provided by the bellows
manufacturer and is obtained by mapping bellows
characteristics in a test bench. The function Ψ(·)
is a non-linear function that describes the flow
in and out of the bellows past the valves, see
(Heywood, 1988, Appendix C) for details. Here,
the flow is modeled as compressible flow of a
perfect gas through a venturi. In the simulations,
the ratio of pressures before and after the valve
is both above and below the critical pressure
ratio. This means that both sonic and subsonic
flow velocities are present and therefore a strong
nonlinearity need to be considered.

It is straightforward to put the model in the form
(2) using z = (y, u1, u2) and the state variables

x1 = (ζ, ζ̇,mair)

x2 = p

Note that there is no dynamic equation for the
pressure p and that it is non-trivial to obtain
an explicit expression of p from (16b) since p is
included in the mapped function V (p, ζ).

For the design of observer gain F , Theorem 1 is
used. First, observe that

hx =





x2

∂V

∂x11

0 −RT
∂

∂x2

(x2V )

−1 0 0 0





clearly has full row-rank. For physical reasons it
holds that ∂

∂x2

(x2V ) > 0 and it follows that hx2
,

i.e. fourth column in hx, has full column-rank. It
is then straightforward to verify that the space V
defined in (4) and an algebraic complement W are
given by

V = span {





0
1
0



 ,





0
0
1



}, W = span {





1
0
0



}

Then, Theorem 1 gives that the observer gain F
can be chosen as

F =





1
0
0





which ensures that the observer has index 1.
For the stability and design of observer gain
G = (g1(u), g2(u), g3(u)), the linearized dynamics
is computed using Theorem 2 and (14). Thus,
A1(t) = fx1

Pv + fx2
Pe−G(FT F )−1FT Pw where

Pv =





0 0 0
0 1 0
0 0 1



 , Pw =





1 0 0
0 0 0
0 0 0





Pe =

[

0 0
RT

∂
∂x2

(x2V )

]

This gives that

A1(t) =





−g1 1 0
−g2 −µ/M q1

−g3 0 q2





where q1 and q2 are defined as

q1 =
RT

M

∂Fb

∂x2

∂
∂x2

(x2V )

q2 =

√
RT

∂
∂x2

(x2V )

(

u1Ψ
′(

x2

Pfeed

)

+u2(PatmΨ′(
Patm

x2

) − Ψ(
Patm

x2

))

)

Using this expression, the observer gain G can be
determined by e.g. pole placement in a suitable
operating point or using more elaborate schemes
using, Kalman filters, gain scheduling techniques
etc. In this small example, the observer gain G
is determined by placing the observer dynamics
poles in −10 in the operating point ζ0 = 3.5 dm
and p0 = 5 bar. To make the simulation a little
more realistic, measurement noise is added and
some modeling errors are introduced (+10% for
the loaded mass M and -10% for the damping co-
efficient µ). Figure 2a shows the height of the bel-
lows during simulation and also the measurement
signal y to show the level of noise. The estimation
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(a) Height of bellows during simulation. The solid line is
the measured height and the dashed the true height.

0 1 2 3 4 5 6 7 8 9 10
3

4

5

6

p 
[b

ar
]

0 1 2 3 4 5 6 7 8 9 10
0.08

0.1

0.12

0.14

0.16

m
ai

r [k
g]

0 1 2 3 4 5 6 7 8 9 10
−0.1

−0.05

0

0.05

0.1

λ

t[s]
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true values and dashed the observer estimate. The lowest
plot shows the observer relaxation variable λ.

Fig. 2. System and observer simulation.



of the height ζ of the bellows is given by the mea-
surement signal y in Figure 2-a since, according
to the observer equation (3), the measurement
equation is part of the algebraic constraints. For
the simulation all DAEs were integrated using the
Matlab solver ode15s. The example shows that, at
least in the demonstrated case, how the designed
observer provides good estimates in the presence
of noise and significant modeling errors.

5. CONCLUSIONS

In this paper we have studied state estimation
for semi-explicit differential-algebraic models. The
proposed observer is formulated as a DAE. Con-
ditions on the design parameters in the observer
are derived in Theorem 1 such that the index of
the observer is 1. This result ensures that we are
able to integrate the observer easily. It is shown
in Theorem 2 that we can use the linearization
of the error dynamics to obtain local stability
of the observer. This provides one possibility to
design the observer by studying the linearized
system and using available linear DAE techniques.
An alternative way is to introduce a change of
variables, which reduces the stability problem into
a study of stability of an ODE. Therefore, general
methods such as pole placement or gain schedul-
ing techniques can be used.
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