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Abstract— A generalized fault isolability matrix is proposed
for quantitative analysis of fault isolability properties. The
original fault isolability matrix gives information about which
faults that are isolable from each other. However, other relavant
isolability properties are not visible which can be important,
for example, information regarding alternative fault hypotheses
and multiple-fault isolability. The result of the analysis can
be presented in the same compact form as the existing fault
isolability matrix which makes it simple to visualize. As a case
study, a model of an internal combustion engine is analyzed
and two different solutions to the test selection problem are
compared.

I. INTRODUCTION

In model-based diagnosis, two common measures to eval-
uate diagnosability properties of the model of a system to
be monitored, are fault detectability and isolability. Single-
fault isolability analysis can be presented compactly using
a fault isolability matrix. For systems with few candidate
faults, this analysis can be extended to multiple-fault isola-
bility by extending the number of rows and columns in
the fault signature matrix. However, presenting multiple-
fault isolability properties in a compact form is a non-trivial
problem since, for example, the number of multiple-faults
grows exponentially with number of faults.

Analyzing multiple-fault isolability has been considered
in, for example, [4] and [7]. In these previous works,
multiple-fault isolability properties are presented using a
graph-based structure called a lattice. The lattice represen-
tation gives full information about multiple-fault isolability.
However, depending on the system properties the size of the
lattice grows fast with increasing number of candidate faults.
With respect to these previous works, a quantitative fault
isolability analysis of structural models is proposed which is
not as detailed as the results in previous works but can be
represented in a more compact form which does not suffer
from complexity issues.

The general diagnosis system architecture considered in
this work uses a set of residuals to detect different faults.
Based on which residuals have triggered, a fault isolation
algorithm computes diagnosis candidates that represent dif-
ferent sets of faults that can explain the triggered residuals.
In the ideal case, each residual should be sensitive to only
one fault. Then, fault detection and isolation of both single-
faults and multiple-faults would be trivial. However, in many
applications each residual will be sensitive to more than
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TABLE I
FAULT SIGNATURE MATRIX OF THE SOLUTION SET SELECTED USING THE

REFERENCE TEST SELECTION ALGORITHM.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11
r1 X X X X X
r2 X X X X X X X
r3 X X X X X X X
r4 X X X X X X X X X
r5 X X X X X X
r6 X X X X X X X
r7 X X X X X X

TABLE II
FAULT SIGNATURE MATRIX OF THE SOLUTION SET SELECTED USING THE

PROPOSED TEST SELECTION ALGORITHM.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11
r1 X X X X X
r2 X X
r3 X X X X X X
r4 X X X X X X
r5 X X X X X X
r6 X X X X X X
r7 X X X X X X

one fault. This means that some type of fault isolation
logic is necessary [1]. Therefore, analyzing both single-fault
and multiple-fault isolability properties is an important tool
when designing the diagnosis system, for example, when
performing sensor selection [8] or test selection [9].

Residual selection is an important step in the diagnosis
system design to fulfill fault detectability and isolability
requirements. Even for systems with low redundancy, the
total number of candidate residuals can be too large to
implement all of them in the diagnosis system. Thus, the
goal is to find a minimal set of residuals that fulfills a set
of fault isolability requirements. However, this is an NP-
complete problem and different heuristic search strategies
have been proposed, see for example, [6] and [9].

Consider the two fault signature matrices presented in
Table I and Table II, which will also be considered later in
the case study. An X at position (i, j) in the fault signature
matrix corresponds to that residual ri is sensitive to fault
fj . A fault isolability matrix for each of the sets will show
that all single faults are isolable from each other, meaning
that single-fault isolability of the two sets are equivalent.
However, the residuals in Table II are generally sensitive to
fewer faults, i.e., the matrix is more sparse, meaning that
more fault hypotheses can be rejected with fewer triggered
residuals. This type of quantitative comparison is not possible
using the existing fault isolability matrix.



TABLE III
TWO EXAMPLES OF FAULT SIGNATURE MATRICES WITH THE SAME

SINGLE-FAULT ISOLABILITY.

(a) Residual set 1
f1 f2 f3 f4

r1 X X X
r2 X X X
r3 X X X
r4 X X X

(b) Residual set 2
f1 f2 f3 f4

r1 X
r2 X
r3 X
r4 X

The main contribution is a quantitative method for fault
isolability analysis given a structural model of the system,
or a set of residuals. The result is presented as a gener-
alized version of the existing fault isolability matrix. The
proposed method gives more detailed information regarding
fault isolability accuracy, and also multiple-fault isolability,
by analyzing properties of all diagnosis candidates that can
explain a faulty scenario. The second contribution is a test
selection strategy which tries to minimize the solution set and
at the same time make the fault signature matrix sparse.

II. AN INTRODUCTORY EXAMPLE

Before stating the problem, the following example is used
as a motivation. A small system is analyzed which can
be affected by four possible faults, f1, f2, f3, and f4.
Two different sets of residuals have been selected and the
corresponding two fault signature matrices are shown in
Table III. The two sets of residuals represent two extreme
cases when all single-faults are isolable, i.e., when each
residual in the set is either sensitive to all but one fault or
only one fault. The single-fault isolability performances are
equal for the two residual sets which can be presented using
an fault isolability matrix as shown in Table IV. An X at
position (i, j) in the fault isolability matrix represents that
fault fi is not isolable from fault fj . If all faults are isolable
from each other, there will only be Xs in the diagonal.

In residual set 1, only one fault is rejected by each residual.
This means that little information is given about which fault
has occurred when a residual triggers since most faults can
explain the triggered residual. Using residual set 1, it is
necessary that three of the residuals trigger before the true
fault can be located. Residual set 2 in this sense is optimal
since there is only one single-fault that can explain that a
residual has triggered, meaning that fault isolation is trivial.

If two or more faults occur in the system, residual set
1 will not be able to isolate the faults since all residuals
would trigger, given any pair of faults. It is only possible
to isolate multiple-faults using residual set 2 since each
fault of faults will trigger a unique set of residuals. Also,
from a multiple-fault isolation perspective, the right fault
signature matrix is optimal since any combination of faults
can be isolated. However, this type of information regarding
multiple-fault isolability cannot be obtained from the fault
isolability analysis in Table IV.

TABLE IV
SINGLE-FAULT ISOLABILITY MATRIX FOR EACH OF THE TWO SETS OF

RESIDUALS DESCRIBED IN TABLE III.

f1 f2 f3 f4
f1 X
f2 X
f3 X
f4 X

III. PROBLEM STATEMENT

The main problem is how to visualize the type of multiple-
fault isolability properties that were discussed in the previous
section. The analysis should be applicable, either for a given
set of residuals or for a given model, and the result should
be represented in a compact form that is easy to visualize.
The graph-based methods in [4] and [7] can visualize all
multiple-fault isolability properties. However, for a system
with many faults, these methods will suffer of complexity
issues due to that the number of fault combinations grows
exponentially with number of faults. Therefore, a compact
representation of multiple-fault isolability properties is still
interesting even though the information is conservative, since
it gives more information than, for example, the existing
single-fault isolability analysis. As an application, a test
selection algorithm has been developed and the proposed
fault isolability analysis method is used to compare the
solution of the proposed algorithm with an existing test
selection algorithm.

Here, the consistency-based fault isolation algorithm pre-
sented in [2] is used to compute diagnosis candidates. It is
assumed that residuals are designed with negligible false-
alarm rate but a positive missed-detection rate. This means
that only triggered residuals are taken into consideration in
the fault isolation logic, i.e., the exoneration assumption is
not valid [3].

IV. BACKGROUND

Let F = {f1, f2, . . . , fnf
} be a set of faults that can occur

in the system. To describe the system state, the term fault
mode is used. A fault mode F is used to denote a subset of
faults F ⊆ F present in the system, i.e., a fault mode can
represent one or several faults but also the fault-free case NF
(No Fault). It is assumed that there exists a set of nr residual
candidates, R = {r1, r2, . . . , rnr}, where each residual ri is
sensitive to a subset of faults F(ri) ⊆ F , denoted the test
support of ri [4].

A diagnosis candidate dk denotes a set of faults dk ⊆ F
which can explain a set of triggered residuals. Let D =
{d1, d2, . . . , dnd

} denote a set of feasible diagnosis candi-
dates. Some properties of the fault isolation algorithm [2] and
computed diagnosis candidates are summarized as follows.
Assume that dk is a diagnosis candidate. Then, if a new
residual rl triggers:

1) dk is still a diagnosis candidate if ∃fi ∈ dk such that
fi ∈ F(rl).

2) if dk is no longer a diagnosis candidate, then all dk ∪
{fi} for each fi ∈ F(rl) are diagnosis candidates.



3) if no subset dl ⊂ dk is a diagnosis candidate then dk
is a minimal diagnosis candidate.

The fault isolation algorithm described in [2] computes all
minimal diagnosis candidates. Note that the set of all mini-
mal diagnosis candidates represents all diagnosis candidates
since all supersets of faults are also diagnosis candidates.
The list describes the principle of how the fault isolation
algorithm updates the set of minimal diagnosis candidates
when a new residual triggers. Note that the fault isolation
algorithm works sequentially and updates the set of diagnosis
candidates when new residuals trigger.

For multiple-fault isolability analysis, the following defi-
nition of isolability between two fault modes is used.

Definition 1: A fault mode Fi is isolable from another
fault mode Fj if it is possible to generate a residual r
sensitive to at least one of the faults in Fi but no faults
in Fj .
The cardinality of a set S is denoted |S| and is equal to the
number of elements in the set. Then, the following definition
is used to define if a fault mode is isolable from all other
fault modes of same cardinality, i.e., the number of faults in
the fault mode.

Definition 2: A fault mode F is uniquely isolable if the
true diagnosis candidate, i.e., the diagnosis candidate dF =
F , has lower cardinality compared to all other diagnosis
candidates, i.e.,

|d| > |dF |,∀d ∈ D \ dF . (1)

V. A GENERALIZED FAULT ISOLABILITY ANALYSIS

A generalization of the single-fault isolability matrix is
proposed here by analyzing the cardinality of computed mini-
mal diagnoses. To motivate the analysis method the following
property of minimal diagnosis candidates is utilized.

Proposition 1: Let Dold denote a set of minimal diagnosis
candidates and Dnew is the new set after a test has triggered.
Then, for each dk ∈ Dnew there exists a dl ∈ Dold such that
dl ⊆ dk.
The proposition follows from the properties of the
consistency-based fault isolation algorithm summarized in
Section IV.

Consider the single-fault case fi and the computed min-
imal diagnoses given that all residuals sensitive to fi have
triggered. If the single fault fi is uniquely isolable all mini-
mal diagnosis candidates except the true diagnosis candidate,
{fj}, will have cardinality two or higher. If there is another
minimal diagnosis candidate of the same cardinality, the true
fault mode is not uniquely isolable. This means that all
other faults will either be in a minimal diagnosis candidate
of higher cardinality than the true diagnosis or not in any
minimal diagnosis candidate.

Consider the double-faults {fi, fj}. Using Proposition 1,
if the minimal cardinality of all minimal diagnosis candidate
except the true one has cardinality three or higher for each
single-fault, fi and fj , the double-fault mode F = {fi, fj} is
also uniquely isolable. The same is true for multiple-faults
of higher cardinality and this result is summarized in the
following proposition.

TABLE V
COMPUTED MINIMAL DIAGNOSES WHEN EACH SINGLE-FAULT OCCURS

GIVEN THE TWO EXAMPLE RESIDUAL SETS IN TABLE III.

fault residual set 1 residual set 2
f1 {f1}, {f2, f3}, {f2, f4}, {f3, f4} {f1}
f2 {f2}, {f1, f3}, {f1, f4}, {f3, f4} {f2}
f3 {f3}, {f1, f2}, {f1, f4}, {f2, f4} {f3}
f4 {f4}, {f1, f2}, {f1, f3}, {f2, f3} {f4}

TABLE VI
TWO EXAMPLES OF FAULT SIGNATURE MATRICIES WITH THE SAME

SINGLE-FAULT ISOLABILITY.

f1 f2 f3 f4
f1 1 2 2 2
f2 2 1 2 2
f3 2 2 1 2
f4 2 2 2 1

f1 f2 f3 f4
f1 1
f2 1
f3 1
f4 1

Proposition 2: Consider a fault mode F = {f1, . . . , fk}
of cardinality k and let Di denote all minimal diagnosis
candidates given the single fault fi. Then, fault mode F is
uniquely isolable if the cardinality of all d ∈ Di \ {fi} are
greater than k, for all fi ∈ F .
The proof of Proposition 2 follows from Proposition 1.
One useful result of Proposition 2 is that analyzing the
single-fault case also gives information about multiple-fault
isolability properties. This information can be summarized
in an Rnf×nf matrix where the number at position (i, j) is
the minimal cardinality of any minimal diagnosis candidate
including fj when all residuals sensitive to fi have triggered.
An empty position (i, j) corresponds to that fault fj is not
included in any minimal diagnosis candidate.

Again, consider the introductory example and the two sets
of residuals in Table III. In the case when all residuals are
sensitive to all faults but one, the corresponding computed
minimal diagnoses for each single-fault in the ideal case, i.e.,
when all residuals sensitive to the fault trigger, are shown in
Table V. If two or more faults occur, residual set 1 will return
minimal diagnosis candidates including all pair of faults. For
the case of residual set 2, fault isolation is trivial and the only
minimal diagnosis candidate the true diagnosis candidate.

The results from the fault isolability analysis of the two
residual sets are shown in Table VI. All single-faults are
uniquely isolable since there are only ones in the diagonal.
However, when considering double-faults, the results of
the two residual sets become different. All non-diagonal
positions have the value two given residual set 1 and are
empty given residual set 2. This shows that residual set 1
cannot uniquely isolate double-faults, nor multiple-faults of
higher cardinality. Residual set 1 can isolate multiple-faults
of any cardinality which is visible in Table VI since all non-
diagonal elements are empty.

As a third example, consider a new set of residuals with
fault signature matrix in Table VII. The first four residuals
in the set are sufficient for single-fault isolability and the
corresponding proposed generalized fault isolability matrix
is shown to the left in Table VIII. The minimal diagnosis



TABLE VII
FAULT SIGNATURE MATRIX GIVEN RESIDUAL SET 3 WITH THE SAME

SINGLE-FAULT ISOLABILITY AS THE PREVIOUS RESIDUAL SETS IN THE

INTRODUCTORY EXAMPLES.

f1 f2 f3 f4
r1 X X
r2 X X
r3 X X
r4 X X
r5 X X
r6 X X

TABLE VIII
TWO EXAMPLES OF FAULT SIGNATURE MATRICES WITH THE SAME

SINGLE-FAULT ISOLABILITY.

f1 f2 f3 f4
f1 1 2 2
f2 2 1 2
f3 2 1 2
f4 2 2 1

f1 f2 f3 f4
f1 1 3 3 3
f2 3 1 3 3
f3 3 3 1 3
f4 3 3 3 1

candidates for each single-fault case are also shown in Ta-
ble VII. Similar to the performance of residual set 1, it is only
possible to uniquely isolate single-faults since the lowest
non-diagonal number in each row is still two. However if two
faults occurs, the number of minimal diagnosis candidates of
cardinality two will be lower compared to using residual set
1 which is visible when comparing the number of minimal
diagnosis candidates in Table IX with Table V.

If considering the whole residual set 3, i.e., all six resid-
uals, the corresponding generalized fault isolability matrix
is shown to the right in Table VIII. Compared to the left
matrix, all non-diagonal positions have the value three which
means that all fault modes up to, at least, double-faults can
be uniquely isolated.

Some observations of the properties of the generalized
fault isolability matrix can be summarized in the following
bullets:
• A fault fi is isolable from another fault fj if the position

(i, j) is empty or have a value greater than 1.
• A fault fi is uniquely isolable if the positions (i, j), for

all fj ∈ F where j 6= i, are empty or have a value
greater than 1.

• An empty position (i, j) means that fj will not be part
of any minimal diagnosis candidate if fault fi occurs.

• A fault mode F is uniquely isolable if the positions
(i, j), for all fi ∈ F and i 6= j, are empty or have
values greater than |F |.

The examples show that the proposed generalized fault
isolability matrix extends the single-fault isolability matrix
and gives more information of fault isolability performance
including multiple-fault isolability. Note that the analysis
can be performed for a given model by analyzing the set
of Minimal Test Equation Sets (MTES) generated from the
model [4]. In short, an MTES represents the maximum
number of over-determined equations that is sensitive to a
minimal set of faults and can be used to generate residuals.
An important property is that the set of MTES describes

TABLE IX
COMPUTED MINIMAL DIAGNOSES WHEN EACH SINGLE-FAULT OCCURS

GIVEN WHOLE RESIDUAL SET 3 IN TABLE VII AND WHEN ONLY

CONSIDERING THE FIRST FOUR RESIDUALS {r1, r2, r3, r4}.

fault {r1, r2, r3, r4} residual set 3
f1 {f1}, {f2, f3} {f1}, {f2, f3, f4}
f2 {f2}, {f1, f4} {f2}, {f1, f3, f4}
f3 {f3}, {f1, f4} {f3}, {f1, f2, f4}
f4 {f4}, {f2, f3} {f4}, {f1, f2, f3}

maximum multiple-fault isolability given by the model [4].

VI. TEST SELECTION

To illustrate how the proposed analysis method can be
used, a test selection algorithm is developed where the solu-
tion is compared to the solution of an existing test selection
strategy. Here, only single-fault isolability requirements are
taken into consideration when formulating the test selection
problem.

The goal is to find a minimal set of residuals R ⊆ R that
fulfills a set of single-fault isolability requirements. For each
single-fault isolability requirement, i.e., be able to isolate fi
from fj , there is a subset of the candidate residuals that
can fulfill that requirement denoted Ii,j ⊆ R. Thus, the test
selection problem can be formulated as a minimal hitting set
problem [9] as

min
R⊆R

|R| s. t. R ∩ Ii,j 6= ∅,∀fi, fj ∈ F (2)

Note that only ideal residual performance is considered
here. However, quantitative detection performance of the
residual candidates can be taken into consideration in the
test selection problem by defining each set Ii,j such that
all residuals rk ∈ Ii,j fulfill some given quantitative perfor-
mance requirement for isolating fi from fj .

Since the minimal hitting set problem (2) is NP-complete,
there are several heuristic search strategies proposed to solve
the test selection problem. Here, a modification is proposed
of the greedy search algorithm presented in [9]. In [9], the
greedy algorithm adds a new residual to the solution set R
until all requirements are fulfilled. The residual selected in
each step is the residual r∗ which maximizes the number of
new fulfilled isolability requirements, i.e.,

r∗ = argmax
r∈R

Number of new Ii,j fulfilled. (3)

To analyze the properties of this test selection strategy,
note that the number of single-fault isolability requirements
that can be fulfilled by a residual r sensitive to m = |F(r)|
faults is m(nf − m). Maximizing with respect to m gives
that

d

dm
m(nf−m) = nf−2m = 0⇒ m =

{ nf

2 if nf even
nf±1

2 if nf odd.
(4)

This indicates that the solution found by [9] will not try to
find a solution similar to the right fault signature matrix in
Table III, in the general case. Residuals sensitive to more
faults will have a higher utility since they will fulfill more



isolability requirements. However, If some residuals require a
longer time to detect the fault, and if each residual is sensitive
to a large set of faults, it will take a long time before anything
can be said about the detected fault.

To reduce the number of diagnosis candidates, and im-
proved multiple-fault isolability, residuals should be sensitive
to few faults. Then, when a residual triggers, only a few
number of faults can explain the triggered residual, which
will make it easier to draw some conclusions about the
true fault even before it is uniquely isolated. By modifying
the utility function (3), it is possible to prioritize residuals
sensitive to few faults without significantly increasing the
number of residuals in the solution set.

The proposed modification of the utility function is such
that the residual selected in each step r∗ should maximize
the following utility function:

r∗ = argmax
r∈R

Number of new Ii,j fulfilled
nfm(r)

. (5)

where m(r) is used to emphasize that m depends on r. The
main difference between the proposed utility function and
(3) is the normalization factor nfm(r). Since the number of
single-fault isolability requirements that can be fulfilled by
a residual sensitive to m faults is m(nf − m), the utility
function can be written as

m(nf −m)

nfm
= 1− m

nf
(6)

which is maximized when m is minimized. The modified
utility function should result in a selected set of residuals
with a more sparse fault signature matrix.

VII. EVALUATION

To evaluate the proposed fault isolability analysis and the
proposed test selection algorithm, a model of the air-flow
in a internal combustion engine is used as a case study. The
model of the engine contains 96 equations, 90 unknown vari-
ables, 12 known signals, 14 states, and 11 faults, including
sensor faults, leakages and air filter clogging. The degree of
redundancy of the system is six.

A. fault isolability analysis of engine model

The computed generalized fault isolability matrix of the
engine model is presented in Table X. There are only ones in
the diagonal which shows that all single-faults are uniquely
isolable. All other positions in the table have values larger
than or equal to four. This means that any set of multiple-
faults up to at least cardinality three are uniquely isolable
given the model. Note that these results are restrictive and
there might be some fault modes with multiple-faults of
cardinality four and larger that could be uniquely isolable.
However, then a more detailed isolability analysis for each
fault mode is necessary.

TABLE X
MULTIPLE-FAULT ISOLABILITY ANALYSIS OF THE IC ENGINE MODEL.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11
f1 1 5 6 5 5 5 6 5 6 6 6
f2 5 1 5 5 5 5 5 5 5 5 5
f3 6 5 1 5 4 4 4 6 4 5 5
f4 5 5 5 1 5 5 5 5 5 5 5
f5 5 5 4 5 1 4 4 5 4 5 5
f6 5 5 4 5 4 1 4 5 4 5 5
f7 6 5 4 5 4 4 1 6 4 5 5
f8 5 5 6 5 5 5 6 1 6 6 6
f9 6 5 4 5 4 4 4 6 1 5 5
f10 6 5 5 5 5 5 5 6 5 1 5
f11 6 5 5 5 5 5 5 6 5 5 1

B. Fault isolability analysis of residual sets

The proposed test selection algorithm is compared to the
greedy search [9] which is used as a reference algorithm.
A Monte Carlo analysis is performed where the order of
the candidate residuals is permuted randomly to analyze the
influence of the order on the solution. One set of residual
candidates are used in the evaluation based on all minimally
overdetermined sets of equations (MSO) given the model [5].
Each MSO can be used to design residual candidates which
here result in 101925 residual candidates.

The solution from the reference algorithm is presented
in Table I and the solution from the proposed algorithm in
Table II. The solution of the reference algorithm is able to
isolate all single-faults using seven test quantities. However,
the fault signature matrix have in total 47 Xs, while the
solution of the proposed algorithm have 37 Xs, i.e., a 20%
reduction. The reduced number of Xs will have a positive
impact on fault isolability performance which is visible when
comparing the generalized fault isolability matrices.

The result from the analysis of the solutions of the
reference algorithm is shown in Table XI and the proposed
algorithm in Table XII, respectively. The solution found by
the two algorithms fulfill the single-fault isolability require-
ments. However, the solution of the proposed test selection
algorithm has some attractive fault isolability properties.
Several positions in Table XII are empty and there are more
positions with value three compared to Table XI. Also, note
that the proposed test selection algorithm appears to find
solutions with better multiple-fault isolability performance
without taking multiple-fault isolability requirements into
consideration.

C. Robustness analysis of the test selection algorithm

Since the solution of the proposed test selection algorithm
might depend on the order of the set of residual candidates
a robustness analysis of the solution is necessary. A Monte
Carlo study is performed where the set of residual candidates
is permuted in random order. In the Monte Carlo analysis,
the total number of Xs in the faults signature matrix and
the number of residuals in the solution are evaluated. The
results of the analysis are presented in Fig. 1 and Fig. 2
showing that the proposed method in average gives a more
sparse fault signature matrix even though the solution set
more often contains an extra residual.



TABLE XI
GENERALIZED FAULT ISOLABILITY ANALYSIS BASED ON THE SOLUTION

OF THE REFERENCE TEST SELECTION ALGORITHM.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11
f1 1 2 2 2 2 2 2 2 2 2 2
f2 2 1 2 2 2 2 2 2 2 2 2
f3 2 2 1 2 2 2 2 2 2 2 2
f4 2 2 2 1 2 2 2 2 2 2 2
f5 2 2 2 2 1 2 2 2 2 2 2
f6 2 2 2 2 2 1 2 2 2 2 2
f7 2 2 2 2 2 2 1 2 2 2 2
f8 2 2 2 2 2 2 2 1 2 2 2
f9 2 2 2 2 2 2 2 2 1 2 2
f10 2 2 2 2 2 2 2 2 2 1 2
f11 3 2 2 2 2 2 2 2 2 2 1

TABLE XII
GENERALIZED FAULT ISOLABILITY ANALYSIS BASED ON THE SOLUTION

OF THE PROPOSED TEST SELECTION ALGORITHM.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11
f1 1 2 2 2 2 2 2
f2 2 1 2 2 2 2 2 2 2 2 2
f3 2 1 2 2 2 2 2 2 2 2
f4 2 2 2 1 2 2 2 2 2 2
f5 2 2 2 1 2 2 2 2 2
f6 2 2 2 2 1 2 2 2 2 2
f7 2 2 2 2 2 1 2 2 2
f8 2 3 2 3 3 3 3 1 3 3 3
f9 2 2 2 2 2 2 2 3 1 2 2
f10 2 2 2 2 2 2 2 2 2 1 2
f11 2 2 2 2 3 2 2 2 2 1
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Fig. 1. Monte Carlo evaluation of the number of Xs in the fault signature
matrix for the two test selection algorithms.
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Fig. 2. Monte Carlo evaluation of how many residuals selected by the two
test selection algorithms.

VIII. CONCLUSIONS

The proposed fault isolability analysis method gives a
compact overview of some multiple-fault isolability proper-
ties given a system or a set of residuals. The results can
be represented as a generalization of the fault isolability
matrix. Further analysis is necessary to better understand
the properties of the generalized fault isolability matrix. The
generalized fault isolability matrix can be used for a more
quantitative comparison of isolability performance between,
for example, different sets of sensors or residuals, compared
to the standard fault isolation matrix. The proposed greedy
test selection strategy tries to find a minimal residual set
which also has a sparse fault signature matrix. Analysis of
the case study illustrates the advantages of the proposed test
selection method regarding reducing the number of computed
diagnosis candidates and improved multiple-fault isolability.
The case study also shows that the proposed methods can be
applied in combination with structural methods to analyze
complex models which also makes it applicable early in the
diagnosis system design process.
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