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Abstract: Four methods for compression ratio estimation of an engine from cylinder
pressure traces are described and evaluated for both motored and fired cycles. The first
three methods rely upon a model of polytropic compression for the cylinder pressure,
and it is shown that they give a good estimate of the compression ratio for simulated
cycles at low compression ratios. For high compression ratios, this simple model lack
the information about heat transfer and the model error causes the estimates to
become biased. Therefore a fourth method is introduced where heat transfer and
crevice effects are modeled, together with a commonly used heat release model for
firing cycles. This method is able to estimate the compression ratio more accurately
at low as well as high compression ratios. Copyright c©2004 IFAC
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1. INTRODUCTION

A newly developed engine, which can continously
change the compression ratio between 8 and 14
by tilting the mono-head, has been developed at
SAAB Automobile AB. This ability to change the
compression ratio opens up new opportunities to
increase the efficiency of SI engines by down sizing
and super charging. But if the compression ratio
gets stuck at too high ratios, the risk of engine
destruction by heavy knock increases rapidly. If
the compression ratio gets stuck at too low ratios,
we get an unnecessary low efficiency, and therefore
an unnecessary high fuel consumption. It is there-
fore vital to monitor and diagnose the continuously
changing compression ratio. Due to geometrical un-
certainties, a spread of the compression ratio among
the different cylinders is inherent [Amann, 1985],
and since it is hard to measure the compression
ratio directly, estimation is required. The questions
asked here are related to: 1) accuracy, 2) conver-
gence speed and 3) over all convergence. The ap-
proach investigated is to use cylinder pressure to
estimate the compression ratio. A desirable prop-

erty of the estimator is that it must be able to cope
with the unknown offset introduced by the charge
amplifier, changing thermodynamic conditions, and
possibly also the unknown phasing of the pressure
trace in relation to the crank angle revolution.
Two models of cylinder pressure with different com-
plexity levels, a polytropic model and a single-
zone zero-dimensional heat release model [Gatowski
et al., 1984] are used. To estimate the parameters
in the cylinder pressure models, three different opti-
mization algorithms minimizing the prediction error
are utilized, namely:

(1) A linear subproblem approach, where groups of
the parameters are estimated one at a time
and the predictor function is rewritten to be
linear for the group of estimated parameters.
Thus we can use linear regression at every
substep for estimating the particular group of
parameters.

(2) A variable projection method [Björck, 1996],
where one iteration consists of two substeps:
The first substep estimates the parameters
that are linear in the predictor function, hold-



ing the nonlinear constant. The second substep
is to perform a line search in the direction of
the negative gradient at the parameters found
from substep one. This method classifies as a
separable least squares method.

(3) Levenberg-Marquardt method, i.e. a Gauss-
Newton method, where we here use numerical
approximations of the gradient and the hes-
sian.

Based on these models and optimization algo-
rithms, four different methods are developed and
used for compression ratio estimation for both mo-
tored and fired cycles.

2. CYLINDER PRESSURE MODELING

Two models are used for describing the cylinder
pressure trace and they are refered to as the poly-
tropic model and the standard model.
Polytropic model A simple but efficient model is the
polytropic compression model,

p(θ)V (θ)n = C (1)

where p is the cylinder pressure, V (θ) is the volume
function, n is the polytropic exponent and C is
a cycle-to-cycle dependent constant. The model is
valid for adiabatic conditions, and works well during
the compression and expansion phase of the engine
cycle, but not during combustion [Heywood, 1988].
Therefore, for a firing cycle only data between inlet
valve closing (IVC) and start of combustion (SOC)
will be used, but for motored cycles all data during
the closed part of the cycle, i.e. between IVC and
exhaust valve opening (EVO), is utilized.
Standard model The article [Gatowski et al., 1984]
develops, tests and applies the heat release analysis
procedure used here. It maintains simplicity while
still including the effects of heat transfer and crevice
flows. The model has been widely used and the
phenomena that it takes into account are well
known [Heywood, 1988].
The pressure differential dp can be written as
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This is an ordinary differential equation that easily
can be solved numerically if a heat-release trace
δQch is provided. The heat release is modeled
by the Vibe function xb (3a) [Vibe, 1970]in its
differentiated form (3b).
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Where xb is the mass fraction burned, θ0 is the
start of the combustion, ∆θ is the total combustion
duration, and a and m are adjustable parameters.
This model is valid between IVC and EVO.

3. ESTIMATION METHODS

3.1 Cylinder pressure referencing

Piezoelectric pressure transducers are used for mea-
suring the in-cylinder pressure, which will cause a
drift in the pressure trace. This drift is assumed to
be constant during one engine cycle, and can be
estimated with various methods [Randolph, 1990].
Here the measured pressure trace pm(θ) will be
referenced by comparing it to the intake manifold
pressure pman just before inlet valve closing (IVC),
for several samples of pman. Due to standing waves
in the intake runners at certain operating points,
the referencing might prove to be insufficient, so a
second pressure referencing is made for method 3
and 4.

3.2 Method 1 – Sublinear approach

The first method estimates the polytropic expo-
nent n, the compression ratio rc and the constant C
in the polytropic model. It iteratively solves two
problems, one to determine the polytropic exponent
n, and the other to determine the compression ratio
rc. By using the polytropic model (1)

p(θ)(Vc(rc) + Vd(θ))n = C (4)

the compression ratio rc can be estimated by iter-
atively estimating the clearance volume Vc (i.e. rc)
and the polytropic exponent n.
Substep 1: The polytropic exponent n is assumed
to be known and the clearance volume is estimated
by rewriting (4). This yields a least square problem
which is linear in the parameters C1 and Vc accord-
ing to

Vd(θ) = C1p(θ)−1/n − Vc(rc) (5)

where C1 = C1/n and Vc are the parameters to be
estimated.
Substep 2: The polytropic exponent n is then es-
timated using the estimate of Vc from substep 1.
Applying logarithms on (4) yields

ln p(θ) = C2 − n ln(Vd(θ) + Vc(rc)) (6)

which is linear in the parameters n and C2 =
ln C. The linear parameters are estimated and we
return to substep 1. This procedure is repeated until
convergence.
Using this approach directly will cause diverging
estimates [Klein and Eriksson, 2002]. This is due
to that the predictor function is rewritten from (5)
to (6) or vice versa in every substep. If the same
predictor function could be used at every substep,
the problem would be bilinear in the parameters
and converge linearly [Björck, 1996].
In this case the predictor functions (5) and (6)
are dissimilar in size. Taylor expansion shows that
they become similar in size if (6) is multiplied by
(Vc(rc) + Vd(θ))

(Vc+Vd(θ)) ln p(θ) = (Vc+Vd(θ))(C2−n ln(Vd(θ)+Vc))
(7)



Stoping criteria: This modification (7) stabilizes the
method in the sense that the parameter estimates
after a few iterations jumps back and forth between
two parameter vectors. The jumping is due to
that the norm of the two predictor functions are
not exactly the same given the same parameters.
However, at this stage the components of the two
vectors differ less than 0.1 % and can therefore be
considered to be the same. By doing so and setting
the stoping criteria to a parameter change less than
0.1 %, the method stops within two iterations. This
limit is not universally valid, and must be adapted
for every specific engine and measurement setup.
Also note that convergence can not be guaranteed
for this method. If the clearance volume Vc is
known, the same method can be used to instead
estimate an additive pressure bias by reforming the
weighting function in a straight-forward manner.

3.3 Method 2 – Variable projection

The second method also uses the polytropic com-
pression model (1), together with a variable projec-
tion algorithm. A nonlinear least squares problem
min

x
||r(x)||2 is separable if the parameter vector x

can be partitioned such that x = (y z)T

min
y
||r(y, z)||2 (8)

is easy to solve. If r(y, z) is linear in y, r(y, z) can
be rewritten as

r(y, z) = F (z)y − g(z) (9)

For a given z, this is minimized by

y(z) = [FT (z)F (z)]−1F (z)g(z) = F †(z)g(z) (10)

using linear regression. The original problem
min

x
||r(x)||2 can then be rewritten as

min
z
||r(y, z)||2 = min

z
||g(z)− F (z)y(z)||2 (11)

and

r(y, z) = g(z)− F (z)y(z) = g(z)− F (z)F †(z)g(z)

= (I − PF (z))g(z) (12)

where PF (z) is the orthogonal projection onto the
range of F (z), thus the name variable projection
method.
The polytropic model in (4) is rewritten as

ln p(θ) = C2 − n ln(Vd(θ′) + Vc) (13)

which is the same equation as (6). This equation is
linear in the parameters C2 = ln C and n and non-
linear in Vc and applies to the form given in (A.1).
A computationally efficient algorithm [Björck, 1996,
p.352] is summarized for our application in Ap-
pendix A. For this application the method con-
verges within four iterations.

3.4 Method 3 – Levenberg-Marquardt

The third method uses the polytropic compression
equation (1) as methods 1 and 2 did, but a pressure
sensor model is added according to

p(θ) = pm(θ) + ∆p (14)

in order to make the pressure referencing better.
The crank angle phasing ∆θ of the volume and
pressure traces is also included in the polytropic
model, which then can be written as

p(θ) = pm(θ′+∆θ)+∆p = C · (Vd(θ′+∆θ)+Vc)−n

(15)
Based on (15) the following nonlinear least squares
problem is formulated

min
x

N∑

i=1

(pm(θi) + ∆p− C · (Vd(θi + ∆θ) + Vc)−n)2

(16)
A Levenberg–Marquardt method [Gill et al., 1981]
is used to solve this nonlinear least squares problem.
The problem has good numerical properties, the
Levenberg–Marquardt method has second order lo-
cal convergence and for this application the method
converges within ten iterations.

3.5 Method 4 – Levenberg-Marquardt and standard
model

The fourth method uses the single zone model (2)
from [Gatowski et al., 1984] which includes heat
transfer and crevice effects, and it will be used
to improve the estimation accuracy. The free pa-
rameters are summarized in [Klein and Eriksson,
2002]. Due to the complexity of this model, the sub-
linear approach and variable projection approach
are not suitable for optimization, and therefore
only the Levenberg–Marquardt method is used.
This approach has earlier been successfully applied
in [Eriksson, 1998] for motoring cycles, but here a
heat-release model (3b) is included to cope with
firing cycles.

3.6 Summary of methods

The following table shows the relation between the
different methods.

Polytropic Model Standard Model
Opt alg 1 Method 1
Opt alg 2 Method 2
Opt alg 3 Method 3 Method 4

For firing cycles, methods 1, 2 and 3 will only use
cylinder pressure data between IVC and SOC, in
contrast to method 4 which will use data from the
entire closed part of the engine cycle. For motoring
cycles, all data during the closed part of the cycle
is utilized by all methods.



4. SIMULATION RESULTS

Since the true values of the compression ratios of
the engine are unknown, simulations of the cylinder
pressure trace are necessary to perform and use for
evaluating the four proposed methods. Only then
can it be determined whether the estimates are
accurate (unbiased) or not.
Cylinder pressure simulations were made using the
standard model (2) with representative parame-
ters [Klein and Eriksson, 2002]. Sixty realizations
of Gaussian noise with zero mean and standard de-
viation 2 kPa were added to the simulated cylinder
pressures. The following sections show the typical
behavior of the estimation methods for a represen-
tative cycle at a high compression ratio rc = 13
displayed in Figure 1, where the effects of heat
transfer are more likely to show due to the higher
pressure and temperature in the cylinder. Residuals

−100 −50 0 50 100
0

5

10

15

20

25

30

Crank angle [Deg ATDC]

C
yl

in
de

r 
pr

es
su

re
 [b

ar
]

Simulated
Estimated M1
Estimated M2
Estimated M3

Fig. 1. Simulated cylinder pressure for a motored
cycle at rc = 13.

for all methods are found in figures 2 to 4 and
figures 5 and 6 show a summary of all estimations
for motored and fired cycles respectively. In the
summary section, statistics of the performance for
the four methods are summarized for both firing
and motoring cycles.

4.1 Method 1

Method 1 converges within two iterations for al-
most all simulated cylinder pressures, both firing
and motored cycles. Using the simulated cylinder
pressure an estimation of the parameters is made,
and from these a residual from the simulated and
estimated cylinder pressure can be formed. In Fig-
ure 2, the residual corresponding to the cylinder
pressure in Figure 1 for method 1 is shown. At the
beginning of the compression phase and at the end
of the expansion, the model and estimation method
works satisfactory, but not in between where most
of the heat transfer occurs. This model inaccuracy is
partly covered by allowing the polytropic exponent
to be small.

4.2 Methods 2 and 3

Methods 2 and 3 show the same lack of model
accuracy as method 1, although the residuals for
rc = 13 (Figure 2) do not look the same and the
estimated rc is biased. But when lowering the com-
pression ratio the model becomes more accurate,
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Fig. 2. Difference between estimated and simulated
cylinder pressure for all methods, given the
motored cycle in Figure 1.

and the residual in Figure 3 does not show the same
systematic deviation as the corresponding residual
in Figure 2 did. This is due to that the heat transfer
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Fig. 3. Difference between estimated and simulated

cylinder pressure using method 3, for a mo-
tored cycle at rc = 8.

and crevice effects are smaller, due to the lower
pressure and temperature rendering from the lower
compression ratio. The systematic deviation for the
residuals are expected since the crevice flow and
heat transfer are not considered explicitly in the
polytropic model (1) and it stresses that these phe-
nomena must be taken into account when a better
estimate is desired for higher compression ratios.
Therefore method 4 uses the standard model (2).

4.3 Method 4

Reasonable enough, the more complex method also
shows the best ability to adjust to the simulated
cylinder pressure and explain the physical phenom-
ena taking place in the cylinder. The residual for
method 4 in Figure 2 looks like white noise, sug-
gesting that the estimation method can explain the
data fully. This is also the case for firing cycles, see
Figure 4 where the simulated and estimated cylin-
der pressure is shown together with the residual.

4.4 Summary of parameter estimations

Comparing the residuals from all methods, it is
obvious that method 4 can explain the data most
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Fig. 4. Difference between estimated and simulated
cylinder pressure using method 4, for a fired
cycle at rc = 13.

accurately. This suggests that the estimation of
the compression ratio becomes best for method 4,
which is also shown in Figure 5 for motored cycles,
where the mean and 95% confidence interval of the
estimated compression ratio is shown for all four
methods. The 95% confidence interval is computed
by assuming that the model is correct and that
the estimation error asymptotically converges to a
Gaussian distribution. In the figure the real com-
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Fig. 5. Mean and 95% confidence interval of the
estimated compression ratio for motored cycles
using the four methods, compared to the real
compression ratio.

pression ratios are the integer values 8 til 13 and for
convenience, method 1 is moved to the left, method
2 is moved a little to the left (and to the right
of method 1), method 3 is moved a little to the
right and method 4 is to the right of method 3. The
estimates should be as close to the horizontal lines
as possible.
Method 1 estimates the compression ratio very well,
almost equally well as method 4. As mentioned
before, this is allowed by letting the polytropic coef-
ficient become small. Methods 2 and 3 on the other
hand under estimates the compression ratio, and
this systematic fault increases with the compression
ratio. Method 4 is able to estimate the compression
ratio correctly, due to the higher flexibility of the
model. This suggests that method 1 or 4 should be
used.
For firing cycles the same effect as for the motoring
cycles appears and is even more pronounced as
shown in Figure 6. Table 1 summarizes the standard
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Fig. 6. Mean and 95% confidence interval of the
estimated compression ratio for fired cycles
using the four methods, compared to the real
compression ratio.

deviation and the maximum relative error of the
estimated compression ratio for 60 cycles respec-
tively. The mean and maximum error is smallest
for method 4 both for firing and motoring cycles.
The standard deviation is small for all methods.

Method Type Std dev Rel error (%)
Max Mean

1 Fired 0.0443 1.34 0.37
Motored 0.0226 0.47 0.064

2 Fired 0.1236 3.96 6.2
Motored 0.0243 2.02 2.9

3 Fired 0.1284 2.51 5.6
Motored 0.0112 1.44 2.2

4 Fired 0.0318 0.49 0.17
Motored 0.0156 0.29 0.099

Table 1. Table showing the standard devi-
ation, maximum and mean relative error
of the estimated compression ratio rc.

4.5 Small study of varying operating conditions

To investigate how the proposed methods behave
for various operating conditions, a small study is
performed using the cylinder pressures in Figure 7.
Table 2 summarizes the results. Method 4 is not
included, since it is able to estimate rc correctly.
Method 1 performs better than methods 2 and 3,
although the estimate becomes worse for higher
load engine operating conditions. But it is still
within 2% for a high engine load level (OP3).
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Fig. 7. Simulated cylinder pressure for firing cycles
at rc = 13 for three operating points.



Oper M1 M2 M3
point @8 @13 @8 @13 @8 @13

OP1 0.1 0.7 5.2 7.2 5.3 6.2
OP2 0.5 1.7 9.1 12.4 9.3 10.6
OP3 0.8 2.0 8.1 11.3 8.3 9.6

Table 2. Relative estimation mean error
[%] in rc using methods 1, 2 and 3 for

firing cycles.

4.6 Conclusions from simulations

The first three methods rely upon the assumption
of a polytropic compression and expansion, and it is
shown that this is sufficient to get a rough estimate
of the compression ratio, especially for low compres-
sion ratios and by letting the polytropic exponent to
become small. But for higher rc:s it is important to
take the heat transfer into account, and then only
method 4 is accurate enough. It is interesting to
note that for diagnostic purposes, all four methods
will be able to detect when the compression ratio
gets stuck at a too high or too low level.
The time complexity for the four methods is quite
diverse, and is summarized in table 3. The simula-
tions were made using Matlab 6.1 on a SunBlade
100, which has a 64-bit 500 Mhz processor.

Method Time # Iter # Parameters

1 15.4 ms 2 3

2 23 ms 3 3

3 145 ms 5 5

4 2 ∗ 105 ms 9 12

Table 3. Table showing the mean time
and mean number of iterations in com-
pleting one cycle, together with the num-

ber of parameters for all methods.

5. CONCLUSIONS

The four estimation methods all give good estima-
tions for low compression ratios on simulated data.
But for high compression ratios, the heat transfer
has to be accounted for and therefore the more
complex method 4 gives a better estimation than
the simpler and more time efficient methods 1, 2
and 3. Method 2 is preferable to method 3 due to its
faster convergence. During driving, all methods are
able to detect if the compression ratio is stuck at a
too high or at a too low level. This is sufficient both
for safety reasons, where the compression ratio can
be too high and engine knock is the consequence,
and for fuel economic reasons, where a too low com-
pression ratio will lead to higher fuel consumption.
However, to fully validate the proposed methods,
an experimental evaluation with real engine data is
required.
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Appendix A. VARIABLE PROJECTION
ALGORITHM

A computationally efficient algorithm is described
in [Björck, 1996] and is summarized here. Partition
the parameter vector x such that x = (y z)T , where
r(y, z) is linear in y. Rewrite r(y, z) as

r(y, z) = F (z)y − g(z) (A.1)

Let xk = (yk, zk) be the current approximation.

(1) Solve the linear subproblem

min
δyk

||F (zk)δyk − (g(zk)− F (zk)yk)||2 (A.2)

and set xk+1/2 = (yk + δyk, zk).
(2) Compute the Gauss-Newton direction pk at

xk+1/2, i.e. solve

min
pk

||C(xk+1/2pk + r(yk+1/2, zk)||2 (A.3)

where C(xk+1/2 = (F (zk), rz(yk+1/2, zk)) is
the Jacobian matrix.

(3) Set xk+1 = xk+1/2 + αkpk and return to step
1.

The polytropic model in (4) is rewritten as

ln p(θ) = C2 − n ln(Vd(θ′) + Vc) (A.4)

This equation is linear in the parameters C2 = ln C
and n and nonlinear in Vc and applies to the form
given in (A.1). With the notation from the algo-
rithm above, the parameters are x = (C2 n Vc)T ,
where y = (C2 n)T and z = Vc. The measurement
vector is formed as g = − ln p and the regression
vector as F = [−I ln(Vc + Vd(θ′))].


