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Abstract: Fault diagnosis is important for automotive vehicles, due to economic reasons
such as efficient repair and fault prevention, and legislations which mainly deals with safety
and pollution. In embedded systems with dozens of electronic control units that states local
diagnoses, it can be arbitrary difficult to find which combination of local diagnoses that points

at the correct faulty components. An algorithm is presented that both finds the diagnoses
that in themselves are complete and chooses only those diagnoses that are more likely to be
correct, this restriction is wanted due to the limitations in processing power, memory, and
network capacity. The embedded system in a Scania heavy duty vehicle has been used as a
case study to find realistic requirements on the algoritBopyright©) 2005 IFAC
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1. INTRODUCTION merged to form the same global diagnoses as in the
first approach, however, this leads also to an exponen-

_ ] ) tial growth of global diagnoses.
Most modern automotive vehicles include several ) ] . o .
electronic control units(Ecu) which communicate 10 reduce this combinatorial explosion itis sometimes

over an electronic network. Eatu is usually con-  Useful to only consider the diagnoses that are more

nected to one or severabmponentse.g. sensors and likely to be correct. Which diagnoses that are more
actuators, and to make sure that the components ardikely could be decided in several different ways. In

operating correctly, they anmonitoredby the ECUs. _this paper, the diagnoses with the smallmdinality_,
plex, are used to perform the monitoring. considered to be the most likely.

The results of the tests can be used in different ways.An algorithm is presented that calculates tgbal
The most direct approach is to collect all results in a diagnoses with minimal cardinality from the local di-
central unit and then use the results to calculate the@gnosesTo reduce the complexity, the global diag-
global diagnoseswhere each global diagnosis states Noses are divided into smaller sets of diagnoses, where

a diagnosis for the complete system. Since each of the2@ch of these sets are guaranteed to be free of complex
global diagnoses points at a set of possibly faulty com- rélations to the others.

ponents, they are easy to understand. Unfortunately,the algorithm can be run in a central diagnostic com-
the number of global diagnose_s grows exponentially puter, or as presented here, it adistribute the com-
both with the number and the size of the results from putation intense tasks to the locatus. Often, there
the tests. are limitations in both processing power, memory, and
An alternative is to directly calculate thecal diag- network capacity, therefore, this possibility makes the
nosesfrom the results in eachcu. Since several of  algorithm more adaptable.

these sets of local diagnoses might include the same

components, a combination of local diagnoses mustl.1 A Typical Embedded System

be used to correctly point at the faulty components.

Since the correct combination might be difficult to Many vehicles have aontroller area networkCAN)
find, the local diagnoses in the differemtus can be  which connects severacus to each other. For ex-
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Fig. 1. The embedded system in a Scania vehicle.  Inavehicle, the agents are the software programs that
are implemented in thecus. The components are the
sensors, actuators, pipes, etc., which are monitored by
the agents. The output signals, which are values from
sensors, to actuators, or from calculations, are made
available to the other agents over the network.

ample, Fig. 1 shows a configuration of the embedded
system used in the current Scania heavy-duty vehi-
cles. This system includes three sepae buses
and there are betwe&® and30 Ecus in the system,
depending on the truck’s type and outfit, and between
4 and110 components are connected to eachl. The Each component has a general fault mode and a no-
Ecus’ cpus have typically a clocking speed 8fto fault mode. In this paper it is assumed that the gen-
64 MHz, and a memory capacity dfto 150ks. The eral fault mode does not have a model, and therefore
current Scania diagnostic system includes betwi®en the notation used in for exampleDE can be em-
and1000 diagnostic tests in ea@tu. ployed (Hamscheet al,, 1992).

1.2 Related Work
3. RELATION BETWEEN LOCAL AND GLOBAL

Diagnosis for embedded systems can be centralized DIAGNOSES

or distributed. Most research has been aimed at the o
centralized problem, where a single process collectsA diagnosis is represented by a §2tC C and states
relevant data from the system and states global diag-that the components € D are in the faulty mode,
noses, see for example (Hamscheal, 1992). while the remaining components are not in the faulty
o ) . . mode. A minimal diagnosis is a diagnosis where no
Distributed diagnosis has mostly been discussed forproper subset is a diagnosis. The minimal diagnoses
discrete event dynamic systems, see for example (Lunzharacterize all diagnoses, therefore unless explicitly
and Schoder, 2001). One paper that discusses dis-stated, adiagnosisis here used to denote a mini-
tributed consistency based diagnosis is (Rebsl,  mal diagnosis. Considering minimal diagnoses, the
2003) where an algorithm for distributed diagnosis sjmilarity-equivalence~ is used to show equivalence.
that uses both consistency and abduction based di- _ o ) )
agnosis (which is another type of diagnosis) is pre- A local diagnosisis a diagnosis statgd by an agent.
sented. The algorithm stipulates how conflicts should !t states that some components, which are somehow

be exchanged such that each agent can state globdnvolved in the operation of the agent, are in the faulty
diagnoses. mode. Aglobal diagnosiss a diagnosis that states the

o . ) . mode of all components in the complete system.
Distributed diagnosis requires a overall network ar-

chitecture for communication, storage, etc. Such anDue to the combinatorial explosion when searching
architecture useful for diagnosis and control is being for global diagnoses, it is preferable to only consider
developed within thesacic project and is presented Some more likely sub-set of global diagnoses. One
in (Kbppen-Seliger, 2003). The aim for their projectis Such set is theninimal-cardinality(mc) diagnoses

Fo develop a general purpose architecture for diagnosis pme 2 p | ID| = min|D|,D € D)

in complex systems. DeD



for a setD, where|D| is the number of components from the other. Such a set of agents is here denoted a
included inD. For a given set of diagnoses, the num- module A set of agents4 is a module if for all other

ber of minimal cardinality diagnoses are often much modulesA;, AN A; = 0 and (U iUpepa D) N

less than the number of diagnoses. These diagnoseac.1, Upepr D) = 0. Given a moduleA, the

can therefore be used to reduce the combinatorial ex-module diagnoseis D™°¢ £ WaciDa.

plosion that arises when several sets of diagnoses are .

merged together. Notice that if all components fail Ex@mple 4: [Module diagnosesf Dy = {{A, Bl},
independently with the same probability, then the most 22 = {{B, C}}, andDs = {{E}}, then for the modules

probable global diagnoses will simply be the global 1 = {A1,A2) ?nd A mzod{A3}' it follows that
minimal cardinality diagnoses. Dy ={{A, B, Clj andD3% = {{E}}. ¢

In Section 1, the merge of different sets of local GVen them:th set of module diagnoses, timeod-

diagnoses was discussed. Thergingof two sets of ule minimal cardinality diagnose@®mMcD) is denoted

. . . mod, mc H
diagnose®; andD; is defined a®; WD, £ (D, U D . In contrast to the case with merged local
D,|D; € D;,D, € D,}, i.e. an addition of a union minimal cardinality diagnoses, it can be proven that
compared to the definition of Cartesian product. It can D™ ~ g pmedme

be proved that the following relation holds . . .
P 9 This strongly motivates the use of module diagnoses.

D ~ Lg DA
where the seD is the global diagnoses aiit is the 4. FINDING ALL MODULE MINIMAL
local diagnoses in agent. CARDINALITY DIAGNOSES

Example 2: [Merge of local diagnosesfonsider

) After each agent has creatéatal diagnosesthese
the local diagnose®; = {{A,B},{C}} andDD;, =

X could be merged tmmMcDs. To calculate theumcbs
{{B}}. The gl?bal diagnoses ar® ~ D1WD2 = he following could be done: Divide the agents into
{A,B}L,{C, B} © modules so that the merge of the corresponding local

Unfortunately, it is not the case that a merge of the lo- diagnoses will becomemcps; In each module, sort

cal minimal cardinality diagnoses results in the global the agents into a sort order such that the complexity
minimal cardinality diagnoses, i.e. of the upcoming merge is reduced and then merge the

local diagnoses according to this order.

DM A WDRe

A A direct and simple approach to divide the agents into
whereD ¢ is the mc diagnoses in agefit modules is to first calculat®A = Upp, D for each

Example 3: [Merge ofd'¢] Consider the example a9ent, and_then choose the minimal modudesuch
above, wher@™c = {{C}} andDI*¢ = {{B}}. The that| J, 1D is disjoint from all other such sets.

merge givesD** WD = {{C,B}}, while D™¢ = A simple ordering is to choose the agent with largest
{{A,B},{C,B}}, i.e. the global mc diagnosifA,B}  minimal cardinality diagnosis to be first and then the
was not included in the merge of the local minimal rest follows in decreasing size.

cardinality diagnoses. o o o
A merge can be done by first finding a low lower limit

on the size of themmcbs and then merge those of the

local diagnoses that are smaller or equal to this limit.
If no MmcDs was found, then the limit is increased and
)}he merge is started again from the first agent.

3.1 Representation of Global Diagnoses

For the diagnoses to be easily understandable the
should be as small as possible while being free of However, the computation time of this approach can
complex relations to other diagnoses. One such typebe greatly improved by further reducing the size of the
of diagnoses that are free of complex relations, are themodules, sorting them into a better order, and finally
global diagnoses. These might however become quitemerging the diagnoses such that the total number
large due to the inclusion of all local diagnoses. of merges is minimized. These improvements have
been implemented in the algorithm described in this

One way to reduce the size of the global diagnoses is :
section.

to represent them asanjunction of smaller disjoint

parts of diagnosesSince these smaller parts are dis-
joint, the global diagnoses will simply be a merge of
all these smaller parts, i.e. a simple relation would ex-

ist'betwefan the parts ofdiagnoges. From atechniciansrhe improved algorithm consists of the same three
point of view they are more easily understandable than main parts as the approach described above. Firstly

the complete set of global diagnoses. algorithm FindSubGraph is used to find a gragh
One approach to achieve this is to merge the localwhosesub-graphs represent the modulédgorithm
diagnoses from a sub-set of agents, into a sub-set ofFindR is then used to sort the agents in a sub-graph
global diagnoses, so that each such sub-set is disjoininto a merge orderR. The agents in the module are

4.1 Main — Algorithm 1
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ordered in such a way that the complexity of the re-
maining algorithm is reduced. Finally, the local di-

agnoses are with algorithm UpdateAgent iteratively .

merged into sets afiMCDs.

11:
The improvements over the first approach are that ;.
the modules are divided into smaller sets, the merge

Algorithm 1 Module minimal cardinality diagnoses

Require: All local diagnosed) 4 for all agentsA.
Ensure: All MMCDs pmod.me,

1: G := FindSubGraphA)
2: forall G € Gdo

[Graph of sub-graphs.

3:  R:=FindR(G) [Merge orderR = (Aq,...,An).]
4: L :=alower bound on the cardinality for the MMCDs
5. k:=0A0:=0

6: repeat

7: ki=k+1

8:

Lnew .= UpdateAgentAy, Ax _1,L)
[N stored inAy includes the new diagnosgs.
if LW > [ then

10: k:=0, L :=L"eW [Increase and restajt
end if
until k=n [An isthe lastinR.]

[Died me — N stored inAn, for the m:thR]

orders are chosen in a better way, and that the mergel3: end for

algorithm is much more efficient because it both keeps

track and uses what have been done in previous runs.4.2 Find Sub Graphs — Algorithm 2

The algorithm can belistributedin such a way that
Algorithm 1, FindSubGraph, and FindR are evaluate
in some coordinating agent, while the computation
and memory intensive UpdateAgent eésaluated in
the corresponding agent

Now consider the main Algorithm 1 where an ordered
set is represented hy) and an unordered set By}.
Firstly, the graph is found and a merge orderis
calculated from each sub-graph.

The algorithm starts with a low lower limi on
the cardinality of theamcps. The first approximation
of £ is that themmcbs must be at least as large
as thelargest local minimal cardinality diagnosis,
considering all agents iR. After the limit has been
found, an evaluation of UpdateAgent is performed in
each agent or until an agent returns a new valug .on

Algorithm UpdateAgent calculates those diagnoses

with cardinality less than or equal t6 that would
be formed if the local diagnoses in agedts to Ay,

which also have a cardinality less than or equalto
was merged, the set is denotsdin the algorithm. If

d In the direct approach the agents was divided with

respect to all components in all diagnoses. This is
however a pessimistic approach since some of the
diagnoses might have a cardinality higher than the car-
dinality of themmcbs, which means that it is unnec-
essary to consider them when deciding the modules.

The main idea in Algorithm 2 is to find an upper limit
U of the cardinality of themmcbs, and use this to
reduce the size of the modules.

A first value of the upper limit can be chosen as
U= rciminpep,|DI|. A lower upper limit is
found by making a pre-merge of all minimal cardinal-
ity diagnoses. To reduce the complexity it is possible
to only consider the minimal cardinality diagnoses
after each merge, i.&{ := miny .5 |D| where

D= (... (DR WDRT) ™ Wb )™ . ..).
The later limit will be used in this paper.

For each sub-graph found, Algorithm 2 is called re-
cursively so that each sub-graph is, if it is possible,

no diagnoses could be found with cardinality less than divided into even smaller sub-graphs.

or equal toL, a new larger, = £™¢" is calculated
and a new search begins froAy. This new L is

chosen such that new merged diagnoses will be found

at the next iteration.

When the last agent calculates a non-emytyhis set
of diagnoses are themcps for this module.

Example 5: [Algorithm 1]Consider Fig. 3 where

the mmcDs should be found for the merge order
(As3,A4,Az). Algorithm 1 sends the UpdateAgent
command with inputAs,®, £) to agentAj3, which

extracts the diagnoses with cardinality lower than or

equal tol, denotedN” 3, Thereafter, the UpdateAgent
command is sent td.4, which collectsNA3 over the
network and merge it with its own local diagnoses
with cardinality less than or equal ; those of the

Example 6Consider a system with five agents includ-
ing the local diagnoses

Dy ={A}} D; ={{B, CL,{D}}
D3 = 1{8}3 {C» Da Ev F}} ]D4 = {{C}a {D}}
Ds = {{F}}

When using Algorithm 2D = {{A,D,B,F}} and

U = 4. The graph shown in Fig. 4(a) is created. It is
divided into two sub-graphs which corresponding sets
of agents are used in the next iteration. The first sub-
graph only includes agenit; .

For the second sub-graph, the linif = 3 and
the diagnosi§C, D, E, F} can therefore be ignored.
The result is the graph in Fig. 4(b) which is further

merged diagnoses with cardinality less than or equaldivided into two sub-graphs. The final result is that

to £ is stored inNA4. After some iterations, the end
result is theumcps pmeod.me, o

the agents are divided into three sub-graphs including
{A1},{A2,A3,Aql, and{As]. o



Al A, As Ar As Algorithm 3 FindR
Input: Sub-graphG(VA, VE E).
Output: A merge ordeR which is an ordering o,
F

A B C D E 1: if [VA| = 1then

(a) Original graph. 2. R:=(VA) [The vertexvA € A]
3: else
SNV A S 4 (AL A argming A, «lP(As,Ay),minpep,, D)
5 R:=(A{,A)) [First ordered sei.
6: G:=join(G,A;,A;) [A; mergedA;.]
B ¢ D F B ¢ D 7:  while [R| < [VA|whereR ={A1,...,A¢nq)do
(b) Updated graph. (c) Graph for Merge order. 8: A e argmin o(I'(A, Aena),MiNpep, DI)
Fig. 4. The graph representing a system with five 1%:. gff {;"S(S’A' Aena) [Ordered s[:t\eﬁgwj;\)meiji'}
agents and six components. 11:  end while [All A € VAisincluded inR]
Algorithm 2 FindSubGraph 12: end|f
Input: Set of agents/* C A. Require the local diagnosds, Example 7: [Algorithm 3[Consider the first sub-graph
stored in the local agents. : : : : :
Output: The graphG consisting of sub-graph&, where a sub- in Example 6 and Flg' 4(b?' Using the algorithm with
graphG — (V4, V€ E). the sub-graph as input, finds that and A4 have
1: U :=a upper bound on the cardinality for the MMCDs. the least number of components in common, i.e. zero
2: Dp :=={D||D| <U,D € D } for each agent components which givex(A3,A4) = 1; since this
s Xé‘ = {V*|Da #0} is the lowest weightR = (A3, A4). After this A
4: =Uaeva UDGADA D B is merged toA4 which gives the graph in Fig. 4(c).
2' E: {((\}/\ACUCA; V4, c€Upes, D Graph AgentA , has three components in common with
. = N N rapn| f . . _
7 Find subgraph € G. and is added t&, which giveR = (A3, A4,A2). ©
8: if |G| > 1then B _ [More than 1 sub-graph.
9: G :={FindSubGraphv4)| V4 € G, G € G} [Recursivd. .
10 end if 4.4 Update Agent — Algorithm 4
4.3 Finding Merge OrdeiR — Algorithm 3 When the main algorithm should evaluate UpdateAgent

) ) ) ) with input (A, Ax_1,£), it sends this command
The calculation of a merge ord@ris an interesting  to agentA,. The agent that receives this command
problem. By changing the merge order, the complexity should find the diagnoses with cardinality less than or
of Algorithm 4 might change dramatically. The input equal to£ in the setsr* , Da. Since ageni
=/\1

is one of the sub-graphs that was found with Algo- nas glready calculated the diagnoses with cardinality

rithm 2. The output is an ordered RtC A, where less than or equal td from wﬁ\\k:;\]1 DA, the desired
eachR represents a module.

diagnoses can be calculated from the resuldin ;
When calculatingk, the main idea is that the lower merged withDx, .

bound £ in Algorithm 1 should be raised as soon
as possibly towards its final value. This to reduce

the complexity when the local diagnoses finally are oy cajculates those diagnoses that have not been
merged. To rais€ as fast as possible, the sets of local ¢qnsiqered in previous runs, i.e. those with cardinality
diagnoses should have fesv components in common between the old and the nefv

and the minimal cardinality local diagnoses should . _
be as largeas possibleTo compromise between the The main parts of the algorithm are the merge of

In the direct approach, this is repeated each time that
L is raised. Algorithm 4 is more efficient, since it

number of common componentsand the cardinality ~ theold and new global diagnosdsr {A1, ..., A1}
r of the diagnosesy(c,r) = (c + 1)/r% is used. with the new local diagnose§IEt), and the merge of
the new global diagnose$or {A4,...,Ax_1} with

The.number of common compone.nts is decided bY tha o1d local diagnosegTF). The merged diagnoses
looking at the number of connections between the with cardinality greater tharf are stored inM for

agents and the components in the graph. For this iSaier consideration, i.e. if is later raised then parts

functionT used, it gives the number of components ¢ nq might be included in the new. Variablel is

that are shared between two agents the number of times that the current agent has been
IA71,A2) = |{c|(A7,c) € E,(Az,c) € E}. called with command UpdateAgént.

The new global diagnoseé$ is saved for use by agent
"Ari1. If Ay is the last agent and # () thenN is the
get ofMMCDs, i.e. the wanted result.

After two sets of local diagnoses have been merged
the merged set might include components from both
sets of local diagnoses. Therefore, the agents and th

corresponding components should be joined in the Examgle 3}: [Algoritglm t4 ]:’ind p?rtf of ﬁlgolrzithm 1|] .
h. A ioin of i hG — (VA VC E onsider the second set of agents found in Example 7,
grap Join ofAz to Ay in graphG (V_ V5 E) with the sort orderR = (A3, A4,A2). The local
join(G, A, A,) £ (VA\A,, VE E) diagnoses for these agents are

whereE 2 E\{(A,c)|Vc} U{(A1,¢)|(Az,c) € E). D, ={{B,C},{D}} D; ={{B},{C,D,E,F}} D4 ={{C},{D}



Algorithm 4 UpdateAgent

Input: Ay, Ax_7 andL. RequireD, stored in agenf\, andN
stored in agenf\,_ .
Output: New sub-set ofD™°d for agents{Aj,..., Ay} with
cardinality< £ stored asN"« in agentAy.. £ as output.
1: E:={D||D|< £,D e D}

2: D:=D\E

3:if i=1then [The firstAin R]
4: N:=E [New diagnoses from .]
5: elseifi > 1then

6: Ty :=NinAx_;. [New diagnoses from, 1 .]
7. ET:= U}:1 EWT [Old and new merged with ngw.
8 FT:=FywT [New merged with old.
9: Dpew =ETUFTUM

100 N:={D|D|< £,D € Dnew} [New fromA; ]
11: M :=Dnew\N [Store for later consideratioh.
12: if N =0 andN has not been non-emptiyen

13: £ :=min(minnem Iml,minpcp ID|) [New lower limit]
14:  endif

15: F:=FUE

16: end if

With £ = 1, the first agentA; finds the new diag-
noses with cardinality less than or equaldowhich
give N*3 = {{B}}. AgentA, collectsN”: over the
network and calculate®/*+ := {{B, C},{B, D}}, but
sinceL = 1, the new set of diagnosés™+ = (.
SinceNA+ = () andN”+ has not been non-empty, a
new L is L™ = 2. Since a new. was returned, the
algorithm starts over from the first agerts has al-
ready stated diagnosiB} and since there are no other
diagnosis with low cardinality, the new diagnoses are
NAs .= {{}}. AgentA, collects the new diagnoses and
finds the new diagnosds”+ := {{B, C},{B,D}}. A,
takes over and calculates the new diagndsés =
{{B,C},{B,D}}. SinceNA~ = NAz2 £ (), the itera-
tions ends and the set Bucbs ispmed:me — NA2,
which is stored in agem ;. o

4.5 Simulations

To test the algorithms, a model of an embedded system
has been constructed. It is inspired by the system

described in Section 1.1.

The model consists of components divided over thre
busses and0 eEcus. Components, connections, anc
tests are picked by random. The connections are ¢
vided so that there are more connections between t
agents within a single bus than between the agents
two different buses. The number of tests are betwe
5% to 10% of the number of components, i.e. for
500 components aboudb to 50 tests per agent. When-
ever a diagnosis is transfered, a delay proportional
the cardinality of the diagnosis has been introduce
this models the transfer-time in the network. Into th
model betweerl and5 random faults have been in-
serted and then four variations of the algorithm hav
been simulated. The first is the complete Algorithm 1

Time [

The second has replaced FindSubGraph with the mc
crude differentiation of the agents which was de-
scribed in the beginning of Section 4. The third has

replaced FindR with an ordering such that the agent

with largest smallest diagnosis is first, then the rest
follows In descending order. The last uses the direct

method described in the beginning of Section 4.

Mean values of the computation times can be seen in
Fig. 5. With this model, the number of modules found
by FindSubGraph and the more simple differentiation
are mostly the same, and therefore only a small differ-
ence can be seen in the mean times, most notably at
400 component. The complete algorithm is somewhat
slower for few components, where the merge order is
quite irrelevant, butasterfor many components.

5. CONCLUSIONS

It has been shown how an algorithm that uses the
agents local diagnoses to derive global diagnoses
could be designed. To reduce the complexity, only
the global diagnoses with minimal cardinality was

considered. The algorithm could use the agents own
processing power, which reduce the need for a central
diagnostic agent.
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