
Using Prior Information in Bayesian Inference
– with Application to Fault Diagnosis

Anna Pernestål and Mattias Nyberg

Dept. of Electrical Engineering, Linköping University, Linköping, Sweden
{annap, matny}@isy.liu.se

Abstract. In this paper we consider Bayesian inference using trainingdata combined with prior
information. The prior information considered is responseand causality information which gives
constraints on the posterior distribution. It is shown how these constraints can be expressed in terms
of the prior probability distribution, and how to perform the computations. Further, it is discussed
how this prior information improves the inference.
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INTRODUCTION

In this paper we study the problem of making inference about astate, given an observed
featrue vector. Traditionally, inference methods rely either on prior information only
or on training data consisting of simultaneous observations of the class and the feature
vector [1], [2], [3]. However, in many inference problems there are both training data
and prior information available. Inspired by the problem offault diagnosis, where the
feature vector typically is a set of diagnostic tests, and the states are the possible faults,
we recognize two types of prior information. First, there may be information that some
values of the features are impossible under certain states.In the present paper this
information is referred to asresponse information, which for example can be that it is
known that a test never alarms when there is no fault present.Second, it may be known
that certain elements of the feature vector are equally distributed under several states,
here referred to ascausality information. In the fault diagnosis context this means that a
diagnostic test is not affected by a certain fault.

The type of prior information studied in the present work typically appears in previous
works on fault diagnosis. The response information is used for example in [4], [5], and
[6]. The causality information is an interpretation of the Fault Signature Matrix (FSM)
used for example in [7] and [8]. The main difference between these previous works and
the present is that here we combine the prior information with training data instead of
relying on prior information only.

To compute this posterior probability for the states in the case of training data only
is, although previously well studied, a nontrivial problem, see e.g. [9], [10], and [11].
In these previous works the computations are based on training data only. In the present
work we go one step further, and discuss how the prior information in terms of response
and causality information can be integrated into the Bayesian framework.



INFERENCE USING TRAINING DATA

We begin by introducing the notation used, and summarizing previous results on infer-
ence using training data alone. LetZ = (X,C) be a discrete variable, where the feature
vectorX = (X1, . . .XR) is R-dimensional and the state variableC is scalar. The variables
X andC can takeK andL different values respectively, and henceZ can takeM = KL
values. Usez = (x,c) = ((x1, . . . ,xR),c) to denote a sample ofZ. Let X, Xi, C, and
Z = C×X be the domains ofX, Xi , C andZ respectively. Enumerate the elements inZ,
and useζi , i = 1, . . . ,M, to denote theith element. We usep(X = x|I), or simplyp(x|I),
to denote the discrete probability distribution forX given the current state of knowledge
I . For continuous probability density functions we usef (x|I).

Let D be the training data, i.e. a set of simultaneous samples of the feature vector
and the state variable. In the inference problem, the probability distribution p(c|X =
x,D , I) is to be determined. Note that for a given feature vectorx, the posterior prob-
ability for a state is proportional to the joint distribution of c and x, p(c|x,D , I) =
p(c,x|D , I)/p(x|D , I) ∝ p(c,x|D , I) = p(z|D , I). Therefore we can study the probabil-
ity distributionp(z|D , I). The computations ofp(z|D , I) are, under certain assumptions,
given in detail for example in [9], [10], and [11]. In these references the arguments for
the underlying assumptions are also discussed. Here we summarize them in the follow-
ing theorem.

Theorem 1 Let p(z|D , I) be discrete, and assume that there are parametersΘ =
(θ1, . . . ,θM)T such that

p(Z = ζi |Θ, I) = θi, i = 1, . . . ,M, (1a)

θi > 0, ∑
ζi∈Z

θi = 1. (1b)

Assume that f(Θ|I) is Dirichlet distributed,

f (Θ|I) =
Γ(∑M

i=1 αi)

∏M
i=1Γ(αi)

M

∏
i=1

θ αi−1
i , αi > 0, (2)

whereΓ(·) is the gamma function, i.e. fulfillsΓ(n+ 1) = nΓ(n) and Γ(1) = 1 and the
parametersα = (α1, . . . ,αM) are given. Assume that the samples in the training data are
independent, and let ni be the count of samples inD whereZ = ζi , and let N= ∑M

i=1ni

and A= ∑M
i=1 αi . Then it holds that

p(Z = ζi |D , I) =
ni +αi

N+A
. (3)

In the following sections we will now discuss how the resultsfrom Theorem 1 can be
extended to take the response and causality information into account.

INFERENCE USING RESPONSE INFORMATION

Consider the case where some values of the feature vector areknown to be impossible in
certain states of the system. We refer to this kind of information asresponse information.



TABLE 1. Example of response information, where “•”
means that the value of the feature is possible.

C = c1 C = c2 C = c3

x1 = 0 • • •
x1 = 1 • •
x1 = 2 •

Formally, it means that there are setsγi,c ⊂ Xi representing “forbidden values” under
statec, i.e.

p(xi |c,D , IR) = 0, for xi ∈ γi,c,

where we have usedIR to denote thatI includes response information.
To exemplify how the setsγi,c can be determined, consider the following example

with a three-valued featureX1 with domainX1 = {0,1,2}. Assume that the information
is given that in statec1, the featureX1 can only take the value 0. In statec2 all values
are possible, while in statec3 all values except 2 are possible. This information is
summarized in Table 1, where “•” means that the value of the feature is possible. This
information gives the setsγ1,c1 = {1,2}, γ1,c2 = { /0}, γ1,c3 = {2}.

Let γ ⊂ Z be the set of values such that ifxi ∈ γi,c, thenz∈ γ. In our example we have
γ = {(1,c1),(2,c1),(2,c3)}. Assume thatp(z|Θ, IR) is parameterized byΘ as in (1a).
By IR we have the following requirements on the parameters

θi = 0 ∀ζi ∈ γ, θi > 0 ∀ζi ∈ Z\ γ, ∑
ζi∈Z\γ

θi = 1. (4)

We can now state the following theorem for the joint probability distribution when
response information is available.

Theorem 2 Assume that p(Z|Θ, IR) is discrete and given by(1a) and (4). Further,
assume that f(Θ|IR) is Dirichlet distributed over the setZ\ γ,

f (Θ|IR) =

{ Γ(∑ζi∈Z\γ αi)

∏ζi∈Z\γ Γ(αi)
∏ζi∈Z\γ θ αi−1

i , αi > 0 if Θ ∈ ΩR

0 otherwise.
(5)

Assume that the samples in the training dataD are idependent. Let ni be the count of
samples inD whereZ = ζi , and let N= ∑M

i=1ni and A= ∑M
i=1αi . Then it holds that

p(Z = ζi |D , IR) =

{
0, if z∈ γ
ni+αi
N+A otherwise.

(6)

Proof: Apply Theorem 1 whenz ∈ Z \ γ, and use that (5) gives probability 0 for all
z∈ γc. A complete proof is given in [12].�

INFERENCE USING CAUSALITY INFORMATION

Let us now turn to the case when there is information available that a certain feature is
equally distributed in two states. We call this kind of informationcausality information.



In this section we show how this information can be integrated in the problem formula-
tion, and we also discuss a method for solving the problem.

Computing the Posterior Using Causality Information
The causality information is formally represented by

p(xi |c j ,Θ, IC ) = p(xi |ck,Θ, IC ), (7)

whereIC is used to denote that causality information is given by in the state of knowl-
edge. Applying the product rule of probabilities on (7) we have

p(xi ,c j |Θ, IC )

p(c j |IC )
= p(xi |c j ,Θ, IC ) = p(xi |ck,Θ, IC ) =

p(xi ,ck|Θ, IC )

p(ck|IC )
,

where p(c j |IC ) and p(ck|IC ) are the prior probabilities for the statesc j and ck, and
are assumed to be given by the background informationIC . The prior probabilities are
known proportionality constants, and we can writep(c j |IC ) = ρ jkp(ck|IC ) for a known
constantρ jk. Thus, (7) means thatp(c j ,xi|Θ, IC ) = ρ jkp(ck,xi |Θ, IC ). We have that

p(c j ,ξi|Θ, IC ) = ∑
ζl∈Zξi ,cj

p(ζl |Θ, IC ) = ∑
ζl∈Zξi ,cj

θl , (8)

whereZξi ,c j
= {ζl ∈ Z : ζl = ((x1, . . . ,ξi , . . . ,xR),c j)}, i.e. the set of all possible values

ζl of Z in whichxi = ξi andc = c j . Equations (7) and (8) give requirements in the form

∑
ζl∈Zξi ,cj

θl = ρ jk ∑
ζl∈Zξi ,ck

θl . (9)

To exemplify, consider the following case with two states,C∈ {c1,c2}, and one feature
X ∈ {0,1}. DefineΘ = (θ1,θ2,θ3,θ4) by

p(X = 0,C = c1|Θ, I) = θ1, p(X = 0,C = c2|Θ, I) = θ2, (10a)

p(X = 1,C = c1|Θ, I) = θ3, p(X = 1,C = c2|Θ, I) = θ4. (10b)

Assume that the causality informationp(X,C = c1|IC ) = p(X,C = c2|IC ) is given.
Expressed in terms of the parameters this means thatθ1 = ρ12θ2 andθ3 = ρ12θ4.

Let L ≥ 0 be the number of constraints in the form (7) given by the causality infor-
mation. Each constraint gives one equation inΘ for each possible value of the feature
considered in the constraint. LetKi be the number of possible values of the feature con-
sidered in thei:th constraint. Furthermore,Θ should fulfill the requirement (1b). All in
all, there are 1+∑L

i=1Ki = l equations thatΘ should fulfill. In matrix form we write

EΘ = F, (11)

whereE ∈ Rl×M andF ∈ Rl . Note that (1b) requires that one row inE consists of ones
only, and that the corresponding row inF is also a one. In the example with parameters
as in (10), and withρ12 = 1, the matrices becomes

E =

[
0 0 −1 1
1 −1 0 0
1 1 1 1

]

, F =

[
0
0
1

]

. (12)



To computep(Z|D , IC ) marginalize over the set of parametersΩ that fulfill (1)

p(Z|D , IC ) =

∫

Ω
p(Z|Θ,D , IC ) f (Θ|D , IC )dΘ. (13)

The first factor in the integral (13) is independent ofD sinceΘ is known. Thus, we have
p(Z|Θ,D , IC ) = p(Z|Θ, IC ), which is given by (1). To determine the second factor in
the integral (13), apply Bayes’ theorem

f (Θ|D , IC ) =
p(D |Θ, IC ) f (Θ|IC )

∫

Ω p(D |Θ, IC ) f (Θ|IC )dΘ
.

Since theN samples in training data are assumed to be independent, and by using (1) we
have thatp(D |Θ, IC ) = ∏N

i=1 p(di|Θ, IC ) = θn1
1 . . .θnM

M , where∑M
i=1ni = N.

To determine the probabilityf (Θ|IC ), we investigate the prior informationIC . It
consists of two parts,IC = {I , IE}. The first part,I , is the basic prior information,
stating that the probability is parameterized byΘ, that Θ is Dirichlet distributed, and
knowledge about the prior probabilities for the classes. The second part,IE, includes
the information thatΘ satisfies (11), as well as the values ofE andF. By using Bayes’
theorem we have thatf (Θ|IC ) = f (Θ|I , IE) ∝ f (Θ|I) f (IE|Θ, I), where f (Θ|I) is given
by (2), and f (IE|Θ, I) = fEΘ=F(Θ) is the distribution where all probability mass is
uniformly distributed over the setΩE = {Θ : Θ ∈ Ω,EΘ = F}. Thus, we have

p(Z = zi |D , IC ) =

∫

ΩE
θn1+α1−1

1 . . .θni+αi
i . . .θnM+αM−1

M fEΘ=F(Θ)dΘ
∫

ΩE
θn1+α1−1

1 . . .θni+αi−1
i . . .θnM+αM−1

M fEΘ=F(Θ)dΘ.
(14)

We will now give one example of how this integral can be solvedusing variable substi-
tution.

A Solution Method Based on Variable Substitution
To solve the integrals in (14) substitute variablesΘ = B+ QΦ, whereΦ are new

variables parameterizing the set ofΘ fulfilling EΘ−F = 0. The matrixE ∈ Rl×M has
full row rank (otherwise there would be redundant information about the parameters
Θ, and rows could be removed fromE). Thus, we can find a permutation matrixP
such thatEP= Ẽ = [Ẽl ẼM−l ] whereẼl ∈ Rl×l has full rank. The requirement (11) is
transformed to

ẼΘ̃ = F, (15)

where PTΘ = Θ̃ = (θ̃1, . . . , θ̃M)T . Similarly for the counts of training data
n = (n1, . . . ,nM) and the hypothetical samples we havePTn = ñ = (ñ1, . . . , ñM)
andPTα = α̃ = (α̃1, . . . , α̃M). Multiply (15) by Ẽ−1

l to obtain

[Il Ẽ−1
l ẼM−l ]Θ̃ = Ẽ−1

l F ⇔ Θ̃1:l + Ẽ−1
l ẼM−l Θ̃l+1:M = Ẽ−1

l F, (16)



whereΘ̃1:l are the firstl rows of Θ̃ and Θ̃l+1:M are the lastM − l rows. In in (16),
augmentΘ̃1:l with Θ̃l+1:M and letΦ = Θ̃l+1:M. Then, rearranging the terms gives

Θ̃ =

[

−Ẽ−1
l ẼM−l
IM−l

]

︸ ︷︷ ︸

Q

Φ+

[

Ẽ−1
l b

0M−l×1

]

︸ ︷︷ ︸

B

. (17)

Let Qi andBi be thei:th rows inQ andB respectively. Thenθi = QiΦ+Bi , and we can
write the integrals in (14) as

∫

Ω
θ̃ k̃1

1 . . . θ̃ k̃M
M

l

∏
i=1

δ (θ̃i − θ̃0
i (Φ))dΘ̃ =

∫

ΩΦ
(Q1Φ+B1)

k̃1 . . .(QMΦ+BM)k̃MdΦ, (18)

whereδ (·) is the dirac delta function,θ0
i (Φ) is the solution to the equationQiΦ+Bi = 0,

ΩΦ = {Φ : QΦ+B > 0}, andk̃ j = k̃ j(ñ j , α̃ j).
The area of integration for the left hand side of (18) is determined by, for eachφi in

Φ = (φi , . . . ,φM−l ), finding the lower boundary by solving the optimization problems

min
Σ=(σ1,...,σM−l )

σi (19)

subject to QΣ > 0
σk = φk, k = 1, . . . , i −1.

For the upper boundary, min is replaced by max in (19).
To investigate the computations in detail, return to the example withE andb given by

(12). Here we use the identity matrix forP. Then the integral (18) becomes
∫ 0.5

0
(0.5−φ1)

k̃1(0.5−φ1)
k̃2φ k̃3

1 φ k̃4
1 dφ1 =

1

21+∑4
i=1 k̃i

Γ(k̃1+ k̃2 +1)Γ(k̃3+ k̃4 +1)

Γ(2+∑4
i=1 k̃i)

.

Although an analytical solution was easily found in the example considered here, this is
generally not the case. To the authors knowledge, there is noclosed formula for solving
the integral on the right hand side in (18) in general. One possibility is to use Laplace
approximation [13], where the integrand is approximated byan unnormalized Gaussian
density function. See [12] for more details on the Laplace approximation applied to the
current problem.

FAULT DIAGNOSIS EXAMPLE

To illustrate the methods, consider the following fault classification example with two-
dimensional feature vectorX = (X1,X2), wherexi ∈ {0,1}, and the two faults (states)
C ∈ {c1,c2}. To simplify notation, assume that the classes have equal prior probability.
Enumerate the parameters as

C 1 2 1 2 1 2 1 2
X1 0 0 1 1 0 0 1 1
X2 0 0 0 0 1 1 1 1

p(z|ΘIC ) θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8



0 1

0

1

ζ1,ζ2

ζ5,ζ6

ζ3,ζ4

ζ7,ζ8

X1

X
2

FIGURE 1. Example of training data from statec2.

and assume that we are given the causality information

p(x1|Θ,c1, IC ) = p(x1|Θ,c2, IC ).

For this particular example, the integrals in (14) have the form
∫

ΩE

(0.5−φ1−φ4−φ5)
k̃1(φ1+φ4−φ3)

k̃2(0.5−φ1−φ4−φ2)
k̃3φ k̃4

1 φ k̃5
2 φ k̃6

3 φ k̃7
4 φ k̃8

5 dΦ,

where we have used the permutationŨ = [U4 U1 U7 U2 U3 U5 U6 U8], whereU =
n,α,E,Θ. Let αi = 1, i = 1, . . .8 and consider for example the case when there is no
data available from classc1, i.e.ni = 0, i = 1,3,5,7, while there is training datan2 = 5,
n6 = 10,n4 = n8 = 0 available. This example is plotted in Figure 1 and means that under
classc2 the observationX1 = 0 is more likely thanX1 = 1. Since we have the causality
information thatX1 is equally distributed under both classes we expect the observation
X1 = 0 to be more likely under classc2 as well. This is verified by the computations

p(X1 = 0,X2 = 1,c= c1|D , IC ) = p(Z = ζ5|D , IC ) =

=

∫

ΩE
φn2

1 φn5
3 φn6

4 dΦ
∫

ΩE
φn2

1 φn6
4 dΦ

≈ 0.41,

p(X1 = 1,X2 = 1,c= c1|D , IC ) = p(Z = ζ7|D , IC ) =

=

∫

ΩE
φn2

1 (0.5−φ1−φ4−φ2)
n7φn6

4 dΦ
∫

ΩE
φn2

1 φn6
4 dΦ

≈ 0.035,

and similar for the case whereX2 = 0. If causality information is not used, the probabil-
ities becomesp(X1 = 0,X2 = 1,c= c1|D , I) = p(X1 = 1,X2 = 1,c= c1|D , I) = 1/23≈
0.043 by Theorem 1.



CONCLUSION

In the present work, it has been shown how the probabilistic inference problem can
be formulated using training data combined with prior information given in terms of
response and causality information. This type of prior information appears for example
in traditional fault diagnosis problems. It has been shown how this prior information can
be expressed as requirements on the parameters in the distributions.

A theorem for using response information in the inference problem has been given.
Furthermore, it has been shown how the causality information can be introduced in the
computations, and it is discussed how to solve the computations conceptually.

In the present work response and causality information alone has been considered one
a a time, but they can also be used together to improve the inference further.

Introducing the prior information to the fault inference problem can, as shown in
an example, improve the results significantly. It has been shown that the causality
information makes it possible to reuse training data from one state when considering
other states. This is particularly helpful when there is only a limited amount of training
data available as is often the case in fault diagnosis.
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