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ABSTRACT

Because of legislative regulations like OBDII, on-board
diagnosis has gained much interest lately. A model
based approach is suggested for the diagnosis of the air
intake system of an SI-engine. Important research issues
are modeling concepts, residual generation and evalu-
ation, overall performance, and limiting factors. The
diagnosis system is based on a non-linear semi-physical
model and uses a combination of different residual gen-
eration methods. It is capable of detecting and isolating
faults in the throttle actuator, throttle sensor, air mass
flow sensor and manifold pressure sensor. The scheme
is experimentally validated on a real production engine.

1. INTRODUCTION

On-board diagnosis of car engines has become increas-
ingly important because of environmentally based leg-
islative regulations such as OBDII (On-Board Diagnos-
tics) [1]. Other reasons for incorporating diagnosis in
vehicles are reparability, availability and vehicle protec-
tion. Today, up to 50% of the engine management sys-
tems are dedicated to diagnosis. The techniques used
in production vehicles [2][3] are mainly based on limit
checking and active diagnosis. Also basic model based
diagnosis is used to some extent. Active diagnosis means
that during special operating conditions, the engine is
manipulated in such a way that possible faults will be
revealed. It is for example used heavily during idle.
These techniques may be insufficient to fulfill the up-
coming more restrictive regulations. Also the lack of
good diagnosis schemes, have forced engineers to chose
suboptimal engine control solutions to accomodate the
diagnostic requirements. It is therefore desirable to find
new diagnosis techniques which perform better and do
not rely on special operating conditions and active di-
agnosis.

One way to increase the performance of the engine
diagnosis system may be to increase the use of model
based diagnosis in which more process knowledge is uti-

lized in the form of a mathematical process model. The
diagnosis can to a larger extent be performed passively
and over a wider operating range if a proper model is
available. However the problem is challenging because
of the many conflicting requirements on such a diagnosis
system:

• Computing power is limited due to cost constraints.

• Good performance is required by the legislative reg-
ulation; erroneous diagnosis may lead to fines for
the car manufacturer [1].

• The diagnosis system must be able to handle vehicle
to vehicle variations and aging. Also the vehicle op-
erates in an uncontrolled environment which makes
the process different from day to day, for example
because of changes in atmospheric conditions.

Model based diagnosis has received much attention dur-
ing the last decade [4][5][6][7]. The studies have been
mainly general in character, and few concerned with au-
tomotive engine diagnosis.

The SI-engine in its basic configuration can be divided
into three subsystems, each with its special diagnostic
requirements:

• air intake system: air mass flow meter, throttle,
manifold pressure sensor, engine speed sensor

• fuel/combustion system: fuel injector, spark plug,
misfire

• exhaust after-treatment system: lambda sensors,
catalyst

Common are also evaporation systems and EGR. All
these components need to be diagnosed due to OBDII.
However it is not sure that the same diagnosis tech-
nique is suitable for all systems or components. The
combustion chamber is difficult to model and for exam-
ple a promising ion-current based algorithm has been
used to diagnose misfire [8]. The only known solution
for catalyst monitoring so far, is to use a post catalyst
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lambda sensor in addition to the pre catalyst lambda
sensor which is used primarily for closed loop air-fuel
control. Therefore such a system has two lambda sen-
sors and this hardware redundancy is suitable to utilize
for diagnosis.

DIAGNOSIS OF THE AIR INTAKE SYSTEM
The air intake system contains a number of components
and sensors related by reasonably well understood ther-
modynamics and physics of gases. However, a detailed
physical model would be very complicated. For this sub-
system of the SI-engine, it is still appealing to investi-
gate the possible use of model based diagnosis. This is
because of several reasons. One is that a semi-physical
model can be found with reasonable effort. Another
reason is that many engine variables need not to be
considered because of subsystem decoupling. Such vari-
ables are for example road load, lubrication, friction,
wear, ignition timing, fuel quality, lambda, cooling wa-
ter and oil temperatures. These variables are present in
the other subsystems. Variables that however may af-
fect the air intake system are ambient air temperature,
pressure, and humidity. Finally the air intake system do
not contain any large disturbances that must be taken
into account when designing the diagnosis system.

The undertaking is thus to see if a diagnosis system
based on a semi-physical model can be developed, and to
investigate overall performance and limiting factors. A
review of model based diagnosis is presented in Section
2, and the application to automotive engines is reviewed
in Section 3. A semi-physical model based diagnosis
system is developed. In Section 4 and 5, a model of the
air intake system of a production SAAB 2.3 liter engine
is built. From this model, a diagnosis system capable of
diagnosing faults in throttle actuator, throttle sensor,
air mass flow sensor, and manifold pressure sensor, is
constructed in Section 6 and validated in Section 7.

2. MODEL BASED DIAGNOSIS

Model based diagnosis is based on analytical redundancy.
A process contains analytical redundancy if an input or
output can be calculated by using only other inputs or
outputs. In the simplest case, the analytical redundancy
is utilized by comparing the outputs from the real pro-
cess and outputs from a process model, which is fed
by the same inputs as the real process. By the term
diagnosis, both fault detection and isolation are consid-
ered. Isolation means to determine the location of the
fault. The primary benefits of model based diagnosis
compared to limit- and trend-checking are that it has
large potential to:

• be performed passively

• work over a wide operating range

• have better performance; smaller faults can be de-
tected, faults are isolated

• for the same level of diagnosis performance, be less
computationally intensive

An important property of a diagnosis system is ro-
bustness, i.e. to withstand model uncertainties, noise,
and disturbances and still be able to detect and isolate
small faults. This implies that we may need a good, pos-
sibly complex, model, complex design procedures, and
complex algorithms. The goal of the design of a diagno-
sis system can therefore be summarized as to maximize
robustness while keeping reasonable complexity.

It has been reported [9] that the main effort in con-
structing a model based diagnosis system is to develop
a sufficiently good model. However this model can be
used also for other purposes, e.g. control algorithms.

The main structure of a diagnosis system is shown in
Figure 1. The process is affected by three kinds of faults:
actuator faults, component faults, and sensor faults. It
is usually assumed that only one fault can occur at the
same time. Inputs to the diagnosis system are the pro-
cess inputs and outputs. The diagnosis is performed in
two stages: residual generation and residual evaluation.

Process+ +

Residual Generation

Residual Evaluation

yu

Fault Decision

Actuator Fault Component Fault Sensor Fault

Fig. 1. The process with its faults and the diagnosis
system. The actuator and sensor faults are here
modeled as additive faults.

A residual is a signal that reacts on inconsistencies
between the model and the real process. In the case of
no fault the residual should be close to zero and in the
case of a fault the residual should be significantly non
zero if it is sensitive to that particular fault. A num-
ber of residuals are used and they are made sensitive
to different faults in such a way that isolation can be
achieved. This is called structured residuals. An impor-
tant property of the residual structure is that it should
be strongly isolating. A strongly isolating structure pro-
tects small faults from being incorrectly isolated in the
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case when some residuals are not exited enough to reach
the thresholds. Some processes have a considerable dis-
turbance that can not be ignored in the model. In these
cases the disturbance must be decoupled so that it does
not affect the residuals. There is often a compromise
between decoupling and isolation so the diagnosis per-
formance may be degraded.

The second stage is the residual evaluation. The pur-
pose is to determine if the residuals are zero or not. A
common and simple approach is to filter the residuals
and then test them against thresholds. This stage can
also contain means to improve the robustness, e.g. sta-
tistical detection, threshold crossing counting or fuzzy
thresholds [10].

RESIDUAL GENERATION Many schemes for
designing residual generators has been proposed, e.g.
parity equations [11], dedicated observer schemes [12],
detection filter [13], unknown input observer[14], fre-
quency domain approaches [15], Kalman filters [16].
Most of these schemes are primarily for linear sys-
tems but parity equation and some non-linear observer
schemes have been used with non-linear systems.

The most intuitive residual generator that can be
formed is when static relationships exist between inputs
and outputs. This is called direct redundancy and an
example of this is

r1(t) = y1(t)− ŷ1(t) = y1(t)− h(u(t), y2(t)) (1)

where r1(t) is the residual, u(t) the input, y1(t) and
y2(t) outputs, and h a function that defines the static
relationship y1(t) = h(u(t), y2(t)).

When dynamics is present, temporal redundancy can
be utilized. This means that the residual is also a func-
tion of earlier inputs or outputs, or contains states. An
example of this is, if we have an observer that estimates
the output y2(t), then a residual can be formed as

x(t + 1) = g(x(t), u(t)) + K(y − ŷ)
r2(t) = y2(t)− ŷ2(t) (2)

An observer used for diagnosis is called diagnostic ob-
server and does not necessarily estimate any state.

A common principle for residual generation is parity
equations [11]. They are in the discrete domain defined
as consistency relations of the inputs and outputs of the
process. Inputs and outputs from different times can be
used. For the linear case, consider the system

y(t) =
B(q)
A(q)

u(t) + f(t) (3)

where u is the input, y the output and f the fault. This
can be rewritten as

A(q)y(t) = B(q)u(t) + A(q)f(t) (4)

This is an example of a linear parity equation and a
residual can be formed as

r3(t) = A(q)y(t) −B(q)u(t)

This is the computational form, showing how the resid-
ual is computed. The internal form shows how the resid-
ual is affected by a fault and is

r3(t) = A(q)f(t)

The parity equation (4) is just one of several linearly
independent parity equations that can be derived from
the system description (3). By using different parity
equations for different residuals they can be made in-
sensitive to different faults. Depending of what time
history a parity equation contain, it can use the princi-
ple of direct redundancy or temporal redundancy but is
always a non recursive filter.

3. EARLIER WORKS ON MODEL BASED
DIAGNOSIS FOR SI-ENGINES

In the late 80’s, the first results on trying to solve au-
tomotive diagnosis problems by means of model based
diagnosis, were reported. The reason for this increased
interest was probably the legislative regulations. This
section reviews some results on model based solutions
to automotive engine diagnosis. The most reports about
this subject have been published by the groups around
Rizzoni and Gertler. Other reports, dealing with model
based diagnosis applied to automotive engines and not
treated here, are [19][20][21][22][23].

PAOLELLA AND CHO 1990 [24], they develop a
diagnosis scheme based on non-linear extended Kalman
filters. However they first tried a linear version that
did not provide satisfactory performance. They apply
the non-linear scheme to an automotive powertrain to
diagnose faults in engine speed, transmission, and wheel
speed sensors, which are also the inputs to the diagnosis
system. The scheme is validated in simulations.

In 1991 [25], they test their approach in a real vehicle
and they are able to diagnose 100% faults, i.e. the case
when sensor outputs are set to zero.

RIZZONI ET AL. Partly supported by Ford, 1989-
1991 Rizzoni [26][27] uses an extended version of the
detection filter derived from a fourth order linear state
space engine model. The diagnosis system measures
throttle angle, manifold pressure and engine speed to
produce two residuals. The scheme is shown to be able
to diagnose 10% faults in throttle angle sensor and man-
ifold pressure sensor on a real Ford 3.0 liter engine. The
use of a linear model restricts the operating range of the
model, and data is shown for 56-60 kPa and 1050-1130
rpm. It seems like the residuals are sensitive to engine
transients.
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In 1993 [28] he uses a non-linear model to generate
five residuals based on parity equations. Throttle an-
gle, engine speed, manifold pressure and injected fuel
is measured to diagnose faults on a real 4 cylinder 1.3
liter engine. The diagnosed components are throttle an-
gle sensor, engine speed sensor, manifold pressure sensor
and fuel injectors. The load is decoupled. Plots of the
residuals are shown for the case of 10% faults of the
diagnosed components.

1994 [18][29][30] they start using a non-linear discrete
NARMAX model which is a linear combination of sec-
ond order polynomials, i.e. it is linear in the parameters.
Inputs to the diagnosis system are demanded throttle
angle, injected fuel and measured air mass flow and en-
gine speed. Forward and inverse models are used to
generate four corresponding parity equation residuals.
The load is decoupled. The scheme is tested on a real
Ford 3.0 liter engine over a standardized test schedule
and is reported to be able to detect 10% faults in the air
mass flow sensor, 20% faults in the engine speed sensor,
15% faults in the throttle actuator and 40% faults in the
fuel injector.

GERTLER ET AL. Gertler and his group has been
involved in project with GM. During 1991-1993 [17][31]
a simulation study was done. After concluding that a
linear model is not sufficient because of its limited op-
erating range, they use a hybrid model with linear core.
Five residuals in the form of parity equations are used to
diagnose faults in throttle angle sensor, EGR-valve, fuel
injectors, manifold pressure sensor, engine speed sensor
and lambda sensor. These are also the inputs to the
diagnosis system. The residual structure is able to dis-
tinguish all faults except fuel injector and lambda sensor
faults. A potential problem is that they rely on that the
lambda sensor characteristic is known.

1994-1995 [9][32] they try this scheme on a real 3.1
liter V6 engine in a production vehicle. Both off-line
and on-line versions are developed and they stress the
importance of simple algorithms because of limited on-
board computing power. Instead of using five linear par-
ity equations, they now use six non-linear parity equa-
tions as residuals. The same faults as before are diag-
nosed and the new residual structure provides isolation
between all faults. To increase robustness, the residuals
are low-pass filtered and threshold crossings are counted.
They report that they are able to diagnose faults of 10%
size.

4. THE AIR INTAKE SYSTEM MODEL

The SI-engine is a non-linear plant and it has been in-
dicated in a pre-study that diagnosis based on a linear
model is not sufficient for diagnosing an engine. This
has also been concluded by other authors [17][18]. This
motivates the choice of a non-linear model in this work.

For the purpose of diagnosis, a simple and accurate
model is desirable. In the air system application there is
no need for extremely fast fault detection, therefore a so
called mean value model [33] is chosen. This means that
no within cycle variations are covered by the model. The
engine is a 2.3 liter 4 cylinder SAAB production engine
mounted in a test bench together with a Schenk AC
dynamometer. The measured variables are the same as
the ones used for engine control. A schematic picture
of the whole engine is shown in Figure 2. The engine
has electronic throttle control (drive-by-wire), which is
basically a DC-servo controlled by a PID controller. The
part that is considered to be the air intake system is
everything to the left of the dashed line. Also the engine
speed must be taken into account because it affects the
amount of air that is drawn into the engine.

Catalyst

air temp

air mass flow
manifold pressure

throttle control signal

fuel metering

spark timing

λ (air-fuel ratio)

load torque (disturbance)

λ

throttle servo

engine speed

throttle angle

Fig. 2. The basic SI-engine.

The model of the air intake system is continuous and
consists of two parts, the throttle model and the air dy-
namics. The throttle dynamics is modeled as a second
order linear system in which the states are the throttle
angular speed and the throttle angle. The air dynam-
ics is derived from the ideal gas law and has one state
which is the manifold pressure. In Figure 3, the model of
air intake system together with the throttle controller is
shown. The process inputs are the throttle control sig-
nal u, and the engine speed n. The outputs are throttle
angle sensor αs, mass air flow sensor ṁair,s, and mani-
fold pressure sensor pman,s. The faults are modeled as
additive faults. The equations describing the fault free
model can be written as

ω̇ = aω + b(u(t)− τair) (5)
α̇ = ω (6)

τair = h(pman, ṁair, α) (7)

ṗman =
RTman

Vman
(ṁair − ṁac) (8)

ṁair = f(pman, α) (9)
ṁac = g(pman, n) (10)
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Fig. 3: The model of the air intake system and the throttle controller.

The variables and its units are summarized and ex-

u [V] the output from the throttle controller
pman [kPa] manifold pressure
R [J/(g K)] the gas constant
T [K] manifold air temperature which is

assumed to be equal to the ambient
temperature

V [m3] manifold volume
ṁair [kg/s] air mass flow into the manifold and is

equal to the air flow past the air
mass flow meter

ṁac [kg/s] air mass flow out from the manifold
f static function describing the flow

past the throttle
g static function describing the flow

into the cylinders
α [deg] throttle angle
τair normalized torque on the throttle plate

generated by the air flow past the throttle
h static function describing the torque

on the throttle plate generated by
the air flow past the throttle

n [rpm] engine speed

Table 1 Symbols and units.

plained in Table 1. The model consists of a physical
part, the equations (5), (6) and (8), and a black box
part, the functions (7), (9) and (10). Even if variations
in ambient pressure and temperature do affect the sys-
tem, they are here assumed to be constant.

5. MODEL IDENTIFICATION

To find the static functions f , g and h, a steady state
experiment was performed. 12 equally spaced engine
speeds (1500 to 3000 rpm) and 8 equally spaced mani-
fold pressures (35 to 60 kPa) was used to build a map
of u, pman, ṁair, α and n measurements in 96 different
steady state operating points. To represent the static
functions, there is a choice between interpolating in the
map or fit for example polynomials to the map. Here in-
terpolation was chosen for g and polynomials for f and
h. The choice of terms to be included in the polyno-
mials was guided by studying the correlation coefficient
and the final choice was based on a validation against
another data set of 96 operating points. The function g
is closely related to volumetric efficiency. The resulting
polynomials are

f(pman, α) = η0 + η1α + η2α
2 + η3α

3 +
+η4αpman + η5pman

h(pman, ṁair, α) = ν0 +
√

pman + ν1pman + ν2p
2
man +

+ν3pman

√
α + ν4p

2
manα +

+ν5pmanα + ν6pman

√
ṁair

For the air dynamics, the only remaining constant to
identify is Vman. To identify this constant, a dynamic
test was performed. A test-cycle consisting of 4 throttle
steps in different operating points was constructed and
the already identified functions, f and g, were used to
find the value of Vman that gave the best fit between
measured pressure and estimated pressure. A compar-
ison between measured and simulated pressure for the
final air dynamic model is shown in Figure 4.

The parameters, a and b, used in the throttle model,
were identified by applying a pseudorandom binary sig-
nal to the throttle input and measuring the throttle an-
gle. This was done when the engine was not running so
the term τair in (5) was zero. The throttle model is not
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as easily validated as the air dynamics, because it is a
marginally stable system. However, closed loop experi-
ments showed that this model is less accurate than the
air dynamics model. This is also reflected in diagnosis
performance as can be seen in Section 7.

6. THE DIAGNOSIS SYSTEM

For the design of the diagnosis system a number of ap-
proaches, listed in Section 2, exists. For non-linear sys-
tems, the number is reduced to just a few. Direct redun-
dancy and non-linear diagnostic observers, including the
dedicated observer (explained below), are used in this
work because they are naturally derived from the non-
linear model and constrain the structure of the model
little compared to other approaches. For example, the
static functions do not need analytical expressions, they
can be represented by maps, which is the case for the
function g in this work. In the popular parity equa-
tion approach, the residual generator is constrained to
be a non recursive filter, which can be unecessary com-
plicated to derive from the recursive model.

The inputs to the diagnosis system are ṁair,s, u, αs,
pman,s, and n. The diagnosed components are the throt-
tle actuator, throttle angle sensor, air mass flow meter,
and manifold pressure sensor. This means that one ac-
tuator fault and three sensor faults are considered. It is
assumed that only one fault can occur at the same time.
The engine speed sensor is not diagnosed because it is
diagnosed sufficiently well by existing diagnosing tech-
niques. This is because the speed is measured by count-
ing pulses form a magnetic sensor on a toothed wheel.
A magnetic sensor failure is detected from the devas-
tating effects on the pulse train. However the residual
structure (see Table 2) of the diagnosis system has the
property that also the engine speed sensor could be in-

cluded among the diagnosed components.

RESIDUAL GENERATION By using for exam-
ple static relationships. i.e. direct redundancy, and di-
agnostic observers estimating measurable signals, it is
possible to construct a large number of residuals. How-
ever many of them are based on the same part of the
model that makes them redundant. It is thus desirable
to find a small, non redundant set of residuals with good
isolation properties, without loosing robustness. Start-
ing with 18 such residuals only six were selected to be
used in the residual generator. The computational form
of these six residuals are described next.

The first residual is a direct redundancy residual:

r1 = ṁair,s − f(pman,s, αs)

This residual relies on a static relationship in the model
and checks the consistency of Equation (9).

All other residuals are derived using temporal redun-
dancy. The second residual checks the consistency of
Equations (8) and (10):

r2 = ṁair,s − g(pman,s, n)− Vman

RTman

ˆ̇pman

It is assumed that the derivative of pman can be esti-
mated with sufficient accuracy. If the derivative is com-
puted as a difference, r2 is a parity equation.

Next are two dedicated observer residuals. The point
of dedicated observer residuals is to make the residuals
sensitive to only one sensor fault by measuring only one
output (αs is not considered to be an output in this
case). This can be seen in r3, which measures only pman,
and r4, which measures only ṁair . The residuals are
formed as

˙̂pman,3 =
RTman

Vman

(
f(p̂man,3, αs)− g(p̂man,3, n) +

K1(pman,s − p̂man,3)
)

r3 = pman,s − p̂man,3

˙̂pman,4 =
RTman

Vman

(
f(p̂man,4, αs)− g(p̂man,4, n) +

K2(ṁair,s − ˆ̇mair,4)
)

ˆ̇mair,4 = f(p̂man,4, αs)

r4 = ṁair,s − ˆ̇mair,4

In r3, pman is estimated by means of a non-linear diag-
nostic observer. The pressure pman is measured and the
estimation error fed back into the observer. The resid-
ual r3 equals the estimation error. The fourth residual,
r4, is constructed similarly but the estimation error of
ṁair, that equals r4, is fed back into the observer.

The fifth residual, r5, is also based on an observer but
in contrast to r3 and r4, the estimation error does not
equal r5. This means that to compute r5, both pman
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and ṁair are measured so r5 is not a dedicated observer
residual and therefore becomes sensitive to both mani-
fold pressure sensor and air mass flow sensor faults. The
residual is formed as

˙̂pman,5 =
RTman

Vman

(
f(p̂man,5, αs)− g(p̂man,5, n) +

K(ṁair,s − ˆ̇mair,5)
)

ˆ̇mair,5 = f(p̂man,5, αs)
r5 = pman,s − p̂man,5

The remaining residual is observer based as well, and
its purpose strictly for diagnosis of the throttle actuator:

˙̂ω = aω̂ + b
(
u(t)− h(pman,s, ṁair,s, αs)

)
+ k1(αs − α̂)

˙̂α = ω̂ + k2(αs − α̂)
r6 = αs − α̂

The throttle subsystem has only one output and there-
fore, it is not relevant to discuss if the residual is a ded-
icated observer or not.

The choice of the observer gains k1, k2 and also K1

and K2 were done by pole placement. The observer
poles are functioning like a low-pass filter so the pole
placement is a compromise between fast fault response
and sensitivity to disturbances and noise.

The six residuals form a set of structured residuals.
Different residuals are sensitive to different faults. This
can be seen by studying the equations of the residuals
and is summarized in Table 2. Some residuals should be
sensitive to specific faults due to the model equations,
but it turned out in the experiments that the effect of
a fault on some residuals was not significant enough to
guarantee a robust diagnosis system. These cases are
marked with an X (don’t care) in Table 2. In one case,
marked X1, this has a straightforward physical explana-
tion, the air flow past the throttle is not dependent on
manifold pressure for supersonic air speeds [34]. This
is the case for manifold pressures below 50 kPa. It can
be seen that this residual structure is strongly isolating
as long as only αs, ṁair,s, and pman,s-faults are consid-
ered. If also u-faults are considered, it is not strongly
isolating. The throttle model has a larger model un-
certainty, compared to the other parts of the model, so
that if any of the other residuals were fed by u, then it
would degrade the performance of these residuals. That
is the reason for the many zeros in the u column. In
practise this can have the effect that a small αs, ṁair,s

or pman,s-fault is interpreted as a u-fault.

RESIDUAL EVALUATION The six residuals
should respond due to Table 2 if a fault occurs and take
the value zero in the fault free case. The purpose of the
residual evaluation is to check this and generate a fault
decision. Taking disturbances into account this is not
trivial. The X:s in Table 2 are important. For a specific

u αs ṁair,s pman,s n
r1 0 1 1 X1 0
r2 0 0 1 1 1
r3 0 1 0 1 1
r4 0 1 1 0 1
r5 0 1 1 X 1
r6 1 X X X 0

Table 2 The residual structure of the diagnosis system.
Each column represents a faulty signal.

fault, residuals marked with an X have an uncertain re-
sponse. This means that the fault decision must not
depend on these residuals.

The residual evaluation scheme chosen in this work is
shown in Figure 5. First, the residuals are low-pass fil-
tered with 0.8 Hz cut-off frequency and then normalized
with their standard deviations in the fault free case. The
last step is fuzzy thresholding [10]. The fuzzy thresh-
olding is chosen before regular thresholding to make the
output from the diagnosis system contain more informa-
tion. With fuzzy thresholding the output is not just a
fault or not a fault, but a relative degree of how probable
it is that a fault has occurred.

LP-filter Fuzzy Thresholds

1
std(rf)

r
fault decision 
signalrf

Fig. 5. Residual evaluation.

Three fuzzy sets are used and they are shown in Fig-
ure 6. The way they are chosen, only the constant γ
has to be determined. The criterion used to determine
γ, is that in the fault free case, there should be no false
alarm. Also in the case of a fault, all residuals that
should respond due to Table 2, must reach the fuzzy
high value and residuals that should not respond must
be fuzzy low. A value of 4 proved experimentally to be
good choice. Table 2 is transferred to fuzzy rules and an
example of this is the pman,s-column that corresponds
to the fuzzy rule

IF r2 is high AND r3 is high AND r4 is low
THEN pressure sensor fault

The fault decision is then computed by executing all the
rules, one for each fault. The connective AND is im-
plemented as multiplication. Neither fuzzy implication
nor defuzzyfication is needed because the result of each
fuzzy rule is a crisp value, not a membership function.
Further, note that no aggregation between the rules is
needed because each rule is a fuzzy system on its own
and therefore executed independently of the other fuzzy

7



rules. The fault decision output of the diagnosis system
is then four fault decision signals, one for each fault,
representing how probable it is that the particular fault
has occured.

γ γ+1γ-1-γ+1-γ-1 -γ

1
highhigh low

r

Fig. 6. The fuzzy sets used in the fuzzy thresholding.

IMPLEMENTATION The diagnosis system was
implemented in Matlab Simulink. However all mea-
surements were made on the real engine and sampled
at 240 Hz with 40 Hz first order anti-alias filters. The
sampling frequency 240 Hz is probably unnecessary high
compared to what is needed to satisfy OBDII. The di-
agnosis was then performed off-line.

An important issue is how much computing power
that is needed to compute the residuals. By studying the
equations of the residuals and assuming that the static
functions are implemented by maps, it can be concluded
that there is about one multiplication, some table look-
ups, and additions in each residual. This should not be
a problem in an on-board implementation in production
vehicles.

7. VALIDATION

To validate the diagnosis system a short test-cycle was
constructed. It was the ambition that the test-cycle
should represent realistic driving and cover a large part
of the range of the model. The test-cycle lasts for 60
seconds and is shown in Figure 7.

All faults are simulated by adding a pulse to the cor-
responding signal. The pulse starts after 10 seconds and
lasts for 40 seconds. It has an amplitude of about 10%
of the signal mean for all cases except for the throttle
actuator fault where 20% is used. The actuator fault
is larger because of the comparably larger model uncer-
tainty in the throttle model. The throttle actuator fault
is simulated by adding a pulse to the output of the throt-
tle controller. Due to the closed loop throttle control,
the throttle angle returns to its reference value shortly
after the start of the pulse. Although the operation of
the throttle is only marginally affected by the fault, the
diagnosis is not degraded as can be seen in Figure 9.
The sensor faults are simulated by adding a constant to
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Fig. 7. The 60 seconds test-cycle.

the measured value. How the faults are simulated is also
marked in Figure 3.

In Figure 8 to 12, the responses (the absolute values)
of the six residuals are shown for no fault, u-fault, αs-
fault, ṁair,s-fault, and pman,s-fault respectively. The
residuals have been filtered and normalized so it is re-
ally the input to the fuzzy thresholding that is shown.
Only the range from 0 to 8 is shown in the plots. There-
fore residuals values higher then 8 is not visible. It can
be seen that the residuals are noisy and non zero even
in the case of no fault. The reason for this is the model
error, which is the dominating factor that limits the per-
formance of the diagnosis system.

In each plot, the two horizontal solid lines represent
the value of γ±1 in the membership functions (see Fig-
ure 6). The dashed line is the crossing between the
membership functions. Also shown in the figures (in the
7:th plot) is the fault decision signal from the diagno-
sis system. Only the fault decision signal corresponding
to the simulated fault is visible, because the other fault
decision signals are constantly zero. The dashed line in
this plot is the 0.5 level. This can be used as a criterion
when to trigger the fault alarm. If this criterion is used,
it can be seen that for these 10% and 20% faults the
response of the diagnosis system is distinct.

All faults are detected and correctly isolated. Also
there are no false alarms. Even if in several cases, one
or two residuals incorrectly indicates false, there is no
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erroneous diagnosis because the residual structures dic-
tated by Table 2 do not coincide. In this way, a kind
of robustness against false alarms is achieved by means
of the residual structure. In some cases a residual that
should react, is not very high. This can be seen in for
example Figure 9 and 11 where a residual reaches the
fuzzy threshold area, which results in a weaker fault de-
cision signal.

The level of robustness achieved encourage to go on
with experiments involving several engines in real vehi-
cles to study vehicle to vehicle variations, environmen-
tal changes and aging. A result regarding this issue is
from Gertler [9] that reports that atmospheric variables,
as ambient temperature, pressure and humidity, affects
the residuals at a maximum by 10% to 15%. Further ex-
pansions of the work include how to make the diagnosis
system more robust by using adaptation and find ways
to utilize known properties of the model uncertainty.
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Fig. 8. The residuals for no fault.
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Fig. 9. The residuals for 20% throttle actuator fault.
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Fig. 10. The residuals for 10% throttle sensor fault.
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Fig. 11. The residuals for 10% air mass flow sensor
fault.
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Fig. 12. The residuals for 10% manifold pressure sensor
fault.

8. CONCLUSIONS

To increase the performance of the engine diagnosis sys-
tem, a model based approach has been suggested for the
air intake system. Important issues are modeling con-
cepts, residual generation and evaluation, overall per-
formance, and limiting factors. It is argued that model
based diagnosis is appropriate for the air intake system
which is not necessarily the case for the other parts of
the SI-engine.

Much effort has been put into building a semi-physical
model of the system. It is believed that a better diag-
nosis system is obtained by using physical insight of the
process.

Instead of restricting the residual generator design to
only one method, a combination of different residual
generation methods have been used. This has the advan-
tage of fewer model constraints, which make it possible
to use less restrictive model building, which in turn lead
to possibly better diagnosis performance.

It is noted that the response of some residuals to spe-
cific faults is uncertain and the reason is explained. A
residual evaluation strategy, that makes the fault deci-
sion not dependent on these uncertain residuals, is in-
troduced. In the residual structure this is marked X
(don’t care).

All experiments were performed on a single produc-
tion engine in a test cell. The validation shows that the
diagnosis system performs well.

9. ACKNOWLEDGMENTS

Erik Frisk and Andrej Perkovic are gratefully acknowl-
edged for their help with experiments and insightful
discussions. This research is supported by NUTEK
(Swedish National Board for Industrial and Technical
Development).

REFERENCES

[1] California’s OBD-II regulation (section 1968.1, title
13, california code of regulations), resolution 93-40,
july 9. pages 220.7 – 220.12(h), 1993.

[2] A. Unger and K. Smith. The OBDII system in the
volvo 850 turbo. SAE Paper, (932665), 1993.

[3] Ronald Jurgen. Automotive Electronics Handbook.
McGraw-Hill, 1994.

[4] R. Patton, P. Frank, and R. Clark, editors. Fault
diagnosis in Dynamic systems. Systems and Con-
trol Engineering. Prentice Hall, 1989.

[5] J. Gertler. Analytical redundancy methods in fault
detection and isolation; survey and synthesis. IFAC

10



Fault Detection, Supervision and Safety for Techni-
cal Processes, pages 9–21, Baden-Baden, Germany,
1991.

[6] P.M. Frank. Advances in observer-based fault di-
agnosis. Proc. TOOLDIAG’93, pages 817–836,
Toulouse, France, 1993. CERT.

[7] R.J. Patton. Robust model-based fault diagno-
sis:the state of the art. IFAC Fault Detection, Su-
pervision and Safety for Technical Processes, pages
1–24, Espoo, Finland, 1994.

[8] J. Auzins, H. Johansson, and J. Nytomt. Ion-gap
sense in misfire detection, knock and engine control.
SAE–Technical Paper Series, (950004), 1995.

[9] J. Gertler and M. Costin. Model-based diagnosis
of automotive engines. IFAC Fault Detection, Su-
pervision and Safety for Technical Processes, pages
393–402, Espoo, Finland, 1994.

[10] P.M. Frank. Application of fuzzy logic to pro-
cess supervision and fault diagnosis. Fault De-
tection, Supervision and Safety for Technical Pro-
cesses, pages 507–514, Espoo, Finland, 1994. IFAC.

[11] E.Y. Chow and A.S. Willsky. Analytical redun-
dancy and the design of robust failure detection
systems. IEEE Trans. on Automatic Control,
29(7):603–614, 1984.

[12] R.N. Clark. The dedicated observer approach to
instrument fault detection. Proc. of the 15th CDC,
pages 237–241, 1979.

[13] J.E. White and J.L. Speyer. Detection filter de-
sign: Spectral theory and algorithms. IEEE Trans.
Automatic Control, AC-32(7):593–603, 1987.
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