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Abstract—The optimal control of wheel loader operation is
used in order to investigate the potentials for fuel cost and
cycle time minimization during the short loading cycle. The
wheel loader is modeled as a nonlinear system with three control
inputs and four state variables where a diesel engine generates
the power utilized for lifting and traction. The lifting system is
modeled considering the limitations in the hydraulics and also
the structural constraints. A torque converter is included in the
driveline model which introduces nonlinearities into the system
and operates in different modes affecting the fuel consumption.
The gear shifts during the loading cycle impose a discrete variable
into the system and this is taken care of by representing the
loading cycle as a multi-phase optimal control problem with
constant gearbox gear ratio in each phase. Minimum fuel and
minimum time system transients are calculated and analyzed
for two alternative cases one where the torque converter is
used to stop the vehicle before reaching the reversing point
and another where the service brakes are utilized. The optimal
control problem is iteratively solved in order to obtain the trade-
off between fuel consumption and cycle time for both braking
alternatives. It is shown that although the engine operates at
lower speeds when the torque converter is used for braking, the
fuel consumption increases as higher torques are demanded from
the engine during braking. The increase in fuel consumption
is higher in faster cycle operations as the vehicle travels at
higher speeds and larger torques are required to stop the vehicle.
Wheel loader operators tend to use torque converter braking
alternative as it is more convenient; however, it accompanies
higher fuel consumption which highlights the importance of
developing intelligent and easy to use braking systems.

I. INTRODUCTION

The short loading cycle is a frequent application of wheel
loaders which is a combination of load lifting and transporta-
tion, Fig 1. The minimization of fuel consumption and cycle
time is interesting for the manufacturers as it would increase
the productivity and reduce the costs in construction projects.
However, these objectives are contradictory and a desirable
compromise between the two can be obtained by the optimal
control study of wheel loader operation instead of performing
costly experimental measurements. The knowledge gained by
optimal control is also helpful in the design process of control
algorithms for autonomous wheel loader control systems, [1].

In [2] a model was developed for the wheel loader including
a torque converter (TC) capable of transferring power from the
engine to the wheels and vice versa. The power distribution in
the system was analyzed and it was concluded that the TC is

Fig. 1. Numbered sequence of actions in a short loading cycle, point 4 is
called the reversing point, picture from [5].

the key component in the driveline as it introduces the largest
power losses into the system.

Using the TC for braking, called TC braking in this paper, is
done by shifting into forward gear before the reversing point,
around point 3 on Fig 1, and is found easier by the drivers
since the gas pedal is used even for braking. The contribution
of this paper is the optimal control study of the alternative
braking technique where either service brakes or TC is utilized
in order to reduce the vehicle speed.

The wheel loader components are modeled according to the
properties in [3]. PROPT [4] which uses pseudo-spectral col-
location methods is used to solve the formulated multi-phase
optimal control problem and all constants and parameters used
in the modeling section are exactly the same as in [2].

II. SYSTEM MODEL

Fig 2 shows the components in the wheel loader model and
the interdependence between them. The consists of models
for diesel engine, lifting system, TC, gearbox and vehicle
longitudinal dynamics. The states are engine speed ωice,
vehicle speed V , bucket height Hbuc, and bucket speed Vbuc
while the control inputs are fuel injection per engine cycle Umf,
bucket vertical acceleration Uab, and braking signal at wheels
Ub. The governing differential equations of the system, used
to determine the states are:



Fig. 2. Wheel loader system model showing the interdependence between
system components.

dωice

dt
=
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Jice

(
Tice(Umf, ωice)−

Pload(Vbuc, V )

ωice

)
(1)

dV
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=
sign(V )

(
Ftrac(Ub, ωice)− Froll

)
Mtot

(2)

dHbuc

dt
= Vbuc (3)

dVbuc
dt

= Uab (4)

where γ is the gearbox gear ratio and the power request from
the diesel engine Pload is calculated as the sum of the powers
required for lifting Plift and vehicle traction Ptrac. The sign
function in the model equations has a constant value during
each phase of the operation and does not cause discontinuities.

A. Diesel engine

A simplified version of the mean value engine model
developed in [6] is used as the power source in the system.
The engine torque Tice is calculated based on the friction
torque Tfric and indicated gross torque Tig. The torques and
the mass of injected fuel during each combustion cycle ṁf

are calculated as follows:

Tice(Umf, ωice) = Tig(Umf)− Tfric(ωice) (5)

Tig(Umf) =
ηig qhv ncyl Umf 10−6

4π
(6)

Tfric(ωice) =
Vd 105

4π

(
cfr1 ωice

2 + cfr2 ωice + cfr3

)
(7)

ṁf (Umf, ωice) =
10−6

4π
Umf ωice ncyl (8)

where ηig and cfr1,2,3 are the tuning parameters of the model,
qhv is the heating value of the fuel, ncyl is the number of
cylinders and Vd is the total cylinder displacement volume.

B. Lifting system

The power required for lifting Plift and system constraints
during the lifting are calculated in the lifting system model. It
is assumed that no power is required for holding the loaded
bucket at a constant height. The lifting power is calculated as:

Fig. 3. The vertical displacement of the bucket is equal to the multiplication
of the lift cylinder displacement into variable k(θ2).

Fload = Mload (g + Uab) (9)

Plift,net = Fload Vbuc , Plift =
Plift,net

ηlift
(10)

where g is the earth gravity, ηlift is the efficiency of the
lifting system and Mload is the sum of bucket mass and
the maximum capacity of the bucket. During the lifting, the
vertical displacement of the end point of the boom is calculated
as the multiplication of the lift piston displacement ∆Lcyl

with a non-constant factor k which depends on the height of
the bucket, see Fig 3 and Fig 4 for the nomenclature in the
following equations. The values of k at different boom angles
θ2 are calculated as follows:

θ2 = sin−1(
Hbuc −G

r
), θ1 = tan−1(

r1 cos(θ2)− xc
r1 sin(θ2)− yc

) (11)

Lcyl =

√(
r1 cos(θ2)− xc

)2
+
(
r1 sin(θ2)− yc

)2
(12)

k(θ2) =
∆(r sin(θ2))/∆θ2

∆Lcyl/∆θ2
, r = r1 + r2 (13)

where G is the height of the joint between boom and the wheel
loader body. The lifting is performed by hydraulic lift cylinders
and it should be ensured that the exerted pressure on the lift
cylinders does not exceed the component limit. Considering
the boom as a beam with the moment of inertia of Iboom, the
exerted force on the lift cylinders, Fp, is calculated by solving
the moment equilibrium equation around where the boom is
connected to the wheel loader body.

Fp =
Iboom Uab

r + Fload r cos(θ2) + Fw
r
2 cos(θ2)

r1 sin(θ1 − θ2)
(14)

Fw = Mboom (g + Uab) (15)

where Mboom is the mass of the boom. knowing the piston
surface area of the lift cylinder Apiston the exerted pressure in
the lift cylinder is calculated as follows:

Pcyl =
Fp

Apiston
(16)



Fig. 4. The boom, lift cylinder and acting forces on the boom.

The amount of fluid delivered to the lift cylinders by the
hydraulic pump defines the displacement speed of the lift
cylinder and its maximum can be calculated using the maxi-
mum pump displacement Dpump,max and the dimensions of the
hydraulic cylinder (rpiston and rrod) available in [3]. Hydraulic
pump speed is same as the engine speed until it saturates at
around 1500 rpm. The maximum possible piston displacement
speed in the lift cylinder vpist,max is then calculated as follows:

Apiston = π (r2piston − r2rod) (17)

Qpump = min(ωice, 1500)×Dpump,max ηvolumetric (18)

vpist,max =
Qpump ηcyl,l
Apiston

(19)

where ηvolumetric and ηcyl,l are constant, and describe the vol-
umetric efficiency of the hydraulic pumps and the mechanical
efficiency of the lift cylinders. The upper limit on the lifting
speed Vlift,max is then calculated as:

Vlift,max = k(θ2) vpist,max (20)

C. Torque converter and gearbox model

TC dynamics can be studied when the model is expressed
in terms of differential equations [7]. A static nonlinear model
suitable for control studies represents the TC here, as in [8].
The TC is modeled based on characteristics curves, and the
technique described in [2] is used to avoid the discontinuities
in the model. The pumping side of the TC rotates at the speed
of the diesel engine and the turbine side is directly connected
to the gearbox, see Fig 2. The speed ratio φ over the TC and
the gearbox speed ωgb are calculated as:

φ =
ωgb

ωice
, ωgb =

V γ

rw
(21)

where rw is the wheel radius. The generated torque in the
pumping side of the TC Tp, and the transferred torque to the
gearbox side Tgb are calculated as:

Tp = ξ(φ) (
ωice

1000
)2 , Tgb = κ(φ) (

ωice

1000
)2 (22)

where κ(φ) and ξ(φ) are the TC characteristic curves illus-
trated in Fig 5. Including a constant gearbox efficiency ηgb
the delivered torque to the wheels Tw can be calculated as
follows:

Tw = Tgb ηgb γ (23)

TABLE I
TC OPERATING MODE DEPENDS ON THE φ VALUE

Mode Speed ratio (φ)
I φ < 0
II 0 ≤ φ ≤ 1
III 1 < φ

Fig. 5. Torque converter characteristic curves and different operating ranges.

Depending on the φ value, the TC can operate in three different
operating modes described in table I. The TC operates in
mode II when the power is transferred from the engine side to
the gearbox side during vehicle acceleration. While the wheel
loader travels backwards if forward gear is selected(γ = 60
and V < 0) the two sides of the TC will rotate in opposite
directions (φ < 0) and the torque transferred through the TC
would reduce the vehicle speed, mode I. Mode III happens
when the engine speed becomes lower than the gearbox speed
(φ > 1). In this mode the kinetic energy of the wheels is
transfered to the engine side of the TC and decreases the
deceleration rate of the engine.

The demanded power in the driveline during modes I and
II and the transmitted power during mode III is calculated as:

Ptrac = Tp ωice (24)

D. longitudinal dynamics

The vehicle acceleration is calculated by solving the vehi-
cle longitudinal dynamics. Aerodynamic resistive forces are
neglected due to low vehicle velocities and only the rolling
resistance Froll is taken into account. Total mass of the vehicle
Mtot is calculated as the sum of the vehicle mass Mveh, the
equivalent mass of rotating wheels and Mload. The vehicle
acceleration is calculated as:

Froll = cr (Mveh +Mbuc) g (25)

Ftrac =
Tw − sign(V )Tb

rw
, Tb = Ub (26)

Mtot = Mveh +Mbuc +
4 Jw
r2w

(27)

dV

dt
=
sign(V ) (Ftrac − Froll)

Mtot
(28)

where Jw is the wheel inertia and cr is the rolling resistance
coefficient.

III. PROBLEM FORMULATION

The fuel consumption in the lift-transport section of the
short loading cycle and the time of this operation is calculated



TABLE II
THE STRUCTURE OF MULTI-PHASE OPTIMAL CONTROL PROBLEM

FORMULATION WHERE γ = 0/60 IN THE THIRD COLUMN REPRESENTS
THE TWO ALTERNATIVES FOR BRAKING.

Phase 1 Phase 2 Phase 3 Phase 4
Reversing Reversing Forwarding Forwarding
γ = - 60 γ = 0 or = 60 γ = 60 γ = 0
Ub = 0 Ub 6= 0 or = 0 Ub = 0 Ub 6= 0

t 0 t1 t1 t2 t2 t3 t3 T

ωice 1500 [rpm] - - - - - - -
V 0 - - 0 0 - - 0
Vbuc 0 - - - - - - 0
Hbuc 0.7 [m] - - - - - - 5 [m]
ẋ - - - - - - - 0

for two alternative braking methods. First, using service brakes
represented by the braking control input Ub, and second
using the TC braking. An optimal control problem is solved
to find the optimal system transients and since the gearbox
gear ratio changes discontinuously during the the lift-transport
operation a multi-phase optimal control problem where γ
remains constant during each phase is formulated. Different
phases and boundary conditions of the multi-phase optimal
control problem are presented in table II. At t = 0 the vehicle
has finished the bucket filling process and the engine speed is
not at its minimum. The loaded bucket should be lifted up to
5 meters at the end of the operation and the traveling distance
in the reversing and forwarding sections of the cycle are the
typical value in the short loading cycles equal to 1.5 times
the circumference of a wheel which becomes 6.6 meters. The
wheel loader fuel consumption in the lift-transport section of
the short loading cycle is then calculated by:

Mf =

∫ t1

0

ṁf dt+

∫ t2

t1

ṁf dt+

∫ t3

t2

ṁf dt+

∫ T

t3

ṁf dt (29)

where ṁf in each phase is calculated by (8). The system
transients and gear shifting times (t1, t2 and t3) in the
minimum fuel and minimum time operation are calculated by
solving the following optimal control problems:

min Mf or min T (30)
s.t: ẋ = f(x, u)

where ẋ are determined by (1) - (4) and the system
constraints are:∫ t2

0

V dt = −6.6

∫ T

t2

V dt = 6.6

Tice ≤ Tice,max(ωice) Vbuc ≤ Vlift,max

ωice,min ≤ ωice ≤ ωice,max Pcyl ≤ Pcyl,max

−0.18 g ≤ dV

dt
|V | ≤ Vmax

(31)

The Tice,max(ωice) constraint is modeled as three linear upper
bounds on the engine torque as illustrated in Fig 7. The
constraint on the derivative of vehicle speed is applied to
ensure the stability of the wheel loader during braking since
the loaded bucket is raised and fast decelerations could cause
damages to the mechanical structure. In addition to the above
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Fig. 6. Time and fuel optimal control and state trajectories for both braking
alternatives, vertical dashed lines are phase boundaries.

constraints, the states must be continuous between the suc-
cessive phases and this is ensured by applying the following
phase connecting constraints in PROPT:

xi at the start of phase j+1 = xi at the end of phase j (32)
i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3}

Using PROPT to solve the formulated optimal control problem
in (30) with respect to the constraints in (31) and (32) results
in oscillatory controls and states. To remove the oscillations,
a penalty on the derivatives of the oscillatory control inputs,
as formulated in (33), is added to the criterion function in
(30), and the problem is solved iteratively by decreasing the
penalty coefficient k until k = 0. This removes the oscillations
while the system dynamics remain almost unchanged. Using
this technique, the largest change in the objective function
value is only 0.3 %.

k (

∫ T

0

U̇2
ab dt+

∫ T

0

U̇2
mf dt) , k → 0 (33)

IV. RESULTS

A. Optimal system transients

The left and right columns in Fig 6 show the optimal con-
trols and system transients for both of the braking alternatives
in time and fuel optimal cycles respectively. The last plot in
the same figure shows the φ value during the wheel loader
operation which is helpful to verify the TC operating mode.
Fig 7 shows the engine operating points on the engine map
with respect to the engine torque limit.
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Fig. 7. Engine operating points in time and fuel optimal transients with
respect to the engine torque limits for both braking alternatives (constant
efficiency curves in blue and constant power [kW] curves in gray).

The time optimal transients, in both braking alternatives,
start by delivering all diesel engine power to the driveline for
fastest possible acceleration. Then the load lifting starts when
the vehicle has already reached high speeds and the most of the
engine power can be delivered to the lifting system. The limit
on the maximum lift cylinder pressure becomes active only in
short periods of the time optimal transients and the effect is
seen as the lowered rate of increase in Uab between 1.1 and
1.4 seconds. At the end of the first phase in the TC braking
alternative, the fuel injection is cut off and the engine speed
drops quickly. In this interval, φ > 1 and the TC operates in
mode III providing excess power for lifting which is the reason
for the sudden increase in Uab moments before entering the
second phase.

When the TC is used for braking, the engine power is used
for both braking and lifting during the second phase. In order
to consume less power for the braking and leave more power
for the lifting, starting from the end of the first phase, the
engine is controlled towards speeds where according to Fig 5,
ξ has lowest values in the φ < 0 region which results in lower
power request at wheels during braking according to (24). The
braking continues with maximum possible deceleration until
the end of the second phase.

When service brakes are used, no power is demanded by
the driveline during the second phase and the engine speed
remains high enough only to continue the lifting process at
almost constant lifting speed until moments before reversing
point where the bucket is decelerated to zero speed. The third
phase in both braking alternatives starts in the same way as
the first phase and since Vbuc = 0 the whole engine power
is allocated for vehicle acceleration. In case of using service
brakes, the third phase starts by a slight decrease in the engine
speed and increase in the fuel injection level to produce larger
engine powers, see the blue points in the top-left plot in Fig 7,
useful for faster accelerations and then continues on the engine
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Fig. 8. Trade-off between cycle time and fuel consumption (top). Increase
in fuel consumption when TC braking is used (bottom).

speed limit as in the first phase.
In both braking alternatives, by shifting into neutral gear in

the fourth phase the driveline is decoupled from the engine and
the engine power is used only for lifting while the brakes are
used to stop the vehicle as fast as permitted by the deceleration
limit. The final bucket deceleration happens later in the cycle
in case of the TC braking alternative in order to compensate
for the lower lifting speeds during the second phase. When
the service brakes are used, the TC never operates in mode III
since there is no drastic drop in the engine speed level while
the gearbox is engaged.

In the fuel optimal transients, the system is controlled into
low engine speeds in order to minimize the power losses as
discussed in [2]. In both braking alternatives the lifting and
vehicle acceleration are performed simultaneously during the
cycle. In the first and third phases, the vehicle starts from
stand still and lifting speed is zero but Umf is smaller at the
beginning of the first phase since less fuel is required as the
kinetic energy of the engine is used for acceleration and lifting
by a rapid deceleration in the engine speed which is higher at
the beginning of the first phase. In both braking alternatives,
the TC operates always in mode II unless the second phase
where TC is used for braking (mode III) or when the gearbox
is in neutral (phase four).

B. Trade-off between minimum fuel and minimum time tran-
sients

The optimal control problem in (30) is reformulated as the
weighted sum of the fuel and time objectives:

min (W1Mf +W2 T ) + k
( ∫ T

0

U2
ab +

∫ T

0

U2
mf

)
(34)

s.t. ẋ = f(x, u) & W1 +W2 = 1

The penalizing technique with k → 0 is applied to obtain
smooth system transients. The formulated problem is solved
for different values of W1 and W2 starting from W2 = 0.
The results show that using the TC braking alternative slightly
affects the cycle duration and increases the cycle time by
1.58 % and 2.8 % in the time optimal and fuel optimal
transients respectively. In Fig 8 the trade-off between fuel
consumption and cycle time using the two braking alternatives
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Fig. 9. Fuel optimal control and state trajectories in 10 sec cycle for both
braking alternatives, vertical dashed lines are phase boundaries.

is illustrated. The Pareto front shows that reducing the fuel
optimal cycle length by 50 % would cause less than 10 %
increase in the fuel consumption and fuel consumption would
decrease up to 35 % if the time optimal cycle duration is
increased by only 10 %. The lower plot in the same figure
shows the percentage of increase in the fuel consumption when
the TC braking is used instead of service brakes (the difference
is calculated at points where the cycle times are identical).
In faster cycles the wheel loader speed is higher and larger
engine torques are required to stop the vehicle time optimally
resulting in larger fuel consumptions in case of TC braking.

The Pareto shows a satisfying compromise between the fuel
and time criteria in the 9 to 11 second cycles. Fig 9 shows
the system transients for both braking alternatives where the
controls minimize the fuel consumption in a 10 sec cycle.
In both braking alternatives, the load is mostly lifted only
in one half of the cycle in which the engine speed remains
relatively high, and in the other half of the cycle, the engine
speed decreases to the minimum limit right after the vehicle
has reached high velocities. The fuel consumption is 2.7 %
higher in TC braking alternative as more power is generated
by the engine during the cycle operation, and in both braking
alternatives, the TC operates in modes II and III when the
vehicle accelerates.

V. CONCLUSION

A wheel loader model with four states and three control
inputs including a torque converter model is used to study

minimum time and minimum fuel system transients. The
torque converter is modeled so that it can be used to stop the
vehicle during reversing without using the service brakes. The
gearbox gear ratio varies discretely during the lift-transport
section of the short loading cycle. To avoid the difficulties
of solving mixed integer optimal control problems, a multi-
phase optimal control problem, with constant gearbox gear
ratio during each phase, is formulated and solved. The results
show that, in the time optimal transients, the direction of power
transfer in the torque converter is mostly towards the wheels,
unless, the torque converter is used to stop the vehicle by
shifting into forward gear before the reversing point where
the transferred torque reduces the vehicle speed. In both
reversing and forwarding sections of the time optimal loading
cycle, the power is first allocated to the vehicle acceleration
whereas load lifting starts when the vehicle has reached high
velocities. However, in the fuel optimal case, the lifting and
vehicle acceleration are performed simultaneously during the
forwarding and reversing sections, while the engine operates
at lower speeds in order to minimize the power losses and
fuel consumption. The fuel consumption is calculated for eight
different cycle durations and the trade-off between the fuel and
time criteria is presented as a Pareto front. When the torque
converter is used for braking, the fuel consumption increases
at all cycle durations. The increase in the fuel consumption is
higher at faster cycles as more engine power is required to stop
the wheel loader traveling at higher velocities. Although using
the torque converter during braking is easier for the drivers, it
is shown that it increases the fuel consumption. Therefore, it
is important to use intelligent braking mechanisms which are
easy to operate and also fuel efficient for applications such
as the short loading cycle where the wheel loader driver has
to perform repetitive operations in short times and tends to
operate the machine as it is more convenient without regarding
the fuel efficiency.
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