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Abstract: Two different methods for diagnosing leakage in the air-path of an
automotive engine are investigated. The first is based on a comparison between
measured and estimated air flows. The second is based on an estimation of the leakage
area. The two methods are compared by using a framework of hypothesis testing and
especially the power function. The investigation is made first in theory and then also
on a real engine. The conclusion is that the principle based on the estimated leakage
area, gives a better power function and is therefore the best choice if only leakage
detection is considered. However, if also other faults need to be diagnosed, it is shown
that the sensitivity to these other faults may be better with the principle based on
comparison of estimated and measured air flow.
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1. INTRODUCTION
One important area of automotive engine diagnosis is
the diagnosis of leakage in the air-intake system. This
is because a leakage can cause increased emissions,
drivability problems, and damage to the engine. To
diagnose leakages, test quantities (or residual gener-
ators) need to be constructed. It is important that
these test quantities are as sensitive as possible to the
leakage.

In this paper, a view of hypothesis testing is utilized.
Then a natural performance measure for the hypoth-
esis tests, and also the different test quantities, is the
power function, i.e. the probability of rejecting the
null-hypothesis when it is true. These concepts, in the
context of fault diagnosis, are introduced in Section 2.

By the help of the power function, two different strate-
gies for constructing test quantities are compared: one
based on comparing estimated and measured air flow,
and the other based on estimating the leakage area.
The investigation is made first in theory, in Section 3,
and then in Section 4 also on a real engine.

2. MODEL BASED DIAGNOSIS IN THE VIEW
OF HYPOTHESIS TESTING

This section gives a short summary of the method
structured hypothesis tests presented in (Nyberg,
1999b; Nyberg, 2000). First, we classify the different
faults into fault modes. For example in an automotive
engine, all intake-manifold leaks, regardless of their
area, belong to the fault mode “manifold leak” which
we will denote ML. Another fault mode is the case
“no fault” which we will denote NF .

The exact fault of the process is described by the fault
state θ, which mostly is vector valued. The set of all
possible fault states is denoted Θ and the different
fault modes γ divides Θ into disjunct subsets Θγ .

For an example, consider a system described by the
following equations:

ẋ =f(x, u) (1a)
y1 =h1(x) + b1 (1b)
y2 =h2(x) + b2 (1c)

The constants b1 and b2 represents sensor bias faults
and it is assumed that only positive biases can occur.
Three fault modes are considered: no fault NF , a
bias in sensor 1 B1, and a bias in sensor 2 B2. The
fault state of the system is described by the vector
θ = [b1 b2]. Then we have the sets Θ = {[b1 b2] |b1 ≥
0, b2 ≥ 0}, ΘNF = {[0 0]}, ΘB1 = {[b1 b2] |b1 >
0, b2 = 0}, and Θ = {[b1 b2] |b1 = 0, b2 > 0}.
Using the principle of structured hypothesis tests, the
diagnosis system consists of a set of hypothesis tests.
The null hypothesis for the k:th hypothesis test, i.e.
H0

k , is that the fault mode, present in the process,
belongs to a specific set Mk of fault modes. The
alternative hypothesis H1

k is that the present fault
mode does not belong to Mk. This means that if
hypothesis H0

k is rejected, and thus H1
k is accepted,

the present fault mode can not belong to Mk. In this
way, each separate hypothesis test contributes with a
piece of information about which fault modes that can
be present.

For example, let Fp denote the present fault mode
and assume that the diagnosis system contains the
following set of three hypothesis tests:
H0

1 : Fp ∈ M1 = {NF, F1} H1
1 : Fp ∈ MC

1 = {F2, F3}
H0

2 : Fp ∈ M2 = {NF, F2} H1
2 : Fp ∈ MC

2 = {F1, F3}
H0

3 : Fp ∈ M3 = {NF, F3} H1
3 : Fp ∈ MC

3 = {F1, F2}
Then if only H0

1 is rejected, we can draw the con-
clusion that Fp ∈ MC

1 = {F2, F3}, i.e. the present
fault mode is either F2 or F3. If both H0

1 and H0
2 are



rejected, we can draw the conclusion that Fp ∈ MC
1 ∩

MC
2 = {F2, F3} ∩ {F1, F3} = {F3}, i.e. the present

fault mode is F3.

From the above example, it is clear that the diagnosis,
i.e. the output from the diagnosis system, is formed
with a simple intersection operation. Note that the
diagnosis statement can sometimes contain more than
one fault mode. This feature corresponds well to
a desired functionality in cases where it is difficult
or even impossible to decide which fault mode has
occurred.

2.1 Hypothesis Tests

For each hypothesis test HTk, we need to find a test
quantity (often also called test statistic) and a rejec-
tion region. The sample data x for each hypothesis test
are samples of process inputs u and outputs y. The test
quantity is a function Tk(x) from the sample data x, to
a scalar value which is to be thresholded by a threshold
Jk. Thus the rejection region is defined implicitly by
the threshold Jk together with the test quantity Tk(x).
The hypothesis test HTk is then defined as

Tk(x) > Jk reject H0
k , i.e. accept H1

k (2a)
Tk(x) < Jk do not reject H0

k (2b)

This means that we need to design a test quantity
Tk(x) such that it is low if the data x match the
hypothesis H0

k , i.e. a fault mode in Mk can explain
the data. Also if the data come from a fault mode not
in Mk, Tk(x) should be high. These performance goals
can be formalized by using the power function defined
as

βk(θ) = P (reject H0
k | θ) = P (Tk(x) ≥ Jk | θ)

That is, we want the power function to be large for all
θ /∈ Θ0

k, where Θ0
k = ∪γ∈Mk

Θγ}.

2.2 Principles for Constructing Test Quantities

Test quantities can be calculated based on many
different principles. In this paper we will consider two
possibilities, here denoted “prediction principle” and
“estimation principle”.

2.2.1. Prediction Principle Using the prediction
principle, the calculation of the test quantity is based
on a model validity measure Vk(θ,x), which in turn is
based on a comparison between signals and/or predic-
tions (or estimates) of signals. The function Vk(θ,x),
where θ is fixed, is a measure of the validity of the
model of the system, for a fixed θ, in respect to the
measurement data x. To construct Vk(θ,x), we can
compare an output signal y with an estimate ŷ, but it
is also possible to for example compare two estimates
of the same signal. An example is

Vk(θ, x) =
1
N

N∑
t=1

‖y(t)− ŷ(t|θ, x)‖ (3)

where y(t|θ, x) is the prediction of the output y(t),
derived from an assumption of a specific θ and the
measured data x. The test quantity can then be
calculated as

Tk(x) = min
θ∈Θ0

k

Vk(θ, x) (4)

Note that the term “residual generator”, as it is mostly
used in fault diagnosis literature, refers in fact to a
principle similar to the prediction principle.

2.2.2. Estimate Principle Using the estimate prin-
ciple, the test quantity is based on a comparison
between an estimate of θi, i.e. an element θi of the
fault state vector θ, and the nominal value θ0

i . First
consider the case where the set Θ0

k consists of only one
element. Then a test quantity can be constructed as

Tk(x) = ‖θ̂i − θ0
i ‖ θ̂i = argmin

θi

V ′(θi,x)

where V ′(θi,x) is some model validity measure. This is
a common solution used in literature, e.g. (Isermann,
1993). When the set Θ0

k consists of more than one
element, additional parameters have to be estimated.
That is, in addition to estimating the parameter θi, we
also have to estimate the free parameters in Θ0

k, i.e.
the ones corresponding to faults that are decoupled.

3. A COMPARISON BETWEEN THE
PREDICTION PRINCIPLE AND THE ESTIMATE

PRINCIPLE
Later in Section 4, we will compare the prediction
principle with the estimate principle for diagnosing
leakage in a real automotive engine. To support and
explain the conclusions drawn there, we will in this
section study some theoretical examples.

Consider a system which can be modeled as
y(t) = b|u|ϕsgnu + a + v (5)

where v(t) ∼ N(0, σv) and sgnu is the sign of u, i.e.
-1, 0, or 1. The nominal (i.e. corresponding to the no
fault case) values for the three parameters are b0 = 1,
a0 = 0, and ϕ0 = 1. The four fault modes considered
are

NF b = 1, a = 0, ϕ = 1
Fb b 6= 1, a = 0, ϕ = 1
Fϕ b = 1, a = 0, ϕ 6= 1
Fa b = 1, a 6= 0, ϕ = 1

We will start by comparing two test quantities for
the null hypothesis H0 : Fp = NF . The first, T1(x)
is based on the prediction principle, and the second,
T2(x) is based on the estimate principle:

T1(x) =
N∑
1

(y − u)2 (6)

T2(x) = Np(b̂− b0)2 b̂ = (UT U)−1UT Y (7)

where b̂ is the least square estimate of b, and U =
[u(t0) . . . u(t+N)]T . Note that in the test quantity
T2(x), a normalization factor Np = UT U has been
used, and p is thus the mean power of u. The reason for
this is to get a test quantity such that the significance
level of the hypothesis tests becomes independent of
the input signals.

The comparison study will be made by using the
power function. It can be realized that

√
Np(b̂ − b0)

is N(0, σv) under H0. This implies that T2(x)/σ2
v

is χ2(1)-distributed. Similarly it can be shown that
T1(x)/σ2 is χ2(N)-distributed under H0. The knowl-
edge of these distributions can be used to find thresh-
olds J1 and J2 such that a specific significance level,
i.e. β(θ) for θ ∈ Θ0

k, is obtained.

To evaluate the test quantities (6) and (7), two tests
are constructed, based on T1(x) and T2(x) respec-
tively. The standard deviation σv is assumed to be
0.2 and then the thresholds are chosen such that the
significance level for both tests becomes α = 0.0034.
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3.1 Studying Power Functions
We will compare the test quantities in three different
cases: when fault mode Fb is present, when fault mode
Fϕ is present, and when fault mode Fb is present and
the test quantities are modified such that fault mode
Fa is decoupled.

3.1.1. Fault Mode Fb Present This case corresponds
to that the power functions for the case a = a0, and
ϕ = ϕ0 are studied, i.e. along the b-axis of the fault
state space Θ. This means that the system model
becomes linear and can be written as

y(t) = bu + v (8)
Further, the power functions become functions of b,
i.e. β1(b) and β2(b).

0 1 2
0

0.5

1

0 1 2
0

0.5

1

0 1 2
0

0.5

1

0 1 2
0

0.5

1

0 1 2
0

0.5

1

0 1 2
0

0.5

1

0 1 2
0

0.5

1

0 1 2
0

0.5

1

0 1 2
0

0.5

1

Fig. 1. The power functions β1(θ) (solid) and β2(θ)
(dashed) for two tests based on T1(x) and T2(x).
The result for 9 different input signals u is shown.

The power functions β1(b) and β2(b) for 9 different
input signals u, estimated by means of simulations,
are plotted in Figure 1.

In the figure, it is seen that for all 9 different u:s, the
two power functions are equal for large deviations from
θ0 but for other values, β2(θ) (dashed) is greater than
β1(θ) (solid), i.e. T2(x) is better than T1(x). In other
words, the estimate principle, with the estimated
parameter the same as the one modeling the fault,
here outperforms the prediction error principle.

3.1.2. Fault Mode Fϕ Present Now consider the
fault mode Fϕ, which means that ϕ is a free variable
while b0 = 1 and a0 = 0. The model (5) now becomes

y(t) = |u|ϕsgnu + v

The two power functions βk(ϕ) for T1(x) and T2(x)
respectively, are plotted in Figure 2. As before, 9
different input signals u have been considered. In con-
trast to Figure 1, there are large differences between
the different plots. This holds for both power functions
β1(ϕ) and β2(ϕ). However, it is clear that T2(x) is very
sensitive to different u:s while T1(x) is more robust.
Also, in all plots it no longer holds that β2(ϕ) ≥ β1(ϕ)
for all ϕ. In most of the plots, β1(ϕ) is actually larger
than β2(ϕ). It is obvious that the overall performance
of T1(x) is much better than T2(x). Thus, in this case
where the estimate principle uses an estimate of a
parameter not modeling the fault, the prediction error
principle outperforms the estimate principle.
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Fig. 2. The power functions β1(ϕ) (solid) and β2(ϕ)
(dashed) for two tests based on T1(x) and T2(x).
The result for 9 different input signals u is shown.

3.1.3. Decoupling of Fa and Fault Mode Fb Present
Next we will investigate how the test quantities T1(x)
and T2(x) are affected by decoupling of the fault mode
Fa. To do this, we construct two new test quantities
T1a(x) and T2a(x):

T1a(x)=min
a

N∑
t=1

(
y(t)−ŷ(t|a)

)2= min
a

N∑
t=1

(
y(t)−u(t)−a

)2

T2a(x) = Np(b̂−1)2 b̂=arg
b

min
b,a

N∑
t=1

(
y(t)− bu(t)−a

)2

Note that all estimation problems involved are stan-
dard least square problems.

Tests using T1a(x) and T2a(x) are constructed with the
significance level α = 0.0034 (the same as before). The
parameter a is chosen as a = 1. The resulting power
functions βk(b) corresponding T1a(x), and T2a(x) are
then estimated via simulations. Included in the study
are also T1(x) and T2(x), i.e. (6) and (7), but here
with data compensated for the non-zero a, i.e. y′ =
y − 1. The power functions for T1a(x), T2a(x), T1(x),
and T2(x) are plotted in Figure 3. Here 4 different
input signals u have considered. We can see that the
estimate principle also for this case, i.e. including
decoupling, outperforms the prediction error principle.
It should be remembered though, that the estimate
principle implies that one extra parameter must be
estimated, and this can in general be a substantial
problem.

Also seen in the plots is that the dotted line is
above the dashed, meaning that the test quantity
T2(x) performs better than T2a(x). However, this
is the expected result since one less parameter has
to be estimated using T2(x) compared to T2a(x).
Theoretically this can be explained by realizing that
the variance of the least square estimate b̂ in T2a(x) is
greater than the variance of b̂ in T2(x).

3.2 A Theoretical Study
To find a theoretical motivation to why the estimate
principle is better than the prediction error principle,
we will here study a somewhat simplified case. Con-
sider the model (8) but assume that b ≥ 0 and the no
fault case corresponds to b = b0 = 0. We will consider
two test quantities: T1(x) from (6) and T ′′

2 (x) which
we define as

3
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Fig. 3. The power functions β1a(b) (solid), β2a(b)
(dashed), β1(b) (dash-dotted), and β2(b) (dotted)
for tests based on T1a(x), T2a(x), T1(x), and
T2(x) respectively. The result for 4 different input
signals u is shown.

T ′′
2 (x) =

√
Np b̂ =

√
Np (UT U)−1UT Y

Although not shown here, the power functions for
corresponding tests are similar to the ones shown
in Figure 1. That is, we can conclude that the test
quantity based on the estimate principle, i.e. T ′′

2 (x),
is better than the test quantity T1(x) based on the
prediction principle.

Now consider the following theorem (Casella and
Berger, 1990):

Theorem 1. If f(x|θ) is the joint probability density
function of X, and q(t|θ) is the probability density
function of T (X), then T (X) is a sufficient statistic
for θ if, and only if, for every x in the sample space,
the ratio f(x|θ)/q(T (x)|θ) is constant as a function of
θ (i.e. independent of θ).

With this theorem it can be shown that T ′′
2 (x), is a

sufficient statistic for b. Next consider the following
theorem (Casella and Berger, 1990):

Theorem 2. Consider testing H0 : θ ∈ Θ0 versus H1 :
θ ∈ ΘC

0 . Suppose a test based on a sufficient statistic
T with rejection region S, satisfies the following three
conditions:

a. The test is a level α test.
b. There exists a θ0 ∈ Θ0 such that P (T ∈ S | θ0) =

α.
c. Let g(t|θ) denote the probability density function

of T . For the same θ0 as in (b), and for each
θ′ ∈ ΘC

0 , there exists a k′ ≥ 0 such that

t ∈ S if g(t|θ′) > k′g(t|θ0) and
t ∈ SC if g(t|θ′) < k′g(t|θ0)

Then this test is a UMP 1 level α test of H0 versus
H1.

1 A test with power function β(θ) is a UMP (uniformly most
powerful) level α test if there exist no other test with the same
significance level α and with a power function β′(θ) such that
β′(θ) > β′(θ) for any θ.

All conditions (a), (b), and (c) can be easily shown to
hold. Therefore we have the result that a hypothesis
test based on T ′′

2 (x) is a UMP test. This means that
there can not exist any test quantity better than T ′′

2 (x)
for this hypothesis test.

4. DIAGNOSING LEAKS IN THE AIR-PATH OF
AN AUTOMOTIVE ENGINE

In this section, diagnosis of leaks in the air-path of a
turbo-charged gasoline engine (described in (Nyberg,
1999a)) is discussed. The air enters the engine and
is compressed by the compressor. This results in a
boost pressure higher than ambient pressure. The air
then passes the throttle, enters the intake manifold,
and finally leaves the manifold into the cylinders. Two
types of leaks are considered: boost leakage before the
throttle, and manifold leakage between the throttle
and the cylinders. The model of the system is

m− kbhb(pb) = f(pb, α, pm) (9a)
f(pb, α, pm) + kmhm(pm) = g(pm, n) (9b)

where m is the measured air mass-flow into the engine,
kb is the effective area of the boost leakage, pb the
measured boost pressure, hb(pb) the flow function de-
scribing the air mass-flow through the boost leakage,
pm the measured manifold pressure, α the meaasured
throttle angle, f(pb, α, pm) the flow past the throttle,
km the effective area of the manifold leakage, hm(pm)
the flow function for the manifold leakage, n the
measured engine speed, and g(pm, n) the flow into the
cylinders.

4.1 Design of Test Quantities

Three fault-modes are considered: No Fault NF , kb =
km = 0; Boost Leak BL kb > 0, km = 0; and Manifold
Leak ML, kb = 0, km > 0. We assume that we want to
design test quantities for the following two hypothesis
tests:

H0
BL :Fp∈MBL={NF, BL} H1

BL :Fp∈MC
BL={ML}

H0
ML :Fp∈MML={NF, ML} H1

ML :Fp∈MC
ML={BL}

4.1.1. Prediction Principle As described in Sec-
tion 2.2.1, the prediction principle is based on a com-
parison of signals and/or predictions of signals. It
is straightforward to use this principle based on the
model (9). Consider first the construction of the test
quantity T pp

BL(x). (The index pp denotes “prediction
principle” to distinguish this test quantity from the
one constructed in the next section.) The test quantity
can in a first step be constructed in accordance with
the formulas (4) and (3) as follows:

T pp′
BL(x) = min

kb

VBL(kb, x) =

= min
kb

1
N

N∑
t=1

(
m− kbhb(pb)− f(pb, α, pm)

)2 +

+
1
N

N∑
t=1

(
f(pb, α, pm)− g(pm, n)

)2 (10)

To save space, the time-argument of all variables have
been skipped. The expression (10) consists of two
terms. Ideally, the first of these terms will always be
zero for all possible fault modes. However, in reality
the first term is non-zero and acts as an unknown
disturbance in the test quantity T pp′

BL(x). Since the
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first term only acts as a disturbance, it can be skipped
which results in the test quantity

T pp
BL(x) =

1
N

N∑
t=1

(
f(pb, α, pm)− g(pm, n)

)2 (11)

Similarly, the test quantity TBL(x) is constructed as

T pp
ML(x) =

1
N

N∑
t=1

(
m− f(pb, α, pm)

)2 (12)

Also here we have skipped the term that is close
to zero all the time. The only drawback with this
approach, i.e. to skip one of the terms, is when an
unpredicted fault occurs, i.e. a fault not belonging to
any of the fault modes BL or ML. Then it can happen
that this fault is mistaken to belong to BL or ML.

In conclusion, the test quantity T pp
BL(x) has been

constructed so that the fault modes BL and NF are
decoupled, and T pp

ML(x) has been constructed so that
the fault modes ML and NF are decoupled. This
fulfills the requirements of the two hypothesis tests
specified above.

4.1.2. Estimate Principle Using the estimate princi-
ple in accordance with Section 2.2.2, we base our test
quantities on estimates of the effective areas kb and
km. First we discuss the construction of the test quan-
tity T ep

ML(x). The non-normalized version becomes:

T ep′
ML(x) = ‖k̂b−0‖ = k̂b = arg

kb

min
kb,km

V1([km, kb], x) =

= arg
kb

min
kb,km

1
N

N∑
t=1

(
m− kbhb(pb)− f(pb, α, pm)

)2 +

+
1
N

N∑
t=1

(
f(pb, α, pm)− g(pm, n) + kmhm(pm)

)2 =∗

=∗ argmin
kb

1
N

N∑
t=1

(
m− kbhb(pb)− f(pb, α, pm)

)2 =

= arg min
kb

V2(kb, x)

Note that the measure ‖ · ‖ is here defined as the
identity function. The function V1([km, kb], x) is a
model validity measure. It is here trivially derived
in analogy with TBL(x) and TML(x) (which are also
model validity measures) from the previous section.
The equality marked =∗ follows from the fact that
the coefficient kb is only present in one of the terms
of V1([km, kb], x). The minimization of V2(kb, x) is a
linear regression problem. Therefore the least-square
technique was used for both T ep′

ML and T ep′
BL.

With normalization, to make the significance level of
the hypothesis tests independent of the input signals,
the test quantity T ep

ML(x) become

T ep
BL(x) =

√
ϕT

mϕmT ep′
BL(x) =

√
ϕT

mϕmk̂m (13)

where ϕT
m = [hm(pm(t1)) . . . hm(pm(tN ))]. The test

quantity T ep
ML(x) is defined similarly. With these two

test quantities, decoupling has been achieved in ac-
cordance with the specifications of the two hypothesis
tests.

4.2 A Comparison Between the Prediction Principle
and the Estimate Principle

The diagnosis problem investigated here is in principle
the same as the one investigated in Section 3.2.
There we saw that the estimate principle gives the
best possible test quantity. This means that the test
quantities T ep

BL(x) and T ep
ML(x) given in (13) should be

better than T pp
BL(x) and T pp

ML(x) given in (11) and (12)
respectively.

To make the comparison, we need to obtain the
power function for tests corresponding to all four
test quantities. In this situation, where there is no
knowledge or assumptions about the model errors or
the measurement errors, measurements on the real
process must be used. Only a limited number of
leakage areas are studied, corresponding to 0, 1, 2,
and 3.5 mm diameter. To estimate the probability
density function in this case is difficult because of the
large amount of data that would be needed. Only 24
independent data sets were used for the analyses and
therefore a simpler and less accurate approach has to
be chosen.

Both boost leakage and manifold leakage were studied,
but because of space limitations, only the results
when a manifold leakage was present, are presented
here. The complete study can be found in (Nyberg,
1999b). The results of the study, for manifold leakage
present, are shown in Figures 4 to 5. Consider first
Figure 4. The x-axis represents the different leakage
areas corresponding to 0, 1, 2, and 3.5 mm diameter.
For each leakage area, the test quantities T ep

BL(x) and
T ep

ML(x) were calculated for each of the 24 data sets.
The values of T ep

BL(x) and T ep
ML(x) are indicated with

“x” and “o” respectively. To make the plot more clear,
all “x”:s have been moved slightly to the right. For
each leakage area, also the mean and the standard
deviation are calculated and shown as horizontal bars.
The middle bar is the mean and the upper and lower
bars are two times the standard deviation.
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Fig. 4. The test quantities T ep
BL(x) (x-marks) and

T ep
ML(x) (circles), based on the estimate principle,

for different manifold-leakage areas.

To be able to make a comparison, thresholds need
to be chosen such that the significance levels in two
compared hypothesis tests become equal. Since we
don’t have the probability density function, this can
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Fig. 5. The test quantities T pp
BL(x) (x-marks) and

T pp
ML(x) (circles), based on the prediction prin-

ciple, for different manifold-leakage areas.

not achieved. Instead, each threshold is chosen as
the maximum value of the corresponding calculated
test quantity in the fault-free case. Consider again
Figure 4. The maximum values of the test quantities
T ep

BL(x) and T ep
ML(x) for the fault-free case, i.e. leakage

area 0, are marked by the dashed and solid lines
respectively.

The power function is the probability to reject H0,
i.e. the probability that the test quantity is above
the threshold. As was said above, we don’t have the
probability density function, which means that exact
values of the power function can not be calculated.
However, by studying Figure 4 and looking at the
mean and standard deviation values, we can quite
easily get a coarse estimate of the probability that
the test quantity is above the threshold. For example,
it is obvious that the power function βep

BL([0 km]),
corresponding to T ep

BL(x), will increase as the leakage
area increases. Also, we can conclude that the power
function for the leakage with an area of 3.1 mm2 is
large, which means that it should be no problem to
detect a manifold leakage with this area. Further, the
power function for the leakage with an area of 0.8
mm2, is probably quite low, which means that it is
hard to distinguish this leakage from the no-leakage
case.

Now return to the comparison of test quantities.
First compare Figure 4, showing the test quantities
T ep

BL(x) and T ep
ML(x), and Figure 5, showing the test

quantities T ep
BL(x) and T ep

ML(x). We see that the test
quantity T ep

BL(x) is slightly more above the thresh-
old than T pp

BL(x). This means that the power func-
tion βep

BL([0 km]) is very likely to be larger than
βpp

BL([0 km]). In other words, for the manifold leakage,
the estimate principle is better than the prediction
principle. Although not shown here, the same result
was obtained also for boost leakage.

5. CONCLUSIONS

In the theoretical investigation in Section 3, the focus
was mainly on specific examples. In spite of this, we
are able to summarize the following conclusions:

• Test quantities based on estimates can have very
good performance for the fault mode correspond-
ing to the estimated parameter.

• For other fault modes, the performance might be
quite bad and also highly dependent on the input
signal.

• Decoupling degrades the performance of both the
prediction principle and the estimate principle
but the relation that the estimate principle is
better than the prediction error principle still
holds.

The practical study in Section 4 focus on the first of
these three issues. Even though it was not possible to
estimate the density functions, it could be concluded
that, of the two principles studied, the best princi-
ple for diagnosing leakage is the estimate principle.
In the theoretical study in Section 3.2, we used the
assumption of independently and identically Gaussian
distributed noise. This assumption do not hold in the
real case investigated in this section, but nevertheless
it is obvious that the conclusion that the estimate
principle is better than the prediction principle, still
holds. According to the third issue above, this con-
clusion should hold also if some other faults need to
be decoupled, e.g. a bias fault in the throttle-angle
sensor.

The practical relevance of the second issue above, is
that if also other faults are diagnosed by means of
the same test quantities, it is no longer sure that the
estimate principle should be the first choice.

In production cars, a principle similar to the predic-
tion principle is often used, e.g. see (Air Leakage De-
tector for IC Engine, 1994). A reason for this may be
that models of the leaks are not required (see the test
quantities described by (11) and (12)). It is interesting
to note that the technique to use models of the leaks
and then estimate the leakage area, performs better
than the solution common in production cars. This
method was developed in (Nyberg and Perkovic, 1998)
and is patent pending by SAAB Automobile.
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