
Minimal Structurally Overdetermined sets for
residual generation:

A comparison of alternative approaches

Armengol, J. ∗ Bregon, A. ∗∗ Escobet, T. ∗∗∗ Gelso, E. ∗
Krysander, M. ∗∗∗∗ Nyberg, M. ∗∗∗∗ Olive, X. † Pulido, B. ∗∗

Travé-Massuyès, L. ‡

∗ IIiA, Universitat de Girona, Spain; ({joaquim.armengol,esteban.gelso}@udg.edu)
∗∗ GSI, Universidad de Valladolid, Spain; ({anibal,belar}@infor.uva.es)

∗∗∗ SAC, Universitat Politècnica de Catalunya, Spain; (teresa.escobet@upc.edu)
∗∗∗∗ Dept. of Electrical Engineering, Linköpings universitet, Sweden;

({matkr,matny}@isy.liu.se)
† Thalès Alenia Space France; (Xavier.Olive@thalesaleniaspace.com)

‡ LAAS-CNRS, Université de Toulouse, France; (louise@laas.fr)

Abstract: The issue of residual generation using structural analysis has been studied by several authors.
Structural analysis does not permit to generate the analytical expressions of residuals since the model
of the system is abstracted by its structure. However, it determines the set of constraints from which
residuals can be generated and it provides the computation sequence to be used. This paper presents and
compares four recently proposed algorithms that solve this problem.

1. INTRODUCTION

Fault detection and diagnosis aims at exhibiting and identi-
fying faulty situations for partially observed systems. In the
continuous model based approaches, the subsets of model equa-
tions/constraints that underly discrepancies play a fundamen-
tal role. In FDI approaches these subsets are the source for
residuals, which can be computed following the parity space
approach (building testable relations) or the observer approach
Blanke and Lorentzen [2006]. Testable relations are computed
off-line and can be checked on-line against the observations as
they represent redundancies. This is why they are also called
Analytical Redundancy Relations (ARR) Staroswiecki [2002].
In the DX logical diagnosis theory Reiter [1987], the supports
of these relations, i.e. the behavioral hypotheses, are known as
conflicts. It has been shown that ARR supports correspond to
potential conflicts Cordier et al. [2004], Nyberg and Krysander
[2003], Pulido and Alonso-González [2004], i.e. generating
ARRs and their supports can be seen as the compilation of
potential conflicts.

Thus, these subsets of equations can be characterized as the
overdetermined (or over-constrained) sets, i.e. those that con-
tain more equations than unknown variables. Among them,
the minimal overdetermined sets have been shown to be the
necessary and sufficient ones to construct a residual.

Since finding minimal overdetermined sets is the core of many
approaches to finding testable relations, or the complete set of
minimal ARRs, it is important to analyze and compare differ-
ent solutions to this problem. This work aims at presenting
and comparing four alternative structural approaches that de-
termine the Minimal Structurally Overdetermined (MSO) sets
Krysander et al. [2008], Gelso et al. [2008], or the structure of
the minimal ARRs, also called Structural ARRs (SARRs) Pulido
and Alonso-González [2004], Travé-Massuyès et al. [2006].
The properties of the algorithms analyzed and compared are

the correctness of the solution provided, and the computational
complexity. One further contribution is a unifying framework
in which the four algorithms are presented and compared.

The paper is organized as follows. Section 2 defines a set of
terms used through the paper. Then, section 3 compares the
four algorithms principles from a theoretical point of view. Af-
terwards, section 4 presents a brief description of the four algo-
rithms, and section 5 analyses their computational complexity.
Next section introduces the CHEM benchmark, which is used
as a case study, and presents the results of the four algorithms.
Section 7 deals with related work and section 8 concludes the
paper.

2. MAIN CONCEPTS

Let the system description SD consist of a set of n equations
involving a set of variables, and associated to each equation,
a support. The set of variables is partitioned into a set Z of
nZ known variables and a set X of nX unknown variables.
The known variables Z are typically system inputs and outputs,
and the unknown variables X are system internal variables,
unknown inputs, or disturbances. We do refer to the vector of
known variables z and the vector of unknown variables x. The
equations are assumed to be differential or algebraic equations
in z and x. The supports are described later on.

We consider a model, denoted M(z, x) or M for short, to be
any set of equations in knowns z and unknowns x. The total set
of equations included in the system description SD is denoted
MSD.

MSO sets can be defined as follows:
Definition 1. (Structurally Overdetermined). A set M ⊆ MSD

of equations is structurally overdetermined (SO) if M has more
equations than unknowns.
Definition 2. (Minimal Structurally Overdetermined). A Mini-
mal Structurally Overdetermined (MSO) set is a structurally

overdetermined set whose no proper subset is structurally
overdetermined.

We say that a model M(z, x) is consistent with a given trajec-
tory of z, or for short, consistent with z, if there is a trajectory
of x such that the equations M(z, x) are fulfilled.

Definition 3. (ARR for M(z, x)). Let M(z, x) be a model,
then an equation r(z, ż, z̈, . . .) = 0 is an ARR for M(z, x) if
for each z consistent with the model M(z, x), the equation is
fulfilled.

Definition 4. (Residual Generator for M(z, x)). A system tak-
ing a subset of the variables z as input, and generating a
scalar signal r as output, is a residual generator for the model
M(z, x), if for all z consistent with M(z, x), it holds that
limt→∞ r(t) = 0.

To each equation e ∈ MSD there is a corresponding support
denoted by supp(e). If the support of an equation is valid, then
the equation is assumed to be valid. We can write this as

supp(e) → e

In this work, we represent the support by the predicate OK(C),
meaning that the equation is valid if component C is fault free.
If there are fault modes, the same predicate type of notation can
be used.

Definition 5. (Model Support). The support of a model M is
defined as

supp(M) = ∧e∈M supp(e)
Definition 6. (Residual Support). If r(t) is a residual computed
by a residual generator for the model M(z, x)⊆ MSD(z, x),
then

supp(r(t)) = supp(M)
is the residual support of r(t).

The support of an ARR can be defined in a similar way. Given
the above definitions, the support of a residual/ARR is uniquely
defined from the set of equations that are involved. This set
of equations is called the equation support. If not ambiguous,
support and the notation supp(.) are indifferently used for
support or equation support. These definitions also hold in a
structural framework.

The structure of a model M can be represented by the bipartite
graph G(M, X ∪ Z) (or equivalently its biadjacency matrix).
There is an edge between an equation e i ∈ M and a variable
vi ∈ X ∪ Z if vi, or any time derivative of vi, is involved in
ei

1 . A 0 in position (ei, vj) indicates that equation ei does not
contain variable vj , and a 1 that equation ei contains variable
vj . The vector of components (ei, vj), j = 1, . . . , nX + nZ , is
referred as the structure of equation e i, also called a structural
equation. An SARR is defined as the structure of an ARR.

Model equations can be interpreted in a causal way and may
have several causal interpretations, each pointing at one of
the involved variables that can be always computed given the
values of all the other variables involved. This information,
which is used by two of the presented algorithms, can be
accounted for in the structural model.

A minimal SARR is obtained from an MSO set by eliminating
the unknown variables and combining the equations structure
accordingly. This requires the equations of the MSO set to have

1 Other structural representations could equivalently be used for dealing with
differential forms Krysander et al. [2008].

consistent causal interpretations 2 . Hence, a minimal SARR
corresponds to a MSO set but the inverse is not true.
Let us note that if several causal interpretations are consistent
for the equations of a given MSO set, they are considered
to produce the same SARR because the resulting ARRs are
semantically equivalent, i.e. they just differ syntactically.

3. COMPARISON OF THE ALGORITHMS PRINCIPLES

The four algorithms presented in the next section follow a struc-
tural approach familiar to the FDI community Staroswiecki
[2002]. They take as input a structural model. The so-called
MSO-Algorithm and CBMSOs-Algorithm only use structural
information and they output the MSO sets. The SARR-
Algorithm and the PCC-Algorithm make use of additional
causal information and they output one causal interpretation,
i.e. a minimal SARR, or all the consistent causal interpretations
for each MSOs, respectively.

Some characteristic features of the four algorithms are outlined
below:

• The MSO-Algorithm determines MSOs, proceeding by
eliminating equations from the original set M (more pre-
cisely the structurally overdeterminated part of it) until
the structural redundancy (difference between number of
equations and number of unknown variables) is 1.

• The CBMSOs-Algorithm determines MSOs by first deter-
mining a complete matching between equations and un-
known variables, leading to a first set of MSOs. These are
“combined” in a second step to get the additional MSOs.

• The SARR-Algorithm determines the set of minimal
SARRs by successive elimination of the unknown vari-
ables. The subset of equations that support the elimina-
tions leading to a SARR are MSOs.

• The PCC-Algorithm first determines MSOs, then searches
for all the causally consistent interpretations for each of
them. For determining MSOs, it performs successive un-
known variable eliminations in a depth-first search man-
ner. Causal interpretations are propagated in the same way
for each MSO set. The relation with the SARR-Algorithm
is that if a MSO set has several causal interpretations,
all lead to semantically equivalent causal structural equa-
tions, hence to one SARR.

4. ALGORITHMS

4.1 MSO-Algorithm

We describe the basic version of the MSO-algorithm from
Krysander et al. [2008]. The algorithm is based on a top-down
approach in the sense that we start with the entire model and
then reduce the size of the model step by step until a MSO
set remains. The algorithm computes the set of all MSO sets
contained in the model.

To present the algorithm we first need the notions of struc-
turally overdetermined part and structural redundancy. Let
X(M) ⊆ x be the subset of unknowns connected to at least

2 Equations in a set are said to have consistent causal interpretations if
the equations can be chained in a pairwise causally consistent way, i.e two
equations ei and ej linked (through a common variable v) in the chain must be
such that ei can be used to compute v and ej can be used to compute another
variable.

one equation in M . Let + be a function on and into the power
set of MSD such that M+ ⊆ M is the set of equations e ∈ M
such that for any maximal matching in G(M, X(M)) there
exists an alternating path in G(M, X(M)) between at least one
free equation node and e. The set M + is uniquely defined and
will be called the structurally overdetermined part of M . This
part is equal to the vertical tail of the Dulmage-Mendelsohn
canonical decomposition Dulmage and Mendelsohn [1958] of
G(M, X(M)) and can be computed by the command dmperm
in Matlab�. Next we will quantify redundancy based on the
structural description of a model. Given a set of equations M ,
the structural redundancy ϕ (M) is defined by

ϕ (M) = |M+| − |X(M+)| (1)

With these definitions, the MSO-algorithm can be stated as in
Algorithm 1.

Algorithm 1:
function MSOs := FindMSO(M) ;1
if ϕ (M) = 1 then2

MSOs := {M} ;3
else4

MSOs := ∅;5
foreach equation e in M do6

M ′ := (M \ {e})+;7
MSOs := MSOs∪ FindMSO(M ′);8

end9

end10

4.2 Combination of Basic MSOs (CBMSOs) algorithm

CBMSOs-Algorithm, presented in Gelso et al. [2008], finds
the set of all MSO sets contained in the model. The input of
this algorithm is the MSO sets obtained from one complete
matching on the unknown variables by using, for instance, the
so called ranking algorithm or constraint propagation algorithm
Blanke and Lorentzen [2006]. This first set of MSOs will be
called Basic MSOs, and is obtained from unmatched constraints
by backtracking unknown variables of them through constraints
to which they were matched.

The basic MSO sets are combined in order to get more MSOs
using Algorithm 2. A structurally overdetermined set can be
obtained from the elimination of at least one shared equation
from the set of equations of two MSO sets, and this operation
is called a combination. The combinations of MSOs can be
minimal or not. This algorithm finds only the minimal ones.

Algorithm 2: Algorithm to find all MSOs
Input: Complete matching
MSO1← Basic MSOs;1
i = 1;2
while i < number of MSO1, or, MSOi is not empty do3

MSOi+1 := Combine(MSOi, MSO1); set i=i+1;4
end5
MSO := (MSO1 . . . MSOi);6
Output: Complete set of MSOs

Function ‘Combine’, which is presented as Algorithm 3, leads
to obtain the new MSOs after combining two MSO sets. Step
four in the algorithm is very important. It can be tackled in a
brute-force way, which can result in a combinatorial explosion.
This method avoids this by using the rank information provided
by ranking algorithm applied to the biadjacency matrix of

G(MSD, X). Then it removes one shared constraint at a time,
and the corresponding matched constraints are used only to
calculate the unknown variables of the shared constraint.

Algorithm 3: Combine function
function MSOab = Combine(MSOa, MSOb)1
foreach set Sa in MSOa do2

foreach set Sb in MSOb do3
if shared constraints set of Sa and Sb is not void, and, Sa and Sb do4
not share the same unmatched constraint then

Remove one or more shared constraints;5
Check if the new structurally overdetermined set is minimal;6
if it is minimal then7

add to MSOab;8
end9

end10

end11

end12
Output: MSOab

4.3 SARR-Algorithm

This algorithm is a variant of the method presented in Travé-
Massuyès et al. [2006], which was devised for diagnosability
assessment. Starting from a structural model augmented by
causal information, the idea of the algorithm is to proceed to
successive elimination of unknown variables on the structural
model equations to obtain the set of minimal SARRs. The
equation supports of the resulting SARRs are minimal MSO
sets. The main steps to generate the SARRs and the associated
MSOs are provided by Algorithm 4 3 .

The input structural model (including causal information) is
first processed by function build cse into a table in which
every line corresponds to a possible causal interpretation of
a structural equation of the model, i.e. a causal structural
equation noted csei. A support field, noted supp(csei), is added
to the structure field, struct(csei) given by the biadjacency
matrix:

• the entry (csei, ej) of the support field is 1 if ej ∈
supp(csei), and 0 otherwise.

• the entry (csei, vj) of the structure field, noted s(i, j), is
non zero if variable vj is involved in csei or one of its
ascendants:

· it is marked # if it has been eliminated;
· it is marked ⊗ if vj is the computed variable;
· it is marked × otherwise.

The elimination of one variable vj between csep and cseq leads
to computing a new cse (function build new cse in Algorithm
4). This elimination is allowed when the cses have consistent
causalities, support and structure.

Consistent causality is captured by the condition Condcausality ,
which equals 1 when s(p, j) = ⊗ and s(q, j) = × or vice
versa.

Combining an already combined equation with one of its own
ascendant relations is not allowed. The combination of csep

and cseq is allowed if Condsupport = 1, i.e. |supp(csep) ∪
supp(cseq)| = Vel + 1, where Vel is equal to the number of
eliminated variables in csep and cseq, i.e. number of #.
3 The original algorithm Travé-Massuyès et al. [2006] accounts for validity
conditions associated to structural equations but the present paper does not
include this option, which does not exist in the other three algorithms.

Reintroducing a variable that has already been eliminated or
eliminating the same variable through different paths is not
allowed neither. This is captured by Condstructure which is 1
if s(csep, vβ) ∈ {×,⊗, } ∧ s(cseq, vβ) = # or s(cseq, vβ) ∈
{×,⊗, } ∧ s(csep, vβ) = #.

Despite the above conditions, the algorithm cannot avoid to
obtain semantically identical (noted ≡) combined structural
equations, i.e. differing only by their causal interpretation,
from different elimination paths. Every potential new structural
equation is hence checked against the existing ones. Final
combined equations, i.e. with all unknown variables eliminated,
correspond to SO sets, but they may not be MSO. Non minimal
ones must hence be discarded.

Algorithm 4: Find SARRs and Associated MSOs through
Variable Elimination
function SARR=find SARR (M(x, z), X, Z)1
f = 0; csei=1,...,h = build cse(M, x, z);2
foreach xi ∈ X do3

Define the set J = {j/xi ∈ struct(csej)} ;4
if card J > 1 then5

foreach (p, q) ∈ J2, p �= q do6
if Condsupport = 1 ∧ Condstructure = 1 ∧7
Condcausality = 1 then

new cse := build new cse;8
if new cse �≡ csei∀i ≤ h then9

if s(new cse, xi) = #∀xi ∈ X(new cse) then10
SARRf+1 = new cse;11
MSOf+1 = supp(SARRf+1); f = f + 1

end12
cseh+1 = new cse; h = h + 113

end14

end15

end16

end17

end18

4.4 Possible Conflict Computation algorithm (PCC-Algorithm)

The following algorithms summarize the Possible Conflict
Computation, PCC, approach from Pulido and Alonso-González
[2004]. PCC-algorithm is based on DX concepts for dependency-
precompilation, following GDE concepts. The process is car-
ried out in two steps by means of a bottom up depth search.

First step, described in Algorithm 5, iterates on each equation
ei in M , searching recursively for every MSO set containing
ei throughout Algorithm 6. This one recursively removes in
each step one remaining unknown variable in the possible MSO,
adding one new equation sharing that variable.

Algorithm 5: Step 1.1: Find every strictly overdetermined sub-
systems in M for each equation e in M

function SMSO=find every possible mso (M)1
foreach equation e in M do2

find possible mso(M\ {e}, {e}, eunknowns, SMSO);3
end4

The search for causally consistent interpretations in each MSO
proceeds in a similar way. Algorithm 7 iterates on each MSO
set and searches for every causally consistent interpretation in
theMSO through algorithm 8.

Algorithm 6: Step 1.2: Find possible MSOs

function find possible mso (M, possible mso, variables, SMSO)1
if variables == {} then2

if possible mso is minimal w.r.t. SMSO then3
remove every superset of possible mso in SMSO;4
insert possible mso in SMSO5

end6

else7
foreach equation e′ ∈M do8

foreach y ∈ (e′unknowns ∩ variables) do9
find possible mso (M \ {e′}, possible mso ∪ {e′},10
variables ∪ {e′

unknowns
} \ {y}, SMSO);

end11

end12

end13

Algorithm 7: Step 2.1: For each possible MSO, we test any
possible causal matching, possible cm; SCM is the set of
causal matchings
function SCM := find every possible cm foreach mso (SMSO)1
foreach mso in SMSO do2

find possible cm(mso, {}, SCM)3
end4

Algorithm 8: Step 2.2. possible cm is a valid causal matching
for the MSO if it is consistent for every equation in the MSO

function find possible cm (mso, possible cm, SCM)1
if mso == ∅ then2

insert possible cm in SMC ;3
else4

foreach equation e′ in mso do5
foreach causal interpretation c′ in e′ do6

if consistent(c′ ,possible cm) then7
mso = mso \ {e′};8
possible cm = possible cm ∪ {c′};
find possible cm(mso , possible cm, SCM);

end9

end10

end11

end12

Regarding the computation of the complete set of global causal
matchings for each MSO, algorithm find possible cm() recur-
sively explores every possible causal matching. Although these
expressions are semantically identical, it might be useful to
have different executable models when non-linearities and dy-
namics are involved.

5. COMPUTATIONAL COMPLEXITY

In general the number of MSO sets may grow exponentially
in the number of equations. This gives an upper bound for the
computational complexity in the general case.

MSO-Algorithm In many applications the order of structural
redundancy, which depends on the number of available sensors,
is low and in this case better computational complexity can
be achieved. In the worst case, all unknown variables are
included in each equation. The complete version of Algorithm 1
traverses so called PSO sets, sets where M = M+, exactly
once in the subset lattice. Given a model with n equations and
with structural redundancy ϕ, there are at most

n∑
k=n−ϕ+1

(n
k

)
(2)

PSO subsets. For a fixed order of structural redundancy ϕ,
the complete version of Algorithm 1 has order of nϕ+1.5 time
complexity, where n is the number of equations. The proof can
be found in Krysander et al. [2008].

CBMSOs-Algorithm The computational complexity can be
studied in two parts:

(i) The ranking algorithm used to find the basic MSO sets has
complexity O(nm) where n is the number of constraints and
m is the number of unknown variables Blanke and Lorentzen
[2006].

(ii) Being ϕ the structural redundancy of a model, the ϕ basic
MSO sets are combined, using Algorithm 2, in groups of 2 to
ϕ (in the worst case). For each combination, there are at most
r shared constraints to be removed. r is less than or equal to
m. For a worst case and for a fixed number of unknowns, the
computational complexity of the algorithm is exponential, and
for a fixed order of structural redundancy, it has polynomial
time complexity Gelso et al. [2008].

SARR-Algorithm The SARR generation algorithm formu-
lates the problem of generating SARRs like a variable elimina-
tion problem. Variable elimination algorithms have been widely
studied in the literature and it is well known that they are effi-
cient if the problem is sparse, but otherwise require substantial
time and memory. Their performance can be bounded using a
graph parameter, called the induced width, which is a measure
of the dependencies between variables. The complexity of vari-
able elimination algorithms is time and space exponential in the
induced width of the problem interaction graph Dechter [2003].
The induced width depends on the variable ordering chosen
to perform the eliminations. The choice of the elimination
ordering makes no difference to the final result but makes an
immense difference to the efficiency of the variable elimination
algorithm.

PCC-Algorithm The complete set of MSOs is found using
Depth First Search, DFS, with backtracking on the whole
hyper-graph representing the system model, MSD. Algorithm
5 starts with each equation, e, in MSD. Therefore, complexity
is O(nd) for n equations, and an average of d unknowns in
each equation. Each MSOi has an average of ne equations; in
the general case ne ≤ n; in practice, ne < n or ne << n. Each
equation e ∈ MSOi has an average of k causal interpretations.
Algorithm 7 also performs DFS with backtracking to find every
possible consistent matching for every equation in MSO i.
Therefore, we have again exponential complexity O(n e

k), but
it is applied to a reduced problem. Moreover, there is a limited
number of causal assignments for each equation, i.e., not every
causal assignment is feasible.

6. EMPIRICAL COMPARISON

The benchmark problem concerns the two coupled tanks de-
picted in figure 1, that provide a continuous water flow Q 0 to a
consumer.

The components of the benchmark are tanks T1 and T2, con-
trollers PI and On/Off, pump P1, valves Vb and Vo, level
transducers LT1 and LT2, flow transducer FT, mUp, and Up

Fig. 1. The Chem benchmark.

transducer S(Up). The set of known variables Z are the two
tanks levels my1 and my2, the pump flow mQp, the output
signal of the PI controller mUp, the PI set point h1c, the po-
sitions mUb and mU0 of valves Vb and Vo, respectively. Then,
Z = [my1, my2, mQp, mUp, h1c, mUb, mU0]. The subset X
of unknown variables contains the remaining variables.

The equational model for the benchmark is the following:
Equation Support
e1 : A1ḣ1 = Qp − Q12 OK(T1)
e2 : A2ḣ2 = Q12 − Q0 OK(T2)

e3 : Qp =

{
Up if 0 < Up < Qpmax
0 if Up ≤ 0

Upmax if Up ≥ Qpmax

OK(P1)

e4 : Q12 = Cvb · sgn(h1 − h2)
√

|h1 − h2| OK(Vb)

e5 : Q0 = Cvo ·
√

h2 · mU0 OK(Vo)

e6 : Up = Kp(h1c − h1(t)) + Ki

∫
(h1c − h1(t))dt OK(PI)

e7 : mUb =

{
0 if 0.09m ≤ h2 ≥ 0.11m

1 if 0 ≤ h2 < 0.09m
OK(On/Off)

e8 : my1 = h1 OK(LT1)
e9 : my2 = h2 OK(LT2)
e10 : mQp = Qp OK(FT)

e11 : mUp = Up OK(S(Up))

A1 and A2 are the cross section areas of the cylindric tanks;
Kp and Ki are the gains and the integral terms of the PI
controller, respectively; Cvb and Cvo are the global hydraulic
flow coefficients of the valves Vb and Vo; and mU0 is the Vo
valve position ∈ {0, 1} provided by the user.

Results For the benchmark model, the MSO-Algorithm and
the CBMSOs-Algorithm both consistently provided the 46
MSO sets listed in table 1. The numbers between brackets refer
to model equations by their index. 24 out of 46 MSOs are also
minimal SARRs (those marked with a star), as found by the
SARR-Algorithm and the PCC-Algorithm, that also found the
46 MSO sets.

7. RELATED WORK

This paper gathers four recent algorithms using structural anal-
ysis to determine the MSOs, all their causal interpretations or
associated SARR. Other algorithms have been proposed that
closely relate to the topic of this paper.

In Ploix et al. [2005], an algorithm based on elimination rules
is presented. It relies on a structural analysis of the constraints,
and information about causality can be taken into account to
discard unachievable overdetermined sets. This algorithm can

Table 1. The 46 MSO sets and 24 SARRs in the
CHEM-benchmark model.

no MSO sets no MSO sets
1 {7, 9}∗ 24 {1, 2, 5, 7, 8, 10}
2 {6, 8, 11}∗ 25 {1, 2, 5, 6, 9, 10, 11}
3 {3, 10, 11}∗ 26 {1, 2, 5, 6, 7, 10, 11}
4 {3, 6, 8, 10}∗ 27 {1, 2, 4, 5, 9, 10}∗
5 {2, 4, 5, 8, 9}∗ 28 {1, 2, 4, 5, 8, 10}∗
6 {2, 4, 5, 7, 8}∗ 29 {1, 2, 4, 5, 7, 10}∗
7 {2, 4, 5, 6, 9, 11} 30 {1, 2, 4, 5, 6, 10, 11}∗
8 {2, 4, 5, 6, 7, 11} 31 {1, 2, 3, 5, 8, 9, 11}
9 {2, 3, 4, 5, 6, 9, 10} 32 {1, 2, 3, 5, 7, 8, 11}
10 {2, 3, 4, 5, 6, 7, 10} 33 {1, 2, 3, 5, 6, 9, 11}
11 {1, 4, 8, 9, 10}∗ 34 {1, 2, 3, 5, 6, 9, 10}
12 {1, 4, 7, 8, 10} 35 {1, 2, 3, 5, 6, 8, 9}
13 {1, 4, 6, 9, 10, 11}∗ 36 {1, 2, 3, 5, 6, 7, 11}
14 {1, 4, 6, 7, 10, 11} 37 {1, 2, 3, 5, 6, 7, 10}
15 {1, 3, 4, 8, 9, 11}∗ 38 {1, 2, 3, 5, 6, 7, 8}
16 {1, 3, 4, 7, 8, 11} 39 {1, 2, 3, 4, 5, 9, 11}∗
17 {1, 3, 4, 6, 9, 11}∗ 40 {1, 2, 3, 4, 5, 8, 11}∗
18 {1, 3, 4, 6, 9, 10}∗ 41 {1, 2, 3, 4, 5, 7, 11}∗
19 {1, 3, 4, 6, 8, 9}∗ 42 {1, 2, 3, 4, 5, 6, 11}∗
20 {1, 3, 4, 6, 7, 11} 43 {1, 2, 3, 4, 5, 6, 10}∗
21 {1, 3, 4, 6, 7, 10} 44 {1, 2, 3, 4, 5, 6, 9}∗
22 {1, 3, 4, 6, 7, 8} 45 {1, 2, 3, 4, 5, 6, 8}∗
23 {1, 2, 5, 8, 9, 10} 46 {1, 2, 3, 4, 5, 6, 7}∗

be put in the variable elimination class and is therefore to be
related to Algorithm 3.

Blanke and Lorentzen [2006] presents a Matlab� toolbox
called SaTool. It is an implementation of the structural analysis
theory of Staroswiecki and co-workers Staroswiecki [2002]. A
ranking algorithm Blanke and Lorentzen [2006] is used to find a
complete matching in the structure graph. The overdetermined
sets are obtained by means of the constraints that are not in-
volved in the complete matching. This algorithm, which does
not deliver all the MSOs, is the starting point of Algorithm 2.

In Izadi-Zamanabadi [2002], as contrasted with the algorithm
cited above, an algorithm based on determining several match-
ings is presented. Different matchings result in different overde-
termined subsystems. This approach is developed to deal with
causality by decomposing the system into different parts, which
is also a mean to circumvent the complexity problem.

Dustegor et al. [2004] can also deal with causality. To find a
matching, a method based on a class of algorithms that solve
the Stable Marriage Problem is presented and adapted for the
fault detection purpose. In mathematics, the Stable Marriage
Problem is a well-known combinatorics problem dealing with
finding a stable matching, i.e. a matching in which no element
of the first matched set prefers an element of the second
matched set that has not the inverse preference.

In Ligeza and Gorny [2000], an algorithm for potential conflict
generation in CA-EN-like causal structures is presented. This
algorithm identifies potential conflicts by backward propaga-
tion over a causal structure (the Potential Conflict Structure,
PCS). It would be equivalent to directly find the whole set
of SARRs given a causal model (every causal assignment is
available for each constraint).

For non-linear polynomial models, algorithms based on elim-
ination techniques, e.g. Gröbner Basis, can be used to obtain
analytical redundancy relations of the system Frisk [2000],
Staroswiecki and Comtet-Varga [2001], Ceballos et al. [2004].
As basis of this method, model equations are manipulated to

eliminate unknown variables such as disturbances, faults and
internal states.

8. CONCLUSION

This work has presented and compared four recently proposed
algorithms for computing the set of constraints involved in
residual generation, together with the computational sequence
required to do it. This work clarifies the underlying concepts of
the algorithms and their relationships and provides an analysis
of their theoretical complexity. The algorithms have been tested
on a benchmark and have provided consistent results. Future
work should extend this survey to the alternative algorithms
mentioned in the related work section.

REFERENCES

M. Blanke and T. Lorentzen. Satool - a software tool for structural analysis
of complex automation systems. In Proceedings of IFAC Safeprocess’06,
Beijing, China, 2006.

R. Ceballos, M.T. Gómez, R. M. Gasca, and S. Pozo. Determination of possible
minimal conflict sets using components clusters and Gröbner bases. In
Proceedings of DX’04, pages 21–26, 2004.

M.-O. Cordier, P. Dague, F. Lévy, J. Montmain, M. Staroswiecki, and L. Travé-
Massuyès. Conflicts versus analytical redundancy relations : A comparative
analysis of the model-based diagnostic approach from the artificial intelli-
gence and automatic control perspectives. IEEE Trans. Syst. Man Cy. B., 34
(5):2163–2177, 2004.

R. Dechter. Constraint Processing. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Canadian
Journal of Mathematics, 10:517–534, 1958.

D. Dustegor, V. Cocquempot, and M. Staroswiecki. Structural analysis for
residual generation: towards implementation. Proceedings of the IEEE
International Conference on Control Applications, 2:1217–1222, 2004.

E. Frisk. Residual generator design for non-linear, polynomial systems - A
gröbner basis approach. In Proceedings of IFAC Safeprocess’00, Budapest,
Hungary, 2000.

E.R. Gelso, S.M. Castillo, and J. Armengol. An algorithm based on structural
analysis for model-based fault diagnosis. In Artificial Intelligence Research
and Development. Frontiers in Artificial Intelligence and Applications,
volume 184, pages 138–147. IOS Press, 2008.

R. Izadi-Zamanabadi. Structural analysis approach to fault diagnosis with
application to fixed-wing aircraft motion. Proceedings of the American
Control Conference, 2002., 5:3949–3954, 2002.

M. Krysander, J. Åslund, and M. Nyberg. An efficient algorithm for finding
minimal over-constrained sub-systems for model-based diagnosis. IEEE
Trans. Syst. Man Cy. A., 38(1), 2008.

A. Ligeza and B. Gorny. Systematic conflict generation in model-based
diagnosis. In Proceedings of IFAC Safeprocess’00, pages 1103–1108,
Budapest, Hungary, 2000.

M. Nyberg and M. Krysander. Combining AI, FDI, and statistical hypothesis-
testing in a framework for diagnosis. In Proceedings of IFAC Safepro-
cess’03, Washington, USA, 2003.

S. Ploix, M. Désinde, and S. Touaf. Automatic design of detection tests in
complex dynamic systems. In 16th IFAC World Congress, Prague, 2005.

B. Pulido and C. Alonso-González. Possible conflicts: a compilation technique
for consistency-based diagnosis. IEEE Trans. Syst. Man Cy. B., Special Issue
on Diagnosis of Complex Systems, 34(5):2192–2206, 2004.

R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32:57–95, 1987.

M. Staroswiecki. Structural analysis for fault detection and isolation and for
fault tolerant control, chapter Encyclopedia of Life Support Systems. Fault
Diagnosis and Fault Tolerant Control. Oxford, UK, 2002.

M. Staroswiecki and G. Comtet-Varga. Analytical redundancy relations for
fault detection and isolation in algebraic dynamic systems. Automatica, 37
(5):687–699, 2001.

L. Travé-Massuyès, T. Escobet, and X. Olive. Diagnosability analysis based
on component supported analytical redundancy relations. IEEE Trans. Syst.
Man Cy. A., 36(6), 2006.

