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Abstract - One approach for design of diagnosis systems is
to use residuals based on analytical redundancy. Overdeter-
mined systems of equations provide analytical redundancy
and by using minimal overdetermined subsystems, sensitiv-
ity to few faults is obtained. In this paper, overdetermined
differential algebraic systems are considered and their struc-
ture is represented by bipartite graphs with equations and un-
knowns as node sets. By differentiating equations, a new set
is formed, that is an overdetermined static algebraic system
if derivatives of unknown signals are considered as separate
independent variables. The task to derive analytical redun-
dancy relations is thereby reduced to an algebraic problem.
It is desirable to differentiate the equations as few times as
possible and it is shown that there exists a unique minimally
differentiated overdetermined system.
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I. I NTRODUCTION

In model based diagnosis, a model of the fault free sys-
tem is compared to observations [BLA 03], [GER 98]. If
the observations and the model are inconsistent, then it is
concluded that a fault is present. To get inconsistency, re-
dundancy is needed. Consider for example the algebraic
system

x1 = x2
2 + u

x2 = ex1

y = x1

(1)

whereu andy are known, andx1 andx2 are unknown vari-
ables. This set contains more equations than unknowns and
is overdetermined. The redundancy in the equations can be
used to check ifu andy are consistent with the model. If
the unknowns,x1 andx2, are eliminated in the equation
system (1), then the equation

y − e2 y − u = 0 (2)

is obtained. If (2) is not fulfilled, thenu andy are not con-
sistent with the model (1). The equation (2) is an example
of an analytical redundancy relation, also called parity re-
lation or consistency relation in literature.
We have seen how consistency can be checked in an alge-
braic system. Now we will show how to treat differential
algebraic systems and the next example illustrates the basic

equation unknownX
E x y λ
e1 X X
e2 X X
e3 X X
e4 X X

Fig. 1. The structural model for the pendulum.

ideas of the approach presented in this paper. The differen-
tial algebraic system

e1 : L−1λ(t)x(t) + mx(2)(t) = 0
e2 : L−1λ(t) y(t) + my(2)(t) + g m = 0
e3 : x(t)2 + y(t)2 − L2 = 0
e4 : L−2(x(t) y(1)(t) − y(t)x(1)(t)) − z(t) = 0

(3)
models the motion of a pendulum and a angular veloc-
ity measurementz. Herex(t), y(t), andλ(t) are the un-
known state variables,L is the length,m is the mass,
and g is the gravitational constant. The set of equations
{e1, e2, e3, e4} will be denotedE and the set of unknown
states{x(t), y(t), λ(t)} by X.
To present the structure of the model, a bipartite graph is
used with equations and unknowns as node sets [CAS 97],
[KRY 03]. There is an edge between an equation and an
unknown if the unknown is contained in the equation. Fig-
ure 1 shows the graph, for the system (3), represented as an
incidence matrix whereX marks an edge.
Now some important structural properties will be defined.
If E is a set of equations andX is a set of variables then

varX(E) := {x ∈ X|x is included in ane ∈ E} (4)

In consistency based diagnosis, redundancy in the model is
used and this motivates the following definition.
Definition 1(Structurally Overdetermined) A finite set of
equationsE is structurally overdetermined(SO) with re-
spect to the set of variablesX if |E| > |varX(E)|.
By considering small SO sets, consistency tests will be
sensitive to few faults. This is desirable when identifying
which fault that has occurred.
Definition 2(Minimal Structurally Overdetermined) A set
of equationsE is a minimal structurally overdetermined



(MSO) set with respect toX if E is structurally overde-
termined with respect toX and no proper subset ofE is
structurally overdetermined with respect toX.
Equation system (3), with the structure as shown in Fig-
ure 1, is an example of an MSO set with respect to
{x(t), y(t), λ(t)} and there is redundancy in the model.
However, the algebraic elimination procedure, used in the
first example, can not be used immediately because of the
presence of differentiated states.
By considering states and their derivatives as separate in-
dependent variables, analytical redundancy relations can
be derived by using algebraic elimination if the set is
SO [KRY 02]. The incidence matrix of the bipartite graph
for system (3), using this approach, is shown in Figure 2.

equation unknown
x x(1) x(2) y y(1) y(2) λ

e1 X X X
e2 X X X
e3 X X
e4 X X X X

Fig. 2. The structural model where the states and their derivatives
are distinguished.

This algebraic system is not SO, but by differentiating
equations with respect tot, new equations are obtained, for
example

e
(1)
3 : 2xx(1) + 2yy(1) = 0

By starting with an MSO setE w.r.t. X and differentiating
all equations with respect tot multiple times, the set of
differentiated equations will eventually grow faster than the
set of differentiated states. Therefore, it is always possible
to obtain an SO set in this way and this set contains an MSO
subset.
An elementary algorithm to find an MSO set is to differ-
entiate all equations until there exists a subset that is SO.
The Dulmage-Mendelsohn decomposition can be used to
determine if there exists a subset that is SO [DUL 58]. It
follows from the results in this paper that this set is also an
MSO set and that it is minimally differentiated as described
in the next section.
It is easy to obtain an upper limit of the number of dif-
ferentiations that are needed to obtain an MSO set. For
the example, it can be noticed that after differentiating all
four equations four times,20 equations are obtained with
19 unknowns. Hence, this set contains an MSO set. How-
ever, Figure 3 shows an MSO set where the order of all the
derivatives are at most three.
In this particular case, the equations in the MSO set are
all polynomials in the unknowns and the unknowns can
therefore be eliminated using for example Gröbner ba-
sis [COX 97]. A consistency relation derived in this way

is

mz(t)2(g2 − L2 (z(1)(t))2) − L2 m (z(2)(t))2 = 0

It is should be pointed out that the structural analysis out-
lined above is not restricted to polynomials and can be ap-
plied to general non-linear problems.
From now on, the original setE of equations is assumed
to be an MSO set with respect toX, as shown in Figure 1.
We assume that the equationsE have been differentiated
and an MSO setEd with respect toXd has been found as
in Figure 3. The setEd is partitioned into two setsEl

d

andEm
d , whereEm

d contains the highest derivative of each
equation inE. The setXd is partitioned intoX l

d andXm
d

in a similar way.

II. U NIQUENESS OFDIFFERENTIATED MSO SETS

In the previous section, it was shown how to obtain an MSO
set Ed w.r.t Xd, where different derivatives of equations
and states are distinguished. In the following section some
aspects of uniqueness are investigated.
In general, the bipartite graph can be partitioned as in Fig-
ure 4, using the notation introduced at the end of the previ-
ous section.

(a)(b)

(c)

Xd

Xm
dX l

d

Ed

Em
d

El
d

Fig. 4. Partition of the graph.

The structure of the sub-graphs (a), (b), and (c) are revealed
in a sequence of lemmas, which leads to the main result
formulated in Theorem 1. There, it is shown that there ex-
ists a unique minimally differentiated MSO set. The set is
minimally differentiated in the following sense. For any
other MSO set, derived from the same original set of equa-
tions, the order of the highest derivative of each equation is
strictly greater than the order of the derivatives of the same
equation in the minimally differentiated set. The MSO set
shown in Figure 3 is a minimally differentiated MSO set.
The reason for studying minimally differentiated sets is that
some of the equations contain measured signals, for which
the derivatives are difficult to estimate in a noisy environ-
ment. It is therefore natural to consider the problem of min-
imizing the derivatives of a subset of equations that con-
tains measured signals. However, it follows from what was



equation unknownXd

Xl
d Xm

d

Ed x x(1) x(2) y y(1) y(2) λ x(3) y(3) λ(1)

El
d e1 X X X

e2 X X X
e3 X X

e
(1)
3 X X X X

e
(2)
3 X X X X X X
e4 X X X X

e
(1)
4 X X X X X X

Em
d e

(1)
1 X X X X X

e
(1)
2 X X X X X

e
(3)
3 X X X X X X X X

e
(2)
4 X X X X X X X X

Fig. 3. An MSO set in a differentiated structural model.

said above, that the solution to this problem is the same as
for the original problem.
Now, the sequence of lemmas, mentioned above, will be
presented. The first result is that there is only one redundant
equation in an MSO set.
Lemma 1: If E is an MSO set w.r.t. X, then |E| =
|varX(E)| + 1.

Proof: SinceE is SO w.r.t.X, it follows that

|E| ≥ |varX(E)| + 1

If equality holds, then there is nothing to prove. Assume
thatE is MSO w.r.t.X and that

|E| > |varX(E)| + 1

Take anyE′ ⊂ E such that

|E′| = |varX(E)| + 1

SinceE′ ⊂ E, it follows that |varX(E′)| ≤ |varX(E)|
which implies that

|E′| = |varX(E)| + 1 ≥ |varX(E′)| + 1

This means thatE′ is SO which contradicts the assumption
and the lemma follows.
The next Lemma shows that the sub-graph (a) in Figure 4
has no edges.
Lemma 2:varXm

d
(El

d) = ∅

Proof: Assume that

x
(l)
i ∈ varXm

d
(El

d) ⊂ Xm
d

Thenx
(l)
i ∈ varXm

d
(e(k)

j ) for somee(k)
j ∈ El

d. Sincee(k)
j ∈

El
d, it follows thate(k+p)

j ∈ Em
d for somep ∈ Z+. This

implies thatx(l+p)
i ∈ varXd

(Ed). But this contradicts the

assumption thatx(l)
i ∈ Xm

d , which completes the proof.
Now we show that the two node sets in the sub-graph (c)
are of the same size as in the original graph. It is also shown
that the degree of the variable nodes are nonzero.
Lemma 3: |Em

d | = |varXm
d

(Em
d )| + 1 and varXm

d
(Em

d ) =
Xm

d .
Proof: From the definition ofXm

d it follows that

|X| = |Xm
d | (5)

andXm
d = varXm

d
(Ed). This,

varXm
d

(Ed) = varXm
d

(El
d) ∪ varXm

d
(Em

d )

and Lemma 2 imply

Xm
d = varXm

d
(Em

d ) (6)

which is the second conclusion of this lemma.
From the definition ofEm

d , it follows that

|Em
d | = |E| (7)

The definition ofX, (5), and (6) imply

|varX(E)| = |varXm
d

(Em
d )| (8)

SinceE is MSO w.r.t.X, Lemma 1 implies

|E| = |varX(E)| + 1 (9)

Now, eliminating|E| and|varX(E)| by using (7) and (8),

|Em
d | = |varXm

d
(Em

d )| + 1

is obtained and the Lemma follows.
The next lemma states that the cardinality of the two node
sets in the sub-graph (b) are the same and that the degree



of the variable nodes are nonzero. That the degrees of the
equation nodes are nonzero follows trivially from Lemma 2
and the fact that each equation has to contain at least one
unknown.
Lemma 4: |El

d| = |varXd
(El

d)| and varXd
(El

d) = X l
d.

Proof: Lemma 1 applied to the MSO setEd implies
that

|Em
d | + |El

d| = |Xm
d | + |X l

d| + 1

and Lemma 3 implies that

|Em
d | = |Xm

d | + 1

From these two equalities, it follows that

|El
d| = |X l

d| (10)

SinceEd is an MSO set with respect toXd, it follows that
El

d ( Ed is not SO with respect toXd, i.e.

|El
d| ≤ |varXd

(El
d)| (11)

Lemma 2 implies that

varXd
(El

d) = varXl
d
(El

d) ⊂ X l
d

By using this in (11), it follows that

|El
d| ≤ |varXd

(El
d)| ≤ |X l

d| (12)

This and (10) imply that

|El
d| = |varXd

(El
d)| = |X l

d|
Finally, since varXd

(El
d) ⊂ X l

d and |varXd
(El

d)| = |X l
d|

the lemma follows.

In the example, the sub-graph (c) is isomorphic to the orig-
inal graph in Figure 1. In general, the edges of (c) is a sub-
set of the set of edges corresponding to the original graph.
However, the following result shows that (c) still represents
an MSO set.
Lemma 5:The setEm

d is an MSO set w.r.t.Xm
d .

Proof: Assume thatEm
d1 is SO w.r.t.Xm

d andEm
d1 (

Em
d . The idea is to show that these assumptions imply that

Em
d1∪El

d is SO w.r.t.Xd which contradicts thatEd is MSO
w.r.t. Xd. The assumption thatEm

d1 is SO w.r.t. Xm
d and

Lemma 4 imply that

|Em
d1 ∪ El

d| < |varXm
d

(Em
d1)| + |varXl

d
(El

d)|

= |varXm
d

(Em
d1) ∪ varXl

d
(El

d)| (13)

From Lemma 4, it follows that

varXl
d
(Em

d1) ⊂ varXl
d
(El

d) = X l
d

From this, Lemma 2, and that

varXl
d
(Edi) ∪ varXm

d
(Edi) = varXd

(Edi)

for anyEdi, it follows that

varXm
d

(Em
d1) ∪ varXl

d
(El

d) = varXd
(Em

d1 ∪ El
d)

If the left-hand side of this expression is substituted
into (13), then it follows thatEm

d1 ∪ El
d is SO w.r.t. Xd

which contradicts thatEd is an MSO set w.r.t.Xd. Hence
the lemma follows.

Consider two different MSO sets derived from the same
equations. It follows from the next result that the two sub-
graphs (c) in Figure 4 corresponding to the two MSO sets
are isomorphic.
Lemma 6:There exist integersα1, . . . , αn such that for
any MSO setEd derived fromE, the setEm

d admits the
representation

Em
d = {e(α1+k)

1 , . . . , e(αn+k)
n }

for some integerk.
Proof: Let Ed1 andEd2 be two arbitrary MSO sets

with the corresponding subsets

Em
d1 = {e(α1)

1 , . . . , e(αn)
n }

and
Em

d2 = {e(β1)
1 , . . . , e(βn)

n }
To prove the lemma, it is sufficient to show thatβi−αi = k
for somek. Let k = maxi(βi − αi). Eitherαi = βi for
all i and there is nothing to prove, or the MSO sets can be
enumerated so thatk > 0. We can therefore assume that
k > 0. Let

E0 = {e(αi)
i : βi − αi = k}

and
X0 = varXm

d1
(E0)

It holds that

E
(k)
0 := {e(αi+k)

i : βi − αi = k} = {e(βi)
i : βi − αi = k}

and consequently it follows that

E
(k)
0 ⊂ Em

d2 (14)

Recall thatβi = αi + k for e(βi) ∈ E
(k)
0 and that

βi < αi + k for e(βi) ∈ Em
d2\E(k)

0 . Assume that

x
(γ)
i ∈ X0 = varXm

d1
(E0)

It follows thatx(γ+k)
i ∈ Xm

d2 and hence

X
(k)
0 ⊂ Xm

d2 (15)



It follows also thatx(γ+k)
i /∈ varXm

d2
(Em

d2\E(k)
0 ) and con-

sequently it holds that

var
X

(k)
0

(Em
d2 \ E

(k)
0 ) = ∅ (16)

Assume now thatαi − βi = k does not hold for alli or
equivalently

E0 6= Em
d1 (17)

We will show that this contradicts (16). The setEm
d1 is an

MSO set w.r.t.Xm
d1 according to Lemma 5. Together with

assumption (17) this implies that|E0| ≤ |X0| and

|E(k)
0 | ≤ |X(k)

0 |
Moreover Em

d2 is an MSO set w.r.t. Xm
d2 according to

Lemma 5 and hence

|Em
d2| > |Xm

d2|
It follows from the two inequalities above and the set rela-
tions (14) and (15) that

|Em
d2\E(k)

0 | = |Em
d2|−|E(k)

0 | > |Xm
d2|−|X(k)

0 | = |Xm
d2\X(k)

0 |
This implies that

|Em
d2 \ E

(k)
0 | > |var

Xm
d2\X

(k)
0

(Em
d2 \ E

(k)
0 )|

and sinceEm
d2 \ E

(k)
0 is not SO we have

|Em
d2 \ E

(k)
0 | ≤ |varXm

d2
(Em

d2 \ E
(k)
0 )|

It follows from these two inequalities that

|var
X

(k)
0

(Em
d2 \ E

(k)
0 )| =|varXm

d2
(Em

d2 \ E
(k)
0 )|

− |var
Xm

d2\X
(k)
0

(Em
d2 \ E

(k)
0 )|

>|Em
d2 \ E

(k)
0 | − |Em

d2 \ E
(k)
0 | = 0

This contradicts (16) and the proof is complete.
Now we can prove the main result of this paper, outlined in
the introduction of this section.
Theorem 1:Given an MSO setE w.r.t. X, there exists a
unique minimally differentiated MSO setEd w.r.t. Xd.

Proof: Assume thatEd1 andEd2 are two minimally
differentiated MSO sets. According to Lemma 6 the corre-
sponding setsEm

d1 andEm
d2 coincide and the notationEm

d

is used for both. LetX ′
d be defined asXd1 ∪ Xd2. The set

El
d1∪El

d2 is not SO, since this would imply that there exists
a subset ofEl

d1∪El
d2 that is an MSO set, which contradicts

thatEd1 andEd2 are both minimally differentiated. Hence

|El
d1 ∪ El

d2| ≤ |varX′
d
(El

d1 ∪ El
d2)|

Using this inequality, Lemma 4, and that

varX′
d
(El

d1 ∪ El
d2) = varX′

d
(El

d1) ∪ varX′
d
(El

d2)

we get

|El
d1 ∩ El

d2| = |El
d1| + |El

d2| − |El
d1 ∪ El

d2|
≥ |varX′

d
(El

d1)| + |varX′
d
(El

d2)|

−|varX′
d
(El

d1) ∪ varX′
d
(El

d2)|

= |varX′
d
(El

d1) ∩ varX′
d
(El

d2)| (18)

The set relation

varX′
d
(Ed1 ∩ Ed2) ⊂ varX′

d
(Ed1) ∩ varX′

d
(Ed2)

holds and it follows from Lemma 4 that

varX′
d
(Ed1) ∩ varX′

d
(Ed2)

= (varX′
d
(El

d1) ∩ varX′
d
(El

d2)) ∪ varXm
d

(Em
d )

where varX′
d
(El

d1) ∩ varX′
d
(El

d2) and varXm
d

(Em
d ) are dis-

joint according to Lemma 2. This gives that

|varX′
d
(Ed1 ∩ Ed2)| ≤ |varX′

d
(Ed1) ∩ varX′

d
(Ed2)|

= |varX′
d
(El

d1) ∩ varX′
d
(El

d2)| + |varXm
d

(Em
d )|

where

|varX′
d
(El

d1) ∩ varX′
d
(El

d2)| ≤ |El
d1 ∩ El

d2|
according to (18) and

|varXm
d

(Em
d )| < |Em

d |
according to Lemma 3. It follows that

|varX′
d
(Ed1 ∩ Ed2)| < |El

d1 ∩ El
d2| + |Em

d |

= |(El
d1 ∩ El

d2) ∪ Em
d |

= |Ed1 ∩ Ed2|
Hence,Ed1 ∩ Ed2 is an SO set and can not be a proper
subset of the MSO setsEd1 andEd2. It follows that

Ed1 = Ed2 = Ed1 ∩ Ed2

and the proof is complete.



III. C ONCLUSION

One approach for design of diagnosis systems is to use
residuals based on analytical redundancy. Overdetermined
systems of equations provide analytical redundancy and by
using minimal overdetermined subsystems, sensitivity to
few faults is obtained.
A method has been presented that reduces the problem of
checking consistency of an overdetermined differential al-
gebraic system into an algebraic problem. This is done by
considering the unknowns and their derivatives as separate
independent variables and differentiating equations in or-
der to obtain an overdetermined system.
To present the structure of the algebraic system, a bipar-
tite graph is used and properties of the graph have been
investigated in the sequence of six lemmas. It is desirable
to differentiate the equations as few times as possible, to
avoid higher derivatives of measured signals. The main re-
sult is stated in Theorem 1, where it is shown that there
exists a unique minimally differentiated MSO set. These
MSO sets can be used to derive consistency relations, by
using algebraic elimination methods.
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