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Abstract: A fundamental part of a fault diagnosis system is the residual generator. Here a new
method, thanminimal polynomial basis approacfor design of residual generators for linear
systems, is presented. The residual generation problem is transformed into a problem of
finding polynomial bases for null-spaces of polynomial matrices. This is a standard problem
in established linear systems theory, which means that numerically efficient computational
tools are generally available. It is shown that the minimal polynomial basis approach can
find all possible residual generators, including those of minimal McMillan degree, and the
solution has a minimal parameterization. It is shown that some other well known design
methods, do not have these propertégpyrightl 1999 IFAC
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1. INTRODUCTION y
r=qe (1) @

The task of fault diagnosis is to, from known signals,
i.e. measurements and control signals, detect and lo-

cate any faults acting on the system being supervisedi.e. Q(s) is a multi-dimensional transfer matrix with
A fundamental part of emodel basediagnosis system known signalsy and v as inputs and aesidual as
is theresidual generatarThe residual generator filters  output.

the known signals and generates a signalréiselual
that should be “small” (ideally 0) in the fault-free case
and “large” when a fault is acting on the system. In a
general system, not only the control signahfluence
the system, but also disturbancésnd the faultsf
that we wish to detect.

A number of design methods for designing linear
residual generators, have been proposed in litera-
ture, see for example (Patton and Kangethe, 1989;
Winnenberg, 1990; White and Speyer, 1987; Mas-
soumniaet al, 1989; Nikoukhah, 1994; Chow and
Willsky, 1984; Nyberg and Nielsen, 1997). All these
This work is a study oflinear residual generation methods are methods to design the transfer matrix
for linear systems with no model uncertainties. The Q(s). Three natural questions that have not gained
diagnosis method considered structured residuals  very much attention are the following:

(Gertler, 1991). Then the design of a residual gen-
erator becomes a decoupling problem. Further, only
perfect decoupling of the disturbances is considered,
and the issue ofpproximate decouplingssociated
with e.g. robust diagnosis is not considered here.

e Does the method find all possible residual gener-
ators?

e Does the method find residual generators of min-
imal McMillan degree?

e Does the solution represent a minimal parame-

A general linear residual generator can be written terization or is it over parameterized?



These three questions are naturally handled by formu- 3. THE MINIMAL POLYNOMIAL BASIS

lating the residual generation problem in the standard APPROACH

framework of polynomial matrices. The outcome of

this is a new methodthe minimal polynomial basis  This section introduces the minimal polynomial basis
approach presented in Section 3, which is an intuitive approach to the design of linear residual generators.
solution to the residual generator problem. With this The approach does not adopt an observer view, e.g.
approach, it is shown that the decoupling problem is like the unknown input observer and eigenstructure as-
transformed into finding a minimal basis for a null- signment design methods. This is because the primary
space of a polynomial matrix. issues of this paper is to handle minimality and com-
pleteness of solution which are more easily addressed
in a polynomial basis framework. All derivations are
performed in the continuous case but the correspond-
ing results for the time-discrete case can be obtained
by substitutings by z andimproperby non-causal

It will be shown that the minimal polynomial basis
approach can find all possible residual generators, in-
cluding the ones of minimal McMillan degree, and the
solution has a minimal parameterization. In Section 5
it will be shown that some other well known methods
do not have all these properties. A clear advantage
with the minimal polynomial basis approach is also
that design tools (Henrioet al., 1997) are already
available. This is since it is based on established linear o
systems theory. The algorithms that are used are We"The systems studied in this work are assumed to be on

studied and have good numerical properties. the form

3.1 Problem Formulation

y=G(s)u+ H(s)d+ L(s)f )

wherey(t) is measurements,(t) is known inputs to
the systemy(t) is unknown disturbances including
the set of faults we wish to decouple, afift) is the
rest of the faults. The filte€(s) in (1) is a residual
generator if and only if-(¢) = 0 for all d(t) andu(t)

2. POLYNOMIAL BASES AND SPACES when f(t) = 0. To be able to detect faults, it is also
required that () # 0 whenf(t) # 0.

This paper relies on established theory on polynomial Inserting (2) into (1) gives

matrices, polynomial/rational vector spaces, and poly-

nomial bases for these spaces (Kailath, 1980; For- r = Q(s) [G-(,S) Hés)} {Z] +Q(s) [L(()S)] f
ney, 1975; Chen, 1984). The main notions used, are

presented in this section. To maker(t) = 0 when f(t) = 0, it is required that
disturbances and the control signal dexoupledi.e.

The row-degree of a row vector of polynomials is for Q(s) to be a residual generator, it must hold that

defined as the largest polynomial degree in the row-
vector. In this papempolynomial baseandordersof G(s) H(s)| _
polynomial bases are of special interest. A basis is Qs) { 1 0 } =0
here represented by a polynomial matrix where the
rows are the basis vectors. The order of a polynomial
basis is defined in (Kailath, 1980) as

This implies thatQ(s) must belong to the left null-

space of
_ |G(s) H(s)
Definition 1.(Order of a polynomial basis). Let the M(s) = { 1 0 ©)

rows of F'(s) form a basis for a vector spade Let . . .
u; be the row-degrees df(s). The order ofF(s) is This null-space is denoteN_L(M(s)).. The matrix
defined a$> ;. Q(s) need to fulfill two requirements: belong to the

left null-space ofM/ (s) andhave good fault sensitivity
properties. If, in a first step of the desigal] Q(s)
A minimal polynomial basigor J is then any basis that fulfills the first requirement is found, ther(Hs)
that minimizes this order. with good fault sensitivity properties can be selected.
Thus, in a first step of the design of the residual
generator)(s) we need not considef or L(s). The
problem is then to findll rationalQ(s) € Ny (M (s)).
Of special interest are the residual generators with
least McMillan degree, i.e. the number of states in a
minimal realization.

A property of a minimal polynomial basis is that it
is irreducible (Theorem 6.5-10 in (Kailath, 1980)). A
matrix F'(s) is irreducible if and only ifF'(s) has full
rank for alls. An irreducible basis has a nice property
that is described in the following theorem:

Theorem 1((Kailath, 1980) p.401). Iftherows df(s) This can be done by finding a minimal basis for
is an irreducible polynomial basis for a sp&aEethen the rational vector-spac (M (s)). A minimal ba-
all polynomial row vectorsf(s) € F can be written  sis for a rational vector-space ispmlynomial basis
f(s) = ¢(s)F(s) whereg¢(s) is a polynomial row  (Forney, 1975). In Section 4, @mputationally sim-
vector. ple, efficient and numerically stablenethod, to find



a polynomialbasis for the left null-space d¥/(s) is (Henrionet al,, 1997) for MATLAB contains an exten-
presented. The obtained basis is denaéd(s). It sive set of tools for numerical handling of polynomial
is noteworthy that, by inspection of (3), it holds that matrices.

the dimension (number of rows) aV,,(s) is less

than or equal ton (with equality when there are no _ )
disturbances). 4.1 Frequency Domain Solution

One way of transforming the rational problem to a
polynomial problem is to perform a right MFD on
M(s),i.e.

When a polynomial basi&/,;(s) have been obtained, M(s) = ]\71(5)1) L(s) (5)
the second and final step in the residual generator . :

T . One simple example is
design is to shape fault-to-residual responses as de- .
scribed next. M(s) = My(s)d™"(s)

The minimal polynomial basi#Vy, (s) is irreducible ~ whered(s) is the least common multiple of all denom-

and then, according to Theorem 1, all decoupling inators. By finding a polynomial basis for the left null-
polynomialvectorsF'(s) can be parameterized as space of thpolynomialmatrix M, (s), a basis is found
F(s) = 6(s) Nas (s) 4) al§o for the left null-space M(S). No solutions are
missed becausP(s) (e.g.d(s)) is of full normal rank.

whereg(s) is a polynomial vector of suitable dimen-  Thys the problem of finding a minimal polynomial

sions. This parameterization vectp(s) can e.g. be  pasis toN, (M (s)) has been transformed into finding
used to shape the fault-to-residual response or simplya minimal polynomial basis WL(Ml(s)).

to select one row inV,,(s). SinceNy,(s) is a basis,
the parameterization vecta(s) have minimal num-
ber of elements, i.e. a minimal parameterization. 4.2 State-Space Solution

3.2 Forming the Residual Generator

When a decoupling polynomial vectét(s) has been

selected for implementation to form a residual gen-
erator, it must be made realizable since a polynomial
vector is improper and thus not realizable. A realiz-

Assume that the system is described in state-space
form,

able rational transfer functio®(s), i.e. the residual &(t) = Az(t) + Buu(t) + Bad(t) (6a)
generator, can be found as y(t) = Cx(t) + Dyu(t) + Dad(t) (6b)
Q(s) = dz' (s)F(s) where z is the n-dimensional state. Then it is con-

where the polynomiax(s) has greater or equal de- Vienient to use theystem matrixn state-space form
gree compared to the row-degreefdfs). The degree  (Rosenbrock, 1970) to find the left null-space to
constraint is the only constraint @ (s). This means M (s). The system matrix has been used before in the
that the dynamics, i.e. poles, of the residual generatorcontext of fault diagnosis, see e.g. (Nikoukhah, 1994;
Q(s) can be chosen freely. This also means that theMagni and Mouyon, 1994). Denote the system matrix
minimal order of a realization of a decoupling filter is Ms(s), describing the system with disturbances as
determined by the row-degrees of théinimalpolyno- Inputs:
mial basisNy; (s). C Dy
Me(s) = {—(s[ yy Bd}

4. METHODS TO FIND A MINIMAL Lets define the matrix® as

POLYNOMIAL BASIS TO N (M (s)) p_ {é —gu}
The problem of finding a minimal polynomial basis Then the following theorem gives a direct method on
to the left null-space of the rational matri¥ (s) can how to find a minimal polynomial basis 88, (M (s))
be solved by a transformation to a problem of finding via the system matrix.
a minimal polynomial basis to the left null space of a
polynomial matrix. This transformation can be done in Theorem 2.Let V' (s) be a minimal polynomial basis
several different ways. In this section, two possibilities for N, (M;(s)) and let the pair{A,[B, Bj|} be
are demonstrated, where one is used if the model iscontrollable. ThenW(s) = V(s)P is a minimal
given on transfer function form and the other if the polynomial basis folNy, (M (s)).
model is given in state-space form. Also included is
a description on how to compute a basis for the null-

. : The proof of this theorem can be found in (Frisk
space of a polynomial matrix.

and Nyberg, 1998). In conclusion, as in the previous
The motivation for this transformation to a polyno- section, the problem of finding a minimal polynomial
mial problem, is that there exists well established the- basis toN, (M (s)) has been transformed into finding
ory (Kailath, 1980) regarding polynomial matrices. In a minimal polynomial basis to a polynomial matrix, in
addition, the generally available Polynomial Toolbox this case the system matrid, (s).



4.3 No Disturbance Case

If there are no disturbances, iH(s) = 0, the matrix
M (s) gets a simpler structure

Myts) = | 9] ™

A minimal polynomial basis for the left null-space
of M,q(s) is particularly simple due to the special
structure and a minimal basis is then given directly by
the following theorem:

Theorem 3((Kailath, 1980)). IfG(s) is a proper trans-
fer matrix andDg (s), Ng(s) form an irreducible left
MFD, i.e. Ng(s) and Dg(s) are left co-prime and
G(s) = D;'(s)Ng(s). Then,

Nu(s) = [Da(s) — Ne(s)] (8)
forms a minimal basis for the left null-space of the

matrix
o =[]

Here, thedimensionof the null-space isn, i.e. the
number of measurements, and theler of the min-
imal basis is given by the following theorem:

Theorem 4.The set of observability indices of a trans-
fer function G(s) is equal to the set of row degrees
of Dg(s) in any row-reduced irreducible left MFD
G(s) = Dg' (s)Na(s).

A proof of the dual problem, controllability indices,
can be found in (Chen, 1984) (p. 284).

Thus, a minimal polynomial basis for matriv,,(s)
is given by a left MFD ofG(s) and the order of the
basis is the sum of the observability indice(fs).

The result (8) implies that finding the left null-space

of the rational transfer matrix (3), in the general case
with disturbances included, can be reduced to finding

the left null-space of the rational matrix

My(s) = Dg(s)H(s) 9)

In other words, this is an alternative to the use of the

matrix M (s) in (5). This view closely connects with

the so called frequency domain methods, which are

further examined in Section 5.

4.4 Finding a Minimal Polynomial Basis for the
null-space of a General Polynomial Matrix

For the general case, including disturbances, the only

remaining problem is how to find a minimal poly-
nomial basis to a polynomial matrix. This is a well-
known problem in the general literature on linear sys-
tems. At least two different algorithms exists. The first
is based on théiermite form(Kailath, 1980) and a
second algorithm is based on tpelynomial echelon
form (Kailath, 1980). Both methods are implemented

in the Polynomial Toolbox (Henrioet al, 1997) for
MATLAB and a detailed description can be found in
(Frisk and Nyberg, 1998).

The two algorithms have very different numerical
properties. Although the algorithm based on Hermite
form is easy to understand, it has poor numerical prop-
erties. However the algorithm based on polynomial
echelon form is both fast and numerically stable and
should therefore be the preferred choice.

5. RELATION TO OTHER RESIDUAL
GENERATOR DESIGN METHODS

This section discusses the relation between the mini-
mal polynomial basis approach and two other design
methods for linear residual generation. Also the rela-
tion to the concept of parity functions, although not

a design method, is covered. It is interesting to find
that the questions of minimality and completeness of
solution is not at all obvious for other design methods
for residual generation.

5.1 Parity Equations

Several interpretations of the termarity equations
(or parity relations) angbarity functionsexist in the
fault diagnosis literature. To clarify the meaning here,
we use the termgolynomial parity equatioandpoly-
nomial parity functionswhich are the type of par-
ity equations/functions defined in (Chow and Will-
sky, 1984).

The definition of polynomial parity functions be-
comes:

Definition 2.(Polynomial Parity Function). A polyno-
mial parity function is a functioh(u(t), y(¢)) that can
be written as

h(u(s), y(s)) = A(s)y(s) + B(s)u(s)

whereA(s) and B(s) are polynomial vectors (or ma-

trices if multidimensional parity functions are consid-
ered) ins. The value of the function is zero if no faults
are present.

A polynomial parity equatioiis then basically a poly-
nomial parity function set to zero, i.8(u(s), y(s))
0.

Remark:Parity equations that are not polynomial are
often mentioned in the literature, e.g. ARMA par-
ity equation (Gertler, 1991), dynamic parity relations
(Gertler and Monajemy, 1995). In accordance with
standard mathematical notion, these should be called
rational parity equationsA rational parity functionis

then identical with a linear residual generator.

Parity equations/functions are in our view not a design
method,; it is solely an equation/function with specific
properties. Nevertheless there is a strong relationship



between minimal polynomial approach and polyno-
mial parity functions. For any choice @f(s) in (4),
F(s) will be a parity function. Thus the minimal poly-

rows of Fow (s) is in general larger tham, which
is the maximal dimension oN(M(s)) (see Sec-
tion 3.1). The matrixFow (s) is therefore not a basis

nomial basis approach to residual generator designfor N (M (s)); it represents an over parameterized

can be seen as a design method for polynomial paritysolution. In conclusion, all this means that the Chow-

functions. Willsky scheme as stated in for example (Chow and
Willsky, 1984) or (Nyberg and Nielsen, 1997), will not
generate a minimal polynomial basis 5, (M (s)).

5.2 The Chow-Willsky Scheme From a numerical perspective, the Chow-Willsky

scheme is not as good as the minimal polynomial
basis approach. The reason is that, for anything but
small p, the matrix[R, H,] will have high powers

of A. Itis likely that this results in thatR, H,| be-
comes ill-conditioned. Thus to find the left null-space
It has been shown in (Nyberg and Nielsen, 1997) of [R, H,] can imply severe numerical problems.
that for some systems, the Chow-Willsky scheme can The minimal polynomial basis approach does not have
not generate all possible polynomial parity functions. these problems of high power df or any other term.
This is the case when there is dynamics controllable This difference is highlighted in (Frisk, 1998), where
from the faults but not from inputs or disturbances. both the Chow-Willsky scheme and the minimal poly-
This further implies that the Chow-Willsky scheme nomial basis approach are applied to the problem of
can not generate a polynomial basis for the left null- designing polynomial parity functions for a turbo-jet
space ofM (s) defined in (3). However (Nyberg and aircraft-engine. The Chow-Willsky scheme fails be-
Nielsen, 1997) presents a modified version of the cause of numerical problems, while the minimal poly-
Chow-Willsky scheme and it is shown that this modi- nomial basis approach manage to generate a basis for
fied version is able to generate all possible polynomial all parity functions.

parity equations. This modified version is here re-

ferred to as theniversalChow-Willsky scheme. Now

the question is if this universal Chow-Willsky scheme 5 3 Frequency Domain Approaches

can generate a polynomial basis ¥ (M (s)).

Since the Chow-Willsky scheme is well known, only A number of design methods described in literature
a short description is given here. Designing polyno- are calledrequency domain methodgere the resid-
mial parity functions with the universal Chow-Willsky ~ua! generators are designed with the help of different

scheme comes down to finding the null-space to atransfer matrix factorization techniques. Examples are
constant real matrif®,, H,], where (Frank and Ding, 1994) for the general case with dis-

, turbances and (Ding and Frank, 1990; Viswanadham
R,=[CT ATcT ... ArtCoT]" etal, 1987) in the non-disturbance case. The methods
andH, is a lower triangular Toeplitz matrix describ-

Another method for constructing polynomial parity
functions was presented in (Chow and Willsky, 1984).
This method is usually referred to as the Chow-
Willsky scheme.

can be summarized as methods where the residual

ing the propagation of the disturbances through the 9€N€rator is parameterized as
system. Compared to the problem of finding the left - - y

null-space of M (s) in (3), this is a much simpler r=R(s)[D(s) =N(s)],, (10)
problem since only constant matrices are involved. _ ~ <

Let the matrixIV be a basis for the left null-space of = R(s)(D(s)y — N(s)u)
[R, H,] and letFoyy (s) denote the polynomial matrix

W [¥,(s) —QW,(s)], where
U, (s) =L 8Ly, ... s"TIT W, (s) =[Ix s}, ... s"T)T

andq@ is a lower triangular Toeplitz matrix describing
the propagation of the inputs through the system.

whereD(s) and N (s) form a left co-prime factoriza-
tion of G(s) overRH ., i.€. the space of stable real-
rational transfer matrices. Note the close relationship
with Equation (8) where the factorization is performed
over polynomial matrices instead of ovefH ..

Inserting (2) into Equation (10) and as before assum-
ing f =0, gives

r = R(s)D(s)H(s)d

Therefore to achieve disturbance decoupling, the pa-
rameterization transfer matrik(s), must be belong
to the left null-space oD(s)H (s), i.e.

R(s)D(s)H(s) =0

To investigate ifF -y (s) becomes a polynomial basis
for the left null-space o (s), the following theorem
(reformulated) from (Nyberg and Nielsen, 1997) is
useful:

Theorem 5.Consider anM (s) as in (3). For each
vector f(s) € N (M(s)) and degf(s) = pthereis a
vectorw such thatf(s) = w [¥,(s) —Q¥,(s)] and

(R, Hpl =0. Here, note the close connection wifld,(s) in (9).

This solution however does not generally generate a
residual generator with minimal McMillan degree. In
(Ding and Frank, 1990) and (Frank and Ding, 1994),

Theorem 5 implies that for some Few (s) will span
the left null-space of\/ (s). However, the number of



the co-prime factorization is performed via a minimal Forney, G.D. (1975). Minimal bases of rational vector
state-space realization of the complete system, includ- spaces, with applications to multivariable linear
ing the disturbances as in Equation (6). This results in systemsSIAM J. Control13(3), 493-520.

D(s) andN (s) of McMillan degreen that, inthe gen-  Frank, P.M. and X. Ding (1994). Frequency domain

eral case, is larger than the lowest possible McMillan approach to optimally robust residual generation
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residual generator§)(s) = R(s)[D(s) — N(s)], Frisk, E. and M. Nyberg (1998). A description of

extra care is required since “excess” states need to be  the minimal polynomial basis approach to lin-

canceled. Note that the polynomial basis approach on ear residual generation. Technical report. ISY,

the other hand, has no need for cancelations and isin  Linkdping, Sweden.

this sense more elegant. Frisk, Erik (1998). Residual Generation for Fault Di-
agnosis: Nominal and Robust Design. Licentiate
thesis LIU-TEK-LIC-1998:74. Linkping Uni-
versity.
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