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Abstract: Fault diagnosis is important for automotive vehicles, due to economic reasons
such as efficient repair and fault prevention, and legislations which mainly deals with safety
and pollution. In embedded systems with dozens of electronic control units that states local
diagnoses, it can be arbitrary difficult to find which combination of local diagnoses that points
at the correct faulty components. An algorithm is presented that both finds the diagnoses
that in themselves are complete and chooses only those diagnoses that are more likely to be
correct, this restriction is wanted due to the limitations in processing power, memory, and
network capacity. The embedded system in a Scania heavy duty vehicle has been used as a
case study to find realistic requirements on the algorithm.Copyrightc© 2005 IFAC.
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1. INTRODUCTION

Most modern automotive vehicles include several
electronic control units(ECU) which communicate
over an electronic network. EachECU is usually con-
nected to one or severalcomponents, e.g. sensors and
actuators, and to make sure that the components are
operating correctly, they aremonitoredby the ECUs.
Often diagnostic tests, which can be simple or com-
plex, are used to perform the monitoring.

The results of the tests can be used in different ways.
The most direct approach is to collect all results in a
central unit and then use the results to calculate the
global diagnoses, where each global diagnosis states
a diagnosis for the complete system. Since each of the
global diagnoses points at a set of possibly faulty com-
ponents, they are easy to understand. Unfortunately,
the number of global diagnoses grows exponentially
both with the number and the size of the results from
the tests.

An alternative is to directly calculate thelocal diag-
nosesfrom the results in eachECU. Since several of
these sets of local diagnoses might include the same
components, a combination of local diagnoses must
be used to correctly point at the faulty components.
Since the correct combination might be difficult to
find, the local diagnoses in the differentECUs can be

merged to form the same global diagnoses as in the
first approach, however, this leads also to an exponen-
tial growth of global diagnoses.

To reduce this combinatorial explosion it is sometimes
useful to only consider the diagnoses that are more
likely to be correct. Which diagnoses that are more
likely could be decided in several different ways. In
this paper, the diagnoses with the smallestcardinality,
i.e. the smallest number of faulty components, will be
considered to be the most likely.

An algorithm is presented that calculates theglobal
diagnoses with minimal cardinality from the local di-
agnoses. To reduce the complexity, the global diag-
noses are divided into smaller sets of diagnoses, where
each of these sets are guaranteed to be free of complex
relations to the others.

The algorithm can be run in a central diagnostic com-
puter, or as presented here, it candistribute the com-
putation intense tasks to the localECUs. Often, there
are limitations in both processing power, memory, and
network capacity, therefore, this possibility makes the
algorithm more adaptable.

1.1 A Typical Embedded System

Many vehicles have acontroller area network(CAN)
which connects severalECUs to each other. For ex-
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Fig. 1. The embedded system in a Scania vehicle.

ample, Fig. 1 shows a configuration of the embedded
system used in the current Scania heavy-duty vehi-
cles. This system includes three separateCAN buses
and there are between20 and30 ECUs in the system,
depending on the truck’s type and outfit, and between
4 and110 components are connected to eachECU. The
ECUs’ CPUs have typically a clocking speed of8 to
64 MHz, and a memory capacity of4 to 150 kB. The
current Scania diagnostic system includes between10

and1000 diagnostic tests in eachECU.

1.2 Related Work

Diagnosis for embedded systems can be centralized
or distributed. Most research has been aimed at the
centralized problem, where a single process collects
relevant data from the system and states global diag-
noses, see for example (Hamscheret al., 1992).

Distributed diagnosis has mostly been discussed for
discrete event dynamic systems, see for example (Lunze
and Schr̈oder, 2001). One paper that discusses dis-
tributed consistency based diagnosis is (Rooset al.,
2003) where an algorithm for distributed diagnosis
that uses both consistency and abduction based di-
agnosis (which is another type of diagnosis) is pre-
sented. The algorithm stipulates how conflicts should
be exchanged such that each agent can state global
diagnoses.

Distributed diagnosis requires a overall network ar-
chitecture for communication, storage, etc. Such an
architecture useful for diagnosis and control is being
developed within theMAGIC project and is presented
in (Köppen-Seliger, 2003). The aim for their project is
to develop a general purpose architecture for diagnosis
in complex systems.

AgentA2

E

AgentA1

C DB

input

Test

A

output
CAN

Test

Fig. 2. A typicalECU, component and test layout.

2. SYSTEM DESCRIPTION

The diagnostic system involves a set of agentsA and
a set of componentsC which are the set of objects
that can be diagnosed, by one or several agents, for
abnormal behavior. The agents are connected to each
other via a network, where an output signal in an agent
is linked to input signals in one or several other agents.

Example 1:In Fig. 2, a typical layout of agents and
components is shown. The tests involve the compo-
nentsA to E connected with dashed lines. Some cal-
culated value involving componentsC andD can be
transmitted over the network from agentA2 to A1. �
In a vehicle, the agents are the software programs that
are implemented in theECUs. The components are the
sensors, actuators, pipes, etc., which are monitored by
the agents. The output signals, which are values from
sensors, to actuators, or from calculations, are made
available to the other agents over the network.

Each component has a general fault mode and a no-
fault mode. In this paper it is assumed that the gen-
eral fault mode does not have a model, and therefore
the notation used in for exampleGDE can be em-
ployed (Hamscheret al., 1992).

3. RELATION BETWEEN LOCAL AND GLOBAL
DIAGNOSES

A diagnosis is represented by a setD ⊆ C and states
that the componentsc ∈ D are in the faulty mode,
while the remaining components are not in the faulty
mode. A minimal diagnosis is a diagnosis where no
proper subset is a diagnosis. The minimal diagnoses
characterize all diagnoses, therefore unless explicitly
stated, adiagnosis is here used to denote a mini-
mal diagnosis. Considering minimal diagnoses, the
similarity-equivalence' is used to show equivalence.

A local diagnosisis a diagnosis stated by an agent.
It states that some components, which are somehow
involved in the operation of the agent, are in the faulty
mode. Aglobal diagnosisis a diagnosis that states the
mode of all components in the complete system.

Due to the combinatorial explosion when searching
for global diagnoses, it is preferable to only consider
some more likely sub-set of global diagnoses. One
such set is theminimal-cardinality(mc) diagnoses

Dmc , {D
∣
∣ |D| = min

D∈D
|D|,D ∈ D}



for a setD, where|D| is the number of components
included inD. For a given set of diagnoses, the num-
ber of minimal cardinality diagnoses are often much
less than the number of diagnoses. These diagnoses
can therefore be used to reduce the combinatorial ex-
plosion that arises when several sets of diagnoses are
merged together. Notice that if all components fail
independently with the same probability, then the most
probable global diagnoses will simply be the global
minimal cardinality diagnoses.

In Section 1, the merge of different sets of local
diagnoses was discussed. Themergingof two sets of
diagnosesD1 andD2 is defined asD1

×∪D2 , {D1 ∪
D2 |D1 ∈ D1,D2 ∈ D2}, i.e. an addition of a union
compared to the definition of Cartesian product. It can
be proved that the following relation holds

D ' ×∪
A

DA

where the setD is the global diagnoses andDA is the
local diagnoses in agentA.

Example 2: [Merge of local diagnoses]Consider
the local diagnosesD1 = {{A,B}, {C}} and D2 =
{{B}}. The global diagnoses areD ' D1

×∪D2 =
{{A,B}, {C,B}}. �
Unfortunately, it is not the case that a merge of the lo-
cal minimal cardinality diagnoses results in the global
minimal cardinality diagnoses, i.e.

Dmc 6' ×∪
A

D
mc
A

whereD
mc
A

is the mc diagnoses in agentA.

Example 3: [Merge ofDmc
A

] Consider the example
above, whereDmc

1
= {{C}} and D

mc
2

= {{B}}. The
merge givesDmc

1
×∪D

mc
2

= {{C,B}}, while Dmc =
{{A,B}, {C,B}}, i.e. the global mc diagnosis{A,B}

was not included in the merge of the local minimal
cardinality diagnoses. �

3.1 Representation of Global Diagnoses

For the diagnoses to be easily understandable they
should be as small as possible while being free of
complex relations to other diagnoses. One such type
of diagnoses that are free of complex relations, are the
global diagnoses. These might however become quite
large due to the inclusion of all local diagnoses.

One way to reduce the size of the global diagnoses is
to represent them as aconjunction of smaller disjoint
parts of diagnoses. Since these smaller parts are dis-
joint, the global diagnoses will simply be a merge of
all these smaller parts, i.e. a simple relation would ex-
ist between the parts of diagnoses. From a technicians
point of view they are more easily understandable than
the complete set of global diagnoses.

One approach to achieve this is to merge the local
diagnoses from a sub-set of agents, into a sub-set of
global diagnoses, so that each such sub-set is disjoint

from the other. Such a set of agents is here denoted a
module. A set of agentsĀ is a module if for all other
modulesĀi, Ā ∩ Āi = ∅ and(

⋃
A∈Ā

⋃
D∈DA D) ∩

(
⋃

A∈Āi

⋃
D∈DA D) = ∅. Given a moduleĀ, the

module diagnosesis Dmod , ×∪A∈Ā DA.

Example 4: [Module diagnoses]If D1 = {{A,B}},
D2 = {{B,C}}, andD3 = {{E}}, then for the modules
Ā1 = {A1, A2} and Ā2 = {A3}, it follows that
Dmod

1
= {{A,B,C}} andDmod

2
= {{E}}. �

Given them:th set of module diagnoses, themod-
ule minimal cardinality diagnoses(MMCD) is denoted
Dmod,mc

m . In contrast to the case with merged local
minimal cardinality diagnoses, it can be proven that

Dmc ' ×∪Dmod,mc
m

This strongly motivates the use of module diagnoses.

4. FINDING ALL MODULE MINIMAL
CARDINALITY DIAGNOSES

After each agent has createdlocal diagnoses, these
could be merged toMMCDs. To calculate theMMCDs
the following could be done: Divide the agents into
modules so that the merge of the corresponding local
diagnoses will becomeMMCDs; In each module, sort
the agents into a sort order such that the complexity
of the upcoming merge is reduced and then merge the
local diagnoses according to this order.

A direct and simple approach to divide the agents into
modules is to first calculatēDA =

⋃
D∈DA

D for each
agent, and then choose the minimal modulēA such
that

⋃
A∈Ā D̄A is disjoint from all other such sets.

A simple ordering is to choose the agent with largest
minimal cardinality diagnosis to be first and then the
rest follows in decreasing size.

A merge can be done by first finding a low lower limit
on the size of theMMCDs and then merge those of the
local diagnoses that are smaller or equal to this limit.
If no MMCDs was found, then the limit is increased and
the merge is started again from the first agent.

However, the computation time of this approach can
be greatly improved by further reducing the size of the
modules, sorting them into a better order, and finally
merging the diagnoses such that the total number
of merges is minimized. These improvements have
been implemented in the algorithm described in this
section.

4.1 Main – Algorithm 1

The improved algorithm consists of the same three
main parts as the approach described above. Firstly,
algorithm FindSubGraph is used to find a graphG

whosesub-graphs represent the modules. Algorithm
FindR is then used to sort the agents in a sub-graph
into a merge orderR. The agents in the module are
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Fig. 3. The information flow in Example 5.

ordered in such a way that the complexity of the re-
maining algorithm is reduced. Finally, the local di-
agnoses are with algorithm UpdateAgent iteratively
merged into sets ofMMCDs.

The improvements over the first approach are that
the modules are divided into smaller sets, the merge
orders are chosen in a better way, and that the merge
algorithm is much more efficient because it both keeps
track and uses what have been done in previous runs.

The algorithm can bedistributed in such a way that
Algorithm 1, FindSubGraph, and FindR are evaluated
in some coordinating agent, while the computation
and memory intensive UpdateAgent isevaluated in
the corresponding agent.

Now consider the main Algorithm 1 where an ordered
set is represented by(·) and an unordered set by{·}.
Firstly, the graph is found and a merge orderR is
calculated from each sub-graph.

The algorithm starts with a low lower limitL on
the cardinality of theMMCDs. The first approximation
of L is that theMMCDs must be at least as large
as the largest local minimal cardinality diagnosis,
considering all agents inR. After the limit has been
found, an evaluation of UpdateAgent is performed in
each agent or until an agent returns a new value onL.

Algorithm UpdateAgent calculates those diagnoses
with cardinality less than or equal toL that would
be formed if the local diagnoses in agentsA1 to Ak,
which also have a cardinality less than or equal toL,
was merged, the set is denotedN in the algorithm. If
no diagnoses could be found with cardinality less than
or equal toL, a new largerL = Lnew is calculated
and a new search begins fromA1. This newL is
chosen such that new merged diagnoses will be found
at the next iteration.

When the last agent calculates a non-emptyN, this set
of diagnoses are theMMCDs for this module.

Example 5: [Algorithm 1]Consider Fig. 3 where
the MMCDs should be found for the merge order
(A3, A4, A2). Algorithm 1 sends the UpdateAgent
command with input(A3, ∅,L) to agentA3, which
extracts the diagnoses with cardinality lower than or
equal toL, denotedNA3 . Thereafter, the UpdateAgent
command is sent toA4, which collectsNA3 over the
network and merge it with its own local diagnoses
with cardinality less than or equal toL; those of the
merged diagnoses with cardinality less than or equal
to L is stored inNA4 . After some iterations, the end
result is theMMCDsDmod,mc. �

Algorithm 1 Module minimal cardinality diagnoses
Require: All local diagnosesDA for all agentsA.
Ensure: All MMCDs Dmod,mc

m .
1: G := FindSubGraph(A) [Graph of sub-graphs.]
2: for all G∈ G do
3: R := FindR(G) [Merge orderR = (A1,...,An).]
4: L := a lower bound on the cardinality for the MMCDs inR.
5: k := 0, A0 := ∅
6: repeat
7: k := k+1

8: Lnew := UpdateAgent(Ak,Ak−1,L)
[Nstored inAk includes the new diagnoses.]

9: if Lnew >L then
10: k := 0, L :=Lnew [Increase and restart]
11: end if
12: until k = n [An is the last inR.]

[Dmod,mc
m = Nstored inAn , for the m:thR.]

13: end for

4.2 Find Sub GraphG – Algorithm 2

In the direct approach the agents was divided with
respect to all components in all diagnoses. This is
however a pessimistic approach since some of the
diagnoses might have a cardinality higher than the car-
dinality of theMMCDs, which means that it is unnec-
essary to consider them when deciding the modules.

The main idea in Algorithm 2 is to find an upper limit
U of the cardinality of theMMCDs, and use this to
reduce the size of the modules.

A first value of the upper limit can be chosen as
U :=

∑
A∈Ā minD∈DA

|D|. A lower upper limit is
found by making a pre-merge of all minimal cardinal-
ity diagnoses. To reduce the complexity it is possible
to only consider the minimal cardinality diagnoses
after each merge, i.e.U := minD∈D̄ |D| where

D̄ := (. . . ((Dmc
A1

×∪D
mc
A2

)mc ×∪D
mc
A3

)mc . . .).

The later limit will be used in this paper.

For each sub-graph found, Algorithm 2 is called re-
cursively so that each sub-graph is, if it is possible,
divided into even smaller sub-graphs.

Example 6:Consider a system with five agents includ-
ing the local diagnoses

D1 = {{A}} D2 = {{B,C}, {D}}

D3 = {{B}, {C,D, E, F}} D4 = {{C}, {D}}

D5 = {{F}}

When using Algorithm 2,D̄ = {{A,D,B, F}} and
U = 4. The graph shown in Fig. 4(a) is created. It is
divided into two sub-graphs which corresponding sets
of agents are used in the next iteration. The first sub-
graph only includes agentA1.

For the second sub-graph, the limitU = 3 and
the diagnosis{C,D, E, F} can therefore be ignored.
The result is the graph in Fig. 4(b) which is further
divided into two sub-graphs. The final result is that
the agents are divided into three sub-graphs including
{A1}, {A2, A3, A4}, and{A5}. �
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Fig. 4. The graph representing a system with five
agents and six components.

Algorithm 2 FindSubGraph
Input: Set of agentsVA ⊆ A. Require the local diagnosesDA

stored in the local agents.
Output: The graphG consisting of sub-graphsG, where a sub-

graphG = (V̄A,V̄C,Ē).
1: U := a upper bound on the cardinality for the MMCDs.
2: D̄A := {D

˛
˛ |D| ≤ U,D∈ DA} for each agent

3: VA := {VA |D̄A 6= ∅}
4: VC :=

S
A∈VA

S
D∈D̄A

D

5: E := {(A,c) |A∈ VA,c ∈ S
D∈D̄A

D}

6: G := (VA,VC,E) [Graph.]
7: Find subgraphsG∈ G.
8: if |G| > 1 then [More than 1 sub-graph.]
9: G := {FindSubGraph(V̄A) |V̄A ∈ G,G∈ G} [Recursive.]

10: end if

4.3 Finding Merge OrderR – Algorithm 3

The calculation of a merge orderR is an interesting
problem. By changing the merge order, the complexity
of Algorithm 4 might change dramatically. The input
is one of the sub-graphs that was found with Algo-
rithm 2. The output is an ordered setR ⊆ A, where
eachR represents a module.

When calculatingR, the main idea is that the lower
boundL in Algorithm 1 should be raised as soon
as possibly towards its final value. This to reduce
the complexity when the local diagnoses finally are
merged. To raiseL as fast as possible, the sets of local
diagnoses should have asfew components in common
and the minimal cardinality local diagnoses should
be as largeas possible. To compromise between the
number of common componentsc and the cardinality
r of the diagnoses,α(c, r) = (c + 1)/r2 is used.

The number of common components is decided by
looking at the number of connections between the
agents and the components in the graph. For this is
function Γ used, it gives the number of components
that are shared between two agents

Γ(A1, A2) , |{c |(A1, c) ∈ E, (A2, c) ∈ E}|.

After two sets of local diagnoses have been merged,
the merged set might include components from both
sets of local diagnoses. Therefore, the agents and the
corresponding components should be joined in the
graph. A join ofA2 to A1 in graphG = (VA, VC , E)

join(G,A1, A2) , (VA\A2, VC, Ē)

whereĒ , E\{(A2, c) | ∀c} ∪ {(A1, c) |(A2, c) ∈ E}.

Algorithm 3 FindR
Input: Sub-graphG(VA,VC,E).
Output: A merge orderR which is an ordering ofVA.
1: if |VA| = 1 then
2: R := (VA) [The vertexVA ∈ A.]
3: else
4: (Ai,Aj) ∈ arg minAi,Aj

α(Γ(Ai,Aj),minD∈DAi
|D|)

5: R := (Ai,Aj) [First ordered set.]
6: G := join(G,Aj,Ai) [Ai mergedAj .]
7: while |R| < |VA| whereR = {A1,...,Aend} do
8: A∈ arg minA α(Γ(A,Aend),minD∈DA

|D|)
9: G := join(G,A,Aend) [Aend joinedA.]

10: R := R∪ A [Ordered set. NewAn = A.]
11: end while [All A∈ VA is included inR.]
12: end if

Example 7: [Algorithm 3]Consider the first sub-graph
in Example 6 and Fig. 4(b). Using the algorithm with
the sub-graph as input, finds thatA3 and A4 have
the least number of components in common, i.e. zero
components which giveα(A3, A4) = 1; since this
is the lowest weight,R = (A3, A4). After this A3

is merged toA4 which gives the graph in Fig. 4(c).
AgentA2 has three components in common withA4,3

and is added toR, which giveR = (A3, A4, A2). �

4.4 Update Agent – Algorithm 4

When the main algorithm should evaluate UpdateAgent
with input (Ak, Ak−1,L), it sends this command
to agentAk. The agent that receives this command
should find the diagnoses with cardinality less than or
equal toL in the set×∪Ak

A=A1
DA. Since agentAk−1

has already calculated the diagnoses with cardinality
less than or equal toL from ×∪Ak−1

A=A1
DA, the desired

diagnoses can be calculated from the result inAk−1

merged withDAk
.

In the direct approach, this is repeated each time that
L is raised. Algorithm 4 is more efficient, since it
only calculates those diagnoses that have not been
considered in previous runs, i.e. those with cardinality
between the old and the newL.

The main parts of the algorithm are the merge of
theold and new global diagnosesfor {A1, . . . , Ak−1}

with the new local diagnoses(TE), and the merge of
the new global diagnosesfor {A1, . . . , Ak−1} with
the old local diagnoses(TF). The merged diagnoses
with cardinality greater thanL are stored inM for
later consideration, i.e. ifL is later raised then parts
of M might be included in the newN. Variablel is
the number of times that the current agent has been
called with command UpdateAgent(·).
The new global diagnosesN is saved for use by agent
Ak+1. If Ak is the last agent andN 6= ∅ thenN is the
set ofMMCDs, i.e. the wanted result.

Example 8: [Algorithm 4 and part of Algorithm 1]
Consider the second set of agents found in Example 7,
with the sort orderR = (A3, A4, A2). The local
diagnoses for these agents are

D2 = {{B,C},{D}} D3 = {{B},{C,D,E,F}} D4 = {{C},{D}}



Algorithm 4 UpdateAgent
Input: Ak , Ak−1 andL. RequireDAk

stored in agentAk andN

stored in agentAk−1 .
Output: New sub-set ofDmod for agents{A1,...,Ak} with

cardinality≤ L stored asNAk in agentAk . L as output.
1: E := {D

˛
˛ |D| ≤ L,D∈ D}

2: D := D\E

3: if i = 1 then [The firstA in R.]
4: N := E [New diagnoses fromAk .]
5: else ifi > 1 then
6: Tl := N in Ak−1 . [New diagnoses fromAk−1 .]
7: ET :=

S
l

j=1
E×∪Tj [Old and new merged with new.]

8: FT := F×∪Tl [New merged with old.]
9: Dnew := ET ∪ FT ∪ M

10: N := {D
˛
˛ |D| ≤ L,D∈ Dnew} [New fromAk .]

11: M := Dnew\N [Store for later consideration.]
12: if N = ∅ andNhas not been non-emptythen
13: L := min(minm∈M |m|,minD∈D |D|) [New lower limit.]
14: end if
15: F := F∪ E

16: end if

With L = 1, the first agentA3 finds the new diag-
noses with cardinality less than or equal toL which
give NA3 = {{B}}. AgentA4 collectsNA3 over the
network and calculatesWA4 := {{B,C}, {B,D}}, but
sinceL = 1, the new set of diagnosesNA4 := ∅.
SinceNA4 = ∅ andNA4 has not been non-empty, a
newL is Lnew = 2. Since a newL was returned, the
algorithm starts over from the first agent.A3 has al-
ready stated diagnosis{B} and since there are no other
diagnosis with low cardinality, the new diagnoses are
NA3 := {{}}. AgentA4 collects the new diagnoses and
finds the new diagnosesNA4 := {{B,C}, {B,D}}. A2

takes over and calculates the new diagnosesNA2 :=
{{B,C}, {B,D}}. SinceNAn = NA2 6= ∅, the itera-
tions ends and the set ofMMCDs isDmod,mc = NA2 ,
which is stored in agentA2. �

4.5 Simulations

To test the algorithms, a model of an embedded system
has been constructed. It is inspired by the system
described in Section 1.1.

The model consists of components divided over three
busses and30 ECUs. Components, connections, and
tests are picked by random. The connections are di-
vided so that there are more connections between the
agents within a single bus than between the agents in
two different buses. The number of tests are between
5 % to 10 % of the number of components, i.e. for
500 components about25 to 50 tests per agent. When-
ever a diagnosis is transfered, a delay proportional to
the cardinality of the diagnosis has been introduced,
this models the transfer-time in the network. Into the
model between1 and5 random faults have been in-
serted and then four variations of the algorithm have
been simulated. The first is the complete Algorithm 1.

The second has replaced FindSubGraph with the more
crude differentiation of the agents which was de-
scribed in the beginning of Section 4. The third has
replaced FindR with an ordering such that the agent

with largest smallest diagnosis is first, then the rest
follows in descending order. The last uses the direct
method described in the beginning of Section 4.

Mean values of the computation times can be seen in
Fig. 5. With this model, the number of modules found
by FindSubGraph and the more simple differentiation
are mostly the same, and therefore only a small differ-
ence can be seen in the mean times, most notably at
400 component. The complete algorithm is somewhat
slower for few components, where the merge order is
quite irrelevant, butfasterfor many components.

5. CONCLUSIONS

It has been shown how an algorithm that uses the
agents local diagnoses to derive global diagnoses
could be designed. To reduce the complexity, only
the global diagnoses with minimal cardinality was
considered. The algorithm could use the agents own
processing power, which reduce the need for a central
diagnostic agent.
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Fig. 5. Computation times for the algorithms with
increasing number of components.


