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Abstract: A new framework for model based diagnosis is presented using ideas from Al,
FDI, and statistical hypothesis testing. The isolation mechanism is based on Al methods, and
the main advantage is that multiple faults are handled implicitly. Thus, no special care for
isolation of multiple faults is needed. The methods for residual generation, developed in the
field of control theory (FDI), can within the framework be fully utilized. Since the framework

is also based upon statistical hypothesis testing, it is suitable for problems including noise.
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1. INTRODUCTION static and dynamic systems, and isolation of multiple
faults.

Fault diagnosis has in the literature been studied frohe modelling framework and how information about dif-
mainly two different perspectives. The first is control theferent faults is incorporated in the model is described in
ory (here denoted FDI), e.g. see (Gertler and Singer, 199@ection 2. The design of a diagnosis system is then pre-
and the second is Al, e.g. see (Kleer and Williams, 1988gnted in Sections 3 and 4. The connection to FDI methods
Hamscheret al., 1992). In the field of control theory, the are more explicitly elaborated in Section 5. Section 6 de-
literature on fault diagnosis has mostly been focused on tkeribes how noise is treated, and finally, Section 7 discusses
problem ofresidual generationThat is, given a model of the output from the diagnosis system.

the system, how to off-line construct residual signals that

are zero in the fault-free case but sensitive to faults. In the

field of Al, the focus has been on fault isolation and how 2. MODELLING FRAMEWORK

to on-line compute what is here called residuals. In this ) . _ )
paper we show how methods from FDI and Al (or mord his section describes the modelling framework that is
exactlyconsistency based diagnosisin be combined into later used in the construction of the diagnosis system.
a common framework for fault diagnosis. The framework/sing this modelling framework, all information about the
proposed is also based upon ideas from statistical hypofﬁults are included in the model. This fault information is
esis testing in accordance with the mettsadictured hy- then the basis for the reasoning about faults.

pothesis testdom (Nyberg, 1999; Nyberg, 2002).

The modelling of the system to be diagnosed, and the

isolation of faults, follows mainly ideas from Al (Dressler W 0 P

etal, 1993). The key point here is to add information in the

model of how the validity of each model equation depends 4 \ :p
on which faults that are present in different components. W b °

Isolation is then performed by propagating this information

through the diagnosis system by the use of standard logiig. 1. An example of a gas-flow system.

However, one difference is that residuals are computed off-

line as in FDI. Therefore the on-line machinery can bé&hroughout the paper, we will exemplify all concepts and
made more simple, e.g. there is no need to use a so caltedhniques on the same example. The example chosen is
ATMS (Assumption based Truth Maintenance Systenshown in Figure 1 and represents a gas-flow system. Gas
which is common in Al (Kleer and Williams, 1987). All flows into the system from the left. This flow is measured
decisions taken in the diagnosis system are based on thigh a gas-flow sensor. The gas flow is controlled with a
theory of statistical hypothesis testing. This means fofalve. Finally the gas pressure is measured with a pressure
example that noise and uncertainties are handled in a sowgehsor. This kind of system is commonly found in for
way. example combustion engines.

By combining these ideas from FDI, Al, and hypothesis

testing, we will obtain a framework that is able to effi-3 1 components

ciently handle: fault models, several different fault types

(e.g. parameter- and additive faults), more than two behawe assume that the system consists of a number of compo-
ioral modes per component, general differential-algebraients. The behavior of each component, and the relation to
models, noise, uncertainties, decoupling of disturbancets outer world, are described by a number of relations.



A component haBiternalvariables an@xternalvariables. e;. can be assumed to hold, i.&ss e;, — e;, . If arela-
External variables are variables that are shared with catien e;, is always valid, the assumptiokss e;, becomes
nected adjacent componehtsr can be observed. Internal Ass e;, = — 1.

variables are only known within the component tsel. The assumptions and the relations for all components of

the gas-flow system are as follows:

W P Assumption  Relation
w t P P
Flow-pipe:
6 -1 W — f(6,P) =0 @)
W v P -1 0 kg/min< W < 10 kg/min  (2)
| -1 500 kPa< P < 2000 kPa 3)
Oa Gas-flow sensor:

. w=NF We=W 4)
Fig. 2. Components of the gas-flow system. w= S W. =0 (5)
The gas-flow system from Figure 1 can be separated into Pressure sensor:
the components tube, gas-flow sensor, valve, and pressure  p= NF P, =P (6)
sensor. These four components will be dendated, v, p=SG P.=0 (7)

and p respectively. The components and the connections \/gve actuator:
between them are illustrated in Figure 2. In the figure it is

seen that the tubérelates the variable&, P, andW to v=NF 0o = (8)
each other. Further on, it is seen that the gas-flow sensor v=>5 0=t )
w relates the physical gas-floW to the measured gas- v=.50 ¢ = 0deg (10)
flow Wy. Finally, the pressure sensoerelates the pressure v=_8C 6 =90 deg (12)
P to the measured pressufg, and the valvev relates .y 0 deg< 6 < 90 deg (12)

the physical anglé to the actuated (i.e. demanded by the

control system) signdl, . . ) . )
As seen, the model contains both equations and inequali-

ties. The inequalities are for this system not dependent on
any assumptions and are therefore assumed to always hold.
The behavior of a component can vary depending on whidihe constant is unknown and represents the angle of the
behavioral modehe component is in. Different types of valve when it is stuck. Noise has not been considered in
faults are typically considered to be different behaviorahis example but if desirable, a noise term can be added to
modes. Examples of behavioral modes for a sensor are re@ch model relation (see Section 6).

fault, short-cut, bias, and unknown fault. Instead of havin .

these long names for different behavioral modes, it is oftegw3 The System and System Behavioral Modes
practical to use short abbreviations liReF for no-fault, The total modelM of the system to be diagnosed is the

B for bias, UF for unknown fault etc. Further on, we union of all relations describing the components. Further
will write ¢ = UF to indicate that componentis in the 0N it needs to be specified which of the external variables

behavioral modé& F. that are possible to observe for the diagnosis system. The
observation vector is denotedvhich can be samples from
For the gas-flow system, the four components are assumgge or several time instances. For the gas-flow system the
to have the following possible behavioral modes: observed variables at&;, 6,,, andP;. If time is considered
and the observation vector is collected over a time window

2.2 Behavioral Modes

Component Possible Behavioral Modes

¢ NF of e.g. length 2z(¢) would bez(t) = [W,(t — 1),0,(t —

w NF,SG,UF 1),P5(t*1),W5(t),9a(t),Ps(t)].

P NF,SG,UF As well as defining behavioral modes for the compo-
v NF,S,50,5C,UF nents, we can defingystem behavioral-modes sys-

tem behavioral-mode completely determines the behav-
where NF means no fault,5G short to groundUF" joral mode of all components in the system. This is some-
unknown fault, S stuck, SO stuck open, and’C' stuck times also called mode assignmenor the gas-flow sys-
closed. Note that the tubleis assumed to always be faulttem, the tube has no alternative behavioral modes and does
free. therefore not need to be included explicitly in a system

As said above, components are described using relatioH@.haViorall'mOde]; This me:lams that a system behavioral-
That is, for each component there is a set of rela- Mode could be for example = NF Ap = SG A
tions {e;_,ei.+1,¢i.+2, ...} describing the behavior of ¥ = UF', meaning that componeatis in behavioral mode
that component. The validity of each relation can in som@ £» 7 In SG, andv in UF'. Other examples of system
cases depend on which behavioral mode the componenPghavioral-modes are = NF Ap = NFANv = NF

in. It can for example be the case that arelafibp— W andw = SG Ap = NF Av = NF. An alteative
holds if components is in behavioral modeV F, i.e. if representation is to write a system behavioral-mode using
w = NF, but not necessarily iftv = UF. This means @ tuple, e.g{NF,SG,UF).

that together with each relatien_, there is an assumption | jke component behavioral-modes, we can use abbrevia-
Ass e;, of the typec = Fy (or a disjunctionc = Fi V  tions to denote system behavioral-modes. This is especially
c = Fp v ...) that must be fulfilled before the relation practical when only single-faults are considered. For exam-
ple for the gas-flow system, the system behavioral modes
w=NFAp=NFAv=NFandw=SGAp=NFA

! Another alternative, not exploited here, is to describe connections = NF' can be writtenNF and SG.,,. To say that the

between components explicitly by using equations, e.g. see the 0bje§s7$tem is in for example behavioral mod&r, we will
oriented modelling-language Modelica. write sys = NF.




3. DIAGNOSTIC TESTS The suggested framework does not allow us to draw a
A diagnosis systens assumed to consist of a setdifig- conclusion when a null hypothesis is not rejected, but
nostic testsvhich is a special case of a genesttistical this desired conclusion can be obtained if we instead add
hypothesis tegCasella and Berger, 1990). This idea has ianother test, with &, = (p = NF'), T4(z) = T1(2), and
earlier papers been describedsarsictured hypothesis tests R, = R .
(Nyberg, 2002). We will in this section discuss diagnostig 1 piagnostic Tests and the Model

tests and later, in Section 4, describe how several diagnosfige jdea ofmodelbased diagnosis is to utilize the model
tests are combined to form a diagnosis system. M in the construction of the diagnostic tests. For each

To define a diagnostic test we need the notion dést diagnostic tesby, not necessarily the whole modet is
quantity 7, (z) which is a function from the observationsutilized. Instead only a subsgf), C M is considered. The

~ to a scalar value. A diagnostic test for a noise-free modBHrpose of the diagnostic test is then to test the validity
can then be defined as follows: of the null hypothesisb,, by comparingM;, with the

- ) _ _ observations. The comparison is done via the test quantity
Definition 1.(Diagnostic Test). Letd, be a logical ex- Tj(z) and the rejection regiofR,. This means that, in
pression in behavioral modes.diagnostic testy, for the  addition to @, Tx(z), and Ry, also a modelM;, must
null hypothesisiy : @y, is a hypothesis test consisting ofpe considered when constructing a diagnostic test. Below
a test quantity’;,(z) and a rejection regioR, suchthat e will discuss how the itema/;,, @, Ti(z), and R,

o T, ¢ RC 13 should be related so that at least the basic requirement (13)
B Ak €Tk (13) s fulfilled. First however, the operatotss needs to be
whereR¢ is the complement aR . generalized and a new operaldpd needs to be defined.

In Section 2.2, the notior\ss e; was used to pick out
This definition will in Section 6 be generalized to the noisyhe assumption for a certain model relatien Here we
case. will use Ass to pick out the assumption also for a set of

The complement of the null hypothesis is called tie Q?djt\e)[relago?s. ”/Z\Ml’&f {e}\’ 22’?3} thenAss My means
ternative hypothesiand denotedd; : —®;. Definition 1 55 #0k = 55 €1 /A A58 €2 A A58 €5.

means that iff;,(z) € Ry, ®, can not hold. This is the To pick out parts of the model, valid for certain behavioral
same thing as saying that the null hypothé#fsis rejected modes, it is useful to introduce an operakdod. Given a
and the alternative hypothesdis! is accepted. The expres-system behavioral mode, the expressiodod ¢ picks
sion®;, becomes in this case a so caltmhflict(Kleer and out all relationse; from the whole modelM such that
Williams, 1987), i.e. an expression in behavioral modeg — Ass e;. An example iMod(sys = NF) that would
that is in conflict with the observations. pick out relations (1), (2), (3), (4), (6), (8) and (12).

For the gas-flow example, consider a diagnostictegor ~ With the Ass and Mod operators we are now able to
the null hypothesig?) : (p = SG), i.e.®; = (p = SG). formulate two guidelines for ensuring that the require-
From the model relation (7), we have tHat= SG) — ment (13)is fulfilled.

Py = 0. This means that a test quantifji(z) = P a) The model relationd/;, = {ex1,ex2, ...} and the

and a rejection regioR;, = [—0.1,0.1]¢ implies that null hypothesisb, should satisfy

(p=2SG) - P =0— Ti(z) = P, = 0 € R{. That

is, these choices df; (z) and Ry, fulfill the criterion (13) Oy —Ass My (14)
for being a diagnostic test folY : (p = SG). When or even betterd;,, = Ass Mj.

[Ty (z)| > 0.1 we reject the null hypothesi®; = (p = b) The model relationd/y, the test quantit{} (=), and
S@G) and draw the conclusion(p = SG) ~ (p = NF) V the rejection regiofR;, should satisfy

(p = UF). Note that to evaluate, the assumption that c

p € {NF,SG,UF} must also be used. From now on (3 : My(z,2)) =Ti(2) € Ry, (15)

when ~ is used, it will always implicitly be assumed
that components must be in exactly one of the behavioral
modes.

where the expressiofr : M (x, z) means that the
model relations\/;, can be fulfilled with a givery.

No conclusion is drawn from a test in which the nuihOte thatby definition oAss My, it holds thathss My —

hypothesis has not been rejected. That is, to reject nyl e'fgﬁ’égféé)'it-r&fdrgfﬁgts thatif the guidelines (a) and (b)
hypotheses is the only way the diagnosis system can draw '

conclusions. Note that it is usually not true thgt holds Tk (z) € Ry — —3z : My (x,2) — —Ass My, — =Py,
when H) : &, is not rejected. It would sometimes (16)
be possible to assume something else. However, it is

general difficult (or impossible) to construt,(z) and That is, when the test quantity is within the rejection

R that h lusi be d hen th region, we can draw the conclusion thiat can not hold.

e S(t)h at suc ta qontc tésmn can be drawn when the Nighis expression is equivalent to the requirement (13) so the
YPOINEsIS IS not rejected. design goal has been achieved. Note thatif= Ass My,

Another reason why no conclusion is drawn when th#stead of only (14), a stronger conclusion can in general

null hypothesis is not rejected is that it is not neededie drawnin (16). As said abové;, = Ass M, is therefore

If there is a conclusion that really can be drawn fronmormally a better choice than (14).

T € Ry, itis always possible to add another diagnosti%or an example, consider the gas-flow system and a test

test to the diagnosis system such that this conclusion C8N' Eor the choicesb. — (w = NF), Ty(z) = W,

be drawn anyway. For example consider the destefined >, d 3= - 3 -y

above. Wher{T} (z)| < 0.1 and we do not reject the null X3 = [-2.12], andM; = {0 < W < 10, W, = W},

hypothesis, it would be tempting to draw the conclusioff N0!ds that®; = (w = NF) = Ass M; and that

—(p = NF). Thisis in principle correct because the model Jyj; . Ms(W, W) <0< W, <10 —

also contains the knowledd®0 kPa< P < 2000 kPa so c

whenTi(z) = P, = 0 it can not hold thap = NF. — Wi € [-2,12] & T3(z) € R3



Guidelines (a) and (b) are fulfilled and therefore also theill then be chosen a®, = Ass M. In this way the re-

requirement (13). lation (14) will of course be fulfilled. Then the selection of
4. THE DIAGNOSIS SYSTEM ]t(gﬁotv%s(tb?.uantltﬂ“k(z) and the rejection regioR ;. should

A diagnosis system using the principle of consistenc ] )

based diagnosis takes the observations and tries to céﬂe requirement on the subsel, is that there must be
clude which behavioral modes that can explain the obs&omez such that ideally (i.e. without noise), there exists
vations. Let the output from a diagnosis system be call&®me observation such that the relations/,, cannot all

diagnostic statemersnd denoted. be fulfilled, i.e.32Vx : - My(z, z). If this requirement
is not fulfilled, the test quantity would always be zero, or

Formally a diagnosis system based on structured hypothgose to zero, and the test would make no sense. Another
sis tests can be defined as follows: requirement is that\ss M), # L. If this requirement
Definition 2.(Diagnosis System). Aliagnosis systeris a Would not be fulfilled it would hold that¢;, = ~.L. This

set of diagnostic tests, i.€4;, 6, . .. }, together with the means that the result of rejecting a null hypothesis would

procedure to form the diagnostic statemérdefined as ~ P€ that we can draw the conclusierL, i.e. the test can
never provide any information.

S = /\ 0y, (A7) The guestion that remains is how to find the subgdis
HY rejected such that these two requirements are satisfied. Given some
natural assumptions about the model, the problem of find-
4.1 Strategies for Designing Diagnosis Systems ing suitable subsetd/;, can often be solved by only study-

the structural properties of the model. This is not the
ic of this paper but the interested reader is referred to

To design a diagnosis system consists of finding the set'%?g
rysander and Nyberg, 2002).

diagnostic tests to be included, and also for each diagnos
test, a test quantity (z), a rejection regiofR ,, and a null
hypothesisd,. We will here study two different strategiesNow consider the gas-flow system and assume that the fol-
for finding these items. The first starts from a given set dpwing subsets)/;, with their corresponding assumptions
null hypothese®,, and the second from the modet of ~ Ass M; have been found possible to validate:

the system to be diagnosed. Relations M, Assumption Ass My,
™) p=25G
4.2 Starting From a Given Set of Null Hypotheses @), (6) p=NF
One way of starting the design of a diagnosis system is  (2) (4 w=NF
simply to decide which null hypotheses to test, and then (1) (4) (), (g) w=NFAp=NFAv=NF
construct a sui;able test quantit_y and rejection region for ®) w=SG
each hypothesis test. One straightforward strategy is for ). (), (6). 9) w=NFAp=NFAv=S

example to have one diagnostic test for each of the system
behavioral-modes. This is especially attractive when only (1), (4), 6). (10)
single faults are considered. For example, if the possibie (1) ®). (6. (11)  w=NFAp=NFAv=5C

system behavioral-modes aNF, F1, F2, andF3, the g gjiq aboved,, is then chosen a®, = Ass M. By

four null hypotheses become eliminating unknown variables, each mod#f, can be

w=NFAp=NFAv=S0

H} : sys=NF written with one, so calledonsistency relatigrcontaining
HO . —F1 only observations. These consistency relations are:
’82 8YS = Relations M, Consistency Relation

Hy, : sys =F2 (7 P, =0

H) : sys=F3 (3), (6) 500 kPa< P, < 2000 kPa
To fulfill (13) it is suggested to follow the guidelines (a)  (2): (4) 0 kg/min < W < 10 kg/min
and (b) above. The guidelines will then tell us how to (1), (4), (6), (8) W — f(0a,Ps) =0
chooseMy, namely any set such that (14) is fulfilled. The  (5) W,=0

test quantityZy (=) and the rejection regioR, should then 1), 4), 6), 9) W, — f(r,P,)

be selected to fulfill (b).

, , 1), (4). (6), (10) W, — f(0, Fs)
For example consider again the gas flow example and 1), (4), (6), (11) W, =0
assume that we want to design a diagnostic test for the null =" * "+ *
hypothesisH? : sys = NF. Now select the sed/, to  With these consistency relations, test quantifigé:) and

0
0

consist of relations (1), (4), (6), and (8). Thars M, = rejection region® ;. can easily be constructed to fulfill (b).
(w = NF)AN(p = NF)A (v = NF) which means
that®, = (sys = NF) = (w = NF)A (p = NF) A 5. CONNECTION TO FDI METHODS

(v = NF) = Ass My, and formula (14) is therefore FDI methods presented in the literature, have focused
trivially fulfilled. By eliminating the unknown variables mostly on residual generation and how disturbances and

W, 6, and P, the four relations are reduced &, — faults are to be decoupled. A residual is a signal that is
f(04, Ps) = 0. By then selectindy(z) = W, — f(0,, Ps) zero in the fault-free case, and to use residuals is the most
andR;, = [-0.1,0.1]%, it is ensured that formula (15) is cOmmon way to construct test quantities within the field
fulfilled. of FDI. The reason to decouple disturbances is to avoid
false alarms, and the reason to decouple faults is to obtain
4.3 Starting From the Model residuals that are sensitive to different subsets of faults,

The idea of this strategy is to start out from the model ri—o that isolation can be performed. From a residyala

lations and investigate which relations that can be group&ePt quatnﬂtk[/ c2an for example be formed&s = |ry| or
together to form models possible to test in diagnostic testsi = Y_,2;. 7% (t).
That is, we have to find those subséi that are mean-

ingful to check for validity. The null hypothesi! : &, Consider a linear system, typically found in FDI literature:



) 11 0 1 2 1 can be fully utilized in the framework presented here. By
=11 ol%+ [g| tat || d+ 1| [+ |g] f2 (188) Kkeeping track of exactly which s&f, of equations that are

used in the construction of each residual, the expression

(1) (1) 8 b Ass M, can be obtained. This is then the only thing that

vy= T+ d (18b) s needed to facilitate isolation in the way proposed in this
11 1 paper.

wherez is the dynamic statey, the actuator signay; the 6. NOISY SYSTEMS

e e caon gk relaon (13) can oty only hold sty when e
agnostic test is used together with a noise-free system. If

of the system and are non-zero only if the correspondlrf%ise is present. (13) has to be replaced by specifying the

Igurigjeptrﬁrse%m'ozgieblsg Sk'JteerTanl/tiSoerh;hgggi’sFmec%f ogﬁg gr;d probability that (13) holds. In statistical hypothesis-testing
g e be ‘qefbgory, this is usually written as

As seen, no actuator or sensor faults have been conside
The modelM for this system, rewritten using the mod- P(Ti € Ri | 1) < (28)

elling framework suggested here, becomes That is, the probability of rejecting the null hypothe&ig
Assumption Relation given that®;, holds must be less or equal ts@nificance
System: level a. The idea behind hypothesis testing is to have a
c=NF #1=x1+ a0 +d (19) significance level that is very small, in fact so small that it

c=NFVe=Fl & =x+as+d+2f; (20) Isrealistictoassume thatthe formula (13) holds.

c=NFVc=F2 i =xz1+22+d+ f2 (21) In noisy (stochastic) systems, the model is only ap-
¢c=NFVe=F2 dys=x1+2u+d (22) proximate, or alternatively, is exact but includes stochas-
c=NFVe=F1 &o=x1+2u+d+ 23) tic terms. Regardless of the view chosen, we can assume
2 ! ho (&) that each model equation includes a stochastic term with

Actuator: some probability distribution. For example if the model
s L 1 U= Uq (24) equation (1) is only approximate, we can indicate this by
ensor L. writing _ _
Sl S (25) | | w f(e,.P) +n=0 | (29? |
Sensor 2: wheren is a noise term with for example Gaussian distri-
-l Yo = T2 (26) bution, i.e;n ~ N(0,0).
Sensor 3: Next we study how the guidelines (a) and (b) in Section 3.1
-1 ys = a1 + 22 +d (27) are transformed to the noisy case. First, the guideline (a)

s not changed; the only difference is that the model is

The goal now is to find some residual for the system (18;. ; ol
. X pproximate and not exact. For the guideline (b), equa-
In all residuals, the unknown disturbandemust be de- - (15) is replaced by

coupled. To facilitate isolation, the goal is also to decou: c i /
ple different faults in different residuals. By Iinear-algebrzf(Tk(z)enk |32, n: (Mi(w, z,n),n~N(0,%))) 21-a
manipulations of the system (18) (e.g. see (Frisk and Ny- (30)

berg, 2001)), a number of residual generators can be foulere 1, is the noise,N'(0, %) the probability distribu-
(here in the form of so callepiarity relationg, for example:  tjony of n, anda’ a small number. The interpretation is

that when the observations are compatible with the model

=Yty _ M;(z, z,n), which is now stochastic, the probability of
re =—4du—1 - 2y2 + 292 — Y3 not rejecting the null hypothesis is very high. Note that
rs =2u+ Y1 — Y2 — Y2 — U3 the probability distribution of . (z) can be obtained from

By carefully studying the formula of each residual, it cad (0, X) by propagating the noise through the model
be realized that the sensitivity to the faults is according t/k(, 2, 1) andT}(z). Note also that the formula (15) is
the second column of the following table: obtained ifn = 0 anda’ is chosen as’ = 0.

| NOF le 52 | é\l%) @a27) | AS’_S %}3 For the gas-flow system, assume that equation (1) contains
:1 00 X (20)’(23) (24-27) E:NF Ve—pl & noise term according to (29), but (4), (6), and (8) do not
2 ’ ] - - — H H H
re 0 X 0 (22).(24-27) c=NFV c—F? contain any noise terms. This means that the médgetan

be reduced t&V, — f(0., Ps) + n = 0. By then selecting
A “0” means that when the behavioral mode of the columqr4(z) = W, — f(6a,P,) andR; = [-0.1,0.1], the
is present the residual of that row will be zero. “X” meansormula (30) becomes

that the residual will be zero or non-zero. That is, in ,
residualr,, the fault signalf, has been decoupled, and inf (7| < 0.1 Ws—f(6q, Ps)+n=0,n~N(0,0))>1-a

73, f2 has been decoupled. If we assume that the standard deviatiofs small, then

To see the relationship with the framework presented hef@€ formulawill hold with a smalk’. Thatis, the stochastic

we have to investigate exactly which equations that hayérsion of guideline (b) is fulfilled.

been used to form each residual. It turns out that to forfyom the definition ofAss M,, it holds thatAss M, —

residualr,, i.e. to derive the equationy, + y3 = 0, from 3, 4, . (A1, (2, 2,n),n ~ N(0,%)). Then by using the

the equations in the modgH, exactly the equations (19), formula (14) and (30), we obtain

(24), (25), (26), and (27) have to be used. The equations .

M, used to derive, 72, andrs can be seen in the third P(Tp(z) e Ry, | Pr) >1—0d

column of the table. The assumptions for each equation set. . .

My, i.e. Ass My, can be seen in the fourth column of theﬁh'ch is equivalent to (28), and the’ chosen becomes

the significance level. Thus, the stochastic version of the

table. S0 ; . . X
guidelines (a) and (b) will produce diagnostic tests in

In conclusion, the FDI methods for residual generatiorgccordance with the formula (28), which is the stochastic

which can be based on e.g. parity relations or observergrsion of the diagnostic test. With (28) fulfilled, it is then



realistic to assume that (13) holds which means that vigy applying this preference relation to the diagnostic state-
are back to the no-noise case. That is, the framework aftgent (31), we obtain the following three minimal candi-
principles discussed in this paper for the no-noise case #tates

applicable also for the noisy case.

7. THE DIAGNOSTIC STATEMENT
The goal is that the output from a diagnosis system, i.e. the

p=NFANv=NFAw=UF

p=NFANv=SAw=NF

diagnostic statement, should tell which system behavioral- p=UFAv=NFAw=NF
modes that can explain the given observatiorSuch a
system behavioral-mode is calledd@gnosis Note that 8. CONCLUSIONS

this definition of diagnosis is equivalent to the one useft new framework for model based diagnosis has been
in consistency based diagnosis (Hamsceenl, 1992). Presented. The isolation mechanism follows ideas from
Ideally the diagnostic statement (17) should say everythif, hamely to include in the model, how the validity of
about which diagnoses that hold and which that do n#todel equations depend on the presence of faults in each
hold. However depending on how the diagnosis system §§mponent. Isolation is then performed by propagating this
constructed it is not sure that there is this exact relatiof2formation through the diagnosis system by the use of
ship between the diagnostic statement and the diagnosgi@ndard logic. This isolation strategy is far more compe-
Therefore we defineandidateC as a system behavioral tent than the isolation strategyructured residual¢Gertler
mode such thaf — S. That is, a candidate is a system@nd Singer, 1990) that is typically used in FDI literature.
behavioral mode that the diagnosis system claims to f@r example, no special care for isolation of multiple faults
able to explain the observations. is needed.

For an example, consider the example diagnosis-systéfcontrastto Al, the diagnostic tests are computed off-line
constructed in Section 4.3. Assume that the single fawds in FDI. It has been shown in Section 5 how standard
v = S is present, i.e. the valve is stuck in anglebut FDI methods, such as residuals based on parity relations or
the other components are fault-free. Assume that we haygservers, can be used within the framework. In that case,

an exciting input signal which means thtat 7 7. If fiS  the powerful isolation mechanism can be fully utilized.
assumed monotonic, this implies that the null hypotheses

by, By, O5, D7, andds would be rejected. Using (17), the Since the diagnostic tests used are really standard hypoth-
diagnostic statemeidt would be esis tests from statistical hypothesis testing theory, it is

S =201 A =Py A =P5 A =P7 A =dg = guaranteed that noise get a sound treatment. That is, even
in a noisy system, faults are correctly isolated. This is not
true in for example the methaostructured residualssee
“(p=SG)AN-(w=NFAp=NF Av=SO)A (Nyberg, 1999).

~(w=NFAp=NFAv=SC) In summary, the framework presented can efficiently

This expression is not so easy to interpret. However, let (gNdle: fault models, several different fault types (e.g.
transform the expression fall disjunctive normal form Parameter- and additive faults), more than two behavioral

which here means a disjunction of conjunctions wher@odes per component, general differential-algebraic mod-
each conjunction contains exactly one assignment for eagl$, nNoise, uncertainties, decoupling of disturbances, static

“(p=SG)AN=(w=NFAp=NFAv=NF)A-(w=SG)A

component: and dynamic systems, and isolation of multiple faults.
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