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Abstract: In the automotive industry driving cycles have been used to evaluate vehicles in
different perspectives. If a vehicle manufacturer focuses only on a fixed driving cycle there is
a risk that controllers of the vehicle are optimized for a certain driving cycle and hence are
sub-optimal solutions to real-world driving. To deal with this issue, it is beneficial to have a
method for generating more driving cycles that in some sense are equivalent but not identical.
The idea here is that these generated driving cycles have the same vehicle excitation in the mean
tractive force, MTF. Using the individual force components of the MTF in the generation of
driving cycles with Markov chains makes it possible to generate equivalent driving cycles that
have the same vehicle excitation from real-world driving data. This is motivated since the fuel
consumption estimation is more accurate when the MTF components are considered. The result
is a new method that combines the generation of driving cycles using real-world driving cycles
with the concept of equivalent driving cycles, and the results are promising.
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1. INTRODUCTION

A driving cycle, also called driving schedule or speed
profile, is a representation of vehicle speed versus time. In
the automotive industry driving cycles have been used to
evaluate vehicles in different perspectives. To name a few,
driving cycles have been used in exhaust gas emissions
tests, in vehicle traffic control, or as an engineering tool
for comparison and design. [André, 1996], [Tong et al.,
1999], or [Stockar et al., 2010]. An example of a common
driving cycle is the New European Driving Cycle, NEDC,
which is seen in Figure 1. The NEDC is the certification
driving cycle for light-duty trucks in Europe. If a vehicle
manufacturer focuses only on such a fixed driving cycle
there is a risk that controllers of the vehicle are optimized
for a certain driving cycle, and if the driving cycle is not
representative for real-world driving there is a considerable
risk that the controls will be sub-optimal solutions for real-
world driving [Schwarzer and Ghorbani, 2013, K̊ageson,
1998]. Usually a representative driving cycle means that
some criteria of interest is sufficiently close to data from
real-world driving. The general consensus is that NEDC
is not a representative of real-world driving [Fontaras and
Dilara, 2012, Zaccardi and Le Berr, 2012].

Zaccardi and Le Berr [2012] studies how several different
driving cycles can be used together in order to represent
real-world driving. However, the results of one driving
cycle is difficult to compare to the results of another
driving cycle since two different driving cycles can have
very different vehicle excitation.
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Fig. 1. The NEDC with marked traction regions which
indicates the instants where the powertrain needs to
deliver positive power to the wheels so that the vehicle
is able to track the driving cycle.

There are different techniques to construct a driving cycle
and one approach is to randomly choose micro-trips (speed
profile between two successive stops) in the assemble of the
driving cycle [Tong et al., 1999], and another is the mode-
based approach [Lin and Niemeier, 2002] where the speed-
acceleration frequency distribution are made similar to the
real-world driving data. More recently a Markov chain
approach have been used for generating representative
driving cycles from real-world driving data in a compact
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Fig. 2. Overview of the algorithm for generation of equiva-
lent driving cycles from real-world driving cycles using
Markov chains.

way, see Lee and Filipi [2011], Gong et al. [2011] and the
references therein.

1.1 Overall Idea with this Paper

To deal with the sub-optimization problem it would be
advantageous to have mechanisms that generate similar
driving cycles which excites the vehicle in a similar way
so that any performance comparison made, between the
generated cycles, is more fair. The approach in this paper
is to merge the Markov chain approach with the concept
of equivalent driving cycles introduced in Nyberg et al.
[2013], so the idea is to have a method that given real-world
driving data generates equivalent driving cycles that have
the same excitation in the mean tractive force meaning.

2. DRIVING CYCLE GENERATION

As a first part of the proposed algorithm, driving cycles
will be generated from real-world driving data using a
Markov chain approach. This corresponds to the left part
of Figure 2. As a second part, these driving cycles will
be determined if they are candidate driving cycles that
pass the selection criterion, and finally are transformed
to equivalent driving cycles which corresponds to the
middle and right part of Figure 2. The second part will
be explained in Section 4.

Now we focus on the first part, and in this work the driving
cycle generator of Torp and Önnegren [2013], similar to the
one presented in Lee and Filipi [2011], has been used to
generate driving cycles.

2.1 Real-world Driving

Input data to the driving cycle generation are real-world
driving cycles that have been measured on instrumented
vehicles driving in real traffic. An example of a real-world
driving cycle is seen in Figure 3, and the data used here is a
set of 466 drives from a test in the western parts of Sweden.
A categorization of driving cycles have been performed
by either mean positive velocity, v̄pos = v̄(t) : v(t) > 0,
or based on distance traveled in the driving cycle, xtot =∫
v(t)dt, which are similar to the categorization in Lee and

Filipi [2011]. This yields a possibility to generate driving
cycles that for example specifically show urban tendencies
or highway driving with high speeds.

The chosen limits in the categorization and the number
of real-world driving cycles that fit into each category can
be seen in Table 1 and in Table 2. For more details of the
real-world driving data see Torp and Önnegren [2013].
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Fig. 3. Example of real-world driving cycle.

Table 1. Categorization based on mean positive
velocity v̄pos.

Category Limits [km/h] #Cycles
Urban 0 < v̄pos ≤ 40 328
Mixed 40 < v̄pos ≤ 72 133
Highway 72 < v̄pos <∞ 5

Table 2. Categorization based on driving dis-
tance xtot.

Category Limits [km] #Cycles
Short 0 < xtot ≤ 14 409
Medium 14 < xtot ≤ 32 42
Long 32 < xtot <∞ 15

2.2 Markov Chains using Transition Probability Matrix

In order to extract information from the real-world driving
cycles and use it in a compact way, transition probability
matrix, TPM, is used. The transition probabilities repre-
sents the Markov chain and are used to generate driving
cycles.

Let the state xn = (vn, an) where vn and an are the cur-
rent velocity and acceleration, respectively. The Markov
property is that the present state contains all information
that conditions the future state

P (Xn+1 = xn+1|X1 = x1, X2 = x2, . . . , Xn = xn)

= P (Xn+1 = xn+1|Xn = xn), (1)

which means that the current velocity and acceleration
contain all relevant information in order to predict the
next state xn+1 = (vn+1, an+1). The probability of such a
transition from state i to state j is

pij = P (Xn+1 = j|Xn = i), (2)

and pij is predicted by all such transitions that have
occurred in the real-world driving data. All the transition
probabilities are stored as a TPM. The data have been
for practical reasons been discretized in steps of 1 km/h
and 0.2 m/s2 in velocity and acceleration, respectively. For
more information about implementation aspects, see Lee
and Filipi [2011], Torp and Önnegren [2013].

Generation of a driving cycle, v, using Markov chains in
this paper is the process of initiating the driving cycle



with velocity and acceleration of zero (x0 = (v0, a0) =
(0, 0)) and then randomly choose the next state based
on the probabilities, see (2), in the previously generated
TPM. This will continue until a certain duration in time
is achieved and the velocity has reached zero, vn = 0.
For validation of the Markov property when generating
driving cycles and the validation of the used driving cycle
generation software, see Shuming et al. [2013] and Torp

and Önnegren [2013].

The generated driving cycle, v = {v1, v2, . . . , vn} are then
checked if it fulfills the selection criterion which will be
explained in more detail in Section 4. If the selection
criterion is not fulfilled the generation of the driving cycles
will continue until it does.

3. MEAN TRACTIVE FORCE AND EQUIVALENT
DRIVING CYCLES

The concept of equivalent driving cycles based on mean
tractive force, MTF, was introduced in Nyberg et al. [2013]
and it focuses on the vehicle’s tractive energy per distance
at the wheels in a driving cycle. The main points are now
recapitulated.

The total tractive force, F (t), at the wheels for flat roads
consists of aerodynamic resistance, Fair, rolling resistance,
Froll, and inertia resistance, Fm, and the three components
are here modeled as

F (t) = Fair + Froll + Fm (3)

Fair =
1

2
ρacdAfv

2(t) (4)

Froll = mgcr (5)

Fm = ma(t), (6)

where ρa is the air density, cd the drag coefficient, and the
frontal area of the vehicle is denoted Af . Moreover, the
vehicle mass is m, cr is the rolling friction coefficient, and
the gravitational constant is g.

When comparing driving cycles the measures that have
been used previously have usually been defined on the
whole time interval τ = [0, tfinal]. Example of such is the
mean speed, standard deviation of acceleration, percentage
of time spent in cruising etc. However, the characterization
used here is based on the MTF [Guzzella and Sciarretta,
2007]. It is a measure on what mean tractive force the
powertrain needs to provide during a driving cycle. Since
the powertrain does not need to provide any forces to the
wheels during coasting or braking regions (F (t) ≤ 0) the
integration intervals are those when the powertrain need
to provide positive power to the wheels (F (t) > 0). For the
MTF, F̄trac is defined on a subset τtrac = {t ∈ τ : F (t) >
0} (see the marked regions near the x-axis in Figure 1),
and is written as

F̄trac =
1

xtot

∫
t∈τtrac

F (t) · v(t) dt, (7)

where xtot is the total distance traveled in the driving
cycle.

From (3) and (7) the MTF can be partitioned into its
components according to

F̄trac = F̄air + F̄roll + F̄m (8)

F̄air =
1

xtot

∫
t∈τtrac

1

2
ρacdAfv

3(t) dt =
1

2
ρacdAfα (9)

F̄roll =
1

xtot

∫
t∈τtrac

mgcrv(t) dt = mgcrβ (10)

F̄m =
1

xtot

∫
t∈τtrac

ma(t)v(t) dt = mγ. (11)

For a given vehicle the vehicle parameters are fixed and if
the air density is assumed to be constant then two driving
cycles have the same values on the MTF components, F̄air,
F̄roll, and F̄m, if they have the same values on α, β, and γ
which are defined as

α(v) =
1

xtot

∫
t∈τtrac

v3(t) dt (12)

β(v) =
1

xtot

∫
t∈τtrac

v(t) dt =
xtrac

xtot
(13)

γ(v) =
1

xtot

∫
t∈τtrac

a(t)v(t) dt, (14)

where xtrac is the distance traveled in the traction regions.

The definition of equivalent driving cycles in Nyberg et al.
[2013] is

Definition 1. For a given vehicle, two driving cycles, v1(t)
and v2(t), are said to be equivalent, denoted v1(t) ∼ v2(t),
if the following are fulfilled

α(v1(t)) = α(v2(t))

β(v1(t)) = β(v2(t))

γ(v1(t)) = γ(v2(t)).

In order to change the MTF by doing changes in the
driving cycle the following is important to note

F̄m = mγ =
1

xtot

∫
t∈τtrac

mv̇(t) · v(t) dt

=
1

xtot

∫
t∈τtrac

m

2
· dv

2(t)

dt
dt

=
1

xtot

#trac∑
i

[
m · v2(t)

2
]
ti,end
ti,start . (15)

Hence the MTF components related to vehicle inertia is
the sum of the difference in kinetic energy over all traction
intervals. The number of traction intervals is denoted
#trac and each traction interval has its start, ti,start, and
end point ti,end.

3.1 Motivation for using the MTF components and not
only the total MTF

In the definition above the individual components of MTF
are used, and a discussion of this is given now. In Lee and
Filipi [2011] the response variable in their regression model
is the specific energy which is the same as the total MTF,
F̄trac. In their work the minimum number of explanatory
variables that still can explain F̄trac sufficiently good (r2 >
0.9) are chosen. The MTF is a tentative value of the
fuel consumption [Guzzella and Sciarretta, 2007] and to
investigate this, a simulation study of the fuel consumption
has been performed.

In order to perform the fuel consumption study a model
of the powertrain is used. For simplification the driveline



Table 3. Parameters used in the simulation.

Vehicle Engine Gearbox
Af = 2 [m2] Hl = 44.5 · 106 [J/kg] gr1 = 9.97
cd = 0.4 [-] ρf = 737.2 [kg/m3] gr2 = 5.86
cr = 0.013 [-] Je = 0.2 [kg m2] gr3 = 3.84
mv = 1600 [kg] eg = 0.4 [-] gr4 = 3.68
ρa = 1.29 [kg/m3] pme0 = 105 [Pa] gr5 = 2.14
g = 9.81 [m/s2] Vd = 0.03 [m3]

is assumed to be ideal, hence the efficiency is 1. The gear-
shifting strategy is extracted from the NEDC. The fuel
consumption study is based on a vehicle with parameters
according to Table 3 and where the engine is modeled as a
Willan’s line. The model is (16) [Guzzella and Sciarretta,
2007] and it is based on a constant friction loss inside the
engine, Tfric = pme0

Vd

4π , and the torque originating from
acceleration of the engine, Jeω̇ICE, is also considered. The
fuel power Pfuel is

Pfuel =
1

eg
(TICEωICE + pme0

Vd
4π
ωICE + Jeω̇ICEωICE), (16)

where the parameters are the indicated engine efficiency,
eg, engine torque, TICE, engine speed, ωICE, engine accel-
eration, ω̇ICE, loss mean effective pressure, pme0, volume
of the engine, Vd, and finally the engine inertia, Je.

The fuel mass, mfuel, is calculated as

mfuel =

∫ tfinal

0

max(Pfuel, 0)

Hl
dt, (17)

where tfinal is the final time of the driving cycle, and Hl is
the lower heating value for gasoline. The efficiency of the
engine can be written as

ηICE =
PICE

Pfuel
= eg

TICE

TICE + Tfric + Jeω̇ICE
, (18)

and is affected by the indicated engine efficiency, the
engine torque, the friction torque, and also the torque for
acceleration or deceleration of the engine. For the steady-
state case (ω̇ICE = 0) the only variable is the engine torque
since eg and Tfric are constant parameters and the engine
efficiency in (18) is a function of engine torque. The steady-
state case can be seen in Figure 4 as the solid line. The dots
in the same figure are the efficiency of the engine operating
in a driving cycle where acceleration and deceleration of
the engine is considered. For example, the dots below the
steady-state (solid) line corresponds to points where the
extra fuel mass injected, hence lower efficiency, are due to
acceleration of the engine’s inertia.

A comparison between the ability to predict the simu-
lated fuel consumption with linear regression is shown
in Figure 5. Using the driving cycle generation tool 100
driving cycles have been generated and split into two
halves. The first half consists of 50 driving cycles that is
used as estimation data for the linear regression where the
response variable is the simulated fuel consumption and
the regressors are either the MTF components, F̄air, F̄roll,
and F̄m, or the total MTF, F̄trac. The other 50 driving
cycles are used for validation data and in the figure the
circles correspond to the MTF components as regressors
and the triangles correspond to the regressor F̄trac. The r2-
fit are 0.95 and 0.89, respectively. The mean relative error
are 1.3 and 2.0, respectively. Splitting up the MTF into
its components clearly gives a better estimation of the fuel
consumption. This shows that using the MTF components
as an equivalence measure between driving cycles are a
better choice than using the total MTF.
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Fig. 4. Steady-state (ω̇ICE = 0) efficiency from (18) (solid
line) and engine efficiency operating in a driving cycle
(see solid line in Figure 6) (dots).
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4. EQUIVALENT DRIVING CYCLE GENERATION

The concept of equivalent driving cycle from the previous
section will be used as the final steps to generate equivalent
driving cycles from real-world driving data. The process
can be viewed in Figure 2 where the middle and right part
of the figure shows the transformation from candidate driv-
ing cycles, which fulfill the selection criterion, to equivalent
driving cycles. These steps will now be explained in more
detail.

4.1 Selection Criterion

If a generated driving cycle, v(t), from the steps in Sec-
tion 2 fulfills the selection criterion it has the required
characteristics, and it is called a candidate driving cycle.
There are different selection criteria that can be used and
some examples are statistical measures on key parameters
such as velocity, acceleration, time spent in certain modes,
number of steps etc. need to be close enough to some



values. Lee and Filipi [2011] use linear regression in order
to determine which parameters that are significant in order
to describe the specific energy, also called mean tractive
force, MTF. Principal components analysis, PCA, is used
in Gong et al. [2011] in order to decrease the number of

correlated parameters, and in Torp and Önnegren [2013]
the selection criterion can be changed from different op-
tions, from linear regression of the MTF as in Lee and
Filipi [2011] to PCA as in Gong et al. [2011].

The selection criterion used in this work is that the MTF
components shall be similar, that is the selection criterion
is fulfilled if the following holds

|1− α(v)/α′| ≤ ψα (19)

|1− β(v)/β′| ≤ ψβ (20)

|1− γ(v)/γ′| ≤ ψγ (21)

where α′, β′, and γ′ are the desired predetermined values,
possibly from an existing driving cycle, and the thresholds
for respectively value are ψα, ψβ , and ψγ . The thresholds
are currently set to some percent in deviation compared
to the predetermined values since the difference in MTF
should not be too large between the candidate driving
cycle, and the predetermined values in order for the next
step below to work well.

There is a trade-off between the size of the thresholds and
the computational time. With more conservative thresh-
olds, the probability to generate a candidate driving cycle
within a certain time will go down and vice verse. The
underlying real-world driving cycles also affect the time
to generate a candidate driving cycle. However, a detailed
analysis of this is out of scope of this paper.

4.2 Transformation to Equivalent Driving Cycles

When a candidate driving cycle has been generated it will
then be transformed according to Algorithm 2 in Nyberg
et al. [2013] to produce an equivalent driving cycle. The
equivalent driving cycle, which were explained in Section 3,
has the same vehicle excitation regarding the components
of the mean tractive force.

Let ṽ be the transformed driving cycle, and εβ , εγ , and
εα be thresholds for the absolute allowed differences. The
final transformation is performed in three steps as

1: The quantity β in (13) is the ratio between traveled
distance during traction regions and the total driven
distance in the driving cycle. To change the driving
cycle such that |β(ṽ) − β′| ≤ εβ the speed points
within the traction regions will be altered iteratively
until the absolute difference between β(ṽ) and β′ is
sufficiently small.

2: To change Fm and thus γ when xtot is constant
and traction regions are intact the only solution is
to change the speed points at the start or end of
each traction region according to (15). By iteratively
changing the end points it is possible to achieve
|γ(ṽ)− γ′| ≤ εγ .

3: Finally, to change the driving cycle to get |α(ṽ) −
α′| ≤ εα while maintaining both β(ṽ) and γ(ṽ), is
achieved by expanding or contracting of the speed
points (keeping the average speed) in the driving
cycle.
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Fig. 6. A Markov process generated driving cycle (dashed)
that have similar MTF components as the NEDC
(4%, 1%, and 17% difference) and a transformed
equivalent driving cycle (solid) to NEDC.

4.3 Method Summary

To summarize, relating to Figure 2, the method creates a
TPM from real-world driving data and generates driving
cycles with a certain duration. These pre-candidate driving
cycles are regarded as candidate driving cycles, by the
selection criterion, if the relative difference between the
desired values is sufficiently small enough according to
(19 - 21). As a final step the candidate driving cycles are
transformed to equivalent driving cycles using the three-
step algorithm that was described in the previous section.

5. RESULTS

Equivalent versions to the NEDC will be generated for
the illustrative purpose of using the whole process from
real-world driving cycles to equivalent driving cycles using
Markov chains and MTF. Even if the NEDC is not
representative for real-world driving it is still interesting
to see what an equivalent version of it may look like.

Three driving cycles that are equivalent to NEDC have
been generated from the database using the categories
Short, Urban, and Mixed. Each of the equivalent driving
cycles have its corresponding candidate driving cycle.
From the category ’Mixed’, see Table 1, an equivalent
driving cycle has been generated that can be seen in
Figure 6. The candidate driving cycle (dashed line) has
the relative difference compared to the NEDC of 4%, 1%,
and 17% for the MTF components (F̄air, F̄roll, and F̄m) and
the equivalent driving cycle (solid line) has the maximum
relative difference of 0.07% in F̄m.

Two more equivalent driving cycles have also been gener-
ated. The real-world driving cycles that have been used
are from the categories ’Urban’ and ’Short’, see Table 1
and Table 2. For the first category an equivalent driving
cycle to NEDC and its candidate driving cycle are shown
in Figure 7 where the candidate driving cycle (dashed line)
has the relative difference compared to the NEDC of 1%,
1%, and 11% for the MTF components and the equivalent
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MP generated DC
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Fig. 7. A Markov process generated driving cycle (dashed)
that have similar MTF as the NEDC (1%, 1%, and
11% difference) and a transformed equivalent driving
cycle (solid) to NEDC.
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Fig. 8. A Markov process generated driving cycle (dashed)
that have similar MTF as the NEDC (1%, 1%, and
20% difference) and a transformed equivalent driving
cycle (solid) to NEDC.

driving cycle (solid line) has the maximum relative differ-
ence of 0.03% in F̄m. For the latter category an equivalent
driving cycle to NEDC and its candidate driving cycle
are shown in Figure 8 where the candidate driving cycle
(dashed line) have the relative difference compared to the
NEDC of 1%, 1%, and 20% for the MTF components and
the equivalent driving cycle (solid line) has the maximum
relative difference of 0.008% in F̄m.

6. CONCLUSIONS

The problem of generating representative driving cycles
has been addressed, with the objective of being able to
generate several equivalent driving cycles that are similar
but not the same. A novel part is to use individual force

components of the mean tractive force, instead of only
using the total MTF, in the generation of driving cycles.
This is motivated since the fuel consumption estimation is
more accurate when the MTF components are considered
as seen in Figure 5. Further, another novelty is to combine
the generation of driving cycles from real-world driving
data with the new concept of equivalence. One may note
that the equivalence concept is used both in the selection
criterion and in the final step. Hence, the methods are
interwoven in the resulting overall algorithm, and the
feasibility of the approach has been demonstrated in
a number of examples. Thus, a new method has been
presented and the results are promising.
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M. André. Driving cycles development: characterization
of the methods. In SAE Technical Paper 961112, 1996.

G. Fontaras and P. Dilara. The evolution of European
passenger car characteristics 2000-2010 and its effects
on real-world CO2 emissions and CO2 reduction policy.
Energy Policy, 49(0):719 – 730, 2012.

Q. Gong, S. Midlam-Mohler, V. Marano, and G. Rizzoni.
An iterative markov chain approach for generating ve-
hicle driving cycles. SAE Int. J. Engines, 4(1):1035 –
1045, 2011.

L. Guzzella and A. Sciarretta. Vehicle Propulsion System:
Introduction to Modeling and Optimization. Springer,
2007.

P. K̊ageson. Cycle-beating and the EU test cycle for cars.
European Fed. Trans. and Environ. T&E, 98(3), 1998.

T-K. Lee and Z.S. Filipi. Synthesis of real-world driving
cycles using stochastic process and statistical method-
ology. Int. J. Vehicle Design, 57(1):17–36, 2011.

J. Lin and D.A. Niemeier. An exploratory analysis com-
paring a stochastic driving cycle to California´s regula-
tory cycle. Atmos. Environ., 36:5759–5770, 2002.

P. Nyberg, E. Frisk, and L. Nielsen. Driving cycle adap-
tion and design based on mean tractive force. In 7th
IFAC Symposium on Advances in Automotive Control,
volume 7, pages 689 – 694, Tokyo, Japan, 2013.

V. Schwarzer and R. Ghorbani. Drive cycle generation for
design optimization of electric vehicles. IEEE Transac-
tions on Vehicular Technology, 62(1):89 –97, 2013.

S. Shuming, L. Nan, Z. Yan, H. Chaosheng, L. Li,
L. Bingwu, and C. Jingmin. Research on markov prop-
erty analysis of driving cycle. In Vehicle Power and
Propulsion Conference, 2013 IEEE, pages 1–5, 2013.

S. Stockar, P. Tulpule, V. Marano, and G. Rizzoni. Energy,
economical and environmental analysis of plug-in hy-
brids electric vehicles based on common driving cycles.
SAE Int. J. Engines, 2(2):467–476, 2010.

H.Y. Tong, W.T. Hung, and C.S. Cheung. Development
of a driving cycle for Hong Kong. Atmos. Environ., 33
(15):2323 – 2335, 1999.
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Linköping University, SE-581 83 Linköping, 2013.
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