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Abstract: Structural analysis is a standard tool to identify submodels that can be used to design
model based diagnostic tests. Structural approaches typically operate on models described by a
set of equations. This work extends such methods to be able to handle models with constraints,
e.g. inequality constraints on state variables. The objective is to improve isolability properties
of a diagnosis system by extending the class of redundancy relations. An algorithm is developed
that identifies which are the constraints and equations that can be used together to derive a
new test that can not be found using previous approaches.

1. INTRODUCTION

The task of detecting faults and isolating the faulty
component is an important topic in many applications.
In this paper, passive model based diagnosis systems are
considered, i.e. the diagnosis system passively uses the
observations to make a diagnostic decision based on a
formal model of the process under supervision. A common
architecture for such fault diagnosis systems is to have a
set of pre-compiled tests, or fault detectors, and then use
the results from the set of detectors in a fault isolation
logic unit to perform the isolation.

A main difficulty in the development of a diagnostic system
is to design the diagnostic tests. An approach that has
proven beneficial is to analyze the structure of the model
to identify, possibly small, submodels that can be used to
design tests. A test, based on the submodel, then checks if
the observations are consistent with the submodel. For this
task, there exists many proposed solutions, e.g. matching
procedures, observer designs, numerical solvers, and elim-
ination approaches. One advantage with using submodels
for the design of detectors is that only parts of the model,
not the complete model, need to be considered when de-
signing each test which may make the design simpler. Also,
fault isolation is made possible by considering different
and well selected submodels when designing each test.
Such submodels are called Minimal Structurally Overde-
termined sets of equations (MSO) Krysander et al. [2008],
or Analytical Redundancy Relations (ARR) Blanke et al.
[2003], or Minimal Evaluation Chain (MEC) Pulido and
Gonzalez [2004]. Here, the term MSO will be used.

The referred approaches above handle models that consist
of a set of relations, typically equations, and produce a
scalar residual where an alarm is generated if the residual
deviates significantly from zero. The main contribution of
this work is the extension of such approaches to handle
also cases where the model includes inequalities or more
general relations. This has the effect that the resulting test
may be a set membership expression.

The outline of the paper is as follows. Section 2 gives
some motivating examples and the proposed algorithm,
based on the structure of the model, is outlined in Sec-
tion 3. To formally motivate the approach, the solution
is analytically characterized in Section 4 and then the
analytical characterization is translated into a structural
characterization in Section 5. The key step in the algorithm
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Fig. 1. Coupled water tank system.

outlined in Section 3 is described in detail in Section 6. The
method is illustrated using a dynamic model of coupled
water tanks in Section 7.

2. MOTIVATING EXAMPLES

This section discusses the objectives of the paper using
two motivating examples. The first example focuses on the
problem formulation while the second is a smaller example
used to illustrate the theory used in the approach.

2.1 First example

The first example is the system with three coupled tanks
shown in Figure 1. Assume that available measurements
are the level x1 in tank 1 and the flow q1 between tank 1
and 2. The pump power u is also known. A normalized
first principles model of the system and observations is
then given by the following set of equations:

e1 :ẋ1 = −q1

e2 :ẋ2 = q1 − q2

e3 :ẋ3 = q2 − u

e4 :q1 = x1 − x2

e5 :q2 = x2 − x3

e6 :y1 = x1

e7 :y2 = q1

where xi are tank levels, qi flows, yi measurements and
u known control input. As mentioned in the introduction,
one approach to design tests for a given model is to first
analyze the structure of the model to identify submodels
that can be used for test design. The structure of the tank
system model is given in Figure 2.

The structural model shows which unknowns signals are
included in each equation. A minimal structurally overde-
termined (MSO) set of equations is a set with the property
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equation unknown X
E x1 x2 x3 q1 q2

e1 X X

e2 X X X

e3 X X

e4 X X X

e5 X X X

e6 X

e7 X

Fig. 2. Structural model of the tank system.

that there are more equations than unknown signals and
that no proper subset has the same property. Such sets
can be used to define diagnostic tests. By analyzing the
structural model, all MSO sets can be obtained and can
thus be used to define a set of tests Krysander et al.
[2008]. One way of transferring an MSO into a test is to
eliminate all unknown signals in the MSO set which results
in a single equation involving known signals only, which
can be used to check consistency of the submodel. In the
water tank system the MSO sets and their corresponding
redundancy relations are:

{e1, e6, e7} : ẏ1 + y2 = 0

{e2, e3, e4, e5, e6, e7} : ÿ1 + 2ẏ1 − ÿ2 − 3ẏ2 − y2 = 0

{e1, e2, e3, e4, e5, e6} : y
(3)
1 + 4ÿ1 + 3ẏ1 + u = 0

{e1, e2, e3, e4, e5, e7} : ÿ2 + 3ẏ2 + 3y2 − u = 0

These 4 tests give a certain isolability performance of the
diagnostic system. However, since the tanks are sealed we
know that the following constraints are always valid

c1 :x1 ∈ [0, h1]

c2 :x2 ∈ [0, h2]

c3 :x3 ∈ [0, h3]

where hi is the height of each tank. The main contribution
of this paper is to extend the structural analysis to
also include the inequality constraints in the diagnostic
analysis. This will make it possible to systematically find
more submodels that can be used for test construction
and therefore possibly increase the isolability performance
of the diagnostic system.

Now, using the model together with the constraints it is
possible to create new tests. For example, using the set
{e6, c1} we immediately obtain the redundancy relation
y1 ∈ [0, h1]. Another redundancy relation is y2 = x1 −
x2 ∈ [−h2, h1] where the set {e4, e7, c1, c2} was used to
create the test. The physical interpretation of this test
is that the largest flow in each direction occur when one
tank is full and the other is empty. Another example with
similar physical interpretation is

ẏ1 = ẋ1 = −q1 = x2 − x1 ∈ [−h1, h2] (1)

where the set {e1, e4, ė6, c1, c2} was used. This example
illustrates how differentiation of equations, in this case
of equation e6, can be combined with algebraic methods
to design tests. The example above also illustrates how
constraints can be included both in the system model and
in the test. We will return to this example in Section 7.

2.2 Second example

The first example illustrates what type of problems the
suggested approach can handle. A second example will now
be discussed that consists of a small, static model where
the main objective is to illustrate principles that can be
used in the development of the algorithm in Sections 4
and 5. Thus, consider the model

x2
1 + x2

2 = 1 (2)

y1 = x1 (3)

y2 = x1 + x2 (4)

where y1 and y2 are known measurements and xi are
unknown variables. This set of equations is an MSO set
with three equations and two unknowns. It is therefore
possible to design a test by eliminating the unknowns to
obtain a single equation

y2
1 + (y2 − y1)

2 = 1 (5)
which only includes known signals and can directly be used
to form a test

|y2
1 + (y2 − y1)

2 − 1| > J (6)
for some positive threshold J .

For a system of linear equations it is necessary that the set
of equations is overdetermined to be able to define a test.
However, in the example above the equation (2) is a non-
linear constraint and this fact opens up possibilities to use
smaller sets of equations to construct tests. For example,
(2) and (4) imply that

y2
2 = 2 − (x1 − x2)

2 ≤ 2 (7)
and based on this inequality, the following test can be
constructed

y2
2 − 2 > J (8)

It is easy to see that (8) implies (6) while the converse
implication is not valid. Hence, test (8) has weaker de-
tectability properties than (6) and for detectability pur-
poses it is no gain in introducing (8). But, as we will
show, (8) contributes to fault isolation performance. To see
this, consider faults in the two sensors. Test (6) is sensitive
to both these faults but cannot isolate one faulty sensor.
Test (8) on the other hand is only sensitive to fault in
sensor y2 which makes it possible to isolate fault in sensor
y2 from fault in sensor y1.

A test consists of an expression involving only known
variables which means that elimination of unknown vari-
ables is a key step when deriving a test. To derive tests,
consisting of an equality constraint like in (5), classical
elimination theory can be used. Elimination is direct for
linear systems and for non-linear systems Gröbner basis
theory Cox et al. [1991] is a standard tool for performing
elimination. To incorporate tests in the form (8) in the
framework, the class of redundancy relations has to be
extended to include inequalities as well. Considering this
extended class of redundancy relations, one method to
perform elimination is quantifier elimination theory Arnon
[1988], Jirstrand [1997].

2.3 Problem formulation

To summarize the discussion above we conclude that it
is beneficial for fault isolation purposes to include redun-
dancy relations formulated as inequalities. Using small
subsets of model equations is a standard tool Krysander
et al. [2008], Blanke et al. [2003], Pulido and Gonzalez
[2004] to obtain equality relations. These works do not
cover models with inequalities or the case with inequality
redundancy relations that allows for even smaller subset
of model equations to be used for deriving tests. The
main objective, which is formally treated in the following
sections, is to find all subsets of model equations that can
be used to derive tests using this extended framework.

3. APPROACH OUTLINE

In the previous section we found how inequality relations
can be used to construct a test that increases the isolability

385



performance. This section will formalize a procedure how
to derive such relations in a systematic way. First static
models are considered and the model (2)–(4) will be
used to illustrate the proposed procedure. The section is
concluded with a general algorithm.

In the approach, the model is partitioned into a set of
linear equations E and a set of non-linear constraints
and inequalities. The objective is then to determine which
subsets of the linear equations E and the non-linear con-
straints that can be used to design a test. It is assumed
that tests derived from submodels with only linear con-
straints are found with some of the standard methods de-
scribed in the introduction. These tests are not considered
in this work.

Now, the example in Section 2.2 will be used to illustrate
how all useful tests can be found in a systematic way. To
proceed, let M0 denote the set of consistent values of the
unknown variables in the non-linear constraint, i.e.

M0 = {(x1, x2) : x2
1 + x2

2 = 1} (9)
In general, the set is parametrized by the known signals
denoted by z if these are included in the non-linear
relations. Given a set M0, the next step is to find subsets
E′ of the set of linear equations

E0 = {y1 = x1, y2 = x1 + x2} (10)

such that M0 and E′ can be used to construct a test. In the
second motivating example, two sets of linear equations
were used, E′ = E0 and E′ = {y2 = x1 + x2} to construct
tests (6) and (8).

The first subset, {y1 = x1, y2 = x1 + x2}, defines a
point in R

2 and the second, {y2 = x1 + x2}, defines a
line. In general, a subset of linear equations defines an
affine subspace, depending on the known variables z. The
geometrical interpretation of the test is to decide whether
the affine subspace intersects the set M0 or not.

In addition to the two tests above, one more useful test can
be derived from the model in the example. By eliminating
the x2-variable in M0, the set

M1
0 = {(x1) : ∃x2 (x1, x2) ∈ M0} = {(x1) : x2

1 ≤ 1}

is obtained. Since M1
0 is a proper subset of R, it may be

used to design tests. Now M1
0 is used in the same way as

M0 and the set E′ = {y1 = x1} can be used together with
M1

0 to obtain the relation

y2
1 ≤ 1 (11)

which also can be used as a test. If, instead of x2, the
x1-variable is eliminated, the set

M2
0 = {(x2) : ∃x1 (x1, x2) ∈ M0} = {(x2) : x2

2 ≤ 1}

is obtained. The only set E′ that together with M2
0

provides redundancy is E′ = {y1 = x1, y2 = x1 + x2}.
The corresponding test is (y2 − y1)

2 ≤ 1.

This test is sensitive to the same faults as redundancy
relation (5), but has weaker detectability properties, and
does therefore not contribute neither to fault detectability
nor to fault isolability. This test should therefore be
omitted and a characterizing property, which can be used
to efficiently exclude this test, is that the variable x2 was
eliminated in both the linear equations E′ and the original
constraint M0. Line 9 in the algorithm below performs this
operation.

It has been shown how all tests can be found in a
systematic way for the small example. Now we will show
how to formulate a procedure for a general model with a
set of constraints Mi, i ∈ I, and a set of linear equations
E0.

The tests in the examples were derived by considering dif-
ferent subsets of constraints and variables. The procedure
is generalized as follows. First a subset of the constraints
Mi, i ∈ I ′ ⊂ I is chosen, which defines a constraint M′

with variables X ′. For example, in Section 2.1 the set
M′ = {(x1, x2) : x1 ∈ [0, h1], x2 ∈ [0, h2]} was used to
derive the test y2 ∈ [−h2, h1]. For each such constraint
M′, it is possible to derive tests by considering different
subsets X1 of the variables X ′. For example test (11) was
derived considering the set X1 = {x1}. For each combina-
tion of subsets of constraints and variables, a constraint is
obtained and denoted by M. For each such constraint, we
then compute the set of all subsets of the linear equations
E that can be used to create a test. This set will be denoted
by M-TestSet(M, E) and the corresponding algorithm is
defined in Section 6. The algorithm is outlined in the
pseudo-code below and the algorithm output TS is used
together with analytical elimination tools to derive tests.

1 function TS=TestSet({Mi}i∈I ,E0)
2 TS = ∅
3 for each I ′ ⊆ I
4 X ′ = ∪i∈I′var(Mi)
5 M′ = ∩i∈I′Mi

6 for each X1 ⊆ X ′

7 Xe = X ′ \ X1

8 M = {X1 : ∃Xe.(X1, Xe) ∈ M′(z)}
9 E = {e ∈ E0 : var(e) ∩ Xe = ∅}

10 TS = TS
11 ∪ {< M, E′ >: E′ ⊆ E ∧ E′ ∈ M-TestSet(M, E)}
12 end

13 end

14 TS=Remove non−minimal(TS);

The set var(Mi) is the set of variables that Mi is
defined on. The intersection operation in line 5 should
be interpreted as the set of all X ′ such that the subset
var(Mi) ⊂ X ′ belong to Mi for all i ∈ I ′. The minimality
condition used in the last line is defined in Section 4.2.

In the sections that follow, the approach will be developed.
First an analytical specification of the elements in the
set M-TestSet(M, E) is presented. Since the objective
is to develop an algorithm using structural models, the
analytical specification is translated into a set of structural
conditions. Using these conditions, an algorithm is given
in Section 6.

4. ANALYTICAL CHARACTERIZATION

To analytically characterize the set M-TestSet(M, E) we
need to introduce some notations. Let z denote a vector
that contains all known variables and let the constraint be
defined by (x11, . . . , x1n) ∈ M(z) where M(z) is a subset
of R

n for every z. The set of linear equations is denoted
by E = {e1, . . . , em} and can be written in the form

E : A(z)X = b(z)

The set of unknowns in the linear equations is parti-
tioned as X ∈ R

N , N ≥ n, X = (X1, X2) where X1 =
(x11, . . . , x1n) is the set of variables used to define the con-
straint above, and X2 = (x21, . . . , x2m) are the remaining
variables.

4.1 Analytical conditions

Given a constraint set M and the set of linear equations E,
the task is now to find a subset E′ : A′(z)X = b′(z) of the
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linear equations, that together with the constraint set can
be used to construct a test. The first step in the analysis
is to specify which analytical properties the sought set E′

must have.

Since it was assumed in Section 3 that all tests derived
using only the linear equations are treated separately, a
first condition is that the set of linear equations

E′ : A′(z)X = b′(z)

is consistent for any right-hand side b(z), i.e. matrix A′(z)
has full row rank.

Solutions to the linear equations E′ can be used to define
the affine subspace of R

n:

L = {X1 : ∃X2, A
′(z)X = b′(z)} (12)

To test inconsistency between E′ and M is then equivalent
to check if L ∩ M is empty. A necessary requirement on
E′ is then that L is a proper subset of R

n, i.e. dimL < n.

If a proper subset of E′ defines the same affine subspace
L as E′, then E′ does not contribute to the performance
and should be omitted. Thus, a condition is that no proper
subset of E′ defines the same affine subspace L.

The last condition is that the set L can not be represented
as

L = {(x11, . . . , x1n) :

(x11, . . . , x1(j−1), x1(j+1), . . . , x1n) ∈ L∗, xj ∈ R} (13)

for some j and affine subspace L∗ ⊂ R
n−1. If a set in

this form can be used to construct a test, then it will
be found when the set of variables X1, in the for-loop
starting on line 6 in the algorithm, is some subset of
the variables {x11, . . . , x1(j−1), x1(j+1), . . . , x1n}. All sets
in this form are therefore excluded to avoid that the same
test is found more than once. To illustrate this, using the
example above, consider the case where X1 = {x1, x2}
and M = {(x1, x2) : x2

1 + x2
2 = 1}. Then the affine space

L = {(x1, x2) : y1 = x1} can be used to construct the
test y2

1 ≤ 1. In this case, L can be written in the form
(13) with L∗ = {(x1) : y1 = x1} and the same test can be
obtained using the set of variables X1 = {x1} and the sets
M = {(x1) : x2

1 ≤ 1} and L = {(x1) : y1 = x1}.

To summarize the discussion above, the set E′ : A′(z)X =
b′(z) should fulfill the following conditions:

a) The matrix A′(z) has full row rank.
b) The set L is an affine subspace of R

n of dimension
less than n.

c) No proper subset of E′ defines the same affine sub-
space L.

d) The affine subspace L, defined by E′, can not be
represented as in (13).

The conditions above will be used to exclude sets of linear
equations that either can not be used to form a test or
that give a test found in another step in the algorithm.
However, the conditions do not guarantee that the set will
give a test. For example, the set M = {(x1, x2) : x1 = x3

2}
has a non-empty intersection with any line in the plane
and hence L can not be one-dimensional. Sets of this type
will be excluded in the final stage of the approach where
the analytical elimination is performed.

4.2 Minimality

In the example in Section 2.1, the set S = {e4, e6, e7, c1, c2}
fulfills the constraints a)-d) above and gives to the test

(y1, y2) 6∈ {(y1, y2) : y1 ∈ [0, h1], y1 − y2 ∈ [0, h2]}

b−

b0

b+

E−

E0

E+

Fig. 3. The Dulmage-Mendelsohn decomposition.

The condition y1 ∈ [0, h1] can be derived from the set S1 =
{e6, c1} and y1 − y2 ∈ [0, h2] from S2 = {e4, e6, e7, c2}.
The sets S1 and S2 also satisfy the the constraints a)-
d) and will thus be found by the algorithm. Further,
the set S does not provide any additional detectability
or isolability properties and should therefore be omitted.
We will therefore exclude sets where a proper subset
also fulfills conditions a)-d) and this is done by the
function Remove_non-minimal used in function TestSet

in Section 3.

5. STRUCTURAL CHARACTERIZATION

The objective of this section is to translate the analytical
characterization from the previous section into a corre-
sponding structural characterization. First, basic tools and
notations from structural analysis are presented and then
the structural characterization is given.

5.1 Theoretical background

Redundancy is a key property for models used in diagnosis.
For a set of equations E, the structural redundancy is
defined as

ϕ(E) = |E| − |var(E)|
where var(E) is the set of unknown variables in the set of
equations. A set of equations with positive redundancy has
more equations than unknown variables, and is therefore
called structurally overdetermined. By permuting rows
and columns of the incidence matrix of the model one
can obtain the Dulmage-Mendelsohn decomposition which
partitions the set of model equations into three parts;
an underdetermined part E−, a justdetermined part E0,
and an overdetermined part E+. This decomposition is
illustrated in Figure 3 where the shaded parts correspond
to non-zero elements. The overdetermined part of the
model is the set of equations that contain redundancy and
therefore is useful for diagnosis. A set of equations with the
property E+ = E is called a proper structurally overde-
termined (PSO) set. The MSO sets defined in Section 2.1
are PSO sets with redundancy ϕ(E) = 1. The following
characterization of a PSO set will be useful.
Lemma 1. A PSO set is a set of equations E such that
ϕ(E) is positive and ϕ(E′) < ϕ(E) for all proper subsets
E′.

This result follows from the Dulmage-Mendelsohn decom-
position, see e.g. Murota [2000].

5.2 Structural Conditions

The translation of the analytical conditions in Section 4
into corresponding structural conditions is given by the
following result.
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Theorem 2. Assume that E′ : A′(z)X = b′(z) where A′ is
a generic matrix. Then conditions a)–d) in Section 4 are
equivalent to the conditions:

ϕ(E′′) ≤ 0 for all E′′ ⊂ E′ (14a)

1 − n ≤ ϕ(E′) ≤ 0 (14b)

|E′′| − |var(E′′) ∩ X2| < |E′| − |var(E′) ∩ X2|

for all proper subsets E′′ of E′ (14c)

X1 ⊂ var(E′) (14d)

Proof. First we show that the conditions a)–d) imply
(14a)– (14d). Condition a) implies (14a), since A′ can not
have full row rank if there is a subset of equations with
more equations than unknowns.

For a fixed X1, the condition X1 ∈ L is equivalent to that
system

A′
2X2 = b′ − A′

1X1 (15)

is consistent, where we used the partition A′ = (A′
1, A

′
2)

and consider X2-variables as unknown variables. Condition
b) implies that L is a proper subset of R

n. This means
that (15) can not be consistent for all X1 and that the
system therefore is overdetermined with respect to X2.
The assumption that A′ is generic implies that A′

2 has a
structurally overdetermined part. Furthermore, it is only
this overdetermined part of the system that is used to
determine if the system is consistent, and also defines L,
and it then follows from condition c) that the set E′ has to
be a PSO set with respect to the X2-variables. Condition
(14c) now follows from Lemma 1.

Since E′ is a PSO with respect to the X2-variables, the
non-zero columns in A′

2 are linearly independent. It is then
straightforward to show that dimL = dim kerA′ and then
the full row-rank assumption on A′ gives that

dimL = dimkerA′ = |X | − |E′| = −ϕ(E′) (16)

Now (14b) follows directly from condition b). Finally (14d)
follows from condition d).

Now we shall show the reverse implications, i.e. that (14a)
to (14d) imply condition a) to d). First, condition (14a)
means that E′ has no overdetermined part. For a generic
matrix, this is equivalent to that A′ has full row rank, i.e.
that condition a) is fulfilled.

Furthermore, it follows from (14c) that the set E′ is a PSO
set with respect to the X2-variables. This implies that the
non-zero columns in A′

2 are linearly independent and then
(16) holds. This, together with (14b) implies condition b).

Consider now E′′ = E′ \ {e} for any e ∈ E′ which is a
proper subset of E′. Let A′′

1 , A′′
2 , and b′′ be the corre-

sponding model matrices in E′′. Since E′ is a PSO with
respect to the X2 variables, it follows that A′

2 has no under
determined or exactly determined parts. This implies that
A′′

2 has no under determined parts and therefore the non-
zero columns in A′′

2 are linearly independent. As above,
this implies that the affine subspace defined by

{X1 : ∃X2, A
′′(z)X = b′′(z)} (17)

has the same dimension as kerA′′ which is equal to
dimkerA′ − 1. Thus, L is a proper subset of the subspace
(17) which implies condition c).

Finally, we show d) by contradiction. Thus, assume that L
can be represented as in (13) and let c be the j:th column
in A′

1. Then it holds that c ∈ Im A′
2 and it follows from

(14d) that c 6= 0. This implies that [A′
2 c] has a non-empty

null space and a consequence is then that [A′
2 c] has an

under determined part. This implies that A′
2 has a non-

empty exactly determined part which contradicts (14c).
Hence, condition d) must be true and this completes the
proof. �

6. STRUCTURAL ALGORITHM

Now, a structural algorithm is derived that finds all
minimal sets of equations that fulfill the conditions (14a)
to (14d). The result is an algorithm that computes the set
M-TestSet introduced in Section 3.

The method is based on the approach in Krysander et al.
[2008] where an efficient method is developed to find all
MSO sets in a structural model. The algorithm is a top-
down approach that traverses all PSO sets in the model
and it is therefore straightforward to modify the MSO
algorithm to find all PSO sets with a specified redundancy.

6.1 Reformulation of the problem

The objective is now to transfer the problem of finding
sets that fulfills the conditions in Theorem 2 to a problem
where the PSO algorithm can be used. This can be done
in the following way. First introduce the fictitious set of
equations

EM = {eM1, . . . , eMn}
with the diagonal structure

var(eMi) = {x1i}

Now consider the structure model of the set Ẽ = E′∪EM.
The key result that links the conditions in Theorem 2 to
the PSO algorithm is the following:

Theorem 3. The set E′ fulfills the structural characteriza-
tion (14a)– (14d) if and only if and Ẽ fulfills the conditions:

ϕ(E′′) ≤ 0 for all E′′ ⊂ E′ (18a)

1 ≤ ϕ(Ẽ) ≤ n (18b)

Ẽ is PSO set (18c)

Proof. First, we note that (14a) and (18a) are identical.
Assume now that that E′ fulfills (14b)– (14d). Then

var(Ẽ) = var(E′) and

ϕ(Ẽ) = |Ẽ| − |var(Ẽ)| = |E′|+ n− |var(E′)| = ϕ(E′) + n

and (18b) follows from (14b).

Now, we show that Ẽ is a PSO set. Assume that Ẽ′′ = E′′∪
E′′

M
is proper subset of Ẽ, where E′′ ⊂ E′ and E′′

M
⊂ EM.

First, consider the case where E′′
M

is a proper subset of
EM and E′′ is not a proper subset of E′. Then (14d) gives

that X1 ⊂ var(Ẽ′′) = var(Ẽ) and it follows that

ϕ(Ẽ′′) < ϕ(Ẽ)

Now, assume that E′′ is a proper subset of E′. It then
follows from (14c) and |E′

M
| = |X1| that

ϕ(Ẽ′′) =|E′′| + |E′′
M| − |var(E′′ ∪ E′′

M)|

=|E′′
M| − |var(E′′ ∪ E′′

M) ∩ X1|

+ |E′′| − |var(E′′ ∪ E′′
M) ∩ X2|

Observe that

|E′′
M| − |var(E′′ ∪ E′′

M) ∩ X1| ≤ |E′′
M| − |var(E′′

M)| = 0

and that

|E′′| − |var(E′′ ∪ E′′
M) ∩ X2| = |E′′| − |var(E′′) ∩ X2|

< |E′| − |var(E′) ∩ X2| = |Ẽ| − |var(Ẽ)| = ϕ(Ẽ)
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where the inequality is due to (14c). Hence ϕ(Ẽ′′) < ϕ(Ẽ)

for all proper subsets E′′ of E′ and it follows that Ẽ is a
PSO set. We have shown that Ẽ fulfills (18b) and (18c).

Now we show the reverse implication and assume that
Ẽ = E′ ∪ EM fulfills (18b) and (18c). First we show
(14d) by contradiction. Assume that var(E′) ∩ X1 = X ′

1
is a proper subset of X1 and let E′

M
be the corresponding

diagonal structure with var(E′
M

) = X ′
1. Observe that

|E′
M| = |var(E′

M ∪ E′) ∩ X1| = |X ′
1|

|EM| = |var(EM ∪ E′) ∩ X1| = |X1|

It then holds that

ϕ(E′
M ∪ E′) =|E′

M| − |var(E′
M ∪ E′) ∩ X1|

+ |E′| − |var(E′
M ∪ E′) ∩ X2|

=|EM| − |var(EM ∪ E′) ∩ X1|

+ |E′| − |var(EM ∪ E′) ∩ X2|

=ϕ(EM ∪ E′) = ϕ(Ẽ)

which contradicts that Ẽ is a PSO set.

Furthermore, condition (14d) implies that var(E′∪EM) =
var(E′) and then

ϕ(Ẽ) = |E′| + |EM| − |var(E′ ∪ EM)| = ϕ(E′) + n

and condition (14b) now follows directly from (18b).

Finally, we show inequality (14c) by contradiction. Assume
that

|E′′| − |var(E′′) ∩ X2| ≥ |E′| − |var(E′) ∩ X2|

for some proper subset E′′. Let Ẽ′′ = EM ∪ E′′, which is
a proper subset of Ẽ. By using the assumption we get

ϕ(Ẽ′′) =|EM| + |E′′| − |var(EM ∪ E′′)|

=|EM| − |X1| + |E′′| − |var(E′′) ∩ X2|

≥|EM| − |X1| + |E′| − |var(E′) ∩ X2| = ϕ(Ẽ)

which contradicts that Ẽ is a PSO set, i.e. condition (18c).
�

6.2 Algorithm to compute M-TestSet

To compute the previously defined set M-TestSet(M, E),
we shall use a modified version FindPSO(E, F, n) of the
MSO algorithm in Krysander et al. [2008]. The algorithm
computes all PSO sets E′ ⊂ E that fulfill the additional
conditions F ⊂ E′ and ϕ(E′) ≤ n. All sets that fulfill
the conditions (18b) and (18c) are found by the algorithm
FindPSO(E, var(M), |var(M)|). After that, the sets that
do not fulfill condition (18a) are removed and this is
equivalent to removing sets where E+ 6= ∅. The sets that
remains is the set M-TestSet(M, E).

7. APPLICATION OF THE METHOD ON A
DYNAMIC MODEL

Now we return to the dynamic example introduced in
Section 2.1. The algorithm was initially developed to
handle static problems. For example, the test (1) can not
be derived without considering the dynamical behavior of
the system. Now it will be shown how the algorithm also
can be used to analyze dynamic models.

The dynamical problem is transferred to a static prob-
lem by considering unknown signals and differentiated

unknown signals as separate independent signals. By dif-
ferentiating equations, new useful relations are obtained.
For example, by differentiating the static equations e4, e5,
e6, e7 in the tank model we obtain the set of equations
{e1, e2, e3, e4, e5, e6, e7, ė4, ė5, ė6, ė7}. The structural model
for this set is shown in Figure 4.

equation unknown X

E x1 x2 x3 q1 q2 ẋ1 ẋ2 ẋ3 q̇1 q̇2

e1 X X

e2 X X X

e3 X X

e4 X X X

e5 X X X

e6 X

e7 X

ė4 X X X

ė5 X X X

ė6 X

ė7 X

Fig. 4. Structural description of the differentiated model.

Running the algorithm on this structural model, to-
gether with constraints c1, c2, c3, 18 sets are found.
Some tests are obvious, like the tests presented in Sec-
tion 2.1, but others are more complex, for example the set
{e2, e4, e5, e6, ė4, ė6, ė7, c2, c3} for which the test ẏ1 − ẏ2 −
y1 ∈ [−2h2, h3] can be derived.

8. CONCLUSIONS

Structural analysis has been proven to be a useful tool
when deriving analytical redundancy relations for fault
diagnosis. This work extends structural analysis to in-
clude models with more general relations, for example
inequality constraints on state variables. By considering
this extended class of models, and also extending the class
of redundancy relations, better fault isolation performance
can be obtained.

Key results of the paper are an analytical and a struc-
tural characterization of sets of equations and constraints
that can be used to derive tests. An algorithm has been
developed that finds all submodels that fulfill the struc-
tural characterization. The method is demonstrated on a
differential-algebraic model.
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