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Abstract: A fundamental part of a fault diagnosis system is the residual generator. Here a new
method, theminimal polynomial basis approach, for design of residual generators for linear
systems, is presented. The residual generation problem is transformed into a problem of
finding polynomial bases for null-spaces of polynomial matrices. This is a standard problem
in established linear systems theory, which means that numerically efficient computational
tools are generally available. It is shown that the minimal polynomial basis approach can
find all possible residual generators, including those of minimal McMillan degree, and the
solution has a minimal parameterization. It is shown that some other well known design
methods, do not have these properties.Copyright 1999 IFAC
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1. INTRODUCTION

The task of fault diagnosis is to, from known signals,
i.e. measurements and control signals, detect and lo-
cate any faults acting on the system being supervised.
A fundamental part of amodel baseddiagnosis system
is theresidual generator. The residual generator filters
the known signals and generates a signal, theresidual,
that should be “small” (ideally 0) in the fault-free case
and “large” when a fault is acting on the system. In a
general system, not only the control signalu influence
the system, but also disturbancesd and the faultsf
that we wish to detect.

This work is a study oflinear residual generation
for linear systems with no model uncertainties. The
diagnosis method considered isstructured residuals
(Gertler, 1991). Then the design of a residual gen-
erator becomes a decoupling problem. Further, only
perfect decoupling of the disturbances is considered,
and the issue ofapproximate decouplingassociated
with e.g. robust diagnosis is not considered here.

A general linear residual generator can be written

r = Q(s)
(
y
u

)
(1)

i.e.Q(s) is a multi-dimensional transfer matrix with
known signalsy and u as inputs and aresidual as
output.

A number of design methods for designing linear
residual generators, have been proposed in litera-
ture, see for example (Patton and Kangethe, 1989;
Wünnenberg, 1990; White and Speyer, 1987; Mas-
soumniaet al., 1989; Nikoukhah, 1994; Chow and
Willsky, 1984; Nyberg and Nielsen, 1997). All these
methods are methods to design the transfer matrix
Q(s). Three natural questions that have not gained
very much attention are the following:

• Does the method find all possible residual gener-
ators?

• Does the method find residual generators of min-
imal McMillan degree?

• Does the solution represent a minimal parame-
terization or is it over parameterized?



These three questions are naturally handled by formu-
lating the residual generation problem in the standard
framework of polynomial matrices. The outcome of
this is a new method,the minimal polynomial basis
approach, presented in Section 3, which is an intuitive
solution to the residual generator problem. With this
approach, it is shown that the decoupling problem is
transformed into finding a minimal basis for a null-
space of a polynomial matrix.

It will be shown that the minimal polynomial basis
approach can find all possible residual generators, in-
cluding the ones of minimal McMillan degree, and the
solution has a minimal parameterization. In Section 5
it will be shown that some other well known methods
do not have all these properties. A clear advantage
with the minimal polynomial basis approach is also
that design tools (Henrionet al., 1997) are already
available. This is since it is based on established linear
systems theory. The algorithms that are used are well
studied and have good numerical properties.

2. POLYNOMIAL BASES AND SPACES

This paper relies on established theory on polynomial
matrices, polynomial/rational vector spaces, and poly-
nomial bases for these spaces (Kailath, 1980; For-
ney, 1975; Chen, 1984). The main notions used, are
presented in this section.

The row-degree of a row vector of polynomials is
defined as the largest polynomial degree in the row-
vector. In this paper,polynomial basesandordersof
polynomial bases are of special interest. A basis is
here represented by a polynomial matrix where the
rows are the basis vectors. The order of a polynomial
basis is defined in (Kailath, 1980) as

Definition 1.(Order of a polynomial basis). Let the
rows ofF (s) form a basis for a vector spaceF. Let
µi be the row-degrees ofF (s). The order ofF (s) is
defined as

∑
µi.

A minimal polynomial basisfor F is then any basis
that minimizes this order.

A property of a minimal polynomial basis is that it
is irreducible (Theorem 6.5-10 in (Kailath, 1980)). A
matrixF (s) is irreducible if and only ifF (s) has full
rank for alls. An irreducible basis has a nice property
that is described in the following theorem:

Theorem 1.((Kailath, 1980) p.401). If the rows ofF (s)
is an irreducible polynomial basis for a spaceF, then
all polynomial row vectorsf(s) ∈ F can be written
f(s) = φ(s)F (s) whereφ(s) is a polynomial row
vector.

3. THE MINIMAL POLYNOMIAL BASIS
APPROACH

This section introduces the minimal polynomial basis
approach to the design of linear residual generators.
The approach does not adopt an observer view, e.g.
like the unknown input observer and eigenstructure as-
signment design methods. This is because the primary
issues of this paper is to handle minimality and com-
pleteness of solution which are more easily addressed
in a polynomial basis framework. All derivations are
performed in the continuous case but the correspond-
ing results for the time-discrete case can be obtained
by substitutings by z andimproperby non-causal.

3.1 Problem Formulation

The systems studied in this work are assumed to be on
the form

y = G(s)u+H(s)d+ L(s)f (2)

wherey(t) is measurements,u(t) is known inputs to
the system,d(t) is unknown disturbances including
the set of faults we wish to decouple, andf(t) is the
rest of the faults. The filterQ(s) in (1) is a residual
generator if and only ifr(t) = 0 for all d(t) andu(t)
whenf(t) = 0. To be able to detect faults, it is also
required thatr(t) 6= 0 whenf(t) 6= 0.

Inserting (2) into (1) gives

r = Q(s)
[
G(s) H(s)
I 0

] [
u
d

]
+Q(s)

[
L(s)

0

]
f

To maker(t) = 0 whenf(t) = 0, it is required that
disturbances and the control signal aredecoupled, i.e.
for Q(s) to be a residual generator, it must hold that

Q(s)
[
G(s) H(s)
I 0

]
= 0

This implies thatQ(s) must belong to the left null-
space of

M(s) =
[
G(s) H(s)
I 0

]
(3)

This null-space is denotedNL(M(s)). The matrix
Q(s) need to fulfill two requirements: belong to the
left null-space ofM(s) andhave good fault sensitivity
properties. If, in a first step of the design,all Q(s)
that fulfills the first requirement is found, then aQ(s)
with good fault sensitivity properties can be selected.
Thus, in a first step of the design of the residual
generatorQ(s) we need not considerf or L(s). The
problem is then to findall rationalQ(s) ∈ NL(M(s)).
Of special interest are the residual generators with
least McMillan degree, i.e. the number of states in a
minimal realization.

This can be done by finding a minimal basis for
the rational vector-spaceNL(M(s)). A minimal ba-
sis for a rational vector-space is apolynomialbasis
(Forney, 1975). In Section 4, acomputationally sim-
ple, efficient, andnumerically stablemethod, to find



a polynomialbasis for the left null-space ofM(s) is
presented. The obtained basis is denotedNM (s). It
is noteworthy that, by inspection of (3), it holds that
the dimension (number of rows) ofNM (s) is less
than or equal tom (with equality when there are no
disturbances).

3.2 Forming the Residual Generator

When a polynomial basisNM (s) have been obtained,
the second and final step in the residual generator
design is to shape fault-to-residual responses as de-
scribed next.

The minimal polynomial basisNM (s) is irreducible
and then, according to Theorem 1, all decoupling
polynomialvectorsF (s) can be parameterized as

F (s) = φ(s)NM (s) (4)

whereφ(s) is a polynomial vector of suitable dimen-
sions. This parameterization vectorφ(s) can e.g. be
used to shape the fault-to-residual response or simply
to select one row inNM (s). SinceNM (s) is a basis,
the parameterization vectorφ(s) have minimal num-
ber of elements, i.e. a minimal parameterization.

When a decoupling polynomial vectorF (s) has been
selected for implementation to form a residual gen-
erator, it must be made realizable since a polynomial
vector is improper and thus not realizable. A realiz-
able rational transfer functionQ(s), i.e. the residual
generator, can be found as

Q(s) = d−1
F (s)F (s)

where the polynomialdF (s) has greater or equal de-
gree compared to the row-degree ofF (s). The degree
constraint is the only constraint ondF (s). This means
that the dynamics, i.e. poles, of the residual generator
Q(s) can be chosen freely. This also means that the
minimal order of a realization of a decoupling filter is
determined by the row-degrees of theminimalpolyno-
mial basisNM (s).

4. METHODS TO FIND A MINIMAL
POLYNOMIAL BASIS TO NL(M(s))

The problem of finding a minimal polynomial basis
to the left null-space of the rational matrixM(s) can
be solved by a transformation to a problem of finding
a minimal polynomial basis to the left null space of a
polynomial matrix. This transformation can be done in
several different ways. In this section, two possibilities
are demonstrated, where one is used if the model is
given on transfer function form and the other if the
model is given in state-space form. Also included is
a description on how to compute a basis for the null-
space of a polynomial matrix.

The motivation for this transformation to a polyno-
mial problem, is that there exists well established the-
ory (Kailath, 1980) regarding polynomial matrices. In
addition, the generally available Polynomial Toolbox

(Henrionet al., 1997) for MATLAB contains an exten-
sive set of tools for numerical handling of polynomial
matrices.

4.1 Frequency Domain Solution

One way of transforming the rational problem to a
polynomial problem is to perform a right MFD on
M(s), i.e.

M(s) = M̃1(s)D̃−1(s) (5)

One simple example is

M(s) = M̃1(s)d−1(s)

whered(s) is the least common multiple of all denom-
inators. By finding a polynomial basis for the left null-
space of thepolynomialmatrixM̃1(s), a basis is found
also for the left null-space ofM(s). No solutions are
missed becausẽD(s) (e.g.d(s)) is of full normal rank.
Thus the problem of finding a minimal polynomial
basis toNL(M(s)) has been transformed into finding
a minimal polynomial basis toNL(M̃1(s)).

4.2 State-Space Solution

Assume that the system is described in state-space
form,

ẋ(t) =Ax(t) +Buu(t) +Bdd(t) (6a)

y(t) =Cx(t) +Duu(t) +Ddd(t) (6b)

wherex is the n-dimensional state. Then it is con-
vienient to use thesystem matrixin state-space form
(Rosenbrock, 1970) to find the left null-space to
M(s). The system matrix has been used before in the
context of fault diagnosis, see e.g. (Nikoukhah, 1994;
Magni and Mouyon, 1994). Denote the system matrix
Ms(s), describing the system with disturbances as
inputs:

Ms(s) =
[

C Dd

−(sI −A) Bd

]
Lets define the matrixP as

P =
[
I −Du

0 −Bu

]
Then the following theorem gives a direct method on
how to find a minimal polynomial basis toNL(M(s))
via the system matrix.

Theorem 2.Let V (s) be a minimal polynomial basis
for NL(Ms(s)) and let the pair{A, [Bu Bd]} be
controllable. ThenW (s) = V (s)P is a minimal
polynomial basis forNL(M(s)).

The proof of this theorem can be found in (Frisk
and Nyberg, 1998). In conclusion, as in the previous
section, the problem of finding a minimal polynomial
basis toNL(M(s)) has been transformed into finding
a minimal polynomial basis to a polynomial matrix, in
this case the system matrixMs(s).



4.3 No Disturbance Case

If there are no disturbances, i.e.H(s) = 0, the matrix
M(s) gets a simpler structure

Mnd(s) =
[
G(s)
I

]
(7)

A minimal polynomial basis for the left null-space
of Mnd(s) is particularly simple due to the special
structure and a minimal basis is then given directly by
the following theorem:

Theorem 3.((Kailath, 1980)). IfG(s) is a proper trans-
fer matrix andD̄G(s), N̄G(s) form an irreducible left
MFD, i.e. N̄G(s) and D̄G(s) are left co-prime and
G(s) = D̄−1

G (s)N̄G(s). Then,

NM (s) = [D̄G(s) − N̄G(s)] (8)

forms a minimal basis for the left null-space of the
matrix

M(s) =
[
G(s)
I

]

Here, thedimensionof the null-space ism, i.e. the
number of measurements, and theorder of the min-
imal basis is given by the following theorem:

Theorem 4.The set of observability indices of a trans-
fer functionG(s) is equal to the set of row degrees
of D̄G(s) in any row-reduced irreducible left MFD
G(s) = D̄−1

G (s)N̄G(s).

A proof of the dual problem, controllability indices,
can be found in (Chen, 1984) (p. 284).

Thus, a minimal polynomial basis for matrixMnd(s)
is given by a left MFD ofG(s) and the order of the
basis is the sum of the observability indices ofG(s).

The result (8) implies that finding the left null-space
of the rational transfer matrix (3), in the general case
with disturbances included, can be reduced to finding
the left null-space of the rational matrix

M̃2(s) = D̄G(s)H(s) (9)

In other words, this is an alternative to the use of the
matrix M̃1(s) in (5). This view closely connects with
the so called frequency domain methods, which are
further examined in Section 5.

4.4 Finding a Minimal Polynomial Basis for the
null-space of a General Polynomial Matrix

For the general case, including disturbances, the only
remaining problem is how to find a minimal poly-
nomial basis to a polynomial matrix. This is a well-
known problem in the general literature on linear sys-
tems. At least two different algorithms exists. The first
is based on theHermite form(Kailath, 1980) and a
second algorithm is based on thepolynomial echelon
form (Kailath, 1980). Both methods are implemented

in the Polynomial Toolbox (Henrionet al., 1997) for
MATLAB and a detailed description can be found in
(Frisk and Nyberg, 1998).

The two algorithms have very different numerical
properties. Although the algorithm based on Hermite
form is easy to understand, it has poor numerical prop-
erties. However the algorithm based on polynomial
echelon form is both fast and numerically stable and
should therefore be the preferred choice.

5. RELATION TO OTHER RESIDUAL
GENERATOR DESIGN METHODS

This section discusses the relation between the mini-
mal polynomial basis approach and two other design
methods for linear residual generation. Also the rela-
tion to the concept of parity functions, although not
a design method, is covered. It is interesting to find
that the questions of minimality and completeness of
solution is not at all obvious for other design methods
for residual generation.

5.1 Parity Equations

Several interpretations of the termsparity equations
(or parity relations) andparity functionsexist in the
fault diagnosis literature. To clarify the meaning here,
we use the termspolynomial parity equationandpoly-
nomial parity functions, which are the type of par-
ity equations/functions defined in (Chow and Will-
sky, 1984).

The definition of polynomial parity functions be-
comes:

Definition 2.(Polynomial Parity Function). A polyno-
mial parity function is a functionh(u(t), y(t)) that can
be written as

h(u(s), y(s)) = A(s)y(s) +B(s)u(s)

whereA(s) andB(s) are polynomial vectors (or ma-
trices if multidimensional parity functions are consid-
ered) ins. The value of the function is zero if no faults
are present.

A polynomial parity equationis then basically a poly-
nomial parity function set to zero, i.e.h(u(s), y(s)) =
0.

Remark:Parity equations that are not polynomial are
often mentioned in the literature, e.g. ARMA par-
ity equation (Gertler, 1991), dynamic parity relations
(Gertler and Monajemy, 1995). In accordance with
standard mathematical notion, these should be called
rational parity equations. A rational parity functionis
then identical with a linear residual generator.

Parity equations/functions are in our view not a design
method; it is solely an equation/function with specific
properties. Nevertheless there is a strong relationship



between minimal polynomial approach and polyno-
mial parity functions. For any choice ofφ(s) in (4),
F (s) will be a parity function. Thus the minimal poly-
nomial basis approach to residual generator design
can be seen as a design method for polynomial parity
functions.

5.2 The Chow-Willsky Scheme

Another method for constructing polynomial parity
functions was presented in (Chow and Willsky, 1984).
This method is usually referred to as the Chow-
Willsky scheme.

It has been shown in (Nyberg and Nielsen, 1997)
that for some systems, the Chow-Willsky scheme can
not generate all possible polynomial parity functions.
This is the case when there is dynamics controllable
from the faults but not from inputs or disturbances.
This further implies that the Chow-Willsky scheme
can not generate a polynomial basis for the left null-
space ofM(s) defined in (3). However (Nyberg and
Nielsen, 1997) presents a modified version of the
Chow-Willsky scheme and it is shown that this modi-
fied version is able to generate all possible polynomial
parity equations. This modified version is here re-
ferred to as theuniversalChow-Willsky scheme. Now
the question is if this universal Chow-Willsky scheme
can generate a polynomial basis forNL(M(s)).

Since the Chow-Willsky scheme is well known, only
a short description is given here. Designing polyno-
mial parity functions with the universal Chow-Willsky
scheme comes down to finding the null-space to a
constant real matrix[Rρ Hρ], where

Rρ = [CT ATCT . . . AρTCT ]T

andHρ is a lower triangular Toeplitz matrix describ-
ing the propagation of the disturbances through the
system. Compared to the problem of finding the left
null-space ofM(s) in (3), this is a much simpler
problem since only constant matrices are involved.
Let the matrixW be a basis for the left null-space of
[RρHρ] and letFCW (s) denote the polynomial matrix
W [Ψy(s) −QΨu(s)], where

Ψy(s) =[Im sIm . . . sρI]T Ψu(s) =[Ik sIk . . . sρI]T

andQ is a lower triangular Toeplitz matrix describing
the propagation of the inputs through the system.

To investigate ifFCW (s) becomes a polynomial basis
for the left null-space ofM(s), the following theorem
(reformulated) from (Nyberg and Nielsen, 1997) is
useful:

Theorem 5.Consider anM(s) as in (3). For each
vectorf(s) ∈ NL(M(s)) and degf(s) = ρ there is a
vectorw such thatf(s) = w [Ψy(s) −QΨu(s)] and
w [Rρ Hρ] = 0.

Theorem 5 implies that for someρ, FCW (s) will span
the left null-space ofM(s). However, the number of

rows of FCW (s) is in general larger thanm, which
is the maximal dimension ofNL(M(s)) (see Sec-
tion 3.1). The matrixFCW (s) is therefore not a basis
for NL(M(s)); it represents an over parameterized
solution. In conclusion, all this means that the Chow-
Willsky scheme as stated in for example (Chow and
Willsky, 1984) or (Nyberg and Nielsen, 1997), will not
generate a minimal polynomial basis forNL(M(s)).

From a numerical perspective, the Chow-Willsky
scheme is not as good as the minimal polynomial
basis approach. The reason is that, for anything but
small ρ, the matrix [Rρ Hρ] will have high powers
of A. It is likely that this results in that[Rρ Hρ] be-
comes ill-conditioned. Thus to find the left null-space
of [Rρ Hρ] can imply severe numerical problems.
The minimal polynomial basis approach does not have
these problems of high power ofA or any other term.
This difference is highlighted in (Frisk, 1998), where
both the Chow-Willsky scheme and the minimal poly-
nomial basis approach are applied to the problem of
designing polynomial parity functions for a turbo-jet
aircraft-engine. The Chow-Willsky scheme fails be-
cause of numerical problems, while the minimal poly-
nomial basis approach manage to generate a basis for
all parity functions.

5.3 Frequency Domain Approaches

A number of design methods described in literature
are calledfrequency domain methodswhere the resid-
ual generators are designed with the help of different
transfer matrix factorization techniques. Examples are
(Frank and Ding, 1994) for the general case with dis-
turbances and (Ding and Frank, 1990; Viswanadham
et al., 1987) in the non-disturbance case. The methods
can be summarized as methods where the residual
generator is parameterized as

r = R(s)[D̃(s) − Ñ(s)]
(
y
u

)
(10)

= R(s)(D̃(s)y − Ñ(s)u)

whereD̃(s) andÑ(s) form a left co-prime factoriza-
tion of G(s) overRH∞, i.e. the space of stable real-
rational transfer matrices. Note the close relationship
with Equation (8) where the factorization is performed
over polynomial matrices instead of overRH∞.

Inserting (2) into Equation (10) and as before assum-
ing f = 0, gives

r = R(s)D̃(s)H(s)d

Therefore to achieve disturbance decoupling, the pa-
rameterization transfer matrixR(s), must be belong
to the left null-space of̃D(s)H(s), i.e.

R(s)D̃(s)H(s) = 0

Here, note the close connection with̃M2(s) in (9).
This solution however does not generally generate a
residual generator with minimal McMillan degree. In
(Ding and Frank, 1990) and (Frank and Ding, 1994),



the co-prime factorization is performed via a minimal
state-space realization of the complete system, includ-
ing the disturbances as in Equation (6). This results in
D̃(s) andÑ(s) of McMillan degreen that, in the gen-
eral case, is larger than the lowest possible McMillan
degree of a disturbance decoupling residual generator.
Thus, to find a basis of lowest order that spans all
residual generatorsQ(s) = R(s)[D̃(s) − Ñ(s)],
extra care is required since “excess” states need to be
canceled. Note that the polynomial basis approach on
the other hand, has no need for cancelations and is in
this sense more elegant.

6. CONCLUSIONS

Design of residual generators to achieve perfect de-
coupling in linear systems is considered. The goal has
been to develop a design method and four issues have
been addressed, namely that the method (1) is able to
generateall possible residual generators, (2) explicitly
gives the solutions with minimal McMillan degree, (3)
results in a minimal parameterization of the solutions,
i.e. all residual generators, and (4) has good numerical
properties.

The residual generator design problem is formulated
with standard notions from linear algebra and linear
systems theory such as polynomial bases for rational
vector spaces and it is shown that the design problem
can be seen as the problem of findingpolynomialma-
trices in the left null-space of a rational matrixM(s).
Within this framework, the completeness of solution,
i.e. issue (1) above, and minimality, i.e. issues (2) and
(3), are naturally handled by the concept ofminimal
polynomial bases.

Finding a minimal polynomial basis for a null-space
is a well-known problem and there exists computa-
tionally simple, efficient, and numerically stable al-
gorithms, i.e. issue (4), to generate the bases. In ad-
dition, generally available implementations of these
algorithms exists.

The question of minimality and completeness of solu-
tion is not obvious for other design methods. Relations
to two well known methods are discussed and it is
shown that they generally do not generate minimal
solutions, i.e. it is not possible to generate minimal
polynomial bases with these methods.
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