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Abstract— For the case with repetitive driving cycles for
a wheel loader the driving cycles parameters affects on the
optimal control of the wheel loader is studied. It is clearly seen
that average efficiency is not enough and also incorporating
driving cycles parameter such as average power, maximum
power and amount of recuperative energy will lead to an better
estimate on the fuel equivalence factor W .

I. INTRODUCTION

For a hybrid vehicle, it is well known that optimal control
of the energy management system depends on the driving
cycle [1], [2], [3], [4], where the driving cycle is a speed
profile over time. In this paper the power demand of a wheel
loader is studied. The driving cycle of a wheel loader is often
repetitive in its nature, normally it contains transport, filling
the bucket with material and emptying the bucket on for
example a hauler. Therefore it is investigated how repetitive
power demands and different driving cycle parameters af-
fect the optimal control and how to design an equivalent
consumption minimization strategy, ECMS, from a given
repetitive power demand. Using Dynamic Programming [5],
DP, it is possible to calculate the fuel equivalence factor for
the ECMS [6]. However, the DP is non-causal and cannot be
used online unless the future driving cycle is known in ad-
vance, which rarely is the case. Thus a method that estimates
the optimal control given historical data is needed. Repetitive
cycles gives possibility for easier parameterization of the
driving cycle and a modeling of lambda with dependency
of fewer parameters.

II. MODELING

The modeling consists of two parts. The first part is the
component modeling where the different components such
as engine, electric machine and energy storage system are
modeled and explained in more detail. The second part is
the modeling of test cycles that will be used to examine
the driving cycle parameters affect on the optimal control.
The test cycles are modeled in such a way it resembles
normal operations for a wheel loader. The setup is that of
a simplified series hybrid which can be seen in Fig. 1. The
input to the system is an electrical load. The electrical power
need to be matched by the energy storage system (ESS) and

*The authors thanks the Swedish research council for their funding.

the electric machine (generator/motor) (EM). The electric
machine is coupled to an internal combustion engine (ICE).
The components will be explained in more detail in the next
section.

ICE

ESS

Electrical LoadEM

Fig. 1. Overview of the simplified series hybrid with an internal combustion
engine (ICE), an electric machine (EM), an energy storage system (ESS)
and also the electrical load

A. Component Modeling

The internal combustion engine, ICE, that is used in this
paper is a diesel engine with a maximum power of 250 kW.
The ICE is modeled as a Willan’s model [7] and it is similar
to the engine model that has been used in [8]. The output
power from the ICE, Pice, is a function of efficiency, fuel
power, Pf uel , and losses which are dependent on the angular
velocity of the ICE according to (1a)

PICE = ηICE(T,ω)Pf uel +PICE,loss(ω) (1a)
PEM = ηEM(T,ω)PICE +PEM,loss(ω) (1b)

The electric machine, EM, have also been modeled as a
Willan’s model. The size of the EM is adapted to the ICE
so that the EM does not limit the output power from the
ICE-EM-path. The efficiency of the ICE and EM depends
on the operating point, torque and rotational speed, of the
axle between the ICE and EM (1), the efficiency for different
operating points can be seen in Fig. 5. The energy storage
system, ESS, is in this paper a battery and is modeled as an
internal resistance model [4]



Uoc− IR =U (2a)
Uoc = κ2q(t)+κ1 (2b)

q(t) =
SOE

ESSmax
(2c)

Pbat =UI (2d)

where Uoc is the open circuit voltage of the battery, I is
the current drained or fed to the battery (depending on the
direction of power in the battery), R is the internal resistance
which cause ohmic losses when the battery is used, U is the
voltage of the battery, q(t) is the state of charge, SOC, which
is a percentage value of the total energy that the battery is
currently holding, κ1 and κ2 can be used if one want to model
that Uoc is depending on the SOC. In this paper κ2 = 0 and
κ1 is the open circuit voltage. State of charge and state of
energy, SOE, are closely related by (2c). The battery input
or output power Pbat (depending on charging or discharging
of the battery) is (2d).

B. Test Cycle Modeling
Usually a test cycle or a driving cycle is a time series of

velocities that the vehicle has to track. The forces on the
wheels that the vehicle has to overcome origins from rolling
resistance losses, aerodynamic friction losses, inertial forces,
uphill/downhill driving force and disturbances which are all
the effects which have not been included in the first terms
and affects the vehicle [4]. In this paper a series hybrid is
analyzed and the input to the system according to Fig. 1
is an electrical load. The test cycle is therefore consisting
of a power cycle which is a time series of power, Pdem,
that the vehicle has to overcome by the two energy paths
(Pbat + PEM = Pdem). The power cycles are based on real
measurements of a wheel loader to capture the essential
properties of the power demand. To test how different driving
cycle parameters affect the optimal control of the wheel
loader an idealized test cycle is modeled. The test cycle can
be seen in Fig. 2.
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Fig. 2. Approximation of the power demand of a wheel loader during
transport, bucket filling and bucket emptying. The tuning parameters for
the test cycles are Pmax, Pmin, Pavg and T where the midlevel is calculated
as Pmid =

4Pavg−Pmax−Pmin
2

The motivation of the different levels of power demand
correspond to the normal usage of a wheel loader, for

example transport, bucket filling and bucket emptying. The
levels can be adjusted to achieve different average power,
peak power and minimum power levels in order to resemble
different operations for example working in different ma-
terials such as sand, gravel, or shot rock. The parameters
for the test cycle is average power Pavg, maximum power
Pmax corresponding to the upper level in the figure, minuium
power Pmin corresponding to the lower level and finally the
length, T , of each of the levels in Fig. 2. Hence the cycle time
is 4T and the test cycle consists of repetition of these to a
length of 360 seconds. The midlevel, Pmid , is adjusted so that
the average power Pavg is obtained (Pmid =

4Pavg−Pmax−Pmin
2 )

for any changes in maximum or minimum power. This will
be used when the test cases below are constructed to see
how the cycle parameters affects the optimal control of the
vehicle.

Four different variations of the test cycle in Fig. 2 will be
used in this paper.

1) Test case 1: Varying average power Pavg for a test cycle
with constant power (Pavg = Pmax = Pmin = Pmid).

2) Test case 2: Varying the maximum power, Pmax, while
holding the rest of the parameters constant (Pmin =−40kW ,
Pavg = 40kW , T = 6s).

3) Test case 3: Varying the average power, Pavg, while
the rest of the parameters are set to constant values (Pmax =
120kW , Pmin =−40kW , T = 6s).

4) Test case 4: Varying the cycle time or frequency by
changing the level time T . The other parameters are constants
(Pmax = 120kW , Pmin =−40kW , Pmin = 40kW ).

III. OPTIMIZATION PROBLEM

The optimization criterion in this paper is the fuel power
of the wheel loader which is strongly related to the fuel
consumption. Given that the control signal u affects the
power split between the ICE-EM-path and the ESS-path, how
should the wheel loader be operated to get the lowest fuel
consumption. This is of course with some constraints which
are related to the physical aspects of the system.

The minimization problem with constraints for a test cycle
of length t f is

argmin
u

J =
∫ t f

0
Pf uel(T,ω) dt (3a)

dSOE
dt

= PESS (3b)

Pbat +PEM = Pdem (3c)
Tmin(T,ω)≤ T ≤ Tmax(T,ω) (3d)
ωmin(T,ω)≤ ω ≤ ωmax(T,ω) (3e)

Imin ≤ I ≤ Imax (3f)
SOEmin ≤ SOE ≤ SOEmax (3g)

SOE(t = 0) = SOE(t = t f ) (3h)

where J is the cost function or fuel energy consumed during
the test cycle, Pf uel is the fuel power that the ICE uses at each
instant. Pbat and PEM is the output power from the battery
and electric machine, respectively and Pdem is the demanded
or input power. Equations (3d)-(3g) are constraints related to
the torque and angular velocity of the ICE and EM and also
constraints which regards the battery. The battery current is
limited and also the state of energy, SOE, window is limited



due to lifetime issues of the battery. Finally (3h) refer to that
the solution should be charge sustaining, the battery should
have the same state of energy before as after the test cycle.

A. Dynamic Programming

Dynamic Programming, DP, is an optimal control ap-
proach which uses a priori data to calculate the solution for
(3) [5], [9]. Due to the non-causal nature of the algoritm one
cannot use the algorithm online unless the future driving
cycle is known, which rarely is the case. In DP the state-
space is discretized by a grid and the cost function is
evaluated to calculate the arc cost to go from one state
to another in time. The path that has the lowest cost is
optimal. This is done backwards starting at time t = t f
and then propagates backwards in time to the starting point
of the optimization problem (3). The solution by Dynamic
Programming is global and it will be used to calculate the
Lagrange multiplier for the different test cases which were
presented previously in this paper.

B. Minimum principle

From (3a) and (3b) the Hamiltonian H [10] is

H = Pf uel +λPESS (4)

where λ is the Lagrange multiplier or the Adjoined variable.
The Lagrange multiplier can be calculated offline with the

help of DP. Along the optimal trajectory (SOE trajectory
which is the only state variable) λ 0 can be calculated as

λ
0(SOE, t) =

∂J0(SOE, t)
∂SOE

(5)

where J0 is the optimal cost-to-go function [6]. An approx-
imation to (5) is W

W = λapprox =
∆J

∆SOE
=

J∗+1− J∗−1

SOE∗+1−SOE∗−1 (6)

where J∗ and SOE∗ are the optimal cost-to-go function and
the optimal SOE-trajectory, respectively. The J∗±1 is the
cost-to-go function for a trajectory intersecting SOE∗±1 =
SOE∗±∆SOE instead where ∆SOE is the smallest step in
the grid of the state-space in DP. Notice that J∗+1≤ J∗−1 due
to the higher SOE in J∗+1 than in J∗−1. This mean that λ

and also W is negative in our setting and it is due to positive
PESS means charging of the ESS. The variable W is called
the fuel equivalence factor or just equivalence factor and is
an approximation of the Lagrange multiplier. The reason for
the name equivalence factor is the fact that W is in each
instant a measure on how much energy storage usage will
influence the total drive cycle fuel consumption and therefore
a (equivalence) factor between battery power and fuel power.

IV. RESULTS

In this section simulation results will be presented. For
the four different test cases presented previously an approx-
imation of λ namely the equivalence factor W which was
introduced in the previous section will be used to examine
how the test cycles parameters affects the optimal control of
the wheel loader. For the assumption that the SOE-level do
not affect the voltage U and that the ESS boundaries (3g)

is not hit the equivalence factor W is a constant but how
do this constant level change for changes in the drive cycle
characteristics.

A. Simulation Results

For constant power levels which correspond to the first
test case the results for varying the constant power level
can be seen in Fig. 3 where the equivalence factor W and
also the discharge and charge equivalence factor sdis≈ schg≈
− 1

ηICE ηEM
which is mentioned in [4] of the components (ICE

and EM) are showned (assuming ηe ≈ 1) . It is seen that
the equivalence factor W is correlated with power demand
(almost proportionally). Using power demand to approximate
the equivalence factor will give a better estimate than an
approximation of system efficiency.
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Fig. 3. Varying constant power with Pavg = Pmin = Pmax ∈
(5,10, . . . ,140) kW and T = 6s. For each of the points a test cycle have
been generated and the equivalence factor have been calculated from the
test cycle

Since the equivalence factor is a measure on how much
battery usage cost related to fuel for the complete cycle
it is important to know how the components will be used.
For the second test case when average power and minimum
power are fixed (Pavg = 40kW and Pmin = −40kW ) and the
peak power is varied which can be seen in Fig. 4, the
equivalence factor is nearly constant for low peak power but
for around Pmax ≈ 160 kW the battery energy tends to be
cheaper which is indicated by the increase (notice the sign)
of the equivalence factor. This means that the average power
is not solely decisive driving cycle parameter that affects the
equivalence factor.

In this case average power does not give all information
since engine in the optimal solution is not operated in its
sweet spot. This can be seen in Fig. 5 where the efficiency for
different operating points of the ICE-EM-path is shown. The
dotted black line correspond to the optimal trajectory (best
efficiency) for varying power demand on the electric side of
the EM. The stars in the figure correspond to the operating
points for the test cycle with Pmax = 70kW and the dots
in Fig. 5 are for the Pmax = 200kW -case. Since the engine
generator track the demand to some extent the peak cycle
power will also give an estimate on at what efficiencies the
components will be operated and hence give an estimation of
the equivalence factor. The reason that the operating points
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Fig. 4. Varying maximum power with Pavg = 40kW , Pmin =−40kW , T = 6s
and Pmax ∈ (70,75, . . . ,200) kW . For each of the generated test cycles the
corresponding W have been calculated

is not closer to the sweet spot than they are is due to that the
losses in the ESS would counteract any increase in efficiency
for the ICE-EM-path.
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Fig. 5. Efficiency for different operating points (ω ,T ) for the electric side
of the EM. Dashed line correspond to the best efficiency for varying power
demand. The stars correspond to operating points for Pmax = 70kW and the
dots correspond to operating points for Pmax = 200kW , respectively

The third test case is conducted by varying the average
power when holding Pmax = 120 kW and Pmin = −40 kW.
By changing the average power and hence the Pmid-level in
Fig. 2 the amount available recuperate energy (7a)

Erecup =
∫

Pdemdt, Pdem < 0 (7a)

Epos =
∫

Pdemdt, Pdem ≥ 0 (7b)

will be the same but the ratio between positive energy in the
test cycle Epos (7b) and Erecup, Epos

Erecup
is increased. The results

can be seen in Fig. 6. In the figure one can see the correlation
between average power and equivalence factor, the bias
compared to Fig. 3 is due to the amount of Erecup that can
be used in a better way in the latter case. This is supported
by Fig. 7 where the case with no recuperation with varying

average power is shown. With no recuperation available, cost
for using the battery is higher and the equivalence factor is
decreased.
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Fig. 6. Varying maximum power with Pmax = 120kW , Pmin = −40kW ,
T = 6s and Pavg ∈ (20,25, . . . ,80) kW . For each of the generated test cycles
the corresponding W have been calculated
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Fig. 7. Varying maximum power with Pmax = 120kW , Pmin = 20kW , T = 6s
and Pavg ∈ (35,40, . . . ,100) kW . For each of the generated test cycles the
corresponding W have been calculated

It is shown that cycles with different average efficiencies
but different quotients of Epos

Erecup
give different equivalence

factors. Both Epos
Erecup

and the efficiency regions of the compo-
nents have to be combined to better estimate the equivalence
factor.

Change in cycle time or frequency does not matter since
the models are static. However, hitting a boundary in state
of energy (3g) will highly influence the equivalence factor.
For instance, during a period of high level of available
regenerative power the cost for using the battery becomes
lower. This is shown in Fig. 8 for which T = 45s.

The reason for this is that a gain in energy in the ESS is
of less or no use to lower the fuel consumption at the end
due to the ESS will be recharged to its maximum capacity
independent of the current state of charge. This behavior
is seen at time t = 135s in Fig. 8 where the ESS will be
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Fig. 8. Pmax = 120kW , Pmin =−40kW , Pavg = 40kW and T = 45s. Figure
shows what happens to the equivalence factor when one hit the boundary
on the SOE-window (3g)

recharged to maximum capacity and a gain or a decrease in
SOE will not affect the fuel consumption at the end. The
reason for the non-zero value of W at around time t = 160
and t = 350s is due to the calculations of W in (6) and that
the DP-solution wait until the last possible point to recharge
the ESS to full capacity and this results in that W will be
non-zero in that region.

B. Estimation horisont

Due to the repetitive nature of the wheel loaders driving
cycle a full length estimation horisont is not needed. To
estimate the equivalence factor on historical data and a fixed
estimation horisont as the length of the cycle time 4T is not
good idea in this case. The reason for this is that even if
the driving cycle parameters are fixed for the test cycle the
corresponding estimates on these parameters would change
due to the fixed estimation horisont when it travels in time in
the test cycle. A fixed estimation horisont like in [9] would
not be a good idea in this case. A better solution would to
try to detect the cycle time and the repetition of these in the
test cycle by for example pattern detection techniques and
then use the last found pattern to estimates the parameters
more accurately.

The results that have been showed in this section can guide
one to an initial estimate of the fuel equivalence factor W .
However, the results presented here is for the ideal case and
in an online application the equivalence factor W would have
to adapt to the current driving and therefore it can be used
as an initial guess to adaptive approaches like [11].

V. CONCLUSIONS

For the studied case with repetitive driving cycles it is
shown that the optimal solution depends on cycle character-
istics such as average power demand, peak power demand,
efficiency characteristics of the components, and the amount
of energy available for recuperation. For constant power the
magnitude of the fuel equivalence factor is positive correlated
with power demand. The slope for varying power demand
is also dependent on the efficiency of the components. To
study the dependencies between the equivalence factor and
the driving cycles parameters in more depth could involve

that the voltage would depend on the current SOE and its
affect on the optimal control.
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