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1. INTRODUCTION

Fault diagnosis has in the literature been studied from
mainly two different perspectives. The first is control the-
ory (here denoted FDI), e.g. see (Gertler and Singer, 1990),
and the second is AI, e.g. see (Kleer and Williams, 1987;
Hamscheret al., 1992). In the field of control theory, the
literature on fault diagnosis has mostly been focused on the
problem ofresidual generation. That is, given a model of
the system, how to off-line construct residual signals that
are zero in the fault-free case but sensitive to faults. In the
field of AI, the focus has been on fault isolation and how
to on-line compute what is here called residuals. In this
paper we show how methods from FDI and AI (or more
exactlyconsistency based diagnosis) can be combined into
a common framework for fault diagnosis. The framework
proposed is also based upon ideas from statistical hypoth-
esis testing in accordance with the methodstructured hy-
pothesis testsfrom (Nyberg, 1999; Nyberg, 2002).

The modelling of the system to be diagnosed, and the
isolation of faults, follows mainly ideas from AI (Dressler
et al., 1993). The key point here is to add information in the
model of how the validity of each model equation depends
on which faults that are present in different components.
Isolation is then performed by propagating this information
through the diagnosis system by the use of standard logic.
However, one difference is that residuals are computed off-
line as in FDI. Therefore the on-line machinery can be
made more simple, e.g. there is no need to use a so called
ATMS (Assumption based Truth Maintenance System)
which is common in AI (Kleer and Williams, 1987). All
decisions taken in the diagnosis system are based on the
theory of statistical hypothesis testing. This means for
example that noise and uncertainties are handled in a sound
way.

By combining these ideas from FDI, AI, and hypothesis
testing, we will obtain a framework that is able to effi-
ciently handle: fault models, several different fault types
(e.g. parameter- and additive faults), more than two behav-
ioral modes per component, general differential-algebraic
models, noise, uncertainties, decoupling of disturbances,

static and dynamic systems, and isolation of multiple
faults.

The modelling framework and how information about dif-
ferent faults is incorporated in the model is described in
Section 2. The design of a diagnosis system is then pre-
sented in Sections 3 and 4. The connection to FDI methods
are more explicitly elaborated in Section 5. Section 6 de-
scribes how noise is treated, and finally, Section 7 discusses
the output from the diagnosis system.

2. MODELLING FRAMEWORK

This section describes the modelling framework that is
later used in the construction of the diagnosis system.
Using this modelling framework, all information about the
faults are included in the model. This fault information is
then the basis for the reasoning about faults.
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Fig. 1. An example of a gas-flow system.

Throughout the paper, we will exemplify all concepts and
techniques on the same example. The example chosen is
shown in Figure 1 and represents a gas-flow system. Gas
flows into the system from the left. This flow is measured
with a gas-flow sensor. The gas flow is controlled with a
valve. Finally the gas pressure is measured with a pressure
sensor. This kind of system is commonly found in for
example combustion engines.

2.1 Components

We assume that the system consists of a number of compo-
nents. The behavior of each component, and the relation to
its outer world, are described by a number of relations.



A component hasinternalvariables andexternalvariables.
External variables are variables that are shared with con-
nected adjacent components1 or can be observed. Internal
variables are only known within the component itself.
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Fig. 2. Components of the gas-flow system.

The gas-flow system from Figure 1 can be separated into
the components tube, gas-flow sensor, valve, and pressure
sensor. These four components will be denotedt, w, v,
andp respectively. The components and the connections
between them are illustrated in Figure 2. In the figure it is
seen that the tubet relates the variablesθ, P , andW to
each other. Further on, it is seen that the gas-flow sensor
w relates the physical gas-flowW to the measured gas-
flow Ws. Finally, the pressure sensorp relates the pressure
P to the measured pressurePs, and the valvev relates
the physical angleθ to the actuated (i.e. demanded by the
control system) signalθa.

2.2 Behavioral Modes

The behavior of a component can vary depending on which
behavioral modethe component is in. Different types of
faults are typically considered to be different behavioral
modes. Examples of behavioral modes for a sensor are no-
fault, short-cut, bias, and unknown fault. Instead of having
these long names for different behavioral modes, it is often
practical to use short abbreviations likeNF for no-fault,
B for bias, UF for unknown fault etc. Further on, we
will write c = UF to indicate that componentc is in the
behavioral modeUF .

For the gas-flow system, the four components are assumed
to have the following possible behavioral modes:

Component Possible Behavioral Modes

t NF

w NF, SG, UF

p NF, SG, UF

v NF, S, SO,SC, UF

where NF means no fault,SG short to ground,UF
unknown fault,S stuck, SO stuck open, andSC stuck
closed. Note that the tubet is assumed to always be fault
free.

As said above, components are described using relations.
That is, for each componentc there is a set of rela-
tions {eic , eic+1, eic+2, . . . } describing the behavior of
that component. The validity of each relation can in some
cases depend on which behavioral mode the component is
in. It can for example be the case that a relationWs = W
holds if componentw is in behavioral modeNF , i.e. if
w = NF , but not necessarily ifw = UF . This means
that together with each relationeic , there is an assumption
Ass eic of the typec = F1 (or a disjunctionc = F1 ∨
c = F2 ∨ . . . ) that must be fulfilled before the relation

1 Another alternative, not exploited here, is to describe connections
between components explicitly by using equations, e.g. see the object-
oriented modelling-language Modelica.

eic can be assumed to hold, i.e.Ass eic → eic . If a rela-
tion eic is always valid, the assumptionAss eic becomes
Ass eic = ¬⊥.

The assumptions and the relations for all components of
the gas-flow system are as follows:

Assumption Relation
Flow-pipe:

¬⊥ W − f(θ, P ) = 0 (1)
¬⊥ 0 kg/min< W < 10 kg/min (2)
¬⊥ 500 kPa< P < 2000 kPa (3)

Gas-flow sensor:
w = NF Ws = W (4)
w = SG Ws = 0 (5)

Pressure sensor:
p = NF Ps = P (6)
p = SG Ps = 0 (7)

Valve actuator:
v = NF θa = θ (8)
v = S θ = τ (9)
v = SO θ = 0 deg (10)
v = SC θ = 90 deg (11)
¬⊥ 0 deg≤ θ ≤ 90 deg (12)

As seen, the model contains both equations and inequali-
ties. The inequalities are for this system not dependent on
any assumptions and are therefore assumed to always hold.
The constantτ is unknown and represents the angle of the
valve when it is stuck. Noise has not been considered in
this example but if desirable, a noise term can be added to
each model relation (see Section 6).

2.3 The System and System Behavioral Modes
The total modelM of the system to be diagnosed is the
union of all relations describing the components. Further
on it needs to be specified which of the external variables
that are possible to observe for the diagnosis system. The
observation vector is denotedz which can be samples from
one or several time instances. For the gas-flow system the
observed variables areWs, θa, andPs. If time is considered
and the observation vector is collected over a time window
of e.g. length 2,z(t) would bez(t) = [Ws(t − 1), θa(t −
1), Ps(t − 1), Ws(t), θa(t), Ps(t)].

As well as defining behavioral modes for the compo-
nents, we can definesystem behavioral-modes. A sys-
tem behavioral-mode completely determines the behav-
ioral mode of all components in the system. This is some-
times also called amode assignment. For the gas-flow sys-
tem, the tube has no alternative behavioral modes and does
therefore not need to be included explicitly in a system
behavioral-mode. This means that a system behavioral-
mode could be for examplew = NF ∧ p = SG ∧
v = UF , meaning that componentw is in behavioral mode
NF , p in SG, andv in UF . Other examples of system
behavioral-modes arew = NF ∧ p = NF ∧ v = NF
and w = SG ∧ p = NF ∧ v = NF . An alternative
representation is to write a system behavioral-mode using
a tuple, e.g.〈NF, SG, UF 〉.
Like component behavioral-modes, we can use abbrevia-
tions to denote system behavioral-modes. This is especially
practical when only single-faults are considered. For exam-
ple for the gas-flow system, the system behavioral modes
w = NF ∧p = NF ∧v = NF andw = SG∧p = NF ∧
v = NF can be writtenNF andSGw. To say that the
system is in for example behavioral modeNF, we will
write sys = NF.



3. DIAGNOSTIC TESTS
A diagnosis systemis assumed to consist of a set ofdiag-
nostic testswhich is a special case of a generalstatistical
hypothesis test(Casella and Berger, 1990). This idea has in
earlier papers been described asstructured hypothesis tests
(Nyberg, 2002). We will in this section discuss diagnostic
tests and later, in Section 4, describe how several diagnostic
tests are combined to form a diagnosis system.

To define a diagnostic test we need the notion of atest
quantityTk(z) which is a function from the observations
z to a scalar value. A diagnostic test for a noise-free model
can then be defined as follows:

Definition 1.(Diagnostic Test). LetΦk be a logical ex-
pression in behavioral modes. Adiagnostic testδk for the
null hypothesisH0

k : Φk is a hypothesis test consisting of
a test quantityTk(z) and a rejection regionRk such that

Φk → Tk ∈ RC
k (13)

whereRC
k is the complement ofRk.

This definition will in Section 6 be generalized to the noisy
case.

The complement of the null hypothesis is called theal-
ternative hypothesisand denotedH1

k : ¬Φk. Definition 1
means that ifTk(z) ∈ Rk, Φk can not hold. This is the
same thing as saying that the null hypothesisH0

k is rejected
and the alternative hypothesisH1

k is accepted. The expres-
sionΦk becomes in this case a so calledconflict(Kleer and
Williams, 1987), i.e. an expression in behavioral modes
that is in conflict with the observations.

For the gas-flow example, consider a diagnostic testδ1 for
the null hypothesisH0

1 : (p = SG), i.e.Φ1 = (p = SG).
From the model relation (7), we have that(p = SG) →
Ps = 0. This means that a test quantityT1(z) = Ps

and a rejection regionRk = [−0.1, 0.1]C implies that
(p = SG) → Ps = 0 → T1(z) = Ps = 0 ∈ RC

k . That
is, these choices ofT1(z) andRk fulfill the criterion (13)
for being a diagnostic test forH0

1 : (p = SG). When
|T1(z)| > 0.1 we reject the null hypothesisΦ1 = (p =
SG) and draw the conclusion¬(p = SG) ' (p = NF ) ∨
(p = UF ). Note that to evaluate', the assumption that
p ∈ {NF, SG, UF} must also be used. From now on
when ' is used, it will always implicitly be assumed
that components must be in exactly one of the behavioral
modes.

No conclusion is drawn from a test in which the null
hypothesis has not been rejected. That is, to reject null
hypotheses is the only way the diagnosis system can draw
conclusions. Note that it is usually not true thatΦk holds
when H0

k : Φk is not rejected. It would sometimes
be possible to assume something else. However, it is in
general difficult (or impossible) to constructTk(z) and
Rk so that such a conclusion can be drawn when the null
hypothesis is not rejected.

Another reason why no conclusion is drawn when the
null hypothesis is not rejected is that it is not needed.
If there is a conclusion that really can be drawn from
Tk ∈ RC

k , it is always possible to add another diagnostic
test to the diagnosis system such that this conclusion can
be drawn anyway. For example consider the testδ1 defined
above. When|T1(z)| ≤ 0.1 and we do not reject the null
hypothesis, it would be tempting to draw the conclusion
¬(p = NF ). This is in principle correct because the model
also contains the knowledge500 kPa< P < 2000 kPa so
when T1(z) = Ps = 0 it can not hold thatp = NF .

The suggested framework does not allow us to draw a
conclusion when a null hypothesis is not rejected, but
this desired conclusion can be obtained if we instead add
another testδ2 with Φ2 = (p = NF ), T2(z) = T1(z), and
R2 = RC

1 .
3.1 Diagnostic Tests and the Model
The idea ofmodelbased diagnosis is to utilize the model
M in the construction of the diagnostic tests. For each
diagnostic testδk, not necessarily the whole modelM is
utilized. Instead only a subsetMk ⊆ M is considered. The
purpose of the diagnostic testδk is then to test the validity
of the null hypothesisΦk, by comparingMk with the
observations. The comparison is done via the test quantity
Tk(z) and the rejection regionRk. This means that, in
addition toΦk, Tk(z), andRk, also a modelMk must
be considered when constructing a diagnostic test. Below
we will discuss how the itemsMk, Φk, Tk(z), andRk

should be related so that at least the basic requirement (13)
is fulfilled. First however, the operatorAss needs to be
generalized and a new operatorMod needs to be defined.

In Section 2.2, the notionAss ei was used to pick out
the assumption for a certain model relationei. Here we
will use Ass to pick out the assumption also for a set of
model relations. IfMk = {e1, e2, e3} thenAss Mk means
Ass Mk = Ass e1 ∧ Ass e2 ∧ Ass e3.

To pick out parts of the model, valid for certain behavioral
modes, it is useful to introduce an operatorMod. Given a
system behavioral modeφ, the expressionMod φ picks
out all relationsei from the whole modelM such that
φ → Ass ei. An example isMod(sys = NF) that would
pick out relations (1), (2), (3), (4), (6), (8) and (12).

With the Ass and Mod operators we are now able to
formulate two guidelines for ensuring that the require-
ment (13) is fulfilled.

a) The model relationsMk = {ek1, ek2, . . . } and the
null hypothesisΦk should satisfy

Φk →Ass Mk (14)

or even better,Φk = Ass Mk.
b) The model relationsMk, the test quantityTk(z), and

the rejection regionRk should satisfy(∃x : Mk(x, z)
) →Tk(z) ∈ RC

k (15)

where the expression∃x : Mk(x, z) means that the
model relationsMk can be fulfilled with a givenz.

Note that by definition ofAss Mk, it holds thatAss Mk →
∃x : Mk(x, z). This means that if the guidelines (a) and (b)
are followed, it holds that

Tk(z) ∈ Rk → ¬∃x : Mk(x, z) → ¬Ass Mk → ¬Φk

(16)

That is, when the test quantity is within the rejection
region, we can draw the conclusion thatΦk can not hold.
This expression is equivalent to the requirement (13) so the
design goal has been achieved. Note that ifΦk = Ass Mk

instead of only (14), a stronger conclusion can in general
be drawn in (16). As said above,Φk = Ass Mk is therefore
normally a better choice than (14).

For an example, consider the gas-flow system and a test
δ3. For the choicesΦ3 = (w = NF ), T3(z) = Ws,
RC

3 = [−2, 12], andM3 = {0 < W < 10, Ws = W},
it holds thatΦ3 = (w = NF ) = Ass M3 and that

∃W : M3(W, Ws) ↔ 0 < Ws < 10 →
→ Ws ∈ [−2, 12] ↔ T3(z) ∈ RC

3



Guidelines (a) and (b) are fulfilled and therefore also the
requirement (13).

4. THE DIAGNOSIS SYSTEM
A diagnosis system using the principle of consistency
based diagnosis takes the observations and tries to con-
clude which behavioral modes that can explain the obser-
vations. Let the output from a diagnosis system be called
diagnostic statementand denotedS.

Formally a diagnosis system based on structured hypothe-
sis tests can be defined as follows:

Definition 2.(Diagnosis System). Adiagnosis systemis a
set of diagnostic tests, i.e.{δ1, δ2, . . . }, together with the
procedure to form the diagnostic statementS defined as

S =
∧

H0
k

rejected

¬Φk (17)

4.1 Strategies for Designing Diagnosis Systems
To design a diagnosis system consists of finding the set of
diagnostic tests to be included, and also for each diagnostic
test, a test quantityTk(z), a rejection regionRk, and a null
hypothesisΦk. We will here study two different strategies
for finding these items. The first starts from a given set of
null hypothesesΦk, and the second from the modelM of
the system to be diagnosed.

4.2 Starting From a Given Set of Null Hypotheses
One way of starting the design of a diagnosis system is
simply to decide which null hypotheses to test, and then
construct a suitable test quantity and rejection region for
each hypothesis test. One straightforward strategy is for
example to have one diagnostic test for each of the system
behavioral-modes. This is especially attractive when only
single faults are considered. For example, if the possible
system behavioral-modes areNF, F1, F2, andF3, the
four null hypotheses become

H0
k1

: sys = NF

H0
k2

: sys = F1

H0
k3

: sys = F2

H0
k4

: sys = F3

To fulfill (13) it is suggested to follow the guidelines (a)
and (b) above. The guidelines will then tell us how to
chooseMk, namely any set such that (14) is fulfilled. The
test quantityTk(z) and the rejection regionRk should then
be selected to fulfill (b).

For example consider again the gas flow example and
assume that we want to design a diagnostic test for the null
hypothesisH0

4 : sys = NF. Now select the setM4 to
consist of relations (1), (4), (6), and (8). ThenAss M4 =
(w = NF ) ∧ (p = NF ) ∧ (v = NF ) which means
that Φ4 = (sys = NF) = (w = NF ) ∧ (p = NF ) ∧
(v = NF ) = Ass M4, and formula (14) is therefore
trivially fulfilled. By eliminating the unknown variables
W , θ, and P , the four relations are reduced toWs −
f(θa, Ps) = 0. By then selectingT4(z) = Ws − f(θa, Ps)
andRk = [−0.1, 0.1]C, it is ensured that formula (15) is
fulfilled.

4.3 Starting From the Model
The idea of this strategy is to start out from the model re-
lations and investigate which relations that can be grouped
together to form models possible to test in diagnostic tests.
That is, we have to find those subsetsMk that are mean-
ingful to check for validity. The null hypothesisH0

k : Φk

will then be chosen asΦk = Ass Mk. In this way the re-
lation (14) will of course be fulfilled. Then the selection of
the test quantityTk(z) and the rejection regionRk should
follow (b).

One requirement on the subsetMk is that there must be
somez such that ideally (i.e. without noise), there exists
some observationz such that the relationsMk cannot all
be fulfilled, i.e.∃z∀x : ¬Mk(x, z). If this requirement
is not fulfilled, the test quantity would always be zero, or
close to zero, and the test would make no sense. Another
requirement is thatAss Mk 6≡ ⊥. If this requirement
would not be fulfilled it would hold that¬Φk ≡ ¬⊥. This
means that the result of rejecting a null hypothesis would
be that we can draw the conclusion¬⊥, i.e. the test can
never provide any information.

The question that remains is how to find the subsetsMk

such that these two requirements are satisfied. Given some
natural assumptions about the model, the problem of find-
ing suitable subsetsMk can often be solved by only study-
ing the structural properties of the model. This is not the
topic of this paper but the interested reader is referred to
(Krysander and Nyberg, 2002).

Now consider the gas-flow system and assume that the fol-
lowing subsetsMk with their corresponding assumptions
Ass Mk have been found possible to validate:

RelationsMk AssumptionAss Mk

(7) p = SG

(3), (6) p = NF

(2), (4) w = NF

(1), (4), (6), (8) w = NF ∧ p = NF ∧ v = NF

(5) w = SG

(1), (4), (6), (9) w = NF ∧ p = NF ∧ v = S

(1), (4), (6), (10) w = NF ∧ p = NF ∧ v = SO

(1), (4), (6), (11) w = NF ∧ p = NF ∧ v = SC

As said above,Φk is then chosen asΦk = Ass Mk. By
eliminating unknown variables, each modelMk can be
written with one, so calledconsistency relation, containing
only observations. These consistency relations are:

RelationsMk Consistency Relation
(7) Ps = 0
(3), (6) 500 kPa< Ps < 2000 kPa
(2), (4) 0 kg/min< Ws < 10 kg/min
(1), (4), (6), (8) Ws − f(θa, Ps) = 0
(5) Ws = 0
(1), (4), (6), (9) Ws − f(τ, Ps) = 0
(1), (4), (6), (10) Ws − f(0, Ps) = 0
(1), (4), (6), (11) Ws = 0

With these consistency relations, test quantitiesTk(z) and
rejection regionsRk can easily be constructed to fulfill (b).

5. CONNECTION TO FDI METHODS
FDI methods presented in the literature, have focused
mostly on residual generation and how disturbances and
faults are to be decoupled. A residual is a signal that is
zero in the fault-free case, and to use residuals is the most
common way to construct test quantities within the field
of FDI. The reason to decouple disturbances is to avoid
false alarms, and the reason to decouple faults is to obtain
residuals that are sensitive to different subsets of faults,
so that isolation can be performed. From a residualrk, a
test quantity can for example be formed asTk = |rk| or
Tk =

∑t0+N
t=t0

r2
k(t).

Consider a linear system, typically found in FDI literature:



ẋ =
[
1 1
1 0

]
x +

[
0
2

]
ua +

[
1
1

]
d +

[
2
1

]
f1 +

[
1
0

]
f2 (18a)

y =

[
1 0
0 1
1 1

]
x +

[
0
0
1

]
d (18b)

wherex is the dynamic state,ua the actuator signal,y the
sensor signals, andd an unknown disturbance signal. The
signalsf1 andf2 are used to model two different faults
of the system and are non-zero only if the corresponding
fault is present. The system itself, denotedc, is considered
to have three possible behavior modes:NF , F1, andF2.
As seen, no actuator or sensor faults have been considered.
The modelM for this system, rewritten using the mod-
elling framework suggested here, becomes

Assumption Relation
System:

c = NF ẋ1 = x1 + x2 + d (19)
c = NF ∨ c = F1 ẋ1 = x1 + x2 + d + 2f1 (20)
c = NF ∨ c = F2 ẋ1 = x1 + x2 + d + f2 (21)
c = NF ∨ c = F2 ẋ2 = x1 + 2u + d (22)
c = NF ∨ c = F1 ẋ2 = x1 + 2u + d + f1 (23)

Actuator:
¬⊥ u = ua (24)

Sensor 1:
¬⊥ y1 = x1 (25)

Sensor 2:
¬⊥ y2 = x2 (26)

Sensor 3:
¬⊥ y3 = x1 + x2 + d (27)

The goal now is to find some residual for the system (18).
In all residuals, the unknown disturbanced must be de-
coupled. To facilitate isolation, the goal is also to decou-
ple different faults in different residuals. By linear-algebra
manipulations of the system (18) (e.g. see (Frisk and Ny-
berg, 2001)), a number of residual generators can be found
(here in the form of so calledparity relations), for example:

r1 = − ẏ1 + y3

r2 = − 4u − ẏ1 − 2y2 + 2ẏ2 − y3

r3 =2u + y1 − ẏ2 − y2 − y3

By carefully studying the formula of each residual, it can
be realized that the sensitivity to the faults is according to
the second column of the following table:

NF F1 F2 Mk Ass Mk

r1 0 X X (19),(24-27) c = NF
r2 0 0 X (20),(23),(24-27) c=NF ∨ c=F1
r3 0 X 0 (22),(24-27) c=NF ∨ c=F2

A “0” means that when the behavioral mode of the column
is present the residual of that row will be zero. “X” means
that the residual will be zero or non-zero. That is, in
residualr2, the fault signalf1 has been decoupled, and in
r3, f2 has been decoupled.

To see the relationship with the framework presented here,
we have to investigate exactly which equations that have
been used to form each residual. It turns out that to form
residualr1, i.e. to derive the equation−ẏ1 + y3 = 0, from
the equations in the modelM, exactly the equations (19),
(24), (25), (26), and (27) have to be used. The equations
Mk used to deriver1, r2, andr3 can be seen in the third
column of the table. The assumptions for each equation set
Mk, i.e. Ass Mk, can be seen in the fourth column of the
table.

In conclusion, the FDI methods for residual generation,
which can be based on e.g. parity relations or observers,

can be fully utilized in the framework presented here. By
keeping track of exactly which setMk of equations that are
used in the construction of each residual, the expression
Ass Mk can be obtained. This is then the only thing that
is needed to facilitate isolation in the way proposed in this
paper.

6. NOISY SYSTEMS
The relation (13) can normally only hold strictly when the
diagnostic test is used together with a noise-free system. If
noise is present, (13) has to be replaced by specifying the
probability that (13) holds. In statistical hypothesis-testing
theory, this is usually written as

P (Tk ∈ Rk | Φk) ≤ α (28)

That is, the probability of rejecting the null hypothesisΦk

given thatΦk holds must be less or equal to asignificance
level α. The idea behind hypothesis testing is to have a
significance level that is very small, in fact so small that it
is realistic to assume that the formula (13) holds.

In noisy (stochastic) systems, the modelM is only ap-
proximate, or alternatively, is exact but includes stochas-
tic terms. Regardless of the view chosen, we can assume
that each model equation includes a stochastic term with
some probability distribution. For example if the model
equation (1) is only approximate, we can indicate this by
writing

W − f(θ, P ) + n = 0 (29)

wheren is a noise term with for example Gaussian distri-
bution, i.e.n ∼ N(0, σ).

Next we study how the guidelines (a) and (b) in Section 3.1
are transformed to the noisy case. First, the guideline (a)
is not changed; the only difference is that the model is
approximate and not exact. For the guideline (b), equa-
tion (15) is replaced by
P

(
Tk(z)∈RC

k |∃x, n :(Mk(x, z, n), n∼N(0, Σ))
)≥1−α′

(30)

where n is the noise,N(0, Σ) the probability distribu-
tion of n, and α′ a small number. The interpretation is
that when the observations are compatible with the model
Mk(x, z, n), which is now stochastic, the probability of
not rejecting the null hypothesis is very high. Note that
the probability distribution ofTk(z) can be obtained from
N(0, Σ) by propagating the noisen through the model
Mk(x, z, n) andTk(z). Note also that the formula (15) is
obtained ifn = 0 andα′ is chosen asα′ = 0.

For the gas-flow system, assume that equation (1) contains
a noise term according to (29), but (4), (6), and (8) do not
contain any noise terms. This means that the modelM4 can
be reduced toWs − f(θa, Ps) + n = 0. By then selecting
T4(z) = Ws − f(θa, Ps) andRk = [−0.1, 0.1]C, the
formula (30) becomes

P
(|n| ≤ 0.1 | Ws−f(θa, Ps)+n=0, n∼N(0, σ)

)≥1−α′

If we assume that the standard deviationσ is small, then
the formula will hold with a smallα′. That is, the stochastic
version of guideline (b) is fulfilled.

From the definition ofAss Mk, it holds thatAss Mk →
∃x, n : (Mk(x, z, n), n ∼ N(0, Σ)). Then by using the
formula (14) and (30), we obtain

P (Tk(z) ∈ RC
k | Φk) ≥ 1 − α′

which is equivalent to (28), and theα′ chosen becomes
the significance level. Thus, the stochastic version of the
guidelines (a) and (b) will produce diagnostic tests in
accordance with the formula (28), which is the stochastic
version of the diagnostic test. With (28) fulfilled, it is then



realistic to assume that (13) holds which means that we
are back to the no-noise case. That is, the framework and
principles discussed in this paper for the no-noise case are
applicable also for the noisy case.

7. THE DIAGNOSTIC STATEMENT
The goal is that the output from a diagnosis system, i.e. the
diagnostic statement, should tell which system behavioral-
modes that can explain the given observationz. Such a
system behavioral-mode is called adiagnosis. Note that
this definition of diagnosis is equivalent to the one used
in consistency based diagnosis (Hamscheret al., 1992).
Ideally the diagnostic statement (17) should say everything
about which diagnoses that hold and which that do not
hold. However depending on how the diagnosis system is
constructed it is not sure that there is this exact relation-
ship between the diagnostic statement and the diagnoses.
Therefore we definecandidateC as a system behavioral
mode such thatC → S. That is, a candidate is a system
behavioral mode that the diagnosis system claims to be
able to explain the observations.

For an example, consider the example diagnosis-system
constructed in Section 4.3. Assume that the single fault
v = S is present, i.e. the valve is stuck in angleτ but
the other components are fault-free. Assume that we have
an exciting input signal which means thatθa 6= τ . If f is
assumed monotonic, this implies that the null hypotheses
Φ1, Φ4, Φ5, Φ7, andΦ8 would be rejected. Using (17), the
diagnostic statementS would be

S = ¬Φ1 ∧ ¬Φ4 ∧ ¬Φ5 ∧ ¬Φ7 ∧ ¬Φ8 =

¬(p = SG) ∧ ¬(w = NF ∧ p = NF ∧ v = NF ) ∧ ¬(w = SG)∧
¬(p = SG) ∧ ¬(w = NF ∧ p = NF ∧ v = SO)∧

¬(w = NF ∧ p = NF ∧ v = SC)

This expression is not so easy to interpret. However, let us
transform the expression tofull disjunctive normal form,
which here means a disjunction of conjunctions where
each conjunction contains exactly one assignment for each
component:

S ' (p = NF ∧ v = NF ∧ w = UF )∨
(p = NF ∧ v = SC ∧ w = UF )∨
(p = NF ∧ v = SO ∧ w = UF )∨

...

(p = UF ∧ v = UF ∧ w = UF ) (31)

The full expression consists of 17 conjunctions, and each
conjunction is a candidate. That is, the full disjunctive
normal form is simply a complete list of all candidates
produced by the diagnosis system. For a repair technician,
this information is usually not precise enough. For efficient
repair, more focused information is preferred.

One way of filtering the diagnostic statement is to only
consider the “simplest” diagnoses. Formally apreference
relation can be used as described in (Dressleret al., 1993).
If for componentc, modeF ′

c is preferred (“simpler than”)
over Fc, we write thisF ′

c < Fc. The relation≤ is then
a partial order on the component behavioral modes. The
semantics of the preference relation can be for example
probability, i.e.F ′

c < Fc means thatF ′
c is more probable

thanFc. Another choice is to compare the solution sets of
the external variables for each component.

In the gas-flow example we assume the following relations
between the behavioral modes:

w NF < SG < UF

p NF < SG < UF

v NF < S< UF, NF < SO< UF, NF < SC< UF

By applying this preference relation to the diagnostic state-
ment (31), we obtain the following three minimal candi-
dates

p = NF ∧ v = NF ∧ w = UF

p = NF ∧ v = S ∧ w = NF

p = UF ∧ v = NF ∧ w = NF

8. CONCLUSIONS
A new framework for model based diagnosis has been
presented. The isolation mechanism follows ideas from
AI, namely to include in the model, how the validity of
model equations depend on the presence of faults in each
component. Isolation is then performed by propagating this
information through the diagnosis system by the use of
standard logic. This isolation strategy is far more compe-
tent than the isolation strategystructured residuals(Gertler
and Singer, 1990) that is typically used in FDI literature.
For example, no special care for isolation of multiple faults
is needed.

In contrast to AI, the diagnostic tests are computed off-line
as in FDI. It has been shown in Section 5 how standard
FDI methods, such as residuals based on parity relations or
observers, can be used within the framework. In that case,
the powerful isolation mechanism can be fully utilized.

Since the diagnostic tests used are really standard hypoth-
esis tests from statistical hypothesis testing theory, it is
guaranteed that noise get a sound treatment. That is, even
in a noisy system, faults are correctly isolated. This is not
true in for example the methodstructured residuals, see
(Nyberg, 1999).

In summary, the framework presented can efficiently
handle: fault models, several different fault types (e.g.
parameter- and additive faults), more than two behavioral
modes per component, general differential-algebraic mod-
els, noise, uncertainties, decoupling of disturbances, static
and dynamic systems, and isolation of multiple faults.
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