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Abstract: A fault is (strongly) detectable if it is possible to construct a residual
generator that is sensitive to the (constant) fault while decoupling all disturbances.
Two new fault detectability criterions and three new strong fault detectability
criterions are presented. For comparison, existing fault detectability criterions are
reviewed. To prove the criterions, a framework of polynomial bases is utilized.
With the set of new criterions, together with the previously known, there exists
now a criterion for models given both on transfer function form and state-space
form, and for both fault detectability and strong fault detectability investigations.
Recommendations are given on what criterion to use in different situations.
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1. INTRODUCTION

A fundamental part of a model based fault diagnosis
system is the residual generator. The residual gener-
ator filters the known signals and generates a signal,
the residual, that should be small (ideally 0) in the
fault-free case and large when a fault is acting on
the system. In a general system, not only the control
signal u influence the system, but also disturbances
d and the faults f . Both faults and disturbances will
in this paper be assumed to be modeled as signals.

The topic of this paper is fault detectability, or
more exactly, if it is possible to construct a residual
generator that is sensitive to a certain fault f while
decoupling all disturbances d. Only linear systems
will be considered. Detectability of faults that are
modeled as constant signals are explicitly investi-
gated. Such detectability is usually called strong fault
detectability,

Criterions for both fault detectability and strong
fault detectability are derived. In Section 4, two
new fault detectability criterions are derived. For
comparison, also existing criterions are reviewed.
In Section 5, three new strong fault detectability
criterions are derived. Finally, Section 6 contains a
comparison of the different criterions.

2. PRELIMINARIES

For simplicity reasons, we will only discuss the con-
tinuous case. However, corresponding results for the
discrete case can be derived in a similar manner.
Throughout this paper, we will assume that the fault
signal f(t) is a scalar signal. This makes most sense
since we are interesting in checking detectability with
respect to one particular fault.

We assume that the model of the system is given
either in the transfer function form

y = G(s)u + H(s)d + L(s)f (1)
or in the state-space form

ẋ(t) = Ax(t) + Buu(t) + Bdd(t) + Bff(t) (2a)

y(t) = Cx(t) + Duu(t) + Ddd(t) + Dff(t) (2b)

The dimension of y(t) is m, u(t) is ku, and d(t) is kd.

This paper relies on established theory on poly-
nomial matrices, polynomial/rational vector spaces,
and polynomial bases for these spaces (Kailath, 1980;
Forney, 1975; Chen, 1984). We will use the notation
Im A(s) to denote the column image (also called the
column range) of a matrix A(s), and the notation
NL{A(s)} to denote the left null-space.

2.1 Residual Generators

A general linear residual generator can be written

r = Q(s)
(

y
u

)
(3)

i.e. Q(s) is a multi-dimensional transfer matrix with
known signals y and u as inputs and a residual as
output.

Inserting (1) into (3) gives

r = Q(s)
[
G(s) H(s)

I 0

] [
u
d

]
+ Q(s)

[
L(s)

0

]
f

Define M(s) as

M(s) =
[
G(s) H(s)

I 0

]
(4)

To make r(t) = 0 when f(t) = 0, it is required that
disturbances and the control signal are decoupled, i.e.



for Q(s) to be a residual generator, it must hold that
Q(s)M(s) = 0. To be able to detect faults, it is also
required that the residual is sensitive to faults. This
requirement can be expressed as

Q(s)
[
L(s)

0

]
6= 0 (5)

Thus, design of a residual generator consists of find-
ing a matrix Q(s) that fulfills two requirements:
belongs to the left null-space of M(s) and fulfills (5).

Assume that the rows of a matrix NM (s) form an
irreducible (i.e. full rank for all s) basis for the left
null-space of M(s). Then it is shown in (Nyberg and
Frisk, 1999) that all stable residual generators r can
be parameterized as r = c−1(s)φ(s)NM (s)[yT uT ]T ,
where c(s) is a scalar polynomial with its roots in
the left half-plane and φ(s) is a polynomial vector.
How to find such a basis NM (s) is not the topic of
this paper but procedures for this can be found in
(Nyberg and Frisk, 1999).

3. FAULT DETECTABILITY AND
STRONG FAULT DETECTABILITY

Fault detectability and strong fault detectability,
were in (Chen and Patton, 1994) defined as proper-
ties of a residual generator. Here, fault detectability
and strong fault detectability are instead defined as
properties of the system:

Definition 1. (Fault Detectability ). A fault f is de-
tectable in a system if there exists a residual gener-
ator such that the transfer function from the fault
to the residual is nonzero, i.e. Grf (s) 6= 0, and the
transfer functions from the known input u and the
disturbance d to the residual are zero, i.e. Gru(s) = 0
and Grd(s) = 0.

Definition 2. (Strong Fault Detectability). A fault f
is strongly detectable in a system if there exists an
asymptotically stable residual generator such that
the transfer function from the fault to the residual
Grf (s) has a nonzero DC-gain, i.e. Grf (0) 6= 0,
and the transfer functions from the known input u
and the disturbance d to the residual are zero, i.e.
Gru(s) = 0 and Grd(s) = 0.

Strong fault detectability is important since many
faults are constant when present. If such a fault is
not strongly detectable, then its affect on the residual
is only a short pulse and therefore more difficult to
detect. Faults that are detectable but not strongly
detectable will be called weakly detectable faults.

In some particular cases, it can be quite simple
to show that a fault is for example only weakly
detectable. However, in the general case, this is much
more difficult. Therefore it is useful to have general
criterions for both fault detectability and strong fault
detectability. Such criterions are developed in the
next two sections.

4. DETECTABILITY CRITERIONS

In this section, four general detectability criterions
are presented. The first two criterions assume that
the system is given on the transfer function form (1)
and the next two criterions assume that the system

is given on the state space form (2). Due to the
use of polynomial bases, the analysis becomes quite
simple. The benefit of polynomial bases will be even
more clear in the next section, where strong fault
detectability is investigated.

Note that even though three of the criterions in
this section have been presented and partly or fully
proven before (see references below), it is useful to
review them here. The reason is that by presenting
them here, all in the same framework and with the
same notation, it becomes easy to compare them
and get an good overview. In addition, it is also
interesting to later compare each criterion for fault
detectability with the corresponding criterion for
strong fault detectability.

4.1 The Intuitive Approach

From the discussion on residual generation in Sec-
tion 2.1, it follows, quite intuitively, that the follow-
ing theorem is a criterion for fault detectability:

Theorem 1. A fault f is detectable in a system if and
only if

Im
[
L(s)

0

]
* Im

[
G(s) H(s)

I 0

]
(6)

For a proof, see (Nyberg, 1999).

The easiest way to check condition (6) is probably
by studying the rank as follows: a fault is detectable
if and only if

Rank
[
G(s) H(s) L(s)

I 0 0

]
> Rank

[
G(s) H(s)

I 0

]
(7)

It is obvious that this rank-condition is equivalent
to (6).

A second alternative to check condition (6) is to
calculate a basis for NL{M(s)}, i.e. the left null-
space of M(s). Let the rows of a matrix NM (s) form
a basis for NL{M(s)}. Then we have that a fault is
detectable if and only if

NM (s)
[
L(s)

0

]
6= 0 (8)

However, to calculate a basis for the null-space re-
quires more involved algorithms than a rank test.

Remark: Both the calculation of the rank of a
rational matrix and a basis for the left (or right)
null-space, can be done by first performing an MFD.
Consider for example an MFD G(s) = N(s)D−1(s).
Since the column ranges of G(s) and N(s) are equal,
the rank and a basis for the left null-space of G(s) can
be calculated by instead considering the polynomial
matrix N(s). The rank, and a basis for the null-
space, of N(s) can then easily be calculated by using
procedures implemented in The Polynomial Toolbox
2.0 for Matlab 5 (1998).

4.2 The “Frequency Domain” Approach

Here we will review a somewhat simpler, but closely
related, alternative to Theorem 1. This criterion
is well known and was given in e.g. (Ding and
Frank, 1991).
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Theorem 2. A fault f is detectable in a system if and
only if

Im L(s) * Im H(s) (9)

It is easy to prove that this theorem is equivalent to
Theorem 1. However, this criterion is much simpler,
since it does not include G(s). Also here, the check
can be performed by doing a rank test or to calculate
a basis for the null space.

4.3 Using the System Matrix

When the system model is available in state-
space form, the system matrix in state-space form
(Rosenbrock, 1970) can be used to check fault de-
tectability. Similar conditions for fault detectability
were noted in for example (Magni and Mouyon,
1994).

Theorem 3. A fault f is detectable in a system if and
only if

Im
[
Df

Bf

]
* Im

[
C Dd

A− sI Bd

]
(10)

A proof can be found in (Nyberg, 1999).

4.4 Using the Chow-Willsky Scheme

The criterion given here is new and based on the
Chow-Willsky scheme (Chow and Willsky, 1984;
Frank, 1990). Again we assume that the system is
given on the state-space form (2).

Before the criterion can be presented, some nota-
tion from the Chow-Willsky scheme is reviewed. De-
signing residual generators with the Chow-Willsky
scheme comes down to finding a vector w in the
left null-space of a constant matrix [Rρ Hρ], where
Rρ = [CT AT CT . . . AρT CT ]T and Hρ is a lower
triangular Toeplitz matrix describing the propaga-
tion of the disturbances through the system. The
constant ρ is determined by the user. Further, Qρ

is a lower triangular Toeplitz matrix describing the
propagation of the inputs u through the system.
Similarly, Pρ is a lower triangular Toeplitz matrix
describing the propagation of the fault f through the
system.

Theorem 4. A fault f is detectable in a system if and
only if

ImPn * Im [Rn Hn] (11)

The proof can be found in (Nyberg, 1999) but it has
similarities with the proof of Theorem 7 presented
later. Theorem 4 might seem trivial at first, but when
constructing a proof, two difficulties arise. The first
is that the pair {A, [Bu Bd]} may not be controllable,
which has the consequense that not all residual gen-
erators can be constructed with the Chow-Willsky
scheme, see (Nyberg and Nielsen, 1997). The second
is to show that the number ρ can be chosen as ρ = n,
where n is the order of the realization (2).

Remark: In design of residual generators, using
a model on state-space form, it is important to
ensure that the pair {A, [Bu Bd]} is controllable, see
(Nyberg and Nielsen, 1997; Nyberg and Frisk, 1999).

As is seen in both Theorem 3 and 4, this is not the
case when checking detectability.

5. STRONG DETECTABILITY CRITERIONS

It is well known that faults often become weakly
detectable when the system contains an integration.
However, faults can be weakly detectable also if the
system do not contain an integration. This can for ex-
ample be seen in Example 1 below. Further, it is easy
to show that poles in the origin will not necessarily
lead to that a fault becomes weakly detectable. Thus,
the problem of checking strong fault detectability
is more involved than only checking the existence
of poles in the origin. Below we will investigate if
there are any similar criterions, corresponding to the
four criterions given in Section 4, that are general
criterions for strong fault detectability.

When checking fault detectability with Theorem 1,
it was noted that there are at least three options:
condition (6) could be used directly, a rank test (7)
could be performed, or a basis for NL{M(s)} could
be calculated as in (8). All these three options are
also possible for the other detectability criterions,
i.e. Theorem 2, 3, and 4. When checking strong
detectability using rational or polynomial matrices,
there is only one option; a basis for NL{M(s)} must
be calculated. The underlying reason why a condition
of the type (6) (or (7)) can not be used, i.e. by
replacing s with 0, is the following. The important
thing for checking detectability is ImNM (s), and for
strong detectability Im NM (0). While it holds that

Im NM (s) = NL{M(s)}
we can not find ImNM (0) via NL{M(0)} since in
general,

Im NM (0) 6= NL{M(0)}
This will be further illustrated in Example 1, in-
cluded in the next section below.

In the presentation of the theorems for strong de-
tectability, the notation ( · )|s→0 will be used, with
the meaning A(s)|s→0 = lims→0 A(s). Note that this
is the same as to first carry out all cancellations, and
then substitute s with 0.

5.1 The Intuitive Approach

The criterion corresponding to Theorem 1 becomes:

Theorem 5. A fault f is strongly detectable in a
system if and only if(

NM (s)
[
L(s)

0

] )|s→0 6= 0 (12)

where the rows of NM (s) are an irreducible polyno-
mial basis for NL{M(s)}.

The proof can be found in (Nyberg, 1999).

Example 1. Consider a system described by the fol-
lowing transfer functions:

G(s)=




1
s + 1

1
s + 1


 H(s)=


 s

s + 2
s

s + 2


 L(s)=




s + 1
s + 3

1
s + 3



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Then a right MFD of the matrix M(s) is

M(s) =
[
G(s) H(s)

I 0

]
=

[ 1 s
1 s

s + 1 0

][
s + 1 0

0 s + 2

]−1

A minimal polynomial basis for the left null-space of
M(s) is [1 −1 0]. By using Theorem 5, the check for
strong fault detectability becomes

[1 − 1 0]
[
L(s)

0

]
|s→0 =

s

s + 3
|s→0 = 0

and the fault is therefore not strongly detectable.
Note that the fault is not strongly detectable even
though the system has no poles in the origin.

Now we will show that it is not sufficient to consider
the left null-space of M(0). A minimal polynomial
basis for NL{M(0)} is[

1 −1 0
0 1 −1

]
The check for strong fault detectability would be

[
1 −1 0
0 1 −1

] [
L(s)

0

]
|s→0 =




s

s + 3
1

s + 3


 |s→0 =

[
0
1
3

]
6= 0

which wrongly indicates that the fault is strongly
detectable. This means that a condition for strong
fault detectability can not be based on a basis for
NL{M(0)}.

5.2 The “Frequency Domain” Approach

We have concluded that a basis for the null-space
must be calculated to check strong fault detectability.
However, even if we do so, the “frequency domain”
approach, from Section 4.2, will not work. This is
shown in the following example:

Example 2. Consider a system described by the fol-
lowing transfer functions:

G(s) = [
1
s

1
s
]T H(s) = [

1
s

1]T L(s) = [0 1]T

By using Theorem 5, it can be concluded that the
fault is not strongly detectable. Now the question is
if we can use a condition for strong fault detectability
based on (9) if we actually calculate an irreducible
basis NH(s) for the left null-space to H(s). In other
words, is

(
NH(s)L(s)

)|s→0 6= 0 a condition for strong
fault detectability? To check this, we calculate a basis
NH(s), which becomes [s − 1]. Then we have that(

NH(s)L(s)
)|s→0 = [s − 1]

[
0
−1

]
|s→0 = 1 6= 0

which wrongly indicates that the fault is strongly
detectable. This means that

(
NH(s)L(s)

)|s→0 6= 0
is not a condition for strong detectability.

5.3 Using the System Matrix

The criterion for strong fault detectability, corre-
sponding to Theorem 3, becomes as follows:

Theorem 6. A fault f is strongly detectable in a
system if and only if

NMs(0)
[
Df

Bf

]
6= 0

where the rows of NMs(s) are a basis for the left
null-space of the matrix

Ms(s) =
[

C Dd

−sI + A Bd

]

To prove this theorem, we first need the following
lemma.

Lemma 1. A fault f is strongly detectable in a sys-
tem if and only if(

NM (s)
[
L(s)

0

] )|s→0 6= 0 (13)

where the rows of NM (s) are a polynomial basis for
NL{M(s)} and NM (0) has full row-rank.

PROOF. The basis NM (s) can be written NM (s) =
R(s)N irr

M (s), where R(s) is a greatest common divi-
sor with full rank and N irr

M (s) is an irreducible basis.
Since NM (0) has full row-rank, R(0) must have full
rank. It can be shown that also R−1(s)|s→0 must
have full rank.

The condition (12) for strong fault detectability can
be written as

0 =
(
N irr

M (s)
[
L(s)

0

] )
|s→0 =

= R−1(s)|s→0R(s)|s→0

(
N irr

M (s)
[
L(s)

0

] )
|s→0 =

= R−1(s)|s→0

(
R(s)N irr

M (s)
[
L(s)

0

] )
|s→0 =

= R−1(s)|s→0

(
NM (s)

[
L(s)

0

])
|s→0

Since R−1(s)|s→0 has full rank, this condition is
equivalent to (

NM (s)
[
L(s)

0

] )|s→0 = 0

The negation of this condition is then equivalent
to (13), which proves the lemma. 2

Now return to the proof of Theorem 6:

PROOF. Let the row vectors of V (s) be a polyno-
mial basis for NL{Ms(s)} and form W (s) = V (s)P ,
where P is

P =
[
I −Du

0 −Bu

]
(14)

According to Theorem 1 in (Nyberg and Frisk, 1999),
the rows of W (s) form a polynomial basis for
NL{M(s)}. Without loss of generality, we can as-
sume that the realization (2) is partitioned as follows:
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[
ẋ
ż

]
=

[
Ax A12

0 Az

] [
x
z

]
+

[
Bu,x

0

]
u +[

Bd,x

0

]
d +

[
Bf,x

Bf,z

]
f (15a)

y = [CxCz ]
[

x
z

]
+ Duu + Ddd + Dff (15b)

where the state x is controllable from
[
uT dT

]T and
the state z is controllable from the fault f . Assume
also that the state z is asymptotically stable, which
is the same as saying that the whole system is
stabilizable. Now note that

[W (s) 0] = V (s)[P Ms(s)] =

= V (s)
[
I −Du C Dd

0 −Bu A− sI Bd

]
=

= V (s)

[
I −Du Cx Cz Dd

0 −Bu,x Ax − sI A12 Bd,x

0 0 0 Az − sI 0

]

In the last equality, we have used the assumption of
a realization on the form (15). The controllability of
the state x from u and d implies, via the PBH test
(see (Kailath, 1980)), that the middle block of rows
in the matrix [P Ms(s)], has full row-rank for all s.
Also, Az has full row-rank because of the assumption
that the state z is asymptotically stable. Therefore,
the matrix [P Ms(s)] has full row-rank for s = 0.
Since V (s) is irreducible, it has also full row-rank for
s = 0. This implies that W (0) has full row-rank.

Now consider the relation

W (s)
[
L(s)

0

]
= V (s)P

[
L(s)

0

]
= V (s)

[
L(s)

0

]
=

= V (s)
[
C(sI −A)−1Bf + Df

0

]
=

= [V1(s) V1(s)C(sI −A)−1]
[
Df

Bf

]
= V (s)

[
Df

Bf

]
The last equality follows from the fact that
V (s)Ms(s) = 0. The above relation implies that(
W (s)

[
L(s)

0

] )
|s→0 = 0 ⇐⇒

(
V (s)

[
Df

Bf

] )
|s→0 = 0

This equality together with the fact that W (0) has
full row-rank, implies that we can apply Lemma 1,
which proves the theorem. 2

5.4 Using the Chow-Willsky Scheme

The criterion for strong fault detectability, corre-
sponding to Theorem 4, becomes as follows:

Theorem 7. A fault is strongly detectable if and only
if

NRHPnµ 6= 0 (16)

where NRH is a basis for the left null space of [RnHn]
and µ = [1 0 . . . 0]T .

In the proof of this theorem, we will use the notation
Ψi(s) = [Ii sIi . . . sρIi]T . Further, we need the
notion of primary dependent rows (Kailath, 1980),
and the following lemma.

Lemma 2. Assume the rows of the matrix W define
the largest and uppermost set of primary dependent
rows in [Rn Hn]. Then F (s)=W [Ψm(s) −QnΨku(s)]
is a polynomial basis for N{M(s)} and F (0) =
W [Ψm(0) −QnΨku(0)] has full row rank.

The proof can be found in (Nyberg, 1999). Now
return to the proof of Theorem 7:

PROOF. We will start with the only-if part of the
proof and an indirect proof is used. Therefore assume
that

NRHPnµ = 0 (17)

Let the rows of a matrix W define the largest
and uppermost set of primary dependent rows in
[Rn Hn]. Then according to Lemma 2, F (s) =
W [Ψm(s) −QnΨku(s)] becomes a polynomial basis
for NL{M(s)} and F (0) has full row rank.

Define X(s) as X(s) =
∑∞

i=1 s−iAi−1Bf . Then it can
be shown that Ψm(s)L(s) = RnX(s)+PnΨ1(s). Now
assume that (17) holds. This implies the following:

(
F (s)

[
L(s)

0

] )|s→0 =

=
(
W [Ψm(s) −QnΨku(s)]

[
L(s)

0

] )
s→0

=

=
(
WΨm(s)L(s)

)
s→0

=

=
(
W (RnX(s) + PnΨ1(s))

)
s→0

=∗

=∗ WPnΨ1(0) = WPnµ = 0 (18)

The equality marked =∗ holds since W [Rn Hn] = 0
and the last equality holds because of (17). Since
F (s) is a polynomial basis for NL{M(s)} and F (0)
has full row rank, Lemma 1 implies that the fault is
not strongly detectable. Thus the only-if part of the
proof has been shown.

Also for the if part, an indirect proof will be used.
Therefore we assume that the fault is not strongly
detectable and want to prove that (17) holds. As-
sume that w1 is an arbitrary row-vector in NRH

which means that w1[Rn Hn] = 0. Pick other
wi:s so that W = [wT

1 wT
2 . . . ]T defines a set of

primary dependent rows in [Rn Hn]. This implies
that W [Rn Hn] = 0 and according to Lemma 2,
F (s) = W [Ψm(s) − QnΨku(s)] becomes a polyno-
mial basis for NL{M(s)}. Then we know that for
some polynomial matrix φ(s), it holds that F (s) =
φ(s)NM (s), where NM (s) is a minimal polynomial
basis for NL{M(s)}. Theorem 5 together with the
assumption that the fault is not strongly detectable
implies that

(
F (s)

[
L(s)

0

] )
s→0

=
(
φ(s)NM (s)

[
L(s)

0

] )
s→0

=

= φ(0)
(
NM (s)

[
L(s)

0

])
s→0

= 0

Also we have that
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(
F (s)

[
L(s)

0

] )
s→0

=

=
(
W [Ψm(s) −QnΨku(s)]

[
L(s)

0

] )
s→0

=

=
(
WΨm(s)L(s)

)
s→0

=

=
(
W (RnX(s) + PnΨ1(s))

)
s→0

=
= WPnΨ1(0) = WPnµ = 0

This implies that w1Pnµ = 0 which proves the if
part, and completes the proof. 2

Note that only constant matrices are involved in
Theorem 7 which implies that the condition (16) can
also be written ImPnµ 6⊆ Im [Rn Hn].

6. DISCUSSION AND CONCLUSIONS
In this paper, criterions for fault detectability and
strong fault detectability, seen as system properties,
have been derived. Two new criterions for fault de-
tectability and three new criterions for strong fault
detectability, have been presented. In addition, ex-
isting criterions have been reviewed. To the authors
knowledge, comparable criterions for strong fault de-
tectability have not been presented elsewhere.

Criterions for models given both on transfer function
form and state-space form have been considered. All
the proofs, for the different criterions, become quite
simple thanks to a notion of polynomial bases for
linear residual generators. For the case of strong fault
detectability, it is shown that the existence of poles
in the origin, can not be used, neither as a necessary
nor sufficient condition.

These new criterions, together with the already
known, give the user several choices to be used in
different situations. Below, the criterions are com-
pared, and advice is given on what criterion to use
in different situations.

6.1 Detectability
If the system model is given on transfer function
form and we want to check fault detectability, then
the easiest approach is the “frequency domain ap-
proach”, i.e. the criterion given by Theorem 2. The
reason is that, compared to the “intuitive approach”,
we do not need to care about the transfer function
G(s). The actual test can be performed by either
calculating the null space or to perform a rank test.
However, the rank test should be the preferred choice
since, calculating the rank is numerically a simpler
operation than to calculate the null space.

If the system model is given on state-space form
and we want to check fault detectability, the best
choice is the criterion based on the system matrix,
i.e. Theorem 3. The reason for this is that, compared
with the Chow-Willsky scheme, the criterion based
on the system matrix has shown to be much more
numerical stable. However note that the criterion
based on the Chow-Willsky scheme, i.e. Theorem 4,
uses only constant matrices, in contrast to the crite-
rion based on the system matrix. This might in some
cases be an advantage since we do not need special
algorithms that can handle polynomial matrices. No
matter what the preferred criterion is, in both cases,
the actual test is again most easily performed via the
rank test.

6.2 Strong Detectability
If the system model is given on transfer function
form and we want to check strong fault detectability,
there is only one alternative. Since the “frequency
domain approach” doesn’t work we have to use the
“intuitive approach”, i.e. Theorem 5. As shown in the
previous section, we also have to perform the test by
calculating the null space.

Finally, if the system model is given on state-space
form and we want to check strong fault detectability,
the criterion based on the system matrix, i.e. Theo-
rem 6, is the best choice. The reason is again the nu-
merical considerations. However an advantage with
the criterion based on the Chow-Willsky scheme, i.e.
Theorem 7, is that only constant matrices are needed
and also that the rank test is possible to perform.
That is, we do not need to calculate a null-space.
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