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Abstract: This work develops a methodology to solve the sensor placement problem for fault
detection and isolation. The proposed methodology is suitable to handle highly non-linear and
large scale systems since it is based on structural models. Furthermore, causality is assigned in
those variable-equation relations that the variable can be computed from the equation in order
to guarantee the computability of the unknown variables in the residual generation design.
Finally, the developed methodology is applied on an air compressor model.

1. INTRODUCTION

Fault diagnosis systems are an increasing and important
topic in many industrial processes. The number of publi-
cations devoted to fault diagnosis has increased notably in
the last years, as it can be seen in Blanke et al. (2006).
In Model-based Fault Diagnosis, diagnosis is basically
performed from the comparison between a process model
and on-line process information. Since process information
is usually obtained by means of the sensors installed in
the process, it is important to develop methodologies to
place the correct set of sensors in the process in order to
guarantee some diagnosis specifications.

In this paper, diagnosis specifications are maximum de-
tectability and isolability for single systems faults, though
the method could be easily extended for single sensor
faults. Large-scale diagnosis models may consist of many
different types of descriptions, for example static/dynamic
linear equations, lookup tables, logic rules, non-linear
differential-algebraic equations, etc. One way to analyze
such a general class of models in a general framework
is to analyze the model structure. A structural model is
a coarse model description, based on a bi-partite graph,
that can be obtained early in the development process,
without major engineering efforts. This kind of models
are suitable to handle large scale systems since efficient
graph-based tools can be used and does not have numerical
problems. However, only best case results are obtained.
More information about structural modeling applied to
fault diagnosis can be found in Blanke et al. (2006).

Redundant sub-models are of central importance in diag-
nosis and there are several structural approaches to find
redundant sub-models suggested in the literature. The
name given to redundant sub-models depends on the ap-
proach, e.g. analytical redundancy relations, ARR (Travé-
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Massuyès et al., 2006), minimal structurally overdeter-
mined set, MSO (Krysander et al., 2008), testable sub-
system, TSS (Ploix et al., 2008) and minimal evaluation
chain, MEC (Pulido and Gonzalez, 2004). All these ap-
proaches have in common the fact that each redundant
sub-model has a complete matching in the variables set.
Some works (Blanke et al., 2006, Düştegör et al., 2006,
Yassine et al., 2008) use this matching to assign which
equation computes each internal unknown variable. This
concept is known, in Blanke et al. (2006) as a causal
interpretation of the computability. The result is a directed
bi-partite graph that shows how the internal values can be
computed from the equations (value propagation) in every
redundant sub-model.

Some other results devoted to sensor placement for diag-
nosis using graph tools can be found in Raghuraj et al.
(1999), Krysander and Frisk (2008), Commault et al.
(2008) and Rosich et al. (2007). All these works use a struc-
tural model-based approach and define different diagnosis
specifications to solve the sensor placement problem.

In this work, sensor placement problem for diagnosis
is solved in order to establish the set of sensors that
are needed to achieve fault detectability and isolability
when residuals are to be computed by means of a causal
computation sequence.

2. PROBLEM MOTIVATION

In a diagnosis system, consistency is checked by using a set
of redundant sub-models. All these sub-models have the
property of a complete matching in the unknown variables
plus an extra equation, the redundant equation, used for
checking consistency. An example of a redundant sub-
model is the set of equations (1) (y1 and y2 are known),
where a possible complete matching is {(e1, x1), (e2, x2)}
and the redundant equation would be e3.
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Fig. 1. Computation sequence.

e1 : x1 = h1(y1)
e2 : x2 = h2(x1, y2)
e3 : h3(x1, x2, y1) = 0

(1)

One way to obtain a residual from these sub-models, when
we handle non-linear equations, is to construct the com-
putation sequence (Blanke et al., 2006) which describes
how to compute the residual by convenient manipulation
of the set of the sub-model equations. Following with the
example, the matching is interpreted as e1 solves x1 and
e2 solves x2. Figure 1 shows the computation sequence for
the residual obtained from the redundant sub-model (1).

From this computation sequence, it is straightforward to
propagate the values to compute the residual:

r(y1, y2) = h3(h1(y1), h2(h1(y1), y2), y1) (2)

where,
{

r(y1, y2) ≃ 0 means that there is consistency
r(y1, y2) 6≃ 0 means that there is no consistency

(3)

Obtaining residuals in complex systems by forward prop-
agation of computed variables as in the example is an effi-
cient technique. Residuals that depend on submodels that
include loops, both algebraic and differential, and non-
invertible functions will be excluded. Then, no complex
solving tools will be needed. This will lead to a restricted
set of residuals.

To keep the simplicity of the approach and at the same
time reduce the restrictiveness, the class of submodels is
extended to also cover linear loops, since solving linear
equations is not a complex task. A consequence of this
extension is that existing structural methods for finding
submodels and computational sequences have to be mod-
ified.

Note that the rejected submodels could still be used
for diagnosis, but they would typically require complex
solving tools.

The objective is to derive an algorithm that computes
where to place sensors such that a required fault isolation
performance is reached using only residuals based on the
extended class of submodels.

Causal properties of the model have been considered in
other works on residual generation and sensor placement,
for example Travé-Massuyès et al. (2006), Blanke et al.
(2006), Yassine et al. (2008). The main contribution, com-
pared to these previous works, is that sensor placement
analysis is done with respect to a class of residual gener-
ators that are particularly easy to implement and where
causal properties of the model are taken into consideration.
Also, this is done without computing the complete set of
ARRs which is a complex task in most cases.

3. PRELIMINARY CONCEPTS

3.1 Causal structural model

Knowing when a redundant sub-model can be used to
generate a residual (using the computation sequence) re-
quires some properties in the sub-model equations. These
properties are related to how variables can be computed in
the equation. In non-linear equations, unknown variables
can not always be computed as a function of the others.
This leads to introduce Definition 1

Definition 1. (Causal variable). Let h(X) = 0 be an equa-
tion of the model. Variable xi ∈ X is causal in h, if xi

can be computed using h, assuming that the remaining
variables, X \xi, are known. We say that there is a causal
relation between xi and h.

From Definition 1 it holds that equation h can never be
used in the computation sequence to compute non-causal
variables. Furthermore, a given set of variables will be
computable as long as the following two conditions hold:

condition 1: there exists a complete matching with
causal variables

condition 2: there are no algebraic loops

The non-existence of algebraic loops is motivated by
the next small example. Consider the set of non-linear
equations (4), where x1 and x2 are unknown variables and
y1 and y2 are known variables.

e1 : h1(x1, x2, y1) = 0
e2 : h2(x1, x2, y2) = 0

(4)

Assume that x1 is a causal variable in e1 and x2 is a causal
variable in e2. This means that e1 and e2 can be rearranged
as e′1 : x1 = g1(x2, y1) and e′2 : x2 = g2(x1, y2). Then,
replacing variable x2 in the first equation, we obtain the
equation h1(x1, g2(x1, y2), y1) = 0, where x1 is not neces-
sarily a causal variable. This kind of structure is known as
an algebraic loop. There are several tools to compute un-
known variables in an algebraic loop (e.g., numeric solvers,
non-linear optimization), but the solution is not always
ensured and the computation cost can be large. In this
work, a conservative approach consisting in rejecting all
non-linear algebraic loops is adopted. Regarding linear al-
gebraic loops, and assuming that the linear coefficients are
algebraically independent, it is straightforward to know if a
solution exists and compute it. Therefore, linear algebraic
loops are accepted. Thus, it is important to know when a
set of variables are linear. This motivates Definition 2.

Definition 2. (Linear Variable). Let h(X) = 0 be an equa-
tion of the model. A set of variables Xi ⊆ X is linear in h
if h can be arranged as L(Xi)+g(X\Xi) = 0 and |Xi| > 1,
where L is a linear function. We say that there is a linear
relation between Xi and h.

Note that considering one single variable as a linear
variable in an equation does not make sense. Linear
relations are meant to be considered for identifying linear
algebraic loops, and one single variable never forms a loop.

Returning to the set of equations (4), assume now that x1

and x2 are linear variables in both equations. This means
that they can be arranged as e1 : L1,1(x1) + L1,2(x2) =
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Fig. 2. Causal computable structure

f1(y1) and e2 : L2,1(x1) + L2,2(x2) = f2(y2). Then, as
long as [L1,1L2,1]

′ and [L1,2L2,2]
′ are linearly independent,

unknown variables can be easily computed.

We will now formalize the structural model as a bipartite
graph G(M,X,A), where M = {. . . , ei, . . . } is the set of
model equations, X = {. . . , xj , . . . } the set of unknown
variables and A the set of edges, such that (ei, xj) ∈ A as
long as xj ∈ X appears in equation ei ∈ M . Information
on causal and linear relations can be well fitted in the
structural model by an equivalent class partition on the
set of edges A = AL ∪ A× ∪ A∆ where, according to the
previous definitions:

• AL is a subset of edges such that xj is a linear variable
in ei.

• A× is a subset of edges such that xj is a causal (but
not linear) variable in ei

• A∆ is the remaining subset of edges, where xj is a
non-causal variable in ei

In the biadjacency matrix, edges in AL are represented
by an “L” symbol, edges in A× are represented by a “×”
symbol and edges in A∆ are represented by a “∆” symbol.

3.2 Causal computability

Given a structural model, we need to know whether a
set of unknown variables can be computed when causal
and linear relations are considered. Let G(M,X,A) be a
structural model with A = {AL ∪ A× ∪ A∆}. First, for
the sake of simplicity, assume that there are no linear
relations, i.e. A = {A× ∪ A∆}. If there exists a complete
matching MX

G in X, such that MX
G ⊆ A× (i.e., condition 1

holds) and the well-constrained subgraph G′(∂MMX
G ,X)

has no strong component with more than one equation
(i.e., condition 2 holds), then the set of unknown variables,
X, can be computed using the computation sequence. Note
that ∂MMX

G denote the subset of equations in M incident
to edges in MX

G . This means that the equations set and the
variables set can be rearranged such that the biadjacency
matrix has a triangular form with a diagonal of “×”
symbols. Figure 2 shows this form where all unknown
variables can be evaluated.

Here, it is assumed that a set of variables can not be solved
in an algebraic loop (i.e., condition 2 holds), so any strong
component with more than one equation-variable pair is
rejected. Algorithm 1 searches for the set of variables that
can be computed as causal variables. This is iteratively
done by finding equations that only contain one causal

×
L

×
···

L L

L L
×

XX \ X

E

M \ E

Fig. 3. Causal and linear computable decomposition

variable (the diagonal matching) and then pruning the
graph, until no more equation-variable pairs can be found.

Algorithm 1 X = CausalVariable(G(M,X,A))

1: X′ = X; X = ∅;
2: while ∃e ∈ M : |varX′ (e)| = 1 ∧ {e, varX′ (e)} ∈ A× do

3: X′ = X′ \ varX′ (e);
4: X = X ∪ varX′ (e);
5: end while

Now, assume that linear relations are considered, i.e.
A = {AL∪A×∪A∆}. In section 3.1, it was assumed that a
subset of linear variables can be solved in an algebraic loop.
Therefore, the Dulmage-Mendelsohn decomposition can
be applied to determine the subset of linear computable
variables.

The Dulmage-Mendelsohn decomposition (Dulmage and
Mendelsohn, 1958) defines a partition on the set of equa-
tions and the set of variables. This partition consists in
the under-determined part, the just-determined part and
the over-determined part, which contains the redundant
equations.

The set of linear computable variables can be obtained by
means of Algorithm 2. First, the subset of equations (EL)
that only depend on linear variables (XL) is identified.
Next, applying the Dulmage-Mendelsohn decomposition
over G(EL,XL, AL), the set of linear computable vari-
ables, XL is obtained as those variables that are in the
just- and over-determined part. Note that this holds with
the assumption that the linear coefficients are algebraically
independent.

Algorithm 2 XL = LinearVariable(G(M,X,A))

1: EL = {e ∈ M : ∀x ∈ varX(e), {e, x} ∈ AL};
2: XL = varX(E0

L
) ∪ varX(E+

L
)

The diagonal matching presented in Figure 2 is now
improved, by taking into account the linear computable
variables set. The resulting structural decomposition is
shown in Figure 3 where the triangular form remains,
but now the strong components can take more than one
variable, since linear relations are allowed. Note that
the computable part is the subgraph G′(∂EMX

G ,X , A) ⊆
G(M,X,A). This decomposition is done by Algorithm 3,
which iteratively alternates algorithms 1 and 2, and finally
returns subgraph G(E ,X , A).

From the discussion above, it is clear that subgraph
G(E ,X , A) contains the computable part of the model.
Thus, all remaining equations, M \ E , are not useful
anymore, since they contain variables that can not be
computed, X \ X .
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Algorithm 3 {X , E} = ComputableSystem(G(M,X,A))

1: X = ∅;
2: repeat

3: X ′ = CausalVariable(G(M, X \ X , A));
4: X = X ∪ X ′;
5: XL = LinearVariable(G(M, X \ X , A));
6: X = X ∪ XL;
7: until X ′ ∪ XL = ∅
8: E = {e ∈ M : varX(e) ⊆ (X )}

Remark that extracting the computation sequence given
by subgraph G(E ,X , A), decomposed as in Figure 3, is
straightforward since now the matching-diagonal estab-
lishes a true interpretation of which equation solves each
variable.

4. STRUCTURAL DETECTABILITY AND
ISOLABILITY WITH CAUSAL RELATIONS

According to the decomposition in Figure 3, there is, at
least, one complete matching in G(E ,X , A): the diagonal.
This means that E− = ∅. Since the matching in Figure 3
is complete in X , it follows that the over-determined set
of equations E+ contains part of this diagonal matching,
so variables in E+ are computable. Now, fault diagnosis
analysis can be performed over the over-determined part
and the computation sequence can always be guaranteed
to generate residuals. For extended information on the
Dulmage-Mendelsohn decomposition applied to fault di-
agnosis see Krysander (2006).

In this work, faults are defined as a subset of equations,
F ⊆ M , since a relation between an equation and a fault
can be easily established (i.e., a signal fault that affects an
equation, or the assumption or support of an equation). In
order to simplify the following theoretic development, only
system faults will be considered (i.e., sensor faults will be
discarded).

4.1 Causal structural detectability

It is well known that the set of detectable faults can
be defined from the over-constrained part (Blanke et al.,
2006). Thus, given a set of faults F ⊆ M , they are struc-
turally detectable, when using the computation sequence,
if F ⊆ E+.

Algorithm 4 finds all detectable faults when the com-
putable sequence is taken into account. Their inputs are a
structural model G(M,X,A) and a set of faults, F ⊆ M .

Algorithm 4 Fd = CausalDetectability(G(M,X,A), F )

{X , E} = ComputableSystem(G(M, X, A));
Fd = E+ ∩ F ;

4.2 Causal structural isolability

Isolability analysis is based on detectability conditions.
According to Krysander and Frisk (2008), a fault fi ∈ F
is structurally isolable form fj ∈ F if fj is detectable in
sub-model M \ {fi}. This means that for each detectable
fault f ∈ Fd, there exist a set of isolable faults, Fi(f),
from f . Algorithm 5 computes the isolable fault set for
each detectable fault.

Algorithm 5 Fi = CausalIsolability(G(M,X,A), Fd)
1: for eachf ∈ Fd do

2: Mf = M \ {f};
3: Fi(f) = CausalDetectability(G(Mf , X, A), Fd);
4: end for

5. SENSOR PLACEMENT BASED ON CAUSAL
RELATIONS

Given a set of equations, the subset of unknown variables
that can be computed will depend on the set of installed
sensors (i.e., known variables).

The main idea is to perform the fault detectability and
isolability analysis with all sensors installed at once. Under
this setting, the detectable faults set and the isolable faults
set will rise an upper limit on the fault diagnosis specifica-
tions. Installing the same sensor more than once makes
neither detectable a non-detectable fault nor isolable a
non-isolable fault, except for sensor faults. Then, once
maximum fault diagnosis specifications are known, the set
with the minimum number of sensors that satisfies this
specifications is sought.

5.1 Maximum detectability and isolability specifications

Maximum detectability specification is ensured when all
candidate sensors are installed at least once. Therefore,
it is straightforward to select those faults that can be
detectable from those that can never be detectable, before
the sensor placement analysis.

The set of candidate sensors can be defined as a subset
of unknown variables, S ⊆ X. Each sensor has a cor-
responding sensor equation x = f(y), with y being a
measured variable. This equation has to be added to the
model whenever the corresponding sensor is selected for
installation. Note that adding this equation implies that x
is now a causal variable.

Maximum detectability specification is computed by Al-
gorithm 4 with all candidate sensors S installed once:
Fdmax

= CausalDetectability(G({M ∪ MS},X,A), F ).

There may be some useless sensors, that do not im-
prove system fault detectability. Their corresponding sen-
sor equations will not belong to the over-determined part
of the computable subsystem. The set of sensor equations
that are in the computable over-determined part is com-
puted as MSd

= E+
M∪MS

∩ MS . Thus, the new set of
candidate sensors, Sd ⊆ S, is now defined as all sensors
such that their corresponding sensor equation is in MSd

.
Therefore, there is no need to consider further sensors from
S \ Sd in the sensor placement analysis.

Now, maximum isolability specification is computed by
Algorithm 5, with just the new set of sensors Sd installed,
and for those system faults that are detectable Fd: Fimax

=
CausalIsolability(G({M ∪ MSd

},X,A), Fd).

5.2 Sensor placement algorithm

Once maximum detectability and isolability specifications
are known, Algorithm 6 searches for the minimal set of
sensors that satisfies them (i.e., Fdmax

and Fimax
).
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We have shown in section 5.1 that the algorithm will
terminate since the set of candidate sensors, Sd, is one
admissible set that fulfills the specifications.

Algorithm 6 Smin = CausalSensorPl(M,Sd,Fdmax
, Fimax

)

1: Smin = ∅; k = 0;
2: repeat

3: Sk = the minimal sensors set not previously tested from Sd;
4: Fd,k = CausalDetectability(G(M ∪ MSk

, X, A), Fdmax
);

5: if Fd,k = Fdmax
then

6: Fi,k = CausalIsolability(G(M ∪ MSk
, X, A), Fdmax

);
7: if Fi,k = Fimax then

8: Smin = Sk;
9: end if

10: end if

11: k = k + 1;
12: until Smin 6= ∅

6. CAUSAL COMPUTABLE MSO SETS

Finding redundant sub-models for diagnosis is an impor-
tant topic in the field of diagnosis based on structural mod-
els. In Section 1, several works devoted to find the whole
set of redundant sub-models given a structural model, were
already referenced. In Krysander et al. (2008) an algorithm
to compute all possible MSO sets is presented. An MSO set
is a subset of model equations that is minimal redundant
(i.e., no subset in an MSO set is redundant). However,
we are interested in those MSO sets which can be used
to compute a residual based on a computation sequence
(i.e., causal computable MSO sets). Obtaining the set of
all causal computable MSO sets resorts to choosing those
MSO sets that are causal computable from the whole set
of MSO sets.

One way to test whether a MSO set is causal computable
or not is by means of Algorithm 3. Given a MSO set M and
its corresponding graph G(M,X,A), Algorithm 3 returns
equation set E and computable variable set X . Then, the
MSO set is causal computable if M = E . Thus, the MSO
set has a causal matching as in Figure 2.

7. APPLICATION TO A COMPRESSOR FUEL CELL

Sensor placement analysis has been tested in a compres-
sor model used in a fuel cell stack system presented in
Pukrushpan et al. (2004). The model is given by the set of
equations (5).

e1 : R · i(t) + L
di(t)

dt
+ kv · ω(t) = v(t)

e2 : J
dω(t)

dt
= kp · i(t) − B · ω(t) − τcp(t)

e3 : Tcp(t) = Tamb +
Tamb

η(t)
(pr(t)

γ−1

γ − 1)

e4 : pr(t) =

{

0 if pcp(t)/pamb ≤ 0
pcp(t)/pamb if 0 < pcp(t)/pamb < 1000
1000 if pcp(t)/pamb ≥ 1000

e5 : η(t) = LookUpTable(W (t), pr(t))
e6 : W (t) = CompressorMap(pr(t), ω(t))

e7 : τcp(t) =
Cp

ω(t)

Tamb

η(t)
(pr(t)

γ−1

γ − 1)W (t)

(5)

The compressor model has two parts. The first part (e1

and e2) is an electric motor model to compute the two
dynamic states: compressor speed ω and motor current
i. No restriction in the causal computation of differential

Table 1. Structural compressor model

i ω τcp Tcp η pr pcp W v

e1 L L L
e2 L L L
e3 × × ×
e4 × ∆
e5 × ∆ ∆
e6 ∆ ∆ ×
e7 × × × × ×

states is assumed. Inputs for the electric motor are the
motor voltage v and the compressor torque τcp. The
second part (e3, e4, e5, e6 and e7) comprises an static
compressor map (e6) which determines the air flow rate
W , and thermodynamic equations (e3 and e7) used to
calculate the exit air temperature Tcp and the required
compressor torque τcp. A lookup table (e5) is used to
find the efficiency of the compressor η. The pressure ratio
across the compressor pr is calculated from the supply
manifold pressure pcp and bounded between 0-1000bar
(e4). The atmospheric temperature Tamb and pressure
pamb are assumed known and constant. Table 1 shows the
biadjacency matrix of the structural model G(M,X,A),
extracted from (5) following the guidelines in section 3.1.

System faults, f1, f2, f3 and f4 are related to the
consistency of equations e1, e2, e3 and e6, respectively,
i.e. F = {e1, e2, e3, e6}. Assume that there is no sen-
sor installed, so the set of measurable variables is S =
{i, ω, τ, Tcp, pcp,W, v}. The goal is to place the minimal
set of candidate sensors in order to obtain the maximum
detectability and isolability specifications among systems
faults.

First, maximum detectability and isolability analysis is
performed. The set of sensors equations, MS is added to
the structural model by adding rows in Table 1 with a
cross in the sensor variable column. For instance, motor
speed sensor equation can be written analytically as eω :
ω = h(ωmeasured), where eω ∈ MS . Then, the structural
representation of this equation is a single causal relation
between measured variable ω and sensor equation eω, and
this follows for each sensor equation in MS . Applying
Algorithms 4 and 5, it turns out that all faults are
detectable (i.e., Fdmax

= F ) and each fault is isolable from
all others (i.e., ∀f ∈ F, Fimax

(f) = F \ {f}). Furthermore,
there are no useless sensor which can be omitted in the
sensor placement analysis (i.e., Sd = S).

Next, the sensor placement for diagnosis is solved. Al-
gorithm 6 returns two possible solutions: Smin1

=
{i, τcp, Tcp, pcp, v} and Smin2

= {i, ωcp, Tcp, pcp, v}. If
causal relations were not taken into account, an opti-
mal configuration with fewer sensors would be found
({i, Tcp, pcp, v}), but some residuals would not be easily
computed.

Assuming that the set of sensors Smin1
is installed in the

system, 23 possible MSO sets are generated. Just 16 out
of those 23 MSO sets are causal computable, so they can
be used to compute the corresponding set of residuals
using the computation sequence. Some of these causal
computable MSO sets are given in (6).

Table 2 is deduced from the relation between faults and
system equations, and taking into account sensor equa-
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Table 2. Relation among MSO sets, system
faults and sensors

f1 f2 f3 f4 i τcp Tcp pcp v

MSO1 × × × × ×
MSO2 × × × × × ×
MSO3 × × × × × ×
MSO4 × × × × × × ×
MSO5 × × × × × ×

pcp

e4

pr

v
e2

i
e1

τcp

ω

e6

W

e5

η

e7

τ̂cp

+
−

r5

»

R + sL kv

kp −(B + sJ)

–

−1

v

τcp

i

ω

Fig. 4. Computation sequence from MSO5

tions in each causal computable MSO set. It shows whether
a fault affects the residual computed from a causal com-
putable MSO set and the set of sensors that is needed to
compute this residual.

MSO1 = {e2, e4, e5, e6, e7, eτcp
, epcp

}
MSO2 = {e2, e3, e4, e5, e7, ei, eτcp

, eTcp
, epcp

}
MSO3 = {e1, e4, e5, e6, e7, ei, eτcp

, epcp
, ev}

MSO4 = {e1, e3, e4, e5, e7, ei, eτcp
, eTcp

, epcp
, ev}

MSO5 = {e1, e2, e4, e5, e6, e7, eτcp
, epcp

, ev}

(6)

In Figure 4, the residual computation sequence corre-
sponding to MSO5 is presented. Similar computation se-
quences exist for each causal computable MSO set in (6).
Note that the computation sequence in Figure 4 involves a
linear algebraic loop among e1, e2, i and ω, as long as v and
τcp are known. In this computation sequence, equations
e1 and e2 should be replaced by the inverted matrix in
Figure 4, where all parameters are linear independent and
the equation is stable (i.e., a solution can be computed).

8. CONCLUSIONS

This paper has addressed the sensor placement problem
for model-based fault diagnosis systems. The novelty of
this approach is that causal and linear relations between
variables and equations are taken into account in order to
guarantee the computability of the set of residuals later
needed in the practical implementation of the diagnosis
system. Moreover, in this approach no residual or redun-
dancy relation is computed. An algorithm that returns the
computable subsystem of a given set of equations has been
introduced. Later, this algorithm has been applied to the
sensor placement problem producing an algorithm that re-
turns the minimal set of sensors that satisfy the maximum
system faults diagnosis specifications. All algorithms have
no hard computational complexity, except for Algorithm
6 in step 3.

In the near future, this methodology could be easily
adapted to address three possible extensions. Firstly, stat-

ing the optimal sensor placement, by introducing an instal-
lation cost for each sensor as in Rosich et al. (2007). This
would imply that step 3 in Algorithm 6 should be modified.
Secondly, allowing sensor faults, which have an special
interest since the sensor placement problem depends on
whether a sensor is present or not. Then, maximum de-
tectability and isolability specifications would depend on
the tested sensors set. Lastly, allowing redundant sensors
to measure the same variable. Note that the maximum
detectability and isolability specifications, involving sensor
faults, could then be ensured by installing all sensors twice.

REFERENCES

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki.
Diagnosis and Fault-Tolerant Control. Springer, 2nd
edition, 2006.

C. Commault, J. M. Dion, and S. Y. Agha. Structural
analysis for the sensor location problem in fault detec-
tion and isolation. Automatica, 44(8):2074–2080, aug
2008.

A. L. Dulmage and N. S. Mendelsohn. Covering of bi-
partite graph. Canada J. Math, 10:527–534, 1958.
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