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Abstract: Structural analysis is a powerful tool for early determination of de-
tectability/isolability possibilities. It is shown how different levels of knowledge
about faults can be incorporated in a structural fault-isolability analysis and how
they result in different isolability properties. The results are evaluated on the
DAMADICS valve benchmark model. It is also shown how to determine which
faults in the benchmark that need further modeling to get desired isolability
properties of the diagnosis system.
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1. INTRODUCTION

Structural analysis is a powerful tool for early de-
termination of detectability/isolability possibilities.
This is important both to evaluate if the number
and placement of sensors is adequate in order to
meet diagnosis specifications.

Even though the structural information is very
coarse, useful insights can be gained by analyzing
the structure. This is also one of the strengths, since
useful information can efficiently be obtained early
in the development process before much work has
been spent on obtaining detailed analytical models.

Structural analysis for FDI has been extensively
studied, for example in (Staroswiecki et al., 2000;
Pulido and Alonso, 2000; Krysander and Nyberg,
2002b). Furthermore, structural analysis has also
proved useful in sensor-placement for FDI (Travé-
Massuyès et al., 2001) and reconfigurability analysis

for fault tolerant control (Gehin et al., 2000). Here,
the focus will be on fault isolability analysis.

Obtaining accurate models is expensive and difficult
and this is especially true when models describing
faulty behavior of the plant is considered. To obtain
such models, experimental data from a faulty pro-
cess or deep engineering knowledge and experience
of process components are needed, neither of which
may be present early in the development process.
Therefore it is interesting to analyze the level of
knowledge about specific faults that are needed to
meet diagnosis requirements. Three levels of fault
knowledge can be stated as:

(1) A basic level of knowledge is to only specify
which component the fault influences. No spe-
cific information on how and in which con-
straints the fault influences the process is in-
cluded. A component is regarded as a subset of
the model equations.



(2) A second level of fault knowledge is when it
is specified which equation or equations within
a component description that is subjected to
fault influences, i.e. which model equations that
are (possibly) not valid in case of a fault.

(3) A third level is when additional information
about the fault is available and a model for the
fault signal is available. This could for example
be that the fault size is slowly varying and can
be assumed constant, or that the fault size is
highly correlated with some other signals in the
model.

To exemplify the above, consider a tube that is
connected to a pipe and where we can have a leakage
due to a loose connection between the two compo-
nents. Basic knowledge is that a leak influences the
equations describing the flow through the system.
With a more detailed model, we know that a leakage
results in an additional flow out of the system.
Thirdly, it is possible that the effective area of the
leakage is dependent on the pressure in the system
due to elasticity in the plastic tubing.

In summary, it is valuable to get information of what
level of knowledge about faults that is necessary to
obtain sufficient fault isolability properties of the
diagnosis system. Structural analysis is one tool to
get such information.

2. STRUCTURAL ANALYSIS AND FAULT
DETECTABILITY/ISOLABILITY

Structural analysis is concerned with properties of
the system structure. Structural information here
means which variables that appear in which equa-
tions/constraints. Now it will be briefly outlined
how an analysis of the structural model can provide
information on fault isolability properties of the
model.

The types of variables in a structural model can in
a diagnosis context be divided into

(1) known variables, typically measurements and
controller outputs

(2) unknown variables, typically internal states
and unknown inputs that should not influence
the residual

(3) faults to be detected

The model is here represented by an incidence ma-
trix which is a matrix where each row corresponds
to an equation and each column to a variable. An
X in position (i, j) indicates that variable j appears
in equation i. Consider the small static model

g1(x1, x2, u) = 0
g2(x2, y, f) = 0

consisting of two equations, two unknown variables
x1 and x2, two known variables y, u, and one fault
f . The incidence matrix representation is then

x1 x2 y u f
g1 X X X
g2 X X X

Now that representation of structural models has
been introduced, fault isolability analysis of such
models can be approached. The basis for diagnosis is
redundancy. In consistency based diagnosis systems
a crucial step is conflict recognition. Here conflicts
are recognized by using precomputed consistency
relations 1 where a consistency relation is a static or
dynamic constraint on the time evolution of known
variables of the process. A consistency relation can
be formally defined as

Definition 1. (Consistency relation). Let x and y be
unknown and known variables respectively. Then, a
scalar equation c(y) = 0 is a consistency relation for
a set of equations H(x, y) if and only if for all y it
holds that

∃x.H(x, y) = 0 ⇒ c(y) = 0 (1)
and there is no proper subset of H that has property
(1).

This means that relation c(y) 6= 0 is a test on
inconsistency of equations H(x, y) with measured
data. The task of the diagnosis system designer
is then to find a suitable set of such relations
where different subsets of relations are invalidated
by different subsets of faults. In this way, fault
isolation can be achieved. This is often referred to
as structured residuals.

Thus, to evaluate possible isolability properties of
the model, fault sensitivity of all possible consis-
tency relations need to be studied. Now a method
is presented for performing such analysis based on
the incidence matrix representation of the model. To
proceed, a definition from (Krysander and Nyberg,
2002b) is needed.

Definition 2. (Minimal Structurally Singular, MSS).
A finite set of equations E is structurally singular
with respect to variables X if the number of equa-
tions is larger than the number of variables that
appear in the equations, i.e. the set of equations
is over determined with respect to X. The set E
is a minimal structurally singular set if none of its
proper subsets are structurally singular.

An MSS should here then be regarded as a set
of equations with which it is possible to derive a
consistency relation. But also, due to the minimality
property, all equations must be used when deriving
the consistency relation. With this definition it
is possible to state (under some technical model
assumptions not included here):

Theorem 1. Let {Ei} be the set of MSS:s. Then
there exists a consistency relation for a set of equa-
tions H if and only if

H = ∪iEi

PROOF. See (Krysander and Nyberg, 2002a). ¥

1 Consistency relations are often also called Analytical Re-
dundancy Relations (ARR).



This result implies that the isolability properties of
a system can be determined by only considering
the fault sensitivities of the MSS:s. An algorithm
not described further here, to compute all MSS sets
and their respective fault sensitivity based on an
incidence matrix can be found in (Krysander and
Nyberg, 2002a).

After the set of MSS:s has been determined, isola-
bility properties can easily be computed. Say, for
example that two MSS:s are found that are sen-
sitive to faults f1 and f2 according to Figure 1a.
In a noisy and uncertain environment we have to

f1 f2

c1 0 X
c2 X X

(a) Fault incidence
matrix.

f1 f2

f1 X X
f2 0 X

(b) Fault isolability
matrix.

Fig. 1. Isolability analysis

threshold the residuals such that the probability for
false-alarm is low. Thus, conclusions about faults
can only be drawn when a residual is larger than
its associated threshold. When residuals are below
thresholds, no conclusion can be drawn in a sound
way. This means that for example f2 may invalidate
consistency relations c1 and c2. Thus, a large enough
fault f2 will be isolated as f2. However, no matter
how large, a fault f1 can not be separated from f2.
This is summarized in the fault isolability matrix in
Figure 1b where an X in position (i, j) means that
fault i can be interpreted as fault j, i.e. fault i can
not be isolated from fault j.

Finally, a brief note on how time differentiation in
dynamic systems is handled here. There are at least
three different ways to represent time differentiated
variables:

(1) Extend the model with equations describing
how, for example, x(t) is related to ẋ(t) through
the differentiation operator. This means that
relations on the form

ẋ =
dx

dt

is added for each variable that appear differen-
tiated in the original model (Staroswiecki et al.,
2000).

(2) Consider x and ẋ to be separate variables and
perform structural differentiation of the model
(Krysander and Nyberg, 2002b).

(3) Consider x and ẋ to be structurally the same
variable and treat dynamic equations in the
same way as static equations.

All three are possible choices, but for the isolability
analysis performed here we use the third approach.
Of course, time differentiated variables need to be
represented if, in a second step, unknown variables
are eliminated to form a consistency relation or a
residual generator. Either of the two first sugges-
tions above is possible and they both have advan-

tages and disadvantages. This topic is not pursued
further here.

3. ILLUSTRATION ON SMALL EXAMPLE

In this section, the structural analysis outlined in
Section 2 will be applied to a small example model.
In particular it will be shown how fault models can
be introduced in the structural model to increase the
fault isolability performance of the diagnosis system.

Now, consider the following small first-order dynam-
ics model

ẋ = − (α + f1)x + u (2a)
y = x + f2 (2b)

with two known signals, the control signal u and
the measurement y. The model is subjected to two
faults where f1 represents a change in the known
parameter α and f2 a fault in the sensor. Assume
that we want to design a residual sensitive to fault
f2 but not to fault f1, i.e. we want to isolate fault f2

from fault f1. It is clear that, with the information
given in (2), no such residual exists and further
knowledge about the process is needed. Now, assume
that we know that the fault f1 is slowly varying
or, for a given limited time window, approximately
constant. This information can be stated as

ḟ1 = 0 (3)

With this new information it is possible to design a
residual such that any constant f1 does not influence
the residual, i.e. a residual generator exists that ful-
fills the design specification. This could for example
be done by designing an observer, estimating both
the state and the fault f1 with y − ŷ as a residual.
Now follows a description on how this straightfor-
ward fact also can be seen using only structural
knowledge.

Consider again model equation (2), where the fault
f1 is considered as an unknown to be decoupled, the
structural model becomes

x f1 u y f2

e1 X X X
e2 X X X

Here it is evident that no structurally singular/over
determined subsystem exists since the system has
two unknowns and only two equations. Inclusion of
the fault model (3) gives the structural representa-
tion

x f1 u y f2

e1 X X X
e2 X X X
e3 X

Now, equations {e1, e2, e3} form a minimal struc-
turally singular set of equations. Since f2 appears
in the equations in this set, any consistency relation
for this set of equations may be sensitive to a change
in f2.

Thus, the analysis above states that there exists a
residual generator such that f1 is decoupled and the



residual is sensitive to the fault f2. Note that this
is only a structural result, the particular form of
the underlying analytical expression involved might
make transformations into a residual generator im-
possible. However such topics are of course beyond
what is possible to analyze using only structural
models.

4. MODEL OF DAMADICS VALVE

In Section 5, isolability analysis is performed on the
DAMADICS valve. Here, a brief introduction of the
model is given. A schematic figure of the valve is
shown in Figure 2 and consists of three main compo-
nents: the control valve, by-pass valve, and a spring-
and-diaphragm pneumatic servo-motor to operate
the valve plug. The figure also shows an internal
control loop that is used to increase the accuracy
of the valve plug positioning. Measured variables of

ControllerE/P

P2 QT1 P1

Ps

x

Fig. 2. Schematic figure of the DAMADICS valve

the valve, indicated by circles, are the valve plug
position x, the fluid flow Q, fluid temperature T1,
up- and downstream pressure of the valve P1, P2,
and the transducer chamber pressure Ps.

Details of this model is not included in this presen-
tation, only the structure of the model is described.
The presentation also shows the level of knowledge
needed to make the analysis described and per-
formed in Section 5. Readers interested in details
of this model are referred to (WUT, 2002; Bartys,
2002; Bartys and Syfert, 2002) and the references
therein.

4.1 Spring-and-diaphragm pneumatic servo-motor

This component consists of an electro-pneumatic
transducer providing linear motion to the valve-
plug. Thus, the equations in this component de-
scribe the dynamics of the valve plug and the trans-
ducer chamber pressure Ps, which provides the main
driving force of the plug.

The relative valve position x is a dynamic function
of the pressure in the chamber and the opposing
force Fvc, the vena-contracta force, i.e.

x = f(Ps, Fvc)
This equation includes a model of the spring in the
transducer and also friction components in the driv-
ing force. The pressure in the transducer chamber

is a dynamic equation depending on the valve plug
position (since this determines the effective volume
of the chamber) and the net mass-flow of air Qc into
the chamber. The inlet flow is a, also dynamic, func-
tion of the valve plug position controller CV I output
and the chamber pressure. Thus, these models can
be summarized as

Ps = f(x,Qc)
Qc = f(Ps, CV I)

4.2 Control and bypass valve

The valve equation describes the flow past the valve,
Qv, and the vena-contracta force. Both these entities
are functions of the pressure upstream, P1, and
downstream, P2, of the valve, the fluid temperature
T1 and the valve-plug position.

Qv =f(x, P1, P2, T1)
Fvc =f(x, P1, P2, T1)

The bypass valve is manually operated and only
used when the flow past the control valve becomes
choked. The flow past the bypass valve Qv3 obeys
similar relations as the flow past the control valve.

Qv3 = f(x3, P1, P2)
where x3 is the position of the manually operated
by-pass valve.

4.3 Fault modeling

In (Bartys and Syfert, 2002), detailed fault models
are described for 19 faults acting on the valve and
its components. Typical faults in the valve are valve
clogging, leakages, sensor faults, and different fault
acting on the dynamics of the servo. In total, the
control valve, the servo motor, and the positioner
has 7, 4, and 4 modeled faults respectively. In
addition 4 general/external faults are modeled. The
faults are denoted f1, . . . , f19 according to the order
above.

No descriptions of the faults are included here and
the reader is referred to (Bartys and Syfert, 2002) for
details. In the analysis done in Section 5, we focus
on 14 out of the 19 faults 2 .

4.4 Valve model summary

The number of model equations of course depends
on what form and how many intermediate variables
that are used when forming the model. Here, when
the model equations were collected, the result of the
modeling is 19 equations out of which 3 are dynamic.
The variables in the equations include 15 unknown
variables, 14 faults, and 9 known signals. The 9
known signals consists of 6 sensor signals, the valve-
plug position controller reference value and output,
and the position of the by-pass valve. The structure
of the model is shown in Table 1.

2 Using the notation in (Bartys and Syfert, 2002), faults
f2, f3, f6, f15, and f17 are not considered here.
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Table 1. Structural model of the
DAMADICS valve.

5. VALVE MODEL ANALYSIS

This section will describe a structural fault isolabil-
ity analysis of the valve model and also find where
additional modeling effort is needed to increase
isolability properties.

5.1 No decoupling of faults

First, only knowledge on which faults that appear in
which equations is used in the analysis. This is only a
first step, if isolability properties is not satisfactorily,
the residuals can be structured, i.e. faults can be
decoupled. Decoupling of faults is further pursued
in Section 5.2 and Section 5.3.

First, all MSS sets are computed based on the
structural model of the valve. When computing
the MSS sets, no faults are considered as unknown
disturbances to be decoupled and all differentiated
variables are considered structurally equivalent to
its non-differentiated version. This results in 15 MSS
sets and for each MSS set, the fault sensitivity is
computed. To visualize fault isolability properties of
the computed MSS sets, a fault isolability analysis
matrix is computed and shown in Table 2. To make




1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1




Table 2. Fault isolability analysis matrix
with fault variable order f16, f9, f19, f18,
f5, f1, f14, f11, f10, f8, f4, f7, f12, f13.

the analysis more clear, a Dulmage-Mendelsohn

permutation is used to transform the fault matrix
into an upper block-triangular form where isolability
properties are clearly visible. Dulmage-Mendelsohn
permutations only make sense in this case if row and
column permutations are equal. This is not true in
the general case, but due to the fact that the fault
isolability matrix always has a non-zero diagonal,
the row and column permutations are equal.

The fault sensitivity analysis first shows that faults
f16 and f9 is not detectable in any MSS, i.e. we
need additional sensors to be able to detect these
two faults. In the fault isolability matrix this implies
that the first two rows, corresponding to f16 and f9,
have 1 in all positions. From the fault matrix we can
draw additional conclusions that without any fault
decoupling:

(1) The last three rows of the fault matrix show
how faults f7 (evaporation in the control-
valve), f12(fault in the electro-pneumatic trans-
ducer), and f13 (fault in the valve-plug dis-
placement sensor) are isolable from all other
faults without any further need of fault model-
ing or fault decoupling.

(2) The two blocks of 4 and 5 faults respectively
show groups of faults that are isolable from
each other but where individual faults within
each group is not isolable from the other faults
in the group.

Further isolability analysis is concentrated on the
second block of faults

Fault Description
f4 Increase of valve or bushing friction
f8 Twisted servo-motor piston rod
f10 Servo-motor diaphragm perforation
f11 Servo-motor spring fault
f14 Pressure-sensor fault

5.2 Decoupling of faults

The next step in trying to increase isolability per-
formance is to try and decouple faults in a group
of un-isolable faults. If decoupling of one fault in
the group of faults is possible without losing fault
sensitivity to other faults in the group, isolability
performance is increased. To analyze this, one fault
at a time in the set {f4, f8, f10, f11, f14} is decoupled
and the same analysis as in the previous section
is performed. Performing these operations reveals
that, in this case, the structure of fault influence is
such that decoupling of the faults does not provide
any additional isolability properties. The reason for
this is that when decoupling one of the faults, any
detectability of the other faults also vanishes and
therefore also the possibility to isolate these faults
from each other.

5.3 Decoupling of fault models with additional fault
models

When decoupling of the faults, in a way outlined
in the previous section, is not sufficient to achieve
desired properties, additional information is needed.



One such way is of course to include additional
sensors. If this is not possible, further modeling of
the faults is a solution. Assume that, by engineering
knowledge, such additional knowledge about the
faults are obtained. In general this is an equation
on the form

g(y, x, f) = 0
For example, if we know that the faults are slowly
varying or approximately constant, relations on the
form

ḟ = 0 (4)
is added to the model equations. If the introduced
fault model involves signals besides the fault signal,
just introduction of the fault model might increase
isolability performance. However, if the fault model
is on the form (4) where only the fault signal is
involved, additional decoupling is needed.

Here, model constraints on the form (4) is intro-
duced. Performing the same decoupling procedure as
in Section 5.2 a fault isolability matrix as in Table 3
is obtained. The conclusion from this is that with the




1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1




Table 3. Fault isolability analysis matrix
after fault models are introduced. The
variable order is the same as in Table 2.

additional fault models of faults f4, f8, f10, f11, and
f14, the structural analysis gives that it is possible
to isolate the faults from each other.

6. CONCLUSIONS

This paper is concerned with structural isolability
analysis of the DAMADICS valve model. It is shown
how structural analysis can be used to assess isola-
bility properties of a model. Since detailed knowl-
edge about faulty systems is difficult to develop,
it is essential to minimize this task. First, only
information on which equations in the model that is
influenced by the faults are provided. In Section 2 it
is shown how structural analysis then provides infor-
mation on which faults that need further modeling
if the isolability objectives are to be met. It is also
shown how additional fault models can be directly
incorporated in the structural isolability analysis to
ensure that the isolability objectives are met. The
procedure is demonstrated in the DAMADICS valve
model in Section 5 where it was concluded that 2
of the faults were not detectable with the set of
sensors mounted on the valve. Three of the faults

were uniquely isolable and the rest of the faults were
grouped into two sets of faults, isolable from each
other but not from faults within each group. For
faults in these two groups, it is shown how additional
fault models increases isolability performance of the
model.
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