A Service Based Approach to Decentralized
Diagnosis and Fault Tolerant Control

Mattias Nyberg and Carl Svird

Abstract— The paper presents a hierarchical architecture for
fault tolerant control of mechatronic systems. In the architec-
ture, both the diagnosis and the reconfiguration are completely
decentralized according to the structure of the control system.
This is achieved by using a purely service oriented view of the
system including both hardware and software. The service view
with no cyclic dependencies is further used to obtain Bayesian
networks for modeling the system.

I. INTRODUCTION

This paper is motivated from work with fault tolerance
of mechatronic systems in automotive vehicles. In these
applications, fault tolerance is important in the sense that
each fault should lead to a minimal degradation of the
performance, and typically, the means for fault tolerance is
control-system reconfiguration.

One standard solution to Fault Tolerant Control (FTC),
as often suggested in the literature, e.g. see [1], [2], [3],
[4], is to have one centralized diagnoser diagnosing the
whole system and then a centralized reconfiguration based
on the diagnosis result. However, for large-scale mechatronic
systems with complex functionality distributed over several
Electronic Control Units (ECU:s), such as automotive control
systems, another solution might be needed. For these systems,
we believe that instead of the centralized approach, the
diagnosis and FTC problems need to be solved using a
decentralized and modular architecture dividing the large
system into smaller subsystems. Another architectural issue,
relevant in both the centralized and decentralized approach,
is how the diagnoser should interact with the control system.
However, as noted in [1] and there posed as an open question,
the literature is sparse on such investigations.

The present paper introduces a decentralized architecture
for diagnosis and FTC. The role of diagnosis in the context of
FTC is discussed, specifically how the diagnoser should in-
teract with the reconfiguration. With the suggested approach,
and due to the decentralization, it turns out that the diagnosis
task and the interaction sometimes becomes so simple so it
is not even necessary or relevant to speak about diagnosis.

We suggest that the proposed architecture is suitable for
large-scale mechatronic systems. This since both diagnosis
and FTC are completely decentralized and follows the ar-
chitecture of the control system, which is assumably already
structured to cope with system size and complexity. Important
also is that the proposed FTC architecture adds no extra
dependencies in the software (SW) compared to the control
system architecture.

We view both software and hardware components as
service providers. We organize these components into a
hierarchy where the relations between components is based
solely on how service failures propagate in the system. In

This work was supported by Scania CV AB

Mattias Nyberg and Carl Svéird are with Department of Electri-
cal Engineering, University of Linkoping, SE-58183 Linkoping, Sweden
mattias.nyberg@scania.com

this framework, we have abstracted away all objects and
information not related to failures, such as signals. In this
way, a minimalistic purely failure-oriented view of the system
is obtained. This view is used as the foundation both for the
FTC architecture and for modeling the system. Note that since
inability to perform a service is the same as a failure [5], we
can speak about a service-oriented view as well as a failure-
oriented view.

The service (failure) oriented view of the system facilitates
a design with noncyclic dependencies within the FTC system.
This is important for modeling since it makes it possible
to use Bayesian networks; a clear benefit since Bayesian
networks have shown to be very powerful for modeling and
making inference in systems containing uncertainties. One
example is automotive mechatronic systems, whose diagnosis
system is required by regulations to handle subtle faults like
biases, which usually have uncertain effects on the system. By
having a model in the form of a Bayesian network, inference
tasks like diagnosis become easy. Other examples of useful
inference tasks are analysis of FTC-performance and analysis
of consequences of different faults.

Architecture of fault tolerant control systems have been
considered also in earlier literature, e.g. see [2], [6], [7],
[8]. The key differences compared to these earlier works are
that: 1) the diagnosis task in the present paper is completely
decentralized among the components of the system, 2) we
use the service view, where software components are viewed
as service providers with service dependencies, as the basis
for the FTC-architecture, 3) we discuss explicitly how the
different SW-components of the systems communicate with
each other about failure, 4) we use Bayesian network as the
tool for modeling, and we include in the model also the
diagnosers.

Customer

-
| Scope

Service Provider

=] (=
NN

Fig. 1. A Service Provider, its suppliers and customer. Service dependencies
are represented by gray arrows and signal flows by black arrows.

II. CONCEPT BASICS

We consider a system of ECU:s connected in a com-
munication network. The control system software in each
ECU is assumed to be designed, in a first iteration, without

considering or including diagnosis or FTC functionality. We
partition the control system software into separate parts,
called components or modules. Each such module communi-
cates with other modules, within the same ECU or, by using
the communication network, with modules in other ECU:s.

A. The Service View

In the control system, the purpose of each module is to
provide one or several services. Therefore we view each
module as a service provider. The service is provided to a
customer, which itself is a module and service provider. There
may also be several customers, and the top-level customer
of a system is often a human user. To provide its service, a
service provider may use a number of suppliers, which in turn
are service providers, see Figure 1. Note that the service of a
module is not, as in [7], [8], defined as the computation of the
output signal of the module, or the output signal itself. Instead
the service is the purpose or the objective of the module.

How to determine the granulation of the partition of the
control software into modules, is a matter of consideration.
Using small modules, it is easier to add diagnosis and
FTC-functionality. A small module is also easier to model.
However, in a small module, with few signals available, good
diagnosis and FTC may be difficult to include because of lack
of redundancy. Furthermore, the complexity of the system
and the model may be increased if the modules are small
but many, because the number of service providers becomes
large and also the number of dependencies between them.

For sake of clarity, we will from now on assume that
each service provider only provides one single service. The
extension to several services is trivial.

Note that the service dependencies, represented in Figure 1
by gray arrows, do in general not have the same direction as
the signal flows within the system. It can be realized that
the graph constructed from these service dependencies will
contain no cycles, something which is of key importance
when, later on in Sec. VI, the system is modeled using
Bayesian networks.

To exemplify the directional difference between service
dependency and signal flow, consider a service provider
which is master controller of a cascade control system. One
of its suppliers is the slave controller which receives the
reference signal from the master. Thus the signal flow in
this example is directed from the service provider to the
supplier, but the service dependency always has the direction
from supplier to service provider. To find out the direction of
service dependencies, one can think of how faults propagate
in the system. In the example, a fault in the slave controller
propagates and affects the service provided by the master
controller. The approach here stands in contrast to earlier
literature, e.g. see [9], [6], in which fault propagation is
constrained to signal flow directions.

B. Service Status

The service provided by a service provider may be avail-
able or not available. If available, the service has a service
quality which is mostly nominal. It may also happen that
it becomes disturbed in some way. We collect these service
statuses into three classes which we denote nominal (NOM),
disturbed (DIST), and unavailable (UNA). The service status
of a service provider m will be denoted S,,. Except that
the status of a service may change, we assume that the
service, provided by a service provider, is persistent, i.e. the
service is always provided and does not change in character.

However, this assumption can be relaxed by considering
different operating modes as in [8].

The status NOM is always applicable, but the statuses
UNA and DIST may or may not be needed depending on
the specific case. If needed for a specific service provider,
the service status DIST can be extended to several levels of
disturbed, i.e. DIST_1, DIST 2, DIST 3 etc.

To facilitate efficient distributed engineering of large scale
systems, it is important to minimize the dependencies be-
tween modules. Therefore, in accordance with ideas of
modularization, abstraction, encapsulation etc., each service
provider, is for its design and computations, only allowed to
use information from its scope, e.g. see Figure 1. The scope
contains knowledge about its suppliers and often also some
part of the hardware or electronics.

C. Service Status Estimation

The service provider has, in addition to providing the
service itself, also the task to monitor and estimate the
status of its own service and to communicate this estimated
status to its customers. The reason is that if the customer
becomes aware of that a service delivered has a degraded
status, the customer can adapt to the situation for example by
reconfiguring itself. Also, when the customer is to estimate
the status of its own service, it is crucial to take into account
the degraded status of one of its supplier’s services. For a
customer to be able to utilize a communicated service status
from the service provider, all statuses must in advance be
clearly defined. This definition must be available to, and
agreed with, the engineers designing the SW-modules acting
as customers of the service provider.

Note that in the proposed architecture, we assume that there
is no module dedicated to diagnosis only. Instead all diagnosis
for FTC is decentralized and performed within the control
system modules.

When a service provider estimates the status of its service,
a variety of information sources throughout the system could
be useful, but according to the principles of scope discussed
above, only information within its scope is allowed to be
used. It is evident that a service status estimate obtained by
using information within the scope only may differ and be
less accurate compared to what would be the result using all
information in the system. This is the prize we pay to keep
the number of dependencies low.

The estimate produced by a service provider m of its
service status S,,, using information within its scope, is

~

denoted S,,|,. Clearly, an estimated service status is in

general not equal to the true service status, i.e. S,,|;m#Sm-
Except for the fact that we use only the limited information
within the scope, another reason is that this is a general
estimation problem under the influence of noise and model
uncertainties'. R

Since the estimate S,,,|,,, might not be possible to obtain
with high precision, it is sometimes enough to use a lower
resolution of S, compared to S,. This means that the
domains of S|, and S;,, may differ. For instance, S,, €
{NOM, DIST, UNA} while S,,,|,,, € {NOM, UNA}.

We use the convention that the estimated service status
communicated from a service provider to a customer should

I'The second reason is in fact a special case of the first since if the scope
was infinite we could use the true physical values and become immune to
e.g. measurement noise.

always be guaranteed from the perspective of the service
provider itself. That is, the estimated service status is set to
NOM as long as there are no signs of anything else, but as
soon as there are signs of that the service status is not NOM,
the estimated service status should be changed to DIST or
UNA. The customer should then always assume that the true
service status is not better than the communicated one, but it
may be worse, e.g. if the estimated service status is DIST, the
customer should assume that the service status is not NOM.

We will apply the view of service providers also to
hardware (physical) components. Everything said above is
valid except that hardware components do not have the ability
to estimate and communicate the status of its services. This
is principally the same as if they are always communicating
the status NOM.

III. ILLUSTRATIVE EXAMPLE

To illustrate the principles and concepts in previous and
subsequent sections we introduce a simple, yet relevant and
realistic, mechatronic system inspired by automotive applica-
tions. We consider a simplified air-management system whose
main task is to control the air-flow through a throttle in order
to maintain a given stoichiometric ratio under the influence
of an external fuel reference command. A schematic view
of the system is shown in Figure 2, in which signal flows
are represented by black arrows and service dependencies by
gray arrows. Note that signal flows form directed cycles but
service dependencies do not.

Final Customer

B1
AD
Conversion

| I
| ECU IN |
| Air Mass-Flow Controller |
I I
| A
| /W'”—T Kihres T— :
| D I
| w / |
| A2 A3 |
| Air Mass-Flow Estimator Throttle Position Controller |
| >
| A ? Lihref * :
|

~ v |
: X ! n |

- X

| Pa th :
! I
| I
! I
| L1 L4 |
I Pressure Current Position Mass-Flow | |
| Conversion Conversion Conversion Estimator) |
| Ir
| f
| A/
|
|
|
|
|

|

B2 B3 B4 B5 |
AD PWM AID PWM |
Conversion | | Conversion Conversion Conversion :
|

S1
Pressure
Sensor

s2 u I

Position
Sensor

High Pressure Air

C2 Fuel
Injector

Air Tank

Fig. 2. Schematic view of the Air-Control System. Gray arrows indicate
service dependencies and black arrows signal flows.

The physical part of the system, lower part of Figure 2,
consists of a tank, containing high-pressure air, connected
through a pipe to ambient air. A throttle valve and a fuel
injector is mounted in the pipe. The throttle valve is ma-
neuvered through a proportional valve and there are sensors
measuring the position of the throttle valve and the pressure
in the air-tank. The sensors, the proportional valve, and the
injector are connected to an ECU, upper part of Figure 2, in
which a set of controllers and estimators are implemented.

Following the ideas introduced in Section II, we consider
all components in the system, hardware components as well
as software modules, as service providers.

For example, consider module A3, whose service is to
control the position of the throttle valve. Module A3 is master
controller in a cascade control subsystem consisting of mod-
ules A3 and A4. The service provided by the slave controller
A4 is to control the current through the proportional valve.
If A4 fails to provide its service, then also A3 will fail to
provide its service. This means that A4 is a supplier of A3
although the signal flow, i.e. the current reference signal, goes
from A3 to A4, c.f. the black and gray arrows in Figure 2. To
utilize closed-loop control, A3 uses feedback of the throttle
valve position. The position is delivered by L3, which is also
a supplier of A3. The scope associated with A3 consists of
modules A4 and L3, but also the physical component C2,
i.e. the throttle valve, since A3 need to know what kind of
device it should control.

IV. GENERAL PRINCIPLES OF A SERVICE PROVIDER

As stated above, a service provider has the task to pro-
vide its services, and also the task to estimate the status
of these services. To achieve fault tolerance, the service
provider should also try to keep up the service quality, even
though faults make suppliers DIST or UNA. The standard
solution for this is reconfiguration. In this paper we represent
reconfiguration in accordance with [8] by using a concept of
variants. That is, a service provider m may exist in several
variants denoted m:1, m:2 etc. and each variant typically
uses different, possibly overlapping, subsets of suppliers.
Thus their sensitivity to supplier services becoming DIST
or UNA differ, and by selecting the most appropriate variant
to be run, fault tolerance is obtained. When using variants,
the service status of the service provider equals that of the
selected variant currently active, i.e. S,, = Sy,.;. If there is
no reconfiguration, we will view this as a case of only one
possible variant.

Example 1 (Variants in Service Provider A2): Recall the
air-control system described in Section III and consider
service provider A2, whose service is to provide the air mass-
flow past the throttle. For this it uses the suppliers L1 and
L3. To increase fault-tolerance, there are three variants of the
service provider, denoted A2:1, A2:2, and A2:3. The variants
are illustrated in Figure 2 as multiple shaded layers behind
the block representing A2.

Variant A2:1 is the main variant and uses signals from both
suppliers L1 and L3 to estimate the air mass-flow. Variant
A2:2 uses only the signal from supplier L1 for the estimation,
and in a similar way variant A2:3 uses only the signal from
supplier L3. With this design, A2 will be able to deliver
its service, possibly with reduced quality, even if one of the
suppliers L1 and L3 fails to deliver its service.

A. Estimation of Service Status

To estimate a service status of the service provider, the
service status estimate of the selected variant is needed, i.e.
Spn:ijm- For the estimation of S,,.4),,,, the selected variant
uses the service statuses communicated from its suppliers.
Further, it typically uses the signals to and from its suppliers
and possibly also other signals within the service provider.
The important features of these signals are extracted using
diagnostic tests, and thus, the signals themselves are not
directly used for the status estimation. Diagnostic tests are
obtained for example by using standard techniques from the
field of FDI (Fault Detection and Isolation) [2], [10], e.g.
analytical redundancy and residuals.

The service status estimation can be seen as a mapping
from each combination of supplier service statuses and test re-
sults to the service status of the variant. In the simplest cases
this mapping is hard coded in the software using constructs
like if- or switch/case-statements. In more involved cases, the
mapping can be represented and processed using a lookup-
table. Also possible is to use a model based approach in which
the service status is inferred using a model together with
observed test results and estimated service statuses communi-
cated from the suppliers. Whatever the chosen solution is, the
mapping must be possible to represent efficiently in a model,
to facilitate efficient inference and analysis of the system
(see also Section VI). This can for example be achieved
if the mapping is represented as a lookup table. Another
requirement is that real-time systems require predictable and
limited computation times.

Some general principles for estimating the service status
will now be given. We start with the simple case where there
are no diagnostic tests involved.

1) No Diagnostic Tests Involved: A variant has a default
service status meaning the best possible service status of the
variant. The most common case is, of course, that the default
service status is NOM. However, under the assumption that
supplier service statuses are DIST or UNA, it may not be
possible to design a variant delivering the service with status
NOM. It might then be useful to have a variant designed to
deliver a service with status DIST but with less requirements
on the supplier service statuses. This is a typical situation
when reconfiguration is considered.

Based on the idea of default service status and also that,
naturally, a variant can not work if any of its suppliers is not
available, we obtain the following general principles:

a) If all suppliers communicate service status NOM, then
the estimated service status of the variant becomes equal
to the default service status.

b) If any supplier communicates service status UNA, then
the estimated service status of the variant becomes
UNA.

If any supplier communicates the service status DIST, then
the estimated service status of the variant may be NOM,
DIST, or UNA. The choice is based on a systematic analysis
or engineering decisions. In other words, except for items (a)
and (b) above, no other general principles for service status
estimation can be stated.

To represent the service status estimation we can use a
table as the one exemplified below.

Estimated Service Status
Comm. Serv. Stat. from: | NOM DIST UNA 1
Supplier 1 NOM — NOM V DIST - (1
Supplier 2 NOM - -

The interpretation of this table is that the service status
is estimated to be NOM if both Supplier 1 and Supplier 2
communicate that their service status is NOM. Else, if
Supplier 1 communicates service status NOM or DIST, then
the service status is estimated to be DIST. Else, the service
status is estimated to be UNA.

2) Using Diagnostic Tests: If a service provider knew the
true status of the services from all suppliers, the service
status estimation would be easy. However, since the suppliers
only communicate the service status estimated by themselves,
there is a good potential to utilize also diagnostic tests when
estimating the service status of the variant.

Without loss of generality, we assume that diagnostic tests
utilized for service status estimation are contained within the
service provider. Thus the signals used by a test must be
known within the scope. Otherwise we get a dependency, via
the diagnostic test, to the outside of the scope of the service
provider.

For an example of how a diagnostic test may be utilized,
consider a variant that implements a PI controller. Then
we can use diagnostic tests checking the control error and
integrator size. A further example, if a variant implements
an observer, we can use diagnostic tests based on residuals
checking the validity of the input signal against a model of the
system. The use of diagnostic tests means that even though
all suppliers estimates their services to be NOM, additional
information from diagnostic tests may imply that the service
status of the variant becomes DIST.

Each diagnostic test uses a subset of the suppliers. This
means that if any supplier in the subset communicates the
service status UNA, the diagnostic test can not be run.

Exactly how the results of the diagnostic tests are used by
the service provider to assist the service status estimation will
not be further discussed here. Partly due to space limitation
but mainly because we believe that there is not one single best
way since different circumstances demand different solutions.
However, an example will be presented later in Section V.

Example 2 (Service Status Estimation in L1): Recall
again the air-control system presented in Section III. The
service of service provider L1 is to deliver the pressure in
the air tank. The customer of L1 is A2 and its supplier
is Bl. Due to the nature of this service and the limited
amount of signals available for use in L1, its only possible
communicated service statuses are NOM and UNA, ie.
Sriz1 € {NOM, UNA}

To aid the estimation of its service status, L1 contains one
diagnostic test 77; which simply checks if the pressure is
in-range, with respect to physical limitations of the tank, as
well as the specification of the sensor. That is, 77,1 equals 0
(no alarm) if J}, > por > J#, and 1 (alarm) otherwise. The
service status estimation logic for L1 is thus very simple;
if TLl = 0 and SBl\Bl = NOM, then SL1|L1 = NOM.
Otherwise, Spq),1 = UNA.

Note that a diagnoser is hardly needed in this case. This
clearly illustrates how the role of diagnosis may become
marginalized as a result of our approach, as discussed in
Section I.

B. Selection of Variant

In a service provider with the capability of reconfigura-
tion there must exist a selector, which is a mechanism for
choosing the variant to be executed in a given situation. The
selector can be viewed as a mapping from the diagnostic test

results and estimated service statuses communicated from the
suppliers to variants. We will not give any general principles
for this, but instead discuss an example design given in
Section V. In a real-time system, the change of variant may
cause transients to occur. This needs to be handled but is
considered out of scope of the present paper.

C. Summary

We summarize the elements of the service provider to-
gether with their requirements:

e A service provider may exist in several variants, and
there must be a selector, i.e. a mechanism for selecting
the variant.

o Each variant uses a subset of suppliers and a subset of
diagnostic tests. The subsets may be overlapping.

« Each diagnostic test in the service provider uses a subset
of suppliers, and the subsets may be overlapping.

o Each variant has a mechanism for service status estima-
tion.

o The service status estimation uses as input: service sta-
tuses communicated from the suppliers, and diagnostic
test results.

o The service status estimation must be possible to repre-
sent efficiently, e.g. in a lookup table.

From above it is clear that there are many design choices to
be made. For example, how many variants should there be of
a service provider, how to determine the logic of the service
status estimation? This should be made such that the desired
level of FTC performance is achieved. How to asses the FTC
performance is discussed in Sec. VI.

V. EXAMPLE DESIGN OF SERVICE PROVIDERS

We consider the principles in Section II and IV to be
sound and general in the sense that they can be applied
to every service provider implemented in software. When
discussing the design of service providers on a more detailed
level we choose to present this as an example rather than a
general design. The reason is that in a specific case, the most
beneficial solution is not necessarily the one presented here.
For instance, in many small service providers, much more
simple solutions may be preferred, e.g. see Example 2.

We will present an algorithm for the top-level execution
of a service provider, but first we need to fix the strategy of
selecting the variant to be executed. The strategy used here
is a two-part solution; variant service status estimation and
variant selection.

In the first part, the service status of the different variants
are estimated. This is done by executing the diagnostic tests
and then, based on the test results, use a diagnoser to estimate
the service statuses of the suppliers. This estimate of the ser-
vice status of supplier n is denoted by Sn‘tests Each estimate

Sn‘tem is then combined with the one commumcated from the

supplier, i.e. Snm to obtain Sn‘m—mm(Sn‘tests, n|n) where
the minimization selects the worst status. Next, the status
estimation of the different variants is performed according to
the principles discussed in Section IV-A.1.

In the second part, the variant with best service status is
chosen as the one to be executed. If there is no unique variant
with best estimated service status, a fixed linear preference
order of all variants, determines which one to select.

Now we present the algorithm. To simplify the presentation
we have assumed only one level of DIST.

1) For each diagnostic test, run the test if the communi-
cated service status from all its suppliers are not UNA.

2) With the diagnostic test results as input, run the diag-
noser to obtain thests for each suppher

3) For each supplier, let Sn|m—m1n(8n‘tests, An|n)

4) For each variant m:i, use the estimated statuses Sn‘m
of the suppliers together with the principle illustrated
in the table (1) to obtain estimated service status of the
variant S,.|m-

5) If any variant has status NOM, run the most preferred
one having status NOM.

Else, if any variant has status DIST, run the most
preferred one having status DIST.

6) If any variant m:¢ has been run, set the estimated
service status of the service provider equal to the status
of that variant, i.e. let Sy, =8n:ijm-

Else, set the estimated service status of the service
provider equal to UNA, i.e. S,,},,=UNA.

These principles are now illustrated in an example.

Example 3 (Service Status Estimation in A2): We return
to the air-control system and the air mass-flow estimation
module A2. In the following, we illustrate how the principle
outlined in Section V is used to estimate the service statuses
of the different variants A2:1, A2:2 and A2:3 described in
Example 1.

In order to estimate the service statuses of suppliers L1 and
L3, a diagnostic test T'4o is utilized. This test is based on a
residual generator in which the pressure in the air tank pg; is
calculated by using a model and the position of the throttle
valve 2y, as delivered by L3. A residual is then formed
as the difference between the calculated pressure and the
pressure p,:, delivered by L1. The diagnostic test is obtained
by comparing the residual r 4o with a threshold J45. Hence
Tao equals 0 if |r42| < Jao and 1 otherwise.

Since T'4o uses signals from both L1 and L3, the failure
signature matrix (FSM) for the test is

‘ SLI = DIST SLS = DIST
Tas | X X
where Sp,1 and Sr3 denotes the true service status of L1 and
L1 respectively. Thus, if T'4o alarms we may conclude that
either L1 or L3, or both, has status DIST. To be safe, the
latter is assumed.

Given the outcome of T4, we attain the service sta-
tus estimates Spy7,, and Spsjr,,. Following the method
described in Section V, the final estimates are calcu-

lated as SL1|A2 = min (SL1|TA2,SL1|L1) and SLHAQ =

min (SLg‘TAQ,SLg‘L3), where 3L1\L1 and SL3‘L3 are the
communicated service statuses from the suppliers. According
to Section V, the test T'a2 is not run if Sz = UNA or
S, 13113 = UNA. In those cases, the estimated service statuses
are based solely on the communicated statuses, i.e. S, L1)A2 =
Spajp1 and 5L3|A2 = SLB\LS

Given the estimated supplier service statuses, we can
estimate the status of each of the variants A2:1, A2:2, and
A2:3. The conditions, in terms of estimated supplier service
statuses, for a status of a variant to be valid is in general a
result of an engineering process. For example, the air mass-
flow estimation algorithm used in A2:1 is designed in a way
so that an adequate estimate can be calculated even if S, L1]A2

= DIST or SLL;‘AQ = DIST so that in this case SA2 1142 =

DIST. The supplier status conditions for all variants are given
in the following table.

$A2:1|A2 3A2:2\A2 SA2:3\A2

NOM DIST UNA DIST UNA DIST UNA
Sii)az | NOM NOM V DIST - NOM - - -
SL3\A2 NOM NOM V DIST - - - NOM -

The table should be interpreted in this way: if, for example,
SLMAQ = DIST and SL3|A2 = NOM then SAQ 142 = DIST.

Suppose now there is an electrical fault affecting one of
the wires connected to pressure sensor S1, e.g. shortcut to
ground. This implies a voltage of 0 V to the ECU input port.
In spite of the fault affecting the wire, B1 can nevertheless
deliver its service, which is to give the voltage at the input
port, and therefore Spq g1 = NOM.

In L1, the monitoring test 77, alarms since O V_does
not correspond to a pressure in-range and therefore Spijp1
= UNA. If we assume that there are no other faults in the
system, we have that S L3|L3 = = NOM. Following the principle
1n Section V, the momtormg test TA2 is not executed since
SLl\Ll = UNA and thus SLl\AQ = SL1|L1 = UNA and SLB\A2

= 8L3‘L3—NOM, cf. Example 3.

__In accordance with the table above we then have that
SA2:1\A2 = UNA, SA2:2\A2 = UNA, and SA2:3\A2 = DIST.
Using the reconfiguration principle described in Section V,
we conclude that the variant to be executed in A2 is A2:3
and that 8A2|A2 = SA2:3‘A2 = DIST.

VI. DIAGNOSTIC MODELING WITH BAYESIAN NETWORK

A diagnostic model includes all relevant faults and their
symptoms in the system. We need such a model because of
at least two reasons. The first is the use for analysis, and
the second is for model based diagnosis and troubleshooting
at the workshop. The questions asked during analysis are to
obtain measures of how fault tolerant the system is, or how
easy it is to localize faults. For example we can investigate
probability of false alarm, probability of missed detection,
probabilities of failures of different degrees of severity. The
questions asked during diagnosis and troubleshooting are for
example: given a set of diagnostic test results, what is the
most probable faulty component, or what is the most probable
cause for a specific service to become unavailable?

Based on the principles presented in Section II and IV,
we will now shortly describe how a diagnostic model of the
system can be built. The idea is to, as far as possible, use
standard principles for modeling with Bayesian networks, e.g.
see [11].

A system with service providers, software modules and
hardware components, arranged such that no directed cycles
appear can be interpreted as a casual network. Then by adding
probabilities to the causal network, we obtain a Bayesian
network which allows for probability based inference, some-
thing that is necessary to answer the questions posed above.
In addition to service providers, we add nodes also for
diagnostic tests, estimated service statuses, and selectors. If a
service provider has variants, each variant is represented by
its own node. The selector node represents the selection of
variant, which according to Section IV-B, is a mapping from
communicated service statuses of the suppliers and test results
to variants. The service provider becomes a node representing
a copying of the service status from the selected variants.
Thus, the service provider node has incoming links from each
variant and from the selector.

The CPD:s (Conditional Probability Distributions) of the
estimated service statuses and selectors are deterministic and
given by the actual implementation. CPD:s for diagnostic
tests and service providers are given by expert knowledge.

By utilizing these principles, we have modeled the whole
system illustrated in Figure 2. A part of the model, represent-
ing service provider A2, is shown in Figure 3. In this model,
the mapping representing the selection of variant, has been
refined to follow the algorithm given in Sec. V.

S

m\u

Model of Service Provider A2
VII. CONCLUSIONS

The paper has presented a hierarchical architecture for fault
tolerant control of large-scale mechatronic systems. In the
architecture, both the diagnosis and the reconfiguration are
completely decentralized according to the structure of the
control system. Therefore, no extra dependencies are added
to the SW. This is of key importance since a requirement of
efficient engineering of large scale system, is to reduce and
control the amount of dependencies in the system. All this has
been possible to achieve by using a purely service oriented
view of the system including both hardware and software.
The service view with no cyclic dependencies is further used
as the basis for obtaining Bayesian networks for modeling
the system.

Fig. 3.

REFERENCES

[11 Y. M. Zhang and J. Jiang, “Bibliographical review on reconfigurable
fault-tolerant control systems,” IFAC Annual Reviews in Control,
vol. 32, no. 2, pp. 229-252, 2008.

[2] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and
Fault-Tolerant Control, 2nd ed. Springer Berlin Heidelberg, 2006.

[3] R. Isermann, Fault-Diagnosis Systems. Springer Berlin, 2006.

[4] C. Bonivento, A. Paoli, and L. Marconi, “Fault-tolerant control of
the ship propulsion system benchmark,” Control Engineering Practice,
vol. 11, no. 5, pp. 483 — 492, 2003, automatic Control in Aerospace.

[5] J. Laprie, Ed., Dependability: Basic Concepts and Terminology.
Springer, 1991.

[6] L. Grunske and B. Kaiser, “Automatic generation of analyzable failure
propagation models from component-level failure annotations,” ser.
International Conference on Quality Software, 2005.

[71 M. Staroswiecki, “On fault handling in control systems,” International
Journal of Control, Automation, and Systems, vol. 6, no. 3, pp. 296—
305, 2008.

[8] A. Gehin and M. Staroswiecki, “Reconfiguration analysis using generic
component models,” IEEE Trans. on Systems, Man, and Cybernetics.
Part A: Systems and Humans, vol. 38, no. 3, pp. 575-583, 2008.

[91 A. Mohamed and M. Zulkernine, “On failure propagation in

component-based software systems,” ser. International Conference on

Quality Software, 2008, pp. 402-411.

J. Gertler, Fault Detection and Diagnosis in Engineering Systems.

Marcel Dekker, Inc., Basel, 1998.

F. Jensen and T. Graven-Nielsen, Bayesian Networks and Decision

Graphs, 2nd ed. Springer, 2007.

[10]
(11]

