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Abstract: This contribution analyses residual generators that perfectly decouples
disturbances in linear systems. The analysis focuses on the orders of the residual
generators and it is shown how low order, local relationships in the model can be
utilized to increase robustness properties. Easily computed bounds on minimum and
maximum order residual generators are derived and presented. An upper bound on the
minimal row-degree is derived and is given directly by the number of measurements,
the number of linearly independent disturbances, and the number of states in the
model. A lower bound is given by the minimum observability index of the model. An
upper bound for the maximum order is the number of states in the model.
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1. INTRODUCTION

This paper deals with supervision, or fault diagnosis, of
computer controlled systems. The task of fault diagnosis
is to, from known signals, i.e. measurements and control
signals, detect and locate any faults acting on the
system being supervised. A fundamental part of a model
based diagnosis system is the residual generator. The
residual generator filters known signals and generates
a signal, the residual, that should be small (ideally 0)
in the fault-free case and large when a fault is acting
on the system. This signal can then be used as a fault
indicator, signaling a faulty system.

To be able to produce a correct diagnosis in all operating
conditions, influence from disturbances on the residual
need to be decoupled. Also, to facilitate fault isolation,
not only disturbances need to be decoupled, but also a
subset of the faults. By generating a set of such residuals
where different subsets of faults are decoupled in each
residual, fault isolation is possible. With this approach,
the design of a residual generator becomes a decoupling
problem. This is the main idea behind the well used
concept of structured residuals (Gertler 1991).

This work is a study of the complexity of linear residual
generators for linear systems with no model uncertain-
ties where any faults and disturbances acting on the sys-

tem are modeled as input signals. Of particular interest
is the minimum complexity of residual generators.

2. LOW ORDER RESIDUAL GENERATORS

The reason for the interest in the low and minimal order
properties of the residual generator is primarily that we
want to depend on the model as little as possible. A low
order usually implies that only a small part of the model
is utilized, i.e. local relationships in the model is utilized.
Since all parts of the model have errors, this further
means that few model errors will affect the residual.
Also, lower complexity of the residual generator means
easier implementation and less on-line computational
burden. The following small example will highlight this
issue. Consider a linear system with two sensors, one
actuator, and a modeled sensor fault in the second
sensor.
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The model consists of two model parameters, a and b.
To detect the fault, a second order residual



r1 = y2 − 1
(s + a)(s + b)

u

can be used. Examining the expression gives that the
residual relies on the accuracy of both model parameters
a and b. Using straightforward manipulations of model
equations, it is possible to derive a new, first order
residual representing a local relationship between the
two sensor signals:

r2 =
1

s + b
y1 − y2

As can be seen, residual r2 only depends on the ac-
curacy of parameter b. Thus, a lower order residual
generator resulted in a residual generator less dependent
on the model accuracy. Here, in this example, even
complete invariance of model accuracy of parameter
a was achieved. This is not a general result, model
dependency does not always decrease with the order.
However, if the model has such a property, systematic
utilization of low-order residual generators is desirable.

3. PRELIMINARIES

This paper relies on established theory on polynomial
matrices, rational vector spaces, and polynomial bases
for these spaces (Kailath 1980, Forney 1975, Chen
1984). The main notions used, are presented in this
section.

The row-degree of a row vector of polynomials is defined
as the largest polynomial degree in the row-vector. In
this paper, polynomial bases and orders of polynomial
bases are of special interest. A polynomial basis is here
represented by a polynomial matrix where the rows are
the basis vectors. The order of a polynomial basis F (s)
is defined as the sum of the its row-degrees. A minimal
polynomial basis for a rational vector-space F is then
any polynomial basis that minimizes this order.

A matrix F (s) is irreducible if and only if F (s) has full
rank for all s. Any matrix F (s) can always be written
as

F (s) = S(s)Dhr + L(s)
where S(s) = diag{sµi , i = 1, . . . , p}, Dhr is the highest-
row-degree coefficient matrix, µi is the row-degrees, and
L(s) is the rest term with row degrees strictly less than
µi. A matrix is row-reduced if its highest row-degree
coefficient matrix Dhr has full row rank.

In addition to these definitions, the following theorems
will be used:

Theorem 1. (Kailath,1980, Theorem 6.5-10). The rows
of a matrix F (s) form a minimal polynomial basis for
the rational vector space they generate, if and only if
F (s) is irreducible and row-reduced.

Theorem 2. (Kailath,1980). For any linear matrix pen-
cil A − sB, it is possible to find constant, square, and
nonsingular matrices U and V such that

U(A − sB)V =

= block-diag{Lµ1 , . . . , Lµα
, L̃ν1 , . . . , L̃νβ

, sJ−I, sI−F}
where

(1) F is in Jordan form
(2) J is a nilpotent Jordan matrix

(3) L̃ν is a (ν + 1) × ν matrix of the form

︸ ︷︷ ︸
ν




−s
1 −s

1
. . .

−s
1







ν + 1

(4) Lµ = L̃T
µ

The {νi} and {µi} are called left and right Kronecker
indices and are of particular interest in this paper.

Note: All matrices, besides L̃ν have full row-rank, L̃ν

will therefore characterize the left null-space structure
of the pencil. It is also easy to check that the left null-
space of L̃ν is given by

v(s) = [1 s · · · sν ]

i.e, the degree of the (left) null-space vectors is directly
given by the (left) Kronecker indices.

4. LINEAR RESIDUAL GENERATION

This section is a brief presentation of the linear residual
generation problem. All derivations are performed in the
continuous-time case but the corresponding results for
the discrete-time case can be obtained by substituting
s by z and improper by non-causal.

The systems studied in this work are assumed to be on
the form

y = Gu(s)u + Gd(s)d + Gf (s)f (1)

where y is the measurement vector, u is the vector of
known inputs to the system, d is the disturbance vector,
and f is the vector of faults. The symbols ku, kd, kf , and
m will be used to denote the number of known inputs,
disturbances, faults, and measurements respectively. A
general linear residual generator can be written

r = Q(s)
(

y
u

)
(2)

Here, Q(s) is a single output filter that is said to be
a residual generator if and only if r = 0 for all d and
u when f = 0. To be able to detect faults, it is also
required that r 6= 0 when f 6= 0.

Inserting (1) into (2) gives

r = Q(s)
[
Gu(s) Gd(s)

I 0

] [
u
d

]
+ Q(s)

[
Gf (s)

0

]
f

To make r(t) = 0 when f(t) = 0, it is required that
disturbances and the control signal are decoupled, i.e.
for Q(s) to be a residual generator, it must hold that

Q(s)
[
Gu(s) Gd(s)

I 0

]
= 0

This implies that Q(s) must belong to the left null-space
of

M(s) =
[
Gu(s) Gd(s)

I 0

]
(3)

This null-space is denoted NL(M(s)). Therefore, the
matrix Q(s) need to fulfill two requirements: belong



to the left null-space of M(s) to ensure disturbance
decoupling and have good fault sensitivity properties.
In (Nyberg & Frisk 1999), a design procedure based
on finding a basis for all rational Q(s) ∈ NL(M(s)) is
described in detail. A main result on how to compute
this basis is repeated in Section 4.1. In this paper, it
is assumed that such a basis can be computed and is
denoted NM (s). It is noteworthy that, by inspection
of (3), it holds that the dimension (number of rows)
of NM (s) is less than or equal to the number of
measurements.

The residual generator Q(s) can, after the null-space
basis NM (s) is computed, be formed as

Q(s) = c−1(s)φ(s)NM (s) (4)
where φ(s) is a polynomial row-vector and c(s) is a
scalar polynomial. The matrices φ(s) and c(s) includes
all design freedom available to the designer, e.g. the
dynamics of the residual generator. The only constraint
on c(s), apart from stability constraints, is a degree
constraint. The degree of c(s) must be larger or equal
to the row-degree of φ(s)NM (s) to make the residual
generator realizable. This also means that the minimal
order of a realization of a decoupling filter is determined
by the row-degrees of the minimal polynomial basis
NM (s).

4.1 Computing the Basis

A main result in computing the basis NM (s) is to reduce
the problem of computing a minimal polynomial basis
for the left null-space of the rational matrix M(s) into
the problem of finding a minimal polynomial basis for
the left null-space of a polynomial matrix. This is then a
standard problem in the theory of polynomial matrices
for which there exists standard tools readily available
(The Polynomial Toolbox 2.0 for Matlab 5 1998).

The results of this section assumes that the system is
written in state-space form

ẋ = Ax + Buu + Bdd

y = Cx + Duu + Ddd

and n will be used to denote the number of states of
such a minimal realization.

Then an important matrix, which will be used ex-
tensively, the system matrix in state-space form with
disturbances as inputs, can be formed. This matrix is
denoted Ms(s) and looks like:

Ms(s) =
[

C Dd

−(sI − A) Bd

]
(5)

Also, the following matrix, denoted P , will be used:

P =
[

Im −Du

0n×m −Bu

]
(6)

Then, the main theorem used here can be stated as:

Theorem 3. (Frisk,1998;Nyberg,1999). Let V (s) be a
minimal polynomial basis for NL(Ms(s)) and let the
pair {A, [Bu Bd]} be controllable. Then it holds that
W (s) = V (s)P is a minimal polynomial basis for M(s).

Remark 1: This theorem shows how the system matrix
Ms(s) is central in computing and analyzing the basis
NM (s) and motivates its use in subsequent sections.

Remark 2: Since NM (s) = NMs
(s)P where P is a

constant matrix, it is clear that the the row-degrees
of basis NM (s) is less or equal to the row-degrees of
NMs

(s). In the next section, this observation will be
strengthened and it is proved that the row-degrees of
NM (s) and NMs

(s) are in fact equal.

5. ROW-DEGREES OF BASIS

As discussed in the previous section, the row-degrees
of a minimal polynomial basis for NL(M(s)) is closely
connected to the order of the analytical relation used
in the residual generator, and also the order needed to
implement the residual generator. In this section, easily
computed bounds on the minimal and maximal row-
degrees of the basis NM (s) are derived.

Before further analysis on row degrees is made, a lemma
is needed that shows that examining row-degrees of a
basis for the relatively unstructured matrix M(s) can
be performed by examining the row degrees of the,
structurally, much simpler system matrix Ms(s). The
primary property of Ms(s) that makes it suitable for
analysis is the fact that it has degree 1, i.e. it is a matrix
pencil.

Lemma 4. The row-degrees of a minimal polynomial
basis for NL(M(s)) is equal to the row-degrees of a mini-
mal polynomial basis for NL(Ms(s)), where Ms(s) is the
system matrix with the pair {A, [Bu Bd]} controllable.

PROOF.
Let V (s) be a minimal polynomial basis for NL(Ms(s))
and partition V (s) = [V1(s) V2(s)] according to the
partition of Ms(s). Since V (s) ∈ NL(Ms(s)), it holds
that

V1(s)C = V2(s)(sI − A) = sV2(s) − V2(s)A

Also, since each row degree of sV2(s) is strictly greater
than the corresponding row-degree of V2(s)A, it holds
that for each row i

row-degi sV2(s) = 1 + row-degi V2(s) =
= row-degi V1(s)C

The above equation can be rearranged to

row-degi V2(s) < row-degi V1(s)C ≤ row-degi V1(s)
(7)

i.e. row-degi V (s) = row-degi V1(s). From the definition
of P it follows that

W (s) = [W1(s) W2(s)] = V (s)P =
= [V1(s) (−V1(s)Du − V2(s)Bu)] (8)

Equations (7) and (8) directly give

row-degi W (s) = row-degi V1(s) = row-degi V (s),

i.e. the row degrees of W (s) and V (s) are equal. Accord-
ing to Theorem 3, W (s) and V (s) are minimal polyno-
mial bases for NL(M(s)) and NL(Ms(s)) respectively
and the lemma follows immediately. 2

Much of the structure of a matrix pencil is revealed by
the Kronecker Canonical Form, given by Theorem 2.
Specifically, the degrees of NMs

(s), and according to
Lemma 4 the degrees of NM (s), is directly given by



the left Kronecker indices 1 , which can be extracted
directly from a pencil on KCF. However, transferring a
general pencil to KCF is a numerically tricky operation.
It is therefore desired to have easily computed bounds
or numerically stable algorithms for calculating these
indices. In Section 5.1, bounds for the minimum and
maximum row-degree of NM (s) are given. Section 5.2
gives pointers to some algorithms, that can be used to
calculate the row-degrees without actually computing
the basis.

5.1 Bounds on row-degrees

This section primarily analyzes the minimal row-degree
ρmin, of the basis, since ρmin is closely connected to the
minimum complexity of a residual generator. However,
before bounds on the minimum row-degree is derived,
an upper bound on all row-degrees of a basis is directly
given by the following theorem:

Theorem 5. (Nyberg,1999). A matrix whose rows form
a minimal polynomial basis for NL(M(s)) has all row-
degrees ≤ n.

Now, an upper and a lower bound on the minimum row-
degree is derived. First, a lower bound is derived, given
by the following theorem:

Theorem 6. A lower bound for the minimal row-degree
ρmin of a basis for NL(M(s)) is given by the minimal
observability index of the pair (A,C).

For the proof of this theorem, and other theorems to
follow, the following lemma is needed. Denote

M̃ρ =

︸ ︷︷ ︸
(ρ + 2)(n + nd)




Q R
Q R

. . . . . .
Q R





 (ρ + 1)(m + n)

where Ms(s) = Q + sR and Q,R are constant matrices.
Then,

Lemma 7. The space NL(Ms(s)) contains a ρ-degree
polynomial vector if and only if M̃ρ does not have full
row rank.

PROOF. Let F (s) be a ρ-degree polynomial matrix in
NL(Ms(s)). Then it holds that

0 = F (s)Ms(s) = (F0 + F1s + · · · + sρFρ)Ms(s) =

= [F0 F1 · · ·Fρ]




Ms(s)
sMs(s)

...
sρMs(s)


 = F̃ M̃ρ




I
sI
...

sρI




From the equation above it is clear that a ρ-degree
polynomial F (s) is in NL(Ms(s)) if and only if F̃ M̃ρ =
0. The lemma follows directly because such a F̃ can only
exist if M̃ρ does not have full row-rank. 2

1 The Kronecker indices is sometimes called minimal indices.

Return to the proof of Theorem 6.

PROOF. Denote the system matrix without distur-
bances with M

(nd)
s (s), i.e.

M (nd)
s (s) =

[
C

sI − A

]
It is well known (Kailath 1980, p. 413), that the row-
degrees of a minimal polynomial basis for the left null-
space of M

(nd)
s (s) is equal to the observability indices of

the pair (A,C). Let cmin be the minimum observability
index of (A,C). Then, according to Lemma 7, cmin is the
lowest ρ such that M̃

(nd)
ρ does not have full row-rank.

Let

Q = [Q1 Q2] =
[
C Dd

A Bd

]

R = [R1 R2] =
[

0 0
−I 0

]

Then, by a trivial column reordering, M̃ρ can be written
on the form

M̃ρ =




Q1 R1 Q2 R2

Q1 R1 Q2 R2

. . . . . .
Q1 R1 Q2 R2


L

= [M̃ (nd)
ρ ?]L

where L is a square, full rank pivoting matrix and ? is
any matrix. From the equation above, it is clear that if
M̃

(nd)
ρ has full row-rank, then also M̃ρ has full row-rank.

Also, for all ρ < cmin, M̃
(nd)
ρ and thereby also M̃ρ, will

have full row-rank. The theorem then follows directly
from Lemma 7, i.e. there exists no ρ-degree polynomial
in NL(Ms(s)) where ρ < cmin. 2

Remark: This result can also be found, without proof,
in (Ding, Ding & Jeinsch 1998).

Theorem 8. An upper bound for the minimal row-
degree ρmin of a basis for NL(M(s)) is given by

ρmin ≤ b n + nd

m − nd
c

where

nd = Rank
(

Bd

Dd

)
is the number of linearly independent disturbances. The
b·c operator is the floor operation.

PROOF. Let A, Bu, Bd, Du, and Dd be a minimal
state-space realization of [Gu(s) Gd(s)]. If nd < kd, i.e.
there exist linear dependencies between disturbances,
rewrite the system description with a new set of nd

linearly independent disturbances. That is, find B̃d and
D̃d with dimensions n × nd and m × nd respectively so
that

Im
(

Bd

Dd

)
= Im

(
B̃d

D̃d

)
and use these in the state-space description. Now, using
Lemma 4 and 7 it is clear that a ρ-degree polynomial
vector is in NL(M(s)) if and only if M̃ρ does not have



full row rank. A sufficient condition for M̃ρ not to have
full row-rank, is that the number of rows is larger than
the number of columns, i.e.

(ρ + 1)(m + n) > (ρ + 2)(n + nd)

Straightforward manipulations of the inequality results
in

ρ >
n + nd

m − nd
− 1

Note that m − nd > 0 is a necessary condition for the
existence of a residual generator. Therefore, the smallest
integer ρ that fulfills the inequality is b n+nd

m−nd
c which

completes the proof. 2

Remark: A similar result without disturbance decou-
pling, i.e. nd = 0, can be found in (Mironovskii 1980).

The result of Theorem 8 is useful when selecting the
set of faults that are to be decoupled in the residual,
i.e. when shaping the fault isolation properties. This
theorem gives direct access to information on the ex-
pected complexity of the resulting residual generator,
thereby making it possible to estimate the complexity
of all residual generators without actually performing
the designs. When shaping the isolation structure, i.e.
selecting which and how many faults that are to be
decoupled in each residual, the designer controls the
quantity m − nd. It holds that

n + nd

m − nd
=

n + m

m − nd
− 1

i.e. the upper bound decreases as 1/x with the designer
controlled quantity m − nd. Since the decrease is quite
rapid, the complexity gain can be substantial, especially
for high order processes that are well equipped with
sensors.

5.2 Calculation of row-degrees

It is well known (Kailath 1980, p. 413), that the row-
degrees of a minimal polynomial basis for the left null-
space of M

(nd)
s (s) equal the observability indices of the

pair (A,C). However, no such straightforward algorithm
for computing the minimal indices exists for the general
case including disturbances.

Of course, one could calculate the basis as described
in Section 4. However, there are reasons for computing
the indices without actually computing the basis itself.
By only computing the Kronecker indices, which is a
smaller problem than actually computing the basis, it is
reasonable to assume that this would pose a numerically
easier problem 2 .

There exist a lot of literature and algorithms for com-
puting the Kronecker indices of a general pencil, e.g.
(Misra, Dooren & Varga 1994, Wang, Dorato & Davison
1975, Aling & Scumacher 1984, K̊agström 1986).

6. EXAMPLES

This section contains one small example where the
results are applied, followed by a discussion for a larger
industrial application, a model of a military jet-engine.

2 To the authors knowledge, no such investigation has been made.

Small Example

Consider a system given by the following transfer func-
tions.

y = Gu(s)u+Gd(s)d =




1
s + 1

1
s + 2

0


 u+




2
s + 4

2
s + 4

3s + 12
(s + 4)(s + 3)


 d

This model can be realized by a 4:th order state-space
description, i.e. n = 4. Matrix M(s) then becomes

M(s) =




1
s + 1

2
s + 4

1
s + 2

2
s + 4

0
3s + 12

(s + 4)(s + 3)
1 0




Using Theorems 5, 6, and 8 give that for the maximum
and minimum row-degrees ρmax and ρmin it holds that

1 ≤ρmin ≤ 2 (9a)
ρmax ≤ 4 (9b)

The lower bound on ρmin is given by the observability
indices of the pair (A,C) which can be calculated to
2, 1, 1. Computing a basis gives

NM (s) =
[
−s2 − 3s − 2 s2 + 3s + 2 0 1

3s + 3 −4.5s − 9 s + 3 1.5

]
,

i.e. ρmin = 1 and ρmax = 2, which confirms that the
inequalities (9) holds.

Jet-Engine Model

A model of a jet-engine developed by Volvo Aero Cor-
poration, Trollhättan, Sweden, is used in this example.
A high-order non-linear model of the engine is used for
analysis and control design. This model can also be used
for diagnosis purposes. The model was linearized in an
operating point and the resulting model, after that non-
controllable and non-observable modes are eliminated,
is a 26:th order model. The model includes 8 sensors
and 4 actuators.

It turns out, due to physical reasons, that the model
is stiff with a 105 ratio between largest and smallest
time-constant. This model stiffness together with the
high-order makes the model numerically sensitive which
demands good numerical properties of the design algo-
rithm.

In the design example, faults in sensors and actuators
are considered. A residual that indicates a sensor failure
is to be designed, i.e. all 4 actuator faults are to be
decoupled. Using Theorem 8, it is clear that there exists
residual generators with degree less than b 26+4

8−4 c = 7,
which is significantly less than system order. Worth
noting is how this limit depends on nd. If a residual
were to be designed that decoupled only one fault, i.e.
nd = 1, then the upper bound on the minimum degree
residual generator would be as low as 3. This shows how
it is possible to trade isolation properties for simpler
fault detection filters.



It is also worth noting that, a design method not
considering the order of the resulting residual generator
easily results in a residual generator of the same order as
the process model, here 26. However, with the minimal
polynomial basis approach presented in Section 4, a 4:th
order residual generator was found which shows how
the minimality property here results in a filter with
substantially less order than the order of the design
model.

As mentioned, this model poses a numerically difficult
design problem. Calculating the row-degrees of the basis
with three different methods resulted in three different
sets of row-degrees according to the table below:

Method row-degrees of basis
(Wang et al. 1975) {3, 3, 4, 4}
null command {4, 4, 4, 4}
pennull command {5, 6, 6, 6}

The null command is included in (The Polynomial
Toolbox 2.0 for Matlab 5 1998). The pennull command
uses an algorithm, especially developed for extracting
null-spaces for matrix pencils and is based on (Beelen
& Weltkamp 1987, Dooren 1979).

When evaluating the obtained basis by multiplying
NM (s)M(s), the product does not become exactly 0 due
to finite precision arithmetic. It does however become
close to zero, but the row-degrees does not match the
degrees obtained with the method described in (Wang
et al. 1975).

7. CONCLUSIONS

This contribution analyses residual generators that per-
fectly decouple disturbances in linear systems. Specifi-
cally, the possible orders of residual generators is ana-
lyzed given a system model.

One main contribution is the derivation of easily com-
puted bounds for the minimal order residual generator.
Of special interest is minimum and low order residual
generators. It is described how low-order consistency
relations, of significantly lower order than process order,
can represent local relationships between sensor or actu-
ator signals. Thus, basing the residual generator design
on those local relationships, the residual generator only
depends on the model parameters in that relationship.
Thus, utilizing local relationships can introduce robust-
ness properties.

An upper bound on the minimal row-degree is derived
and given directly by the number of measurements, the
number of linearly independent disturbances, and the
number of states in the model. A lower bound is given
by the minimum observability index of the model.

These bounds can help the designer to estimate com-
plexity of the diagnosis system and also help to guide
the numerical algorithms used to find solutions to the
residual generation problem.

Design examples are included to illustrate the use of
the bounds. A design is performed on a 26:th order
model of a jet-engine. A design algorithm that does
not explicitly address minimality issues will likely end
up with a residual generator of the same order as the
system model. With the derived bounds, it was clear
that a 7:th order residual generator existed. Performing

the design with the proposed algorithm, a 4:th order
residual generator was found.
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