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Abstract: A common approach to design diagnostic systems is to use residual generators.
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there are several advantages of instead consider small subsets of model equations, so
called minimal structurally singular (MSS) sets of equations. This paper presents a new
method for finding residual generators for MSS sets. A special property of the MSS set,
namely that it is minimally over determined, is utilized. Two approaches are considered,
one which is based on the use of a dynamic numerical equation solver, and another which
uses a static numerical equation solver. The approaches are demonstrated on a non-linear
point-mass satellite system.Copyright c©2002 IFAC.
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1. INTRODUCTION

When designing model-based fault-diagnosis systems,
residual generatorsare often used. Differentsubsets
of residual generators are sensitive to different subsets
of faults, and thereby isolation can be achieved. Each
residual does not measure the validity of all model
equations in the model, but instead a smaller subset
of equations. Given a set of model equations, a first
step towards finding residual generators, is to find all
minimal structurally singular(MSS)setsof equations
(also called e.g.,minimal over-determined equation-
sets).

The reason for using MSS sets is that these sets are
the smallest sets of equations that can be used to
form residual generators. The MSS property is further
described in Section 2.

This paper presents a new method for constructing
residual generators for MSS sets. A special property
for an MSS set is that there is exactly one more equa-
tion than unknown variables, this property is utilized
by using the extra equation, to define theresidual
component. The MSS set with a residual component
is a residual generator. A more general framework will
be presented in Section 3.

Compared to the general residual generation problem,
where the whole model is usually considered, there
are two advantages to start with an MSS set. The first
is that this set is typically small, which follows from
the fact that it is minimal. A small model is normally

easier to handle than a large model. The second advan-
tage is that decoupling of faults and disturbances has
already been achieved, i.e., further decoupling is not
necessary.

When extracting the set of MSS sets, different as-
sumptions about the structural relationship between
the unknown variables and about derivatives of sensor
values, will result in different sets of MSS sets. From
these assumptions two main approaches, thedynamic
and thestatic approach, are found. The dynamic ap-
proach results in a set of equations that includesdy-
namicstate variables, while the static approach results
in a set of equations with onlyinstantaneousstate
variables (also called e.g., algebraic state variables).
It is also possible to make a combination of the two
approaches, this will be called thepartially dynamic
approach. These different approaches are discussed in
deeper detail in Section 4.

There are constraints on how the residual component is
defined. Due to structurally and analytically properties
for the MSS set, only the equations that areanalyt-
ically redundantcan be used to define the residual
component, this is discussed in Section 5. Further, the
residual component must be added in such a way, that
the residual generator isstable. This will be briefly
discussed in Section 6.

An example of a satellite system is analyzed in Sec-
tion 7, and finally, Section 8 gives the conclusions.



2. MSS SETS OF EQUATIONS

The main property of an MSS set is that there isexactly
onemore equation than unknown variables included in
the equations, i.e., it is structurally singular. Another
important property is that no proper subset of the MSS
set is an MSS set, i.e., it is minimal.

In (Krysander and Nyberg, 2002) a systematic and au-
tomatic algorithm is derived, called the MSS-algorithm.
The algorithm finds the simplest set of MSS sets with
the highest possible diagnosis capability. This algo-
rithm will be used in this paper.

The input to the algorithm is astructural modeland
information about whichderivatives of sensor val-
ues that can be approximated. The structural model
includes information about the connection between
unknown variables and equations. By analyzing and
manipulating this structural model, the algorithm finds
all MSS sets and then selects the set of MSS sets with
highest possible diagnosis capability.

The output of the algorithm is a set of MSS sets where
each MSS set might includedifferentiatedand non-
differentiatedequations from the original model.

3. PROBLEM FORMULATION

The problem studied in this work can be described as
follows. Given a set of MSS sets,{MSS1, . . . , MSSk},
input datau = {uu, uy} ∈ U , whereuu is a vector of
control signals anduy is a vector of sensor values, find
a residual generatorfor each MSS set.

Assume that MSS seti, denotedMSSi, is a differential
algebraic system of the form

0 = Gi(ẋi, xi, zi, ui, f i) (1)

wherexi ∈ X is a vector of dynamic state variables,
zi ∈ Z is a vector of instantaneous state variables, and
f i is a vector of unknown faults which are assumed
to be zero in the fault free case. Thedim(Gi) =
dim(ẋi, xi, zi) + 1, wheredim(·) is the dimension,
and ẋi, xi, zi are the unknown variables. It is further
assumed that some initial values satisfying (1) have
been found. Superscript index will be used to denote
the corresponding MSS set, while subscript will be
used for vector and matrix components. The indexes
will be dropped when there is no risk of confusion.

The state variable and input data space is

Ω = X × Z × U. (2)

The spaceΩ includes knowledge of the system that
can be used when constructing the residual generator.
For physical systems,Ω will often include physical
limitations for the state variables.

The main idea is to add ascalar residual component,
r ∈ R1, to the MSS set and use a numeric solver
to find an approximation of the value of the residual
component. Letn denote the highest derivative ofr.

If a dynamic solver is used, the highest derivative of
the residual component,r(n), is unknown, while the
lower derivatives are known from integration ofr(n).

The adding of this unknown variable to an MSS set
gives a system of equations with as many equations as
unknown variables. The resulting set of equations will
be called anMSS model(slight misuse of the acronym
MSS). If this MSS model is solvable and stable it will
be used as a residual generator.

How the residual component and its derivatives are
added is a freedom that can be used when design-
ing the MSS model. With aparameter matrixΓ ∈
Rdim(G)×n+1, the MSS model is

0 = G(ẋ, x, z, u) + ΓR (3)

where R = [r, ṙ, . . . , r(n)]T . There are some con-
straints on the values ofΓ, and these will be discussed
later in Section 5 and 6.

An example: Assume that a model is described by

e1 : ρ̇ = u1 + f + σ e2 : σ + u2 = 0

e3 : y1 = ρ + σ e4 : y2 = ρ

An MSS set is{e1, e2, e4}, and an MSS model, i.e.,
Eq. (3), for this set withn = 1 is

0 =

[
ρ̇ − u1 − σ

σ + u2

y2 − ρ

]
+ Γ

[
r
ṙ

]

whereΓ ∈ R3×2. Simulations of this MSS model will
give a residualr that is sensitive to faultf , if fault f is
sufficiently large.

4. APPROACHES TO EXTRACT MSS SETS

When the MSS sets are extracted, different assump-
tions about the structure of the system, will result in
different sets of MSS sets. These different assump-
tions give the dynamic, static and partially dynamic
approaches. These three approaches will be discussed
in this section.

4.1 Dynamic Approach

The dynamic approach arises from the assumption that
a dynamic solver is available. Further it is assumed that
no derivatives of sensor values can be approximated,
e.g., sensor valueuy1 is known while its derivativėuy1

is unknown. When a dynamic solver is used, the state
variable is known from the integration of its derivative.
Therefore,ẋ is assumed unknown whilex is known.

The MSS-algorithm is given the structural model,
where ẋ and z are unknown. The output is a set of
MSS sets. The sets might include differentiated and
non-differentiated equations. Further, the MSS model
might be a non-linear DAE, therefore, a non-linear
DAE solver is preferred.

The benefit with the dynamic approach is that deriva-
tives of sensor values does not have to be approxi-
mated. The disadvantage is solution stability and com-
plexity due to models with index higher than zero.

To continue the example above. The MSS set{e1, e2, e4}
is found with the dynamic approach. In this set,x =
{ρ}, z = {σ} andu = {u1, u2, y2}.



4.2 Static Approach

The static approach arises from the assumption that a
dynamic solver isnot available. Because of this, many
equations that includes derivatives of state variables
are unusable. This will for most physical problems
severely restrict the number of MSS sets and thereby
the diagnosability. To increase the diagnosability, as-
sume that derivatives of sensor values up to some given
order can be approximated.

Since no dynamic solver is available in this approach,
the structural relationship between a state variable and
its derivative does not exist. To reduce the risk of
confusion letxD , ẋ. Further, no derivatives ofr are
included, i.e.,n = 0.

The MSS-algorithm is given the structural model,
wherexD, x andz are unknown. The output from the
algorithm is a static system of equations that can be
solved with a general equation solver. The approach
can successfully handle a larger class of MSS sets than
the consistency relation approach used in (Krysander
and Nyberg, 2002).

The benefit with the static approach is simplicity when
constructing the residual generator. The disadvantage
is that, often, derivatives of sensor values have to be
approximated.

To continue the example above. With the static ap-
proach the MSS set{e1, e2, ė4} is found, where equa-
tion ė4 is the time derivative of equatione4, see Sec-
tion 2. In this set,xD = {ρD}, x = {ρ}, z = {σ} and
u = {u1, u2, y

D
2 }.

4.3 Partially Dynamic Approach

The dynamic and static approach are two extremes.
It is possible to make a combination of the two ap-
proaches. If a subset of derivatives of sensor values
can be approximated the MSS models will be dynamic
models with some dynamic states removed.

The main benefit is when the MSS models have a high
index. By careful selection of which sensor values to
approximate, the index can be reduced.

5. REDUNDANT EQUATIONS

It is not possible to addr(n) to the MSS set arbitrary.
Due to structural and analytical properties for the set,
there are constraints thatΓ must fulfill.

First,r(n) must be added to at least one of the analyti-
cally redundant equations. An equation isstructurally
redundantif, when the equation is removed, the re-
maining set of equations is exactly solvable forsome
operating point inΩ. It is analytically redundantif, it
is structurally redundant forall operating points inΩ.
Note that an equation is structurally redundantif it is
analytically redundant.

Secondly, if it is added to several analytically redun-
dant equations,Γ must fulfill some additional con-
straints, discussed later in Section 5.2.

In this section methods to findall structurally and an-
alytically redundant equations will be presented. The
structurally redundant equations can be found with
structural or analytical methods, while the analyti-
cally redundant equations can only be guaranteed to
be found with analytical methods.

The main idea when searching for redundant equations
is to addr(n) to each equation

0 = G(ẋ, x, z, u) + Γ̄r(n) (4)

whereΓ̄ is the last column inΓ. If (4) is exactly solv-
able then at least one of the equations is structurally or
analytically redundant.

5.1 Finding Structurally Redundant Equations

To find the structurally redundant equations, structural
analysis can be used. The structural analysis finds a bi-
partite matching between equations and unknown vari-
ables (Krysander and Nyberg, 2002; Harary, 1969).

If equationj is matched tor(n), it is structurally redun-
dant. To find another structurally redundant equation,
let Γ̄j = 0 and find a new bipartite matching. Suitable
repetition gives all structurally redundant equations.

The example in Section 3 can be represented by the
structural graph shown in the left part of Fig. 1. The
first row includes the equations, and the second the
unknown variables. The structural relationships are
shown with thin arrows. In the right part, a bipartite
matching algorithm has been used to find a bipartite
matching. The matching show thate4 is a structurally
redundant equation. Remove the relationship and find
a new matching. In this example it is not possible to
find any new bipartite matching, and the conclusion is
that only equatione4 is structurally redundant.

e1 e2 e4

ρ̇ σ ṙ

e1 e2 e4

ρ̇ σ ṙ

Fig. 1. Structural model (left) and a bipartite matching.

5.2 Finding Analytically Redundant Equations

To find the analytically redundant equations theim-
plicit function theoremwill be used. To investigate
if a system of equations fulfills the theorem, a com-
mon approach is to test if theJacobian is non-
singular (Venkatasubramanian et al., 1995; Mattsson
and S̈oderlind, 1992). Eq. (4) will only fulfill the theo-
rem if r(n) has been added to a structurally redundant
equation.

For the dynamic approach this means that

|J | =

∣∣∣∣∂(G(ẋ, x, z, u) + Γ̄r(n))

∂[ẋ, z, r(n)]T

∣∣∣∣ = ξT (ẋ, x, z, u)Γ̄ 6= 0

whereξ(·) is a vector. The sumξT Γ̄ arises from the
definition of determinant, i.e., sum of vector compo-
nent times co-factor.



For the static approach,

|J | =

∣∣∣∣∂(G(xD, x, z, u) + Γ̄r(n))

∂[xD, x, z, r(n)]T

∣∣∣∣ = ξT (xD, x, z, u)Γ̄ 6= 0.

Now, let Γ̄ = [0, . . . , Γ̄j , . . . , 0]T , whereΓ̄j 6= 0. If
|J | 6= 0 then equationj is structurally redundant.

To see if equationj is analytically redundant the vari-
able space,Ω has to be considered. For the dynamic
case, if

@(ẋ, x, z, u) : ξj(ẋ, x, z, u)=0∧(x, z, u) ∈ Ω (5)

then equationj, is guaranteed to be analytically re-
dundant. The meaning is that, if it is not theoretically
possible forξj to equal zero, then equationj is analyti-
cally redundant. Suitable change of unknown variables
give the static case.

This section have stated constraints onΓ that must be
fulfilled. The conclusion is, ifr(n) is added toseveral
equations, thenΓ must fulfill ξ(ẋ, x, z, u)Γ̄ 6= 0 for all
(x, z, u) ∈ Ω. A special case is whenr(n) is added
to only oneequation, then it is necessary that this
equation is analytically redundant, i.e., fulfills (5).

6. STABILITY

From Section 5 some constraints onΓ have been
stated. The problem now is to find the additional
constraints onΓ that guarantees stability and give a
good fault sensitivity for the residual, while fulfilling
the constraints from Section 5. Depending on if the
MSS model is linear, bilinear, non-linear, etc., different
methods can be used to find the constraints. The prob-
lem is similar to the problems faced inFDI observer
theory, see for example (Chen and Patton, 1999).

Note, the highest derivative ofr can be chosen to
simplify the stability analysis. The stability problem
will not be further studied in this paper.

7. SATELLITE EXAMPLE

This example is a non-trivial non-linear point-mass
satellite system. It is taken from (Rugh, 1996; Persis
and Isidori, 2001). First the model is presented, Sec-
tion 7.1. After this, the dynamic, static and partially
dynamic approaches are considered, Section 7.2, 7.3,
and 7.4 respectively. Last, some simulation results are
presented, Section 7.5.

7.1 Physical Model

The equations describing the model are

e1 : ρ̇ = υ e2 : υ̇ = ρω2 − θ1
1

ρ2
+ θ2u1 + d

e3 : ϕ̇ = ω e4 : ω̇ = −2υω

ρ
+ θ2

(
u2

ρ
+

fu2

ρ

)
e5 : 0 = −y1 + ρ e6 : 0 = −y2 + ϕ + fϕ

e7 : 0 = −y3 + ω,

where:ρ, υ are radius and radius speed;ϕ, ω are angle
and angular speed;u1 is radial andu2 tangential thrust;

y1, y2 and y3 are sensor signals;d unknown distur-
bance;fu2 , fϕ bias fault inu2 andy2 respectively;θ1

andθ2 are known constants.

The variable space is

X, Z = {ρ > 0, ω > 0, υ, ϕ}
U = {|u1| ≤ 1, |u2| ≤ 1, y1 > 0, y3 > 0, y2}
F = {|fu2 | ≤ 1, fϕ ≥ −ϕ}.

The variable space limits the values for the state vari-
ables to positive radius and angular speed, etc.

7.2 Dynamic Approach

The MSS-algorithm is given the structural model and
the information that no derivatives of sensor values
can be approximated, see Section 4.1. The result is
ten different MSS sets and herefour of the MSS sets
are chosen. These sets are chosen because they have
the desired detection and isolation property and are
least complex (with respect to number of included
equations).

The set of MSS sets is

MSS Equation set fu2 fϕ d

MSS1 {e3, e6, e7} 0 X 0
MSS2 {e1, e2, e4, e5} X 0 X
MSS3 {e1, e4, e5, e7} X 0 0
MSS4 {e1, e3, e4, e5, e6} X X 0

For example, the MSS1 set is{ϕ̇ = ω, 0 = −y2 +
ϕ, 0 = −y3 + ω}.

An X in position i, j in the incidence matrix, the
rightmost part of the table, means that MSSi might
be sensitive to faultj. From the incidence matrix it
can be concluded that it is theoretically possible to
detect and isolate both faults. MSS2 is sensitive for
the disturbance,d, but has an interesting property,
discussed later in Section 7.2.1.

7.2.1. Analytically Redundant EquationsThe dy-
namic state variableṡx are for MSS1 and MSS3 model:
ẋ1 = {ϕ̇}; ẋ3 = {ρ̇, ω̇}. Instantaneous state variables
z are:z1 = {ω}; z3 = {υ}.

The Jacobians for MSS1 and MSS3 model are

J1 =

[
−1 1
0 0
0 1

∣∣∣∣∣ Γ̄1

]
J3 =


−1 0 1

0 −1 −λ
0 0 0
0 0 0

∣∣∣∣∣∣ Γ̄3




whereλ = 2ω/ρ. The determinant of the Jacobians
are|J1| = Γ̄1

2 and|J3| = 0.

From this it is concluded that, in MSS1 model, equa-
tion 2 (e6) is analytically redundant, and that MSS3

model includes no redundant equations. A similar
analysis give that in MSS2 model, equation 4 is ana-
lytically redundant, and that MSS4 model includes no
redundant equations.

Note, the MSS3 and MSS4 models have index higher
than zero. The reason is that it is not possible to
calculateυ from equationse1 or e4 (equatione3,
e5, e6 and e7 does not includeυ). One solution to



reduce the index is to use an MSS model that includes
equatione2, thenυ can be integrated froṁυ. One such
MSS model is MSS2 model. It includes a redundant
equation but is sensitive to the disturbanced.

7.2.2. Design ofΓ for MSS1 In section 7.2.1 it
was stated that the second equation is analytically
redundant. With a firstdesign choiceof Γ12 = Γ31 =
Γ32 = 0 andn = 1, the model is

0 =

[
−ϕ̇ + ω
−y2 + ϕ
−y3 + ω

]
+

[
Γ11 0
Γ21 Γ22

0 0

][
r
ṙ

]
(6)

In this case the model is linear and therefore, linear
analysis will be used to find the constraints forΓ11,
Γ21 andΓ22. Transform (6) to the frequency domain

r =
y2s − y3

s2Γ22 + sΓ21 + Γ11

which is stable ifΓ11 > 0, Γ21 > 0 andΓ22 > 0
(Routh’s theorem). Note thatΓ22 6= 0 and equation 2
is analytically redundant. With this design choice, the
model is stable.

Note, even though linear theory was used to find the
constraints onΓ, the methods presented in this paper
is not limited to the linear case. In the general non-
linear case, other methods for stability analysis, such
as Lyaponov theory, have to be used.

In Section 7.2, four MSS models have been analyzed.
Only two of the MSS models includes analytically re-
dundant equations. Constraints onΓ for MSS1 model
have been stated.

7.3 Static Approach

In the static approach the derivatives, up to some order,
of all sensor values have to be approximated. Here only
the first derivative will be used. The MSS-algorithm is
given this information and findsthreedifferent MSS
sets. The set of MSS sets found is

MSS Equation set fu2 fϕ d

MSS1̃ {e3, ė6, e7} 0 X 0
MSS2̃ {e1, e4, e5, ė5, e7, ė7} X 0 0
MSS3̃ {e1, e3, e4, e5, ė5, ė6, ė7} X X 0

Time differentiation of an equation, e.g.,ė6, is per-
formed analytically. For example, MSS1̃ set is{ϕD =
ω, 0 = −y2D + ϕD, 0 = −y3 + ω}.

7.3.1. Analytically Redundant Equations In the
MSS1̃ set, the unknown variables areϕD andω, simi-
lar for the other MSS models. The determinants of the
Jacobians are for the three MSS models determined
by ξ,

ξ1̃ = [1, 1,−1]T

ξ2̃ = [−λ,−1, 1, α,−λ,−β,−1]T

ξ3̃ = [λ, β, 1, α, λ, β, 1]T ,

whereα = (2υω − θ2u2)) /ρ2, β = 2υ/ρ andλ =
2ω/ρ.

For example, for MSS3̃, equations 3 and 7 are analyt-
ically redundant. To check if the remaining equations

are analytically redundant, Eq. (5) have to be consid-
ered. This corresponds to

{(ρ, ω, υ, ϕ)|ξ3̃
1 = ξ3̃

5 =
2ω

ρ
= 0 ∧ (ρ, ω, υ, ϕ) ∈ Ω} = ∅

{(ρ, ω, υ, ϕ)|ξ3̃
2 = ξ3̃

6 =
2υ

ρ
= 0 ∧ (ρ, ω, υ, ϕ) ∈ Ω} 6= ∅

{(ρ, ω, υ, ϕ)|ξ3̃
4 =

2υω − θ2u2

ρ2
= 0 ∧ (ρ, ω, υ, ϕ) ∈ Ω}) 6= ∅.

From this it can be concluded that equation 2, 4, and
6 are not analytically redundant. It can be noted that,
they are structurally redundant.

In Section 7.3, three different MSS models have been
found. For the third MSS model, the analytically re-
dundant equations have been stated.

7.4 Partially Dynamic Approach

In Section 7.2 it is concluded that the MSS3 model
and the MSS4 model does not include any redundant
equations. The problem is that it is not possible to
directly calculateυ from the equation set. A solution
is to partially assume that it is possible to approximate
derivatives.

In this section it is assumed thatẏ1 can be approx-
imated. The MSS-algorithm finds ten different MSS
sets and here the two MSS sets that corresponds to
MSS3 and MSS4 in Section 7.2 are chosen. The dif-
ference is that differentiated equationė5 is included.

The set of MSS sets is

MSS Equation set fu2 fϕ d

MSS3̂ {e1, e4, e5, ė5, e7} X 0 0
MSS4̂ {e1, e3, e4, e5, ė5, e6} X X 0

7.4.1. Analytically Redundant Equations For the
two MSS models the dynamic state variableẋ is: ẋ3̂ =
{ω̇}; ẋ4̂ = {ϕ̇, ω̇}. Instantaneous state variablez is:
z3̂ = {ρ, ρD, υ}; z4̂ = {ρ, ρD, υ}.

The determinant of the Jacobians are:|J 3̂| = Γ̄3̂
5;

|J 4̂| = Γ̄4̂
6. This means that for MSS3̂ model and MSS4̂

model equations 5 and 6 are analytically redundant,
respectively.

7.4.2. Design ofΓ for MSS3̂ In Section 7.4.1 it was
stated that equation 5 (e7) is analytically redundant.
The model will be designed withn = 0, Γ11 = Γ31 =
Γ41 = 0 andΓ51 = 1,

0 =




−ρD + υ

− ˙̂ω − 2υω̂/ρ + θ2u2/ρ
−y1 + ρ

−yD
1 + ρD

−y3 + ω̂


 +




0
Γ21

0
0
1


 r.

Transformr to the frequency domain

r = y3 − θu2/y1 + Γ21y3

s + 2yD
1 /y1 + Γ21

.

The model is locally stable if2yD
1 /y1 + Γ21 > 0. A

design choice isΓ21 = −2yD
1 /y1+K1 whereK1 > 0.
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Fig. 2. Residual values.

In Section 7.4 it has been shown thatif it is possible
to approximateẏ1, it is possible to gain simpler MSS
models. Two MSS models with analytically redundant
equations were found. For MSS3̂, constraints onΓ has
been stated.

7.5 Simulation

To test the MSS models analyzed in the example,
two MSS models have been implemented. From Sec-
tion 7.2 is MSS1 model chosen and from Section 7.4
is MSS3̂ model chosen. The MSS models are chosen
because they are small, simple, and needs the smallest
number of approximations of derivatives. MSS1 model
is sensitive to faultfϕ and MSS3̂ model to faultfu2 .
Thereby, full detectability and isolability are achieved.

The chosen MSS models are stable. MSS1 model have
parametersΓ11 = 0.2, Γ21 = 2.7 andΓ22 = 9. MSS3̂

model have parameterK1 = 0.04.

The physical model and the two MSS models have
been implemented in Dymola (Elmqvist, 2002). Fault
fϕ = 15◦ is introduced at time 60 s to 65 s, fault
fu2 = 0.8 at time 90 s to 100 s. Disturbance,d, is
implemented as white noise. Fig. 2 show the data from
the simulation. The upper plot shows control signals
and faultfu2 , second shows sensor values and fault
fϕ. Third shows the value of the residuals and the
lowest shows the residual components after the use
of a moving average filter. Faultfϕ is detectedat
time 62 s andfu2 at 98 s. The conclusion is that both
MSS models react to correct fault and thatdetection
and isolation are performed correct.

The simulation results show that the two MSS models
that have been implemented, react correctly to the
introduced faults.

8. CONCLUSIONS

Dynamic evaluation of MSS models have been used
for fault-diagnosis. These MSS models are residual
generators for the original system. An MSS model is
formed from a minimal structurally singular (MSS) set
of equations with an extra residual component and its
derivatives.

Since it is not possible to add the residual component
arbitrary, constraints on how the residual component
can be added have been stated. The constraints can
be divided into two parts, first the component must be
added to an analytically redundant equation. Secondly,
it must be added in such a way that the MSS model is
stable.

The relationship between approximations of deriva-
tives of sensor values and evaluation complexity is
studied. It has been shown that it is possible to gain
MSS model simplifications at the expense of approx-
imations of derivatives of sensor values. High index
MSS models can be relaxed to lower index MSS mod-
els if approximations of derivatives are allowed.

The approach has been used on a non-trivial non-
linear point-mass satellite system. MSS models from
the dynamic and partially dynamic approach are used
and the result is analyzed. Numerical simulation of
MSS models shows good results.
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