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Abstract: Design and analysis of residual generators for polynomial systems is
considered. This paper presents a systematic procedure, given an input-output
description of system dynamics, to design residual generators for fault diagnosis.
The design procedure is based on standard elimination theory. The design procedure
is applied in a simulation study on a non-linear system, where it is showed how
multiplicative and additive faults are detected and isolated. The example also shows
how a fault detectability/isolability analysis can be made during the design.
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1. INTRODUCTION

Residual generation is a fundamental part of a diagno-
sis system. The residual generator filters known signals
and generate a signal, a residual, that should be small
(ideally 0) in the fault-free case and large when a fault
is acting on the system.

A common approach is to design non-linear, unknown
input observers, based on a state-space description
of process dynamics. For linear systems, consistency
relations/parity functions, instead of state-space de-
scriptions, has successfully been used in the design
and analysis (Gertler 1991, Nyberg & Frisk 1999,
Nyberg 2000) of residual generators. Consistency re-
lations has also been considered in the non-linear case
(Krishnaswami, Luh & Rizzoni 1994, Krishnaswami
& Rizzoni 1994, Guernez, Casar & Staroswiecki 1997,
Zhirabok 1999). Section 4 presents a systematic de-
sign method for residual generators based on non-
linear consistency relations of polynomial systems.
The methodology has strong similarities with find-
ing input-output descriptions of non-linear systems
(Jirstrand 1998). Basic tools from standard elimina-
tion theory, needed for the design procedure, is in-
troduced in Section 3. In Section 6, the proposed
design procedure is applied to a non-linear model and

it is shown by example how both multiplicative and
additive faults are detected and isolated.

2. PROBLEM FORMULATION

One general principle for model based diagnosis is
to detect and isolate faults by checking consistency
between observed behavior and expected behavior
for different fault situations. To perform this, signals
called residuals, can be generated that indicates if
a consistency relation is violated or not. A residual
that is 0 or small in the fault-free case and deviates
significantly from 0 when a fault occurs can be used
for fault detection. By designing a set of such residuals,
where a different set of faults are decoupled in each
residual, fault detection and isolation is possible. This
is the main idea of the well known structured residuals
concept.

The model is assumed to be a set of differential
equations:

gi(ȳ, ū, d̄, f̄ , x̄) = 0 i = 1, . . . , p (1)

where u is the control vector, y the measurement
vector, d disturbance vector, f the fault vector, and x
unknown internal states. The notation ȳ denotes y, ẏ,
ÿ, . . . and ū, d̄, f̄ , x̄ corresponding for u, d, f , and x.



Here, only polynomial non-linearities are considered,
i.e. the gi in (1) are polynomials in ȳ, ū, d̄, f̄ , and x̄.
This restriction is not as restrictive as it may seem,
many non-polynomial non-linearities can be rewritten
in polynomial form, e.g.

y = sin u ⇔ ẏ2 − u̇2(1 − y2) = 0

Therefore, quite general systems can be handled
within the framework of polynomial systems. Also, any
non-linearity can be described by polynomials to an
arbitrary accuracy by Taylor expansion.

This model-class restriction is made to be able to form
a systematic design procedure based on established
elimination theory, i.e. modeling accuracy is traded
against systematic design and analysis procedures.
Such trade-offs is common, e.g. when using linear
models in the design of controllers/residual generators
to be able to use the powerful design tools available
for linear systems.

The general design problem is then to find a filter that
filters known signals and produces a residual where
disturbances and a subset of the faults are decoupled
in the residual. In the following, all faults that are to be
decoupled and any modeled disturbances are collected
in a vector d, and the faults we wish to detect are
collected in a vector f .

The fundamental design problem studied here can
then be stated formally as
Basic Design Problem:

Given a set of model equations (1), find a
computable quantity r that is a function of
ȳ and ū only, such that when f̄ = 0 it holds
that

r(ȳ, ū) = 0 ∀d̄

Of course, to be able to detect faults, it must also hold
that r(ȳ, ū) 6= 0 for some f̄ 6= 0. The expression r(ȳ, ū)
is called the computational form of the residual gener-
ator. The expression describing the fault response in
the residual is called the internal form of the residual
generator.

3. BASIC ELIMINATION THEORY

Some notation and a theorem from basic elimination
theory (Cox, Little & O’Shea 1991) is needed to de-
scribe the design procedure. Let k[x1, . . . , xn] denote
the set of polynomials in variables x1, . . . , xn with
coefficients in k, e.g.

x1x2 + x3
3 − 2x2

1x2x3 ∈ k[x1, x2, x3]

An important concept, ideal, is now defined:

Definition 1. (Ideal). Let g1, . . . , gs be polynomials in
k[x1, . . . , xn]. Then denote

I =< g1, . . . , gs >=

{
s∑

i=1

higi : hi ∈ k[x1, . . . , xn]

}

I is called the ideal generated by the polynomials
g1, . . . , gs.

This means that I is the set of all linear combinations
of the polynomials gi with polynomial coefficients hi.

The main theorem used in the design is the well known
elimination theorem:

Theorem 1. (Elimination Theorem).
Let I ⊂ k[x1, . . . , xn] be an ideal and let G be a
Gröbner basis of I with respect to lex order x1 � x2 �
· · · � xn. Then, for every 0 ≤ k ≤ n, the set

Gk = G ∩ k[xk+1, . . . , xn]

is a Gröbner basis of the k : th elimination ideal Ik

Ik = I ∩ k[xk+1, . . . , xn]

This means that all polynomials, where variables
x1, . . . , xk has been eliminated, can be written as in
Definition 1 where g1, . . . , gs are the polynomials in
Gk.

4. DESIGN USING ELIMINATION THEORY

As discussed in Section 2, the model is assumed to be
a set of polynomial equations on the form:

gi(ȳ, ū, d̄, f̄ , x̄) = 0 i = 1, . . . , p (2)

The basic step in the design algorithm is to manipu-
late the model equations (2) such that a consistency
relation is obtained where all disturbances d̄ (including
faults that are to be decoupled) and internal states x̄
has been eliminated. This relation can then be used
to form a residual generator where the computational
form is a function of ȳ and ū only and the internal form
is a function of f̄ only. Calculating a Gröbner basis
and using Theorem 1 provides a systematic procedure
to perform such manipulations. All derivations in this
section are made in the time-continuous case. How-
ever, corresponding results for the time-discrete case
is immediate by exchanging the time differentiation
operator with the time shift operator. More comments
on the time-discrete case in Section 5.

The first step in the design procedure is to calculate
the (reduced) Gröbner basis for the elimination ideal
where d̄, x̄ has been eliminated. Denote this basis with

GB =< b1, . . . , br >

where bi are polynomials in all variables but d̄. This
Gröbner basis GB means that any polynomial, ana-
lytical relation, inferred from the model equations (2)
without using the differentiation operation, where the
disturbances d̄ are eliminated can be written as

r∑
i=1

hibi (3)

for a set of polynomials hi. Note that Gröbner bases
is a non-differential tool, i.e. the differentiation op-
erator is not considered. Of course, the differentiation
operator is essential when analyzing dynamic systems.
To be able to use non-differential tools like Gröbner
bases, the differentiation has to be done “by-hand”,
i.e. differentiate the model equations to get new model
equations. Therefore, when using the method outlined
here, one is only considering residual generators and
consistency relations up to a certain order, equal to
the number of times the model equations were differ-
entiated.



Another approach is to use differential tools like Ritt’s
characteristic sets (Ritt 1950) to perform the elimina-
tion. However, the differential theory is currently not
as developed as the non-differential and differential
bases is an active research topic.

Each of the r polynomials in GB, or any combination
as in (3), can be used to form a residual generator
where the computational and internal forms are given
by

rcomp(ȳ, ū) =
r∑

i=1

hibi

∣∣
fi=0

(4)

rint(f̄ , ȳ, ū) =
r∑

i=1

hibi − rcomp (5)

The hi polynomials are design variables available to
the designer. These can be used e.g. to shape the fault
response in the residual or select the residual struc-
ture, i.e. to get sensitivity in the residual to a desired
set of faults. Note that, in general, the computational
form rcomp includes higher order derivatives of y and
u. This problem is further discussed in Section 5.

A design variable, apart from choosing hi polynomials
in (4), is the variable ordering when calculating the
Gröbner basis. Different variable orderings highly in-
fluences the resulting basis. To the authors knowledge,
no optimal way of ordering the variables exists. A
heuristic to choose variable ordering can be stated as:

Heuristic 1. (Variable ordering).

(1) Order the variables to be decoupled as the largest
variables, i.e. the faults to be decoupled and the
disturbances should be largest.

(2) Order the faults not to be decoupled as the
smallest variables.

The heuristic can be motivated as follows. According
to Theorem 1, the variables to be eliminated should
be ordered to be the largest set of variables. Other
variables we wish to eliminate, e.g. time derivatives of
output signals to get as low order consistency relations
as possible, should therefore get a large variable order-
ing. For the same reason, to get good fault sensitivity,
the fault variables fi should be ordered lowest.

A nice property with the approach presented here is
that there exists extensive support for the operations
needed in symbolic algebra computing packages such
as Mathematica and Maple. Design and analysis is
easily automated and in the example in the next
section, Mathematica was used extensively.

Another approach for the design of residual genera-
tors for non-linear systems is to design disturbance
decoupling, non-linear observers. General disturbance
decoupling in the observer approach is difficult and
to the authors knowledge, no general method with
strong computer support has been presented. In the
approach presented here, decoupling is well covered.
Stability issues is a major concern in observer based
approaches and they are equally important in this,
consistency relations based, approach. The stability
issue will be addressed in the next section.

5. REALIZABLE RESIDUAL GENERATOR

Note that ẏ, u̇ etc. normally appear in rcomp(ȳ, ū).
Normally, these are not known and a simple method
to compute the residual, used in in Section 6, is to use
a filter

ˆ̇y =
s

sTd + 1
y

with a suitably chosen Td to estimate the derivatives.
This may not be a satisfactory solution in many cases.
In an off-line application or where fast detection time
is not of importance, more time-consuming estimation
algorithms can be used, e.g. fit splines to measured
data and use the splines for derivative calculations.

Other possibilities than estimating the derivatives, not
explored further here, are realization theory and time-
discretization of the time-continuous model.

Realization theory

Add stable (possibly linear) low-pass dynamics, e.g.

r + α1ṙ + α2r̈ = rcomp

and find an explicit state-space realization of the
residual generator. This is very similar to the linear
case where linear low-pass dynamics is added to make
the residual generator realizable, see e.g. (Nyberg
& Frisk 1999) among many. Note that the added
dynamics is free to choose as long as it is stable.
Unfortunately, realization theory with inputs is a
difficult business, even when only polynomial systems
is considered (Forsman 1991).

Transform the time continuous model to a time-
discrete model

Transform the original, time-continuous model, to a
time-discrete model. Then, time-derivatives of signals
will be replaced by time delays which are known, i.e.
the residual can be computed.

Realization of residual generators based on non-linear
consistency relations is a promising topic where fur-
ther study is needed.

6. SIMULATION EXAMPLE: COUPLED WATER
TANKS

The model used to illustrate the approach is two
coupled water tanks, shown in Figure 1. The process
is equipped with four sensors, two sensors measuring
the water level in each tank and two sensors measuring
the outflow of water from each tank. The process is
controlled by a pump.

6.1 Modeling

A first-principles model of the fault-free process, uti-
lizing Bernoulli’s law for the flows, is given by:
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Fig. 1. The simulation process: Coupled water tanks
equipped with flow and water-level sensors.

ḣ1 = a1u − a2

√
h1

ḣ2 = a3

√
h1 − a4

√
h2

y1 = h1

y2 = h2

y3 = a5

√
h1

y4 = a6

√
h2

(6)

where ai are the model parameters, yi the measure-
ments, u the control signal to the pump, and hi the
height of water in each tank. The water level in the
tanks can be between 0 and 10, i.e. 0 ≤ h1, h2 ≤ 10.

The faults considered are faults in the actuator, sen-
sors, and clogging in the pipe between the two water
tanks at the point indicated by the arrow in Figure 1.
Extending model (6) with straightforward fault mod-
els gives:

ḣ1 = a1(u + f1) − a2(1 − f6)
√

h1

ḣ2 = a3(1 − f6)
√

h1 − a4

√
h2

y1 = h1 + f2

y2 = h2 + f3

y3 = a5(1 − f6)
√

h1 + f4

y4 = a6

√
h2 + f5

(7)

where the signals fi, i = 1, . . . , 6 models the faults.
Signal f1 models an unknown additive fault on the
actuator signal and f2, f3, f4, f5 additive faults on
the four sensors. The clogging fault is modeled by f6

where f6 = 1 represents a completely clogged pipe and
0 < f6 < 1 represents partial clogging.

To make this example as short as possible, elimination
of state-variables is made by hand by differentiating
y1 and y2 and eliminate the state-variables. The model
equations is then given by:

ẏ1 = a1(u + f1) − a2(1 − f6)
√

y1 − f2

ẏ2 = a3(1 − f6)
√

y1 − f2 − a4

√
y2 − f3

y3 = a5(1 − f6)
√

y1 − f2 + f4

y4 = a6

√
y2 − f3 + f5

(8)

Here, only constant faults are considered, i.e. ḟi = 0.
Note that this assumption is not required by the
approach, it is only made here to limit the size of the
example. Here, Taylor expansion of order 3 around
operating point h0 is used to approximate the square
root expression with polynomials. The accuracy of the
polynomial approximation can be seen in Figure 2.
The point h0, about which the square root Taylor
expansions are made is selected to 5, i.e. in the middle
of the operating range for both tanks. The model
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Fig. 2. Accuracy of the Taylor expansion. The solid
line is

√
x and the dotted line a third order

polynomial approximation.

equations (8) can be stated on form (1) by moving the
right hand side of each model equation in to the left
side, and perform Taylor expansion of the square-root
terms. The model equations is then given by:

gi(u, y1, ẏ1, y2, ẏ2, y3, y4, f1, . . . , f6) = 0
i = 1, . . . , 4 (9)

The first model equation g1 becomes:

ẏ1 +
1

16 5
√

h0

(
a2(f6 − 1)(f3

2 − 5h3
0+

+ f2
2 (5h0 − 3y1) − 15h2

0y1 + 5h0y
2
1 − y3

1+
+f2(15h2

0 − 10h0y1 + 3y2
1))

) − a1(u + f1) = 0

In the modeling done here, a polynomial model was
achieved by Taylor expansion of non-polynomial parts
of the model. Instead of Taylor expansion, the square
root expressions could have been written in polyno-
mial form by introducing new internal state-variables
z2
i = hi.

In addition, since the mathematical tool used is non-
differential, the measurement equations was differen-
tiated once by hand. It is important to note that
by differentiating the model equations you get new
model equations with new information. For a n:th
order linear system, n differentiations is enough to
extract all information in the model equations. For
non-linear systems, no such limit exists, you may even
have to differentiate infinitely many times to extract
all information.

Therefore, to restrict the design to residual generators
of maximum order k, differentiate the measurement
equations k times. The higher order residual gener-
ators that is considered, the more of the dynamic
model can be utilized, e.g. for fault isolation purposes.
However, higher orders means a more difficult imple-
mentation problem.



6.2 Design

The object of the design is to find a set of residuals
that form a fault isolating residual structure. For
simplicity, 6 elimination ideals (and the corresponding
Gröbner bases), are calculated where one fault is
eliminated in each ideal. Residual generators are then
selected among the basis polynomials of the calculated
Gröbner bases.

The design is performed as described in Section 4.
Using the variable ordering given by Heuristic 1, the
following variable ordering is used when eliminating
f2:

f2 � ẏ1 � ẏ2 � y1 � y2 � y3 � y4 � u �
� f1 � f3 � f4 � f5 � f6,

and corresponding ordering when eliminating the
other variables. The variables ẏ1 and ẏ2 are given a
high ordering since it is desirable to eliminate those
variables to get simple computational forms of the
residual generators.

Then, four consistency relations that creates a fault
isolating structure is selected to form the residual
generators. The computational form of the residual
generators are:

rcomp
1 =

1
5
√

h0

(−a3(5h3
0 + 15h2

0y1 − 5h0y
2
1 + y3

1)+

+ a4(5h3
0 + 15h2

0y2 − 5h0y
2
2 + y3

2)+

+ 16 5
√

h0ẏ2)
rcomp
2 = − a6(5h3

0 + 15h2
0y2 − 5h0y

2
2 + y3

2)+

+ 16 5
√

h0y4

rcomp
3 =a5(5h3

0 + 15h2
0y1 − 5h0y

2
1 + y3

1) − 16 5
√

h0y3

rcomp
4 =ua1a5 − a2y3 − a5ẏ1

and the corresponding internal forms are:

rint
1 =

1
5
√

h0

(a3(−f
3
2 (−1 + f 6 )−

− f
2
2 (−1 + f 6 )(5h0 − 3y1)−

− f 2 (−1 + f 6 )(15h2
0 − 10h0y1 + 3y2

1)+

+ f 6 (5h3
0 + 15h2

0y1 − 5h0y
2
1 + y3

1))−
− a4f 3 (f 2

3 + 15h2
0+

+ f 3 (5h0 − 3y2) − 10h0y2 + 3y2
2))

rint
2 = − 16f 5

5
√

h0 + a6f 3 (f 2
3+

+ 15h2
0 + f 3 (5h0 − 3y2) − 10h0y2 + 3y2

2)

rint
3 =16f 4

5
√

h0 + a5(f
3
2 (−1 + f 6 )+

+ f
2
2 (−1 + f 6 )(5h0 − 3y1)+

+ f 2 (−1 + f 6 )(15h2
0 − 10h0y1 + 3y2

1)−
− f 6 (5h3

0 + 15h2
0y1 − 5h0y

2
1 + y3

1))

rint
4 =a1a5f 1 + a2f 4

By inspection of the internal forms, the residual struc-
ture can be concluded to be as in Table 1. All instances
of fault variables in the internal forms has been marked
by shaded boxes. An X in column i and row j of the
table means that fault i influences residual j. Thus,
the table directly gives the decision logic. It is clear
that, with the set of residuals chosen, there is no way

f1 f2 f3 f4 f5 f6

r1 X X X
r2 X X
r3 X X X
r4 X X

Table 1. Residual structure

to separate f2 and f6. Examining the Gröbner bases
obtained when eliminating f2 and f6 it can be seen
that it is impossible to separate the two faults by only
considering model equations (9). This because when
eliminating f2, also f6 is eliminated and vice versa. By
considering higher order residual generators, isolation
of f2 and f6 is in fact possible.

6.3 Simulations

In the simulations, a simple proportional controller is
used to control the water level in the upper tank to
follow a square reference signal. Figure 3 shows the
water levels in both tanks in a fault-free simulation.
Note that the operating point deviates significantly
from h0 = 5. Figure 4 shows the residuals in the fault-
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Fig. 3. Water level in the upper tank, y1, and the
lower tank y2, during fault-free simulations. Note
that the working point deviates significantly from
h0 = 5, therefore is it important to utilize the
model of the non-linearities.

free case. All residuals are below the dotted thresholds.
Here, only two fault scenarios are shown, a constant
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Fig. 4. Residuals in the fault-free case. All residuals are
below the dotted thresholds, i.e. no false alarms
during the simulation.

fault fault in the third sensor and a clogging in the
pipe. Figure 5 shows the residuals when the sensor



fault f4 = 1 is induced at time t = 30 sec. It is clear
that the residuals respond as expected by the residual
structure in Table 1, i.e. residuals r3 and r4 respond
to the fault while r1 and r2 does not. The fault is
correctly isolated. Figure 6 shows the residuals when a
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Fig. 5. Residuals when fault f4 = 1 is induced at time
t = 30 sec. Residuals r3 and r4 respond to the
fault while r1 and r2 does not, i.e. f4 is correctly
isolated according to Table 1.

clogging appears abruptly, resulting in 10% decrease in
water flow, i.e. f6 = 0.1. The fault is also here induced
at time t = 30 sec. Also here, the residuals respond
as expected by the residual structure in Table 1, i.e.
residuals r1 and r3 respond to the fault while r2 and
r4 does not. The fault is correctly isolated.
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Fig. 6. Residuals when fault f6 = 0.1 is induced at time
t = 30 sec. Residuals r1 and r3 respond to the
fault while r2 and r4 does not, i.e. f6 is correctly
isolated according to Table 1.

By careful examination of the model equations (8), it
is clear that they can be used directly to form residual
generators that can detect and isolate the faults,
without the need to make polynomial approximations
of non-linearities and eliminate faults. The residuals
could be formed by just moving all known variables
(and their derivatives) to the left hand side. The fault
influence on the system is so structured that fault
isolation is possible (apart from f2 and f6). However,
the main point of the example is to show a systematic
method to design residual generators for a non-linear
system.

7. CONCLUSIONS

Design of residual generators for non-linear polyno-
mial systems has been considered. It is shown how
input-output relations of system dynamics is well
suited for diagnostic purposes and some advantages
compared to a state-space description is discussed.

A systematic approach for design and analysis of dis-
turbance decoupling residual generators is presented.
The basic design step is based on well established
elimination theory for polynomial equations. The basic
calculation step in the design procedure is to calcu-
late a Gröbner basis for an elimination ideal where
all disturbances has been eliminated. The available
design freedom is discussed and a heuristic for variable
ordering when calculating the Gröbner basis is given.

The approach is demonstrated on an example process,
two coupled water tanks. The example shows how the
design freedom can be used and how fault isolation
properties of the model can be analyzed from the
calculated Gröbner bases. The example also shows
how both multiplicative and additive faults are han-
dled equally in the design process. A simulation study
shows how the faults are detected and isolated.
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