
Linköping Studies in Science and Technology
Thesis No. 1406

Residual Generation Methods
for Fault Diagnosis with
Automotive Applications

Carl Svärd

Department of Electrical Engineering
Linköpings universitet, SE–581 83 Linköping, Sweden

Linköping 2009

Residual Generation Methods
for Fault Diagnosis with Automotive Applications

c© 2009 Carl Svärd

carl@isy.liu.se

http://www.vehicular.isy.liu.se

Department of Electrical Engineering,
Linköpings universitet,
SE–581 83 Linköping,

Sweden.

ISBN 978-91-7393-608-8
ISSN 0280-7971

LIU-TEK-LIC-2009:14

Printed by LiU-Tryck, Linköping, Sweden 2009

i

Abstract

The problem of fault diagnosis consists of detecting and isolating faults present
in a system. As technical systems become more and more complex and the de-
mands for safety, reliability and environmental friendliness are rising, fault
diagnosis is becoming increasingly important. One example is automotive sys-
tems, where fault diagnosis is a necessity for low emissions, high safety, high
vehicle uptime, and efficient repair and maintenance.

One approach to fault diagnosis, providing potentially good performance
and in which the need for additional hardware is minimal, is model-based fault
diagnosis with residuals. A residual is a signal that is zero when the system un-
der diagnosis is fault-free, and non-zero when particular faults are present in
the system. Residuals are typically generated by using a mathematical model
of the system and measurements from sensors and actuators. This process is
referred to as residual generation.

The main contributions in this thesis are two novel methods for residual
generation. In both methods, systems described by Differential-Algebraic Equa-
tion (DAE) models are considered. Such models appear in a large class of
technical systems, for example automotive systems. The first method consider
observer-based residual generation for linear DAE-models. This method places no
restrictions on the model, such as e.g. observability or regularity, in compar-
ison with other previous methods. If the faults of interest can be detected in
the system, the output from the design method is a residual generator, in state-
space form, that is sensitive to the faults of interest. The method is iterative
and relies on constant matrix operations, such as e.g. null-space calculations
and equivalence transformations.

In the second method, non-linear DAE-models are considered. The pro-
posed method belongs to a class of methods, in this thesis referred to as sequen-
tial residual generation, which has shown to be successful for real applications.
This method enables simultaneous use of integral and derivative causality, and
is able to handle equation sets corresponding to algebraic and differential loops
in a systematic manner. It relies on a formal framework for computing un-
known variables in the model according to a computation sequence, in which
the analytical properties of the equations in the model as well as the available
tools for equation solving are taken into account. The method is successfully
applied to complex models of an automotive diesel engine and a hydraulic
braking system.

ii

iii

Acknowledgments

This work has been performed as a part of a collaborative industrial research
project between Scania CV AB in Södertälje and the division of Vehicular Sys-
tems, Department of Electrical Engineering, Linköping University.

First of all, I would like to express my gratitude to Dr. Mattias Nyberg,
my supervisor, for great guidance into the world of research, his never-ending
enthusiasm, and for always taking his time for discussions. I would also like
to thank Dr. Erik Frisk, my assistant supervisor, for giving and interesting
discussions, proof-reading, and help with numerous LATEX issues. Professor
Lars Nielsen is acknowledged for letting me join his research group Vehicular
Systems.

Thanks also goes to all colleagues at Vehicular Systems and NESD for in-
spiring working atmospheres and nice coffee-breaks. Furthermore, I would
like to thank Anna Pernestål for proof-reading parts of this manuscript, and
Anders Eriksson, Peter Madsen, and Peter Vansölin, my managers at Scania,
for letting me be a part of this project and do research.

This work is jointly financed by Scania CV AB and VINNOVA, Swedish
Governmental Agency for Innovation Systems, who are also acknowledged.

Finally, I would like to thank my parents, Åsa and Kjell, my sister Anna
and my friends for their support and encouragement.

Carl Svärd
Linköping, May 2009

iv

Contents

I Introduction to Model-Based Fault Diagnosis 1

1 Introduction 3
1.1 Overview and Contributions . 4

1.1.1 Paper 1 - Linear Observer-Based Residual Generation . . 4
1.1.2 Paper 2 - Non-Linear Sequential Residual Generation . . 5

2 Model-Based Fault Diagnosis 7
2.1 Models . 7
2.2 Diagnostic Tests . 7
2.3 Diagnostic Tests Based on Residuals 9

2.3.1 Test Quantity . 9
2.4 Fault Isolation . 10
2.5 Fault Decoupling . 11
2.6 Residual Generation . 11

2.6.1 Observer-Based Residual Generation 11
2.6.2 Sequential Residual Generation 12

3 Model-Based Fault Diagnosis in Automotive Systems 13
3.1 Why Fault Diagnosis is Important 13

3.1.1 Emissions . 14
3.1.2 Vehicle Uptime . 15
3.1.3 Efficient Repair and Maintenance 15

3.2 Faults to Diagnose . 16

v

vi

3.2.1 Fault Types . 16
3.3 Residual Generation for Automotive Systems 17

3.3.1 Models . 18
3.3.2 Design Process . 18
3.3.3 Methods . 19

3.4 Industrial Relevance . 19

Bibliography 23

II Papers 29

1 An Observer-Based Residual Generation Method for Linear Differential-
Algebraic Equation Systems 31
1 Introduction . 32
2 Preliminaries and Problem Formulation 33
3 Outline of the Design Method . 34
4 Correctness of the Design Method 37

4.1 Residual Generator Property 37
4.2 Fault Sensitivity . 38

5 Application Example . 40
6 Conclusions . 42
References . 42
A Design Algorithm . 46
B Matrices for Application Example 47

2 Residual Generators for Fault Diagnosis using Computation Sequences
with Mixed Causality Applied to Automotive Systems 49
1 Introduction . 50
2 Preliminaries and Background Theory 52

2.1 Integral and Derivative Causality 53
2.2 Structure of Equation Sets 53
2.3 Structural Decomposition 54
2.4 Differential-Algebraic Equation Systems 55

3 Sequential Computation of Variables 56
3.1 BLT Semi-Explicit DAE form 56
3.2 Tools . 60
3.3 Computation Sequence 62

4 Sequential Residual Generation 63
4.1 Proper Sequential Residual Generator 64
4.2 Finding Proper Sequential Residual Generators 66

5 Method for Finding a Computation Sequence 67
5.1 Illustrative Example . 67
5.2 Summary of the Method 70
5.3 Algorithm . 70

vii

6 Application Studies . 72
6.1 Implementation and Configuration of the Method 72
6.2 Performance Measures . 73
6.3 Automotive Diesel Engine 74
6.4 Hydraulic Braking System 75
6.5 Realization of a Residual Generator for the Diesel Engine 76

7 Conclusions . 80
References . 82
A Proofs of Theorems and Lemmas 86

viii

Part I

Introduction to Model-Based
Fault Diagnosis

1

1

Introduction

Fault diagnosis is the act of detecting and isolating faults present in a system.
With the rising demand for safety and reliability of technical systems, driven
by economical and environmental incentives, fault diagnosis has become in-
creasingly important. One example is automotive systems, and in particular
engines, that are by regulations required to have on-board diagnosis of all
faults that may lead to increased emissions, see e.g. [United Nations, 2008]. In
addition, fault diagnosis in automotive systems is essential to maintain high
vehicle uptime, low fuel consumption, high safety, and efficient service and
maintenance.

One approach to fault diagnosis that provides potentially good performance
and in which the need for additional hardware is avoided, is model-based fault
diagnosis with residuals. A residual is a signal that is zero when the system un-
der diagnosis is fault-free, and non-zero when particular faults are present in
the system. Residuals are often generated by utilizing a mathematical model
of the system under diagnosis and measurements from sensors and actuators,
a process referred to as residual generation. To enable fault isolation, a diagno-
sis system typically contains a set of residuals designed to respond to different
subsets of faults. Meaning that some faults in a residual must be decoupled.
Decoupling of faults in residuals is thus a fundamental problem in residual
generation for fault isolation.

One important class of residual generation methods is observer-based resid-
ual generation. In these methods, the approach is to base residual generators on
state-observers. A state-observer utilizes a model of the system and measure-
ments to obtain an estimate of the states in the system. A residual can then

3

4 Chapter 1. Introduction

be formed as the difference between estimated and measured states. Several
methods exists for design of observers for both linear and non-linear state-
space models, i.e. ordinary differential equations with additional equations
relating the states and measurements, as well as for linear and non-linear Diff-
erential-Algebraic Equation (DAE) models. DAE-models contains both differ-
ential and algebraic equations, and are of interest since these general models
appear in a large class of technical systems, e.g. electrical-, mechanical-, and
chemical systems. DAE-models are also the result when using object-oriented
modeling tools, e.g. Modelica. In most of the observer-based residual gener-
ation methods, for both state-space and DAE-models, decoupling of faults is
obtained by transforming the original model into a sub-model where only the
faults of interest are present.

Another class of residual generation methods, that has shown to be success-
ful for real applications, is in this thesis referred to as sequential residual gener-
ation. In sequential residual generation, the unknown variables in a model, or
sub-model, are computed by solving equations one at a time in a sequence and
a residual is then obtained by evaluating a redundant equation. In this class
of methods, the original model is often divided into sub-models with specific
properties and then residual generators are designed for each sub-model. Since
a residual generator is only sensitive to those faults affecting its correspond-
ing sub-model, all other faults are decoupled. Sequential residual generation
methods has the potential to be automated to an high extent, making them
especially important for the automotive applications studied in this thesis.

1.1 Overview and Contributions

Chapter 2 gives a brief introduction of theoretical concepts in model-based
fault diagnosis that are central in this thesis. The aim of Chapter 2 is to provide
a theoretical background to the rest of the thesis and to place its contributions
in a context. Chapter 3 focuses on model-based fault diagnosis in automotive
systems and intends to give an application oriented background and motiva-
tion to this work. Two papers are enclosed in Part II. These constitute the main
contributions and are summarized below.

1.1.1 Paper 1 - Linear Observer-Based Residual Generation

In Paper 1, residual generation for linear DAE-models is considered. The main
contribution is a new systematic design method for observer-based residual
generation for systems described by linear DAE-models. By constant matrix
operations, the original DAE-model is transformed into a sub-model in state-
space form, of lower dimension than the DAE-model, where only faults that
should be detected are present. Thus, faults not present in the transformed
sub-model are decoupled. The transformation is iterative and straightforward

1.1. Overview and Contributions 5

to implement. In contrast to other methods no restrictions, such as e.g. observ-
ability or regularity, are placed on the model of the system to be diagnosed.
An illustrative numerical example is included, where the design method is ap-
plied to a non-observable model of a robot manipulator.

Paper 1 has been submitted to European Journal of Control. The paper is
based on [Svärd and Nyberg, 2008c]:

Svärd, C. and Nyberg, M. (2008). Observer-based residual generation for
linear differential-algebraic equation systems. In Proceedings of the 17th
IFAC World Congress, Seoul, Korea.

The work in the above conference paper has also been presented at Reglermöte
2008, Luleå, Sweden, [Svärd and Nyberg, 2008d].

1.1.2 Paper 2 - Non-Linear Sequential Residual Generation

The main contribution of Paper 2 is a novel method for sequential residual gen-
eration for non-linear DAE-models. The method relies on a formal framework
for computing unknown variables according to a computation sequence, in
which the analytical properties of the equations in the model and the available
tools for algebraic equation solving are taken into account. An initial step in
the method is to divide the original model into sub-models with specific prop-
erties, and residual generators for each sub-model are then designed. In this
way, all faults not affecting the sub-model are decoupled in the correspond-
ing residual generator. The proposed method is successfully applied to two
models of automotive systems, a Scania diesel engine and a hydraulic braking
system.

Paper 2 has been submitted to IEEE Transactions on Systems, Man, and Cy-
bernetics, Part A: Systems and Humans. The paper is an extended and revised
version of the work presented in [Svärd and Nyberg, 2008a]:

Svärd, C. and Nyberg, M. (2008a). A mixed causality approach to resid-
ual generation utilizing equation system solvers and differential-algebraic
equation theory. In Proceedings of the 19th International Workshop on Prin-
ciples of Diagnosis (DX-08), Blue Mountains, Australia.

An extended version of the above conference paper can be found in [Svärd and
Nyberg, 2008b].

6 Chapter 1. Introduction

2

Model-Based Fault Diagnosis

The aim of this chapter is to introduce some theoretical concepts in model-
based fault diagnosis that are central in this thesis, and to place the contribu-
tions presented in Part II in a context.

2.1 Models

To perform model-based diagnosis, a model of the system under diagnosis is
needed. In this thesis, a model is a set of equations relating sets of unknown
and known variables. The equations may be linear or non-linear, static or dy-
namic. That is, linear and non-linear Differential-Algebraic Equation (DAE)
models are considered. Typically, faults that may affect the system are also
included in the model. Faults are often classified into behavioral modes. For
example, behavioral modes for a simple system containing one sensor and one
actuator may be “sensor fault”, “actuator fault”, and “no fault”. Behavioral
modes are usually assigned to components, here we instead use them for sys-
tems.

2.2 Diagnostic Tests

A typical diagnosis system consists of a set of diagnostic tests and a fault iso-
lation scheme, see Figure 2.1. A diagnostic test utilizes observations, i.e. mea-
surements, from the system under diagnosis to determine if a specific behav-
ioral mode is present in the system or not. A diagnostic test δi, can be viewed

7

8 Chapter 2. Model-Based Fault Diagnosis

as a hypothesis test [Berger, 1985] with the hypothesis

H0
i : Fp ∈ Bi

H1
i : Fp ∈ BC

i

where Fp denotes the present behavioral mode in the system, Bi a set of behav-
ioral modes corresponding to faults not monitored by δi, and BC

i the comple-
ment of Bi, see e.g. [Nyberg, 1999]. The common convention used is that when
the hypothesis H0

i is rejected, it is assumed that H1
i is true. When H0

i is not re-
jected, nothing is assumed which means that the present behavioral mode can
be any of the behavioral modes for the system under diagnosis. The outcome
of the diagnostic test δi is thus a decision

Si =
{

S1
i = BC

i if H0 is rejected
S0

i = Ω if H0 is not rejected
(2.1)

where Ω denotes all behavioral modes for the system.
Common traditional approaches for construction of diagnostic tests are for

example limit checking, i.e. to check if a sensor is within its normal operat-
ing range, or to employ hardware redundancy. For instance, if two sensors are
used to measure the same physical quantity, it is possible to test if one of the
sensors is faulty by comparing the values of the sensors. Another approach,
providing potentially increased diagnosis performance and in which the need
of additional, redundant, hardware is avoided, is to use diagnostic tests based
on residuals.

Test 1

Test 2

Test n

: Is
o

la
tio

n

Diagnosis
Statement

Observations

Diagnosis System

Figure 2.1: A typical diagnosis system consists of a set of diagnostic test and a
fault isolation scheme.

2.3. Diagnostic Tests Based on Residuals 9

2.3 Diagnostic Tests Based on Residuals

A residual is a signal ideally zero in the non-faulty case and non-zero else. A
residual generator takes measurements from the system under diagnosis as in-
put, and produces a residual as output, see Figure 2.2. Residual generators
are typically constructed by using a mathematical model of the system. For in-
stance, a residual can be obtained as the comparison between a value estimated
by a model and the corresponding measured quantity. The residual generator
consists in this case of the model used for the estimation and the equation
describing the comparison, referred to as the residual equation. Two methods
for residual generation are presented in this thesis. The method presented in
Paper 1 handles linear DAE-models, and the method in Paper 2 non-linear
DAE-models.

Residual Generator Residual

Input OutputSystem

Measurements

Figure 2.2: A residual can be generated by utilizing a mathematical model of
the system under diagnosis and measurements.

2.3.1 Test Quantity

A common way to construct a diagnostic test based on a residual is to form
a test quantity from the residual, and then threshold the test quantity, see Fig-
ure 2.3. A test quantity is a constant value, in comparison with a residual which
is a trajectory, i.e. a function of time. A test quantity can for example be formed
as the mean-effect or mean-value of the residual in some time-window, or just
as a sample of the residual at a specific time. Simply, given a residual r, gen-
erated by using a model and measurements z, a diagnostic test δi constructed

10 Chapter 2. Model-Based Fault Diagnosis

via a test quantity T, based on r, is defined as

Si = δ(z) =
{

S1
i if T (r (z)) ≥ J

S0
i if T (r (z)) < J

where J is a threshold. Typically, residuals are not perfectly zero in the non-
faulty case due to for example noisy measurements and modeling errors. Thus,
the approach used to form the test quantities and the thresholds are important
design parameters in a diagnosis system.

rResidual
Generator

Test
Quantity

Measurements Thresholding
T

Decision

Diagnostic Test

Figure 2.3: A diagnostic test based on a residual via a test quantity.

2.4 Fault Isolation

There are several approaches for fault isolation, most originating from the field
of Artificial Intelligence (AI), see e.g. [de Kleer and Williams, 1987]. Another
approach is Bayesian fault isolation, see e.g. [Pernestål, 2007]. Here, in order to
briefly illustrate the concept of fault isolation, we will use a straight-forward
method referred to as structured residuals, [Gertler, 1991], or structured hypothesis
tests, [Nyberg, 1999].

To enable isolation of faults, the diagnostic tests used in a diagnosis system
are designed to test different behavioral modes. Consider a diagnosis system
containing the diagnostic tests {δ1, δ2, . . . , δn}. The outcome of the diagnostic
test δi is a decision Si, according to (2.1). Under a single fault assumption, we
simply obtain the total diagnosis statement S as

S =
n⋂

i=1

Si ,

for multiple faults please refer to e.g. [de Kleer and Williams, 1987]; [Reiter,
1987]; [Greiner et al., 1989].

For an example, consider a set of tests, {δ1, δ2, δ3}, constructed to detect
and isolate three faults, { f1, f2, f3}. The following fault signature matrix,

f1 f2 f3
δ1 1 1
δ2 1 1
δ3 1 1

(2.2)

2.5. Fault Decoupling 11

shows which tests that are sensitive to which faults, i.e. test δ1 is sensitive
to faults f2 and f3, and so on. Now assume a situation where tests δ1 and
δ2, but not δ3 has reacted. We then obtain the decisions S1 = { f2, f3}, S2 =
{ f1, f3}, and S3 = { f1, f2, f3, NF}, where NF is used to denote the behavioral
mode corresponding to that no faults are present. The diagnosis statement
thus becomes

S = S1 ∩ S2 ∩ S3 = { f2, f3} ∩ { f1, f3} ∩ { f1, f2, f3, NF} = f3

and we can conclude that fault f3 is present.

2.5 Fault Decoupling

To achieve a specific fault signature matrix, for example one similar to (2.2), de-
coupling of faults in diagnostic tests is needed. The faults that are decoupled in
a test are often referred to as non-monitored faults, whereas the faults not decou-
pled are called monitored faults. In the example above, fault f1 is decoupled in
test δ1, which means that for δ1, fault f1 is a non-monitored fault and f2 and f3
are monitored faults. Decoupling of faults in a set of tests based on residuals,
means that the residuals must respond to, or similarly be sensitive to, different
subsets of faults. Thus, fault decoupling is a fundamental problem in residual
generation for fault isolation.

2.6 Residual Generation

In this thesis, two classes of residual generation methods are considered, ob-
server-based residual generation and sequential residual generation. These
both classes have the potential to handle DAE-models, and to handle fault
decoupling in a systematic manner. DAE-models are of interest since such
models appear in a large class of technical system, e.g. automotive systems,
and also are the result when using object-oriented modeling tools such as e.g.
Modelica, [Fritzon, 2004].

2.6.1 Observer-Based Residual Generation

A common approach is, as said in Section 1, to base residual generators on
state-observers. A residual is in this case formed as the difference between esti-
mated and measured states. Several methods exists for design of observers for
state-space models, see e.g. [Kailath et al., 2000] for linear models, and [Hen-
deby, 2008]; [Misawa and Hedrick, 1989]; [Walcott et al., 1987]; [Slotine et al.,
1987]; [Khalil, 1999] for non-linear models. For linear DAE-models see e.g. [Hou
and Müller, 1999]; [Hou and Müller, 1995]; [Darouach and Boutayeb, 1995];

12 Chapter 2. Model-Based Fault Diagnosis

[Müller and Hou, 1993]; [Shields, 1992]; [Dai, 1989]. For non-linear DAE-
models the list of works is not that extensive, but includes for example [Ås-
lund and Frisk, 2006]; [Becerra et al., 2001]; [Zimmer and Meier, 1997]. For the
specific application of using the observer for diagnosis, see for example [Mas-
soumnia, 1986]; [Massoumnia et al., 1989]; [Hammouri et al., 2001] for linear
state-space models, and [Hammouri et al., 1999]; [De Persis and Isidori, 2001];
[Martínez-Guerra et al., 2005]; [Kaboré et al., 2000] for non-linear state-space
models. Several methods also exists for observer-based residual generation in
linear DAE-models, for example [Hou, 2000]; [Patton and Hou, 1998]; [Shields,
1994]; [Marx et al., 2003] and some for non-linear DAE-models e.g. [Gao and
Ding, 2007]; [Vemuri et al., 2001]; [Shields, 1997]. In most of the works above,
for both state-space models and DAE-models, decoupling of faults is obtained
by transforming the original model into a sub-model where only the faults
of interest are present. Observer-based residual generation for linear DAE-
models is considered in Paper 1.

2.6.2 Sequential Residual Generation

Sequential residual generation, [Staroswiecki and Declerck, 1989], is of interest
since it has shown to be successful for real applications, [Dustegor et al., 2004];
[Izadi-Zamanabadi, 2002]; [Cocquempot et al., 1998]; [Hansen and Molin, 2006];
[Kingstedt and Johansson, 2008]; [Dagson and Nissilä-Källström, 2009], and in
addition also has the potential to be automated to a high extent, [Frisk et al.,
2006]; [Einarsson and Arrhenius, 2005]; [Krigsman and Nilsson, 2005]; [Eriks-
son, 2005]; [Svärd and Wassén, 2006]. In sequential residual generation, the
unknown variables in a model, or sub-model, are computed by solving equa-
tions one at a time in a sequence and a residual is then obtained by evaluating
a redundant equation. Similar approaches as in [Staroswiecki and Declerck,
1989], have been described and exploited in e.g. [Staroswiecki, 2002]; [Blanke
et al., 2003]; [Pulido and Alonso-González, 2004]. In this class of methods, the
original model is often divided into sub-models with specific properties and
residual generators are then designed for each sub-model. Since a residual gen-
erator is only sensitive to those faults affecting its corresponding sub-model,
all other faults are decoupled. Sequential residual generation is considered in
Paper 2.

3

Model-Based Fault Diagnosis in
Automotive Systems

Modern automotive systems are complex. One example is automotive diesel
engines, see Figure 3.1, that in order to have low fuel consumption, produce
low emissions, and offer good driveability, are equipped with for example Ex-
haust Gas Recirculation (EGR) and a Variable Geometry Turbocharger (VGT).
To purify exhausts, diesel engines interact with and are dependent on one or
several advanced after-treatment systems such as a Diesel Particulate Filter
(DPF), and a Selective Catalytic Reduction (SCR) system, see Figure 3.2(b). In
addition, to provide optimum fuel economy, good safety, and further increase
driveability, they interact with other complex systems in the powertrain like an
automatic gearbox and an auxiliary hydraulic braking system, see Figure 3.3.
Even small faults in the engine or in any of the systems mentioned above may
have undesirable effects, such as increased emissions or reduced safety. The
objectives of this chapter are to provide a background and motivation to this
thesis and to place its contributions into an application oriented context.

3.1 Why Fault Diagnosis is Important

Faults affecting the engine or any of the systems mentioned above may lead to

• increased emissions,

• decreased safety,

• increased fuel consumption,

13

14 Chapter 3. Model-Based Fault Diagnosis in Automotive Systems

Figure 3.1: A Scania 13-liter, 6-cylinder diesel engine equipped with EGR and
VGT. Illustration is due to Semcon Informatic Graphic Solutions.

• decreased driveability, or

• vehicle off-road.

These consequences may be prevented, or at least reduced, if faults can be
detected and isolated in time. In addition, beside these more or less obvi-
ous gains, good diagnosis is a requirement for high vehicle uptime and effi-
cient maintenance, regarding both cost and time. These aspects are further
discussed below.

3.1.1 Emissions

Automotive engines are by regulations required to have high-precision On-
Board Diagnosis (OBD) of faults that are harmful for the environment, see
e.g. [United Nations, 2008]. The legislations states that all manufactured ve-
hicles must be equipped with an OBD-system capable of detecting faults in all
components that, if broken, leads to emissions over pre-defined OBD thresh-
olds during a specific driving cycle. For heavy-duty trucks, emissions of espe-
cially nitrogen oxides (NOx) and particulate matter (PM) are crucial. Coming
legislations in the European Union, EUVI, require substantially lowered emis-
sion and OBD thresholds, see Figures 3.4 and 3.5, and in addition that faults
leading to increased emissions can be isolated.

3.1. Why Fault Diagnosis is Important 15

Intake airExhaust gas

Recirculated gas

C
oo

le
d

re
ci

rc
ul

at
ed

 g
as

(a) EGR system schematic.

Engine

Catalytic
converter

Exhaust
gas

NH3+NOx N2+H2O

Urea

Air

(b) SCR system schematic.

Figure 3.2: Usage of EGR and/or SCR in diesel engine reduces the generation
of NOx. Illustrations are due to Semcon Informatic Graphic Solutions.

3.1.2 Vehicle Uptime

To reduce, or preferably eliminate, the impact of faults by taking appropriate
actions on the road, refereed to as fault tolerant control, see e.g. [Blanke et al.,
2003], on-board diagnosis is essential. For example, if a fault occurs but the
fault can be detected and isolated on-board so that the effects of the fault can
be eliminated, the vehicle can continue on its driving mission and stop by the
workshop later. On-board diagnosis therefore increases the vehicle uptime.
Vehicle uptime is important for vehicle owners, since even a stationary vehicle
costs money, and can not be used to earn money.

3.1.3 Efficient Repair and Maintenance

On-board diagnosis of faults is also important to provide efficient service when
the vehicle visits the workshop. If faults have been correctly detected and iso-
lated, additional troubleshooting at the workshop is unnecessary. However,
as automotive systems become more and more complex it is utopian that all
necessary fault detection and isolation can be performed on-board the vehicle.
Therefore off-board fault detection and isolation of faults, i.e. at the workshop,
is becoming more and more important. Due to hardware limitations on-board
the vehicle and the ability to actively excite systems when the vehicle is at the
workshop, off-board fault detection and isolation of faults may also give bet-
ter and more precise results. Nevertheless, fault detection and isolation, on-
or/and off-board, decreases the repair and maintenance costs for the vehicle,
since the time at the workshop is minimized and no unnecessary parts are
changed.

16 Chapter 3. Model-Based Fault Diagnosis in Automotive Systems

Figure 3.3: Scania GR875R 8-speed gearbox with a retarder. The retarder is a
hydraulic braking system used for on heavy duty trucks for long continuous
braking, for example to maintain constant speed down a slope. Illustration is
due to Semcon Informatic Graphic Solutions.

3.2 Faults to Diagnose

To investigate which faults that need to be considered, Failure Mode Effect
Analysis (FMEA) [Stamatis, 1995] and Fault Tree Analysis (FTA) [Haasl et al.,
1981] may be successful approaches. Furthermore, as said above, legislations
require that all faults in the engine, or in its surroundings, that results in in-
creased emissions must be detected and in some cases also isolated. Much
effort is therefore also spent on testing engines in test-cells where faults can be
injected and emissions measured, with the objective to see which faults that
may lead to increased emissions.

3.2.1 Fault Types

Faults that must be diagnosed in, or around, the engine are for instance faults
affecting the fuel injection system, the cooling system, and the gas-flow system,
faults in all sensors and actuators, and faults affecting after-treatment systems
like the SCR-system and the DPF. Common fault types are electrical faults,

3.3. Residual Generation for Automotive Systems 17

EUI (1992) EUII (1995) EUIII (2000) EUIV (2005) EUV (2008) EUVI (2013)
0

1

2

3

4

5

6

7

8

9

g/
kW

h

Emission Thresholds

NO

x

PM * 10

Figure 3.4: Legislations require lowered emission thresholds for heavy-duty
trucks in the European Union. The line with circle markers shows NOx emis-
sion thresholds. The line with dotted markers shows thresholds for PM emis-
sions scaled with a factor 10.

plausibility faults, and functional faults. A plausibility fault is for example a
sensor giving wrong value, possibly caused by a bias or gain. A functional
fault may for instance be a non-working feedback control loop. Most fault
types are however specific for each system, for instance air-leakage in the VGT-
or EGR-system, bad UREA quality in the SCR-system, and broken or miss-
ing filter substrate in the DPF. Sensors and actuators are in general complex
electro-mechanical systems. These systems are particularly sensitive to faults,
in comparison with for example purely mechanical systems. Hence, it is im-
portant that especially faults in sensors and actuators in automotive systems
can be detected and isolated.

3.3 Residual Generation for Automotive Systems

Due to economical reasons and space limitations, it is not a desired option to
mount additional hardware in order to diagnose faults. As said in Chapter 2,
one approach to fault diagnosis, providing potentially good performance and
in which no additional hardware is needed, is model-based fault diagnosis
with residuals.

18 Chapter 3. Model-Based Fault Diagnosis in Automotive Systems

EUIV (2005) EUV (2008) EUVI (2013)
0

1

2

3

4

5

6

7

8

g/
kW

h

OBD Thresholds

NO

x

PM * 10

Figure 3.5: Legislations require lowered OBD thresholds for heavy-duty trucks
in the European Union. The line with circle markers shows NOx emission
thresholds. The line with dotted markers shows thresholds for PM emissions
scaled with a factor 10.

3.3.1 Models

For model-based fault diagnosis, a model of the system under diagnosis is
needed. Above we concluded that modern automotive diesel engines as well
as their surrounding systems are complex. To describe the dynamic courses
in these systems, physical modeling is an often utilized approach, in which
models are based on first principles of physics. One popular and successful
approach is to use physical object-oriented modeling tools, e.g. Modelica [Frit-
zon, 2004]. For a large class of technical systems, such as mechanical-, electri-
cal, and chemical systems, these approaches generally results in complex non-
linear equation systems containing both algebraic and differential equations,
i.e. non-linear DAE-systems. When considering complex automotive systems,
it is thus important that the residual generation method is able to handle such
models.

3.3.2 Design Process

The view taken in this thesis, as in e.g. [Nyberg and Krysander, 2008], [Ny-
berg, 1999], is that design of a diagnosis system is a two-step approach, see

3.4. Industrial Relevance 19

Figure 3.6. In a first step, a large number of candidate residual generators are
found, and in a second step the set of residual generators most suitable to be
included in the final diagnosis system is picked out. The set of residual genera-
tors to be used in the final diagnosis system must in the second step be chosen
so that desired fault detection and isolation performance is achieved. To do
this, it is necessary to evaluate many candidate residual generators with real
measurement data in order to investigate sensitivity to faults in the presence
of disturbances, modeling errors, measurement noise, etc. Therefore it is for
the second step important that there is a large selection of different candidate
residual generators to choose between. Thus, the initial set of candidate resid-
ual generators should be as large as possible.

Model

Measurement
Data

Canditate
Residual

Generators

Residual
Generators

Residual
Generation Evaluation

Figure 3.6: Design of a diagnosis system is a two-step approach. In the first
step, a large number of candidate residual generators are found, and in the
second step the set of residual generators to be used in the final diagnosis sys-
tem is picked out. This is done by evaluating candidate residual generators
with measurement data.

3.3.3 Methods

As argued above, it is desirable that a method for residual generation intended
to be used for automotive systems is able to handle DAE-models. In addition,
as said in Section 2.5, decoupling of faults is a fundamental problem in residual
generation. When aiming at finding as many candidate residual generators as
possible, it is also highly desirable that the method used for residual generation
is automated. One class of residual generation methods having the potential to
handle all of these issues, is sequential residual generation. Sequential residual
generation with application to automotive systems is considered in Paper 2.

3.4 Industrial Relevance

As said earlier, model-based diagnosis with residuals is one of many approaches
for design of diagnosis systems. The main argument for not using model-

20 Chapter 3. Model-Based Fault Diagnosis in Automotive Systems

based approaches is the lack of adequate accurate models. It is true that mod-
eling may be time-consuming and also that once a model is created, it must be
validated and tuned which may require additional effort and access to mea-
surement data. In addition, models also need to be kept updated to be useful.
Therefore, model-based approaches require a well defined engineering process
that supports this way of working and takes mentioned aspects into account.
However, there are efficient object-oriented modeling tools such as Simulink
or Modelica that can be used to facilitate this process, and several established
engineering tools supporting model-based development, e.g. Real-Time Work-
shop. Furthermore, as systems become more and more complex, models are
needed for other purposes than diagnosis system development, for example
simulation and development of control systems. These models can likewise,
perhaps with small modifications, be used for development of diagnosis sys-
tems as long as they describe the system under diagnosis. This is for example
the case for the models used in the application study in Paper 2, which are
developed for simulation purposes.

Another argument is that model-based diagnostic tests based on residuals
tend to be hard to run in real-time in computers on-board for example trucks.
This is due to severe hardware limitations, in terms of CPU power and mem-
ory. The matter of the fact is however that technical systems become more
and more advanced and complex. It is therefore reasonable that the hardware
on-board these systems evolves in the same pace. The method presented in
Paper 2 gives residual generators where variables are computed sequentially.
Computing variables in this way is suitable for real-time execution. Further,
it is not necessary to run all tests in a diagnosis system at the same time or
even in real-time. For example, one set of tests can be run for fault detection
and once a fault is detected, another set of tests can be run for fault isolation.
If there is memory available, data can be saved and the isolation tests can as
well be run later, i.e. not in real-time. In addition, for a given detection and
isolation performance, it is not that certain that a diagnosis system developed
with a systematic model-based approach requires more CPU power and mem-
ory, in comparison with a diagnosis system developed through some "ad-hoc"
approach. It is likely that the set of tests contained in the model-based system
can be more tailor made, through for example fault decoupling. Moreover,
for a given detection and isolation performance, a model-based diagnosis sys-
tem would probably require fewer sensors than a non model-based diagnosis
system, since models instead of hardware are used to provide necessary redun-
dancy. This means an over-all cost reduction. Another aspect is that it is not
necessary that all diagnosis is performed on-board, see Section 3.1.3. When
diagnosis instead is done off-board, diagnostic tests can be run in ordinary
computers stationed in the workshop, and thus limitations in hardware are
not an issue.

It is the author’s strong belief that model-based fault diagnosis, or model-
based development in general, is a necessity for being able to meet future de-

3.4. Industrial Relevance 21

mands on safety, reliability, environmental friendliness, and performance of
automotive systems. It is believed that usage of model-based approaches for
design of diagnosis systems increases productivity and simplifies the overall
design process for diagnosis systems, since many steps in the process can be
automated. For instance, a large set of diagnostic tests, or residual generators,
can be automatically generated given a model with the method presented in
Paper 2. If conditions are changed, the model can be updated and a new set of
tests can easily be generated, meaning reconfigurability.

22 Chapter 3. Model-Based Fault Diagnosis in Automotive Systems

Bibliography

[Åslund and Frisk, 2006] Åslund, J. and Frisk, E. (2006). An observer for non-
linear differential-algebraic systems. Automatica, 42(6):959–965.

[Becerra et al., 2001] Becerra, V. M., Roberts, P. D., and Griffiths, G. W. (2001).
Applying the extended kalman filter to systems described by nonlinear
differential-algebraic equations. Control Engineering Practice, 9(3):267 – 281.

[Berger, 1985] Berger, J. (1985). Statistical Decision Theory and Bayesian Analysis.
Springer.

[Blanke et al., 2003] Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M.
(2003). Diagnosis and Fault-Tolerant Control. Springer.

[Cocquempot et al., 1998] Cocquempot, V., Izadi-Zamanabadi, R.,
Staroswiecki, M., and Blanke, M. (1998). Residual generation for the
ship benchmark using structural approach. In Proceedings of the UKACC
International Conference on Control ’98, pages 1480–1485.

[Dagson and Nissilä-Källström, 2009] Dagson, J. and Nissilä-Källström, S.
(2009). Air leakage diagnosis in heavy duty truck engines with egr and
vgt. Master’s thesis, Linköpings Universitet, SE-581 83 Linköping. LITH-
ISY-EX-09/4210-SE.

[Dai, 1989] Dai, L. (1989). Singular Control Systems. Springer-Verlag.

[Darouach and Boutayeb, 1995] Darouach, M. and Boutayeb, M. (1995). De-
sign of observers for descriptor systems. IEEE Transactions on Automatic
Control, 40(7):1323–1327.

23

24 Bibliography

[de Kleer and Williams, 1987] de Kleer, J. and Williams, B. C. (1987). Diagnos-
ing multiple faults. Artificial Intelligence, 32(1):97–130.

[De Persis and Isidori, 2001] De Persis, C. and Isidori, A. (2001). A geometric
approach to nonlinear fault detection and isolation. IEEE Transactions on
Automatic Control, 46:853–865.

[Dustegor et al., 2004] Dustegor, D., Cocquempot, V., and Staroswiecki, M.
(2004). Structural analysis for residual generation: Towards implementa-
tion. In Proceedings of the 2004 IEEE Inter. Conf. on Control App., pages 1217–
1222.

[Einarsson and Arrhenius, 2005] Einarsson, H. and Arrhenius, G. (2005). Au-
tomatic design of diagnosis systems using consistency based residuals - op-
timizing isolation and computational load. Master’s thesis, Uppsala Uni-
versity. UPTEC F 1401-5757 ; 05032.

[Eriksson, 2005] Eriksson, L. (2005). Structural algorithms for diagnostic sys-
tem design using simulink models. Master’s thesis, Linköpings Universitet,
SE-581 83 Linköping. LiTH-ISY-EX-3601-2004.

[Frisk et al., 2006] Frisk, E., Krysander, M., Nyberg, M., and Åslund, J. (2006).
A toolbox for design of diagnosis systems. In Proceedings of IFAC Safepro-
cess’06, Beijing, China.

[Fritzon, 2004] Fritzon, P. (2004). Principles of Object-Oriented Modeling and Sim-
ulation with Modelica 2.1. IEEE Press.

[Gao and Ding, 2007] Gao, Z. and Ding, S. X. (2007). Actuator fault robust esti-
mation and fault-tolerant control for a class of nonlinear descriptor systems.
Automatica, 43(5):912 – 920.

[Gertler, 1991] Gertler, J. (1991). Analytical redundancy methods in fault de-
tection and isolation; survey and analysis. In IFAC Fault Detection, Supervi-
sion and Safety for Technical Processes, pages 9–21, Baden-Baden, Germany.

[Greiner et al., 1989] Greiner, R., Smith, B. A., and Wilkerson, R. W. (1989). A
correction to the algorithm in reiter’s theory of diagnosis. Artificial Intelli-
gence, 41:79–88.

[Haasl et al., 1981] Haasl, D., Roberts, N., Vesely, W., and Goldberg, F. (1981).
Fault Tree Handbook. U.S. Nuclear Regulatory Commission.

[Hammouri et al., 2001] Hammouri, H., Kabore, P., and Kinnaert, M. (2001).
A geometric approach to fault detection and isolation for bilinear systems.
IEEE Transactions on Automatic Control, 46(9):1451–1455.

[Hammouri et al., 1999] Hammouri, H., Kinnaert, M., and El Yaagoubi, E. H.
(1999). Observer-based approach to fault detection and isolation for nonlin-
ear systems. IEEE Transactions on Automatic Control, 44(10):1879–1884.

Bibliography 25

[Hansen and Molin, 2006] Hansen, J. and Molin, J. (2006). Design and eval-
uation of an automatically generated diagnosis system. Master’s thesis,
Linköpings Universitet, SE-581 83 Linköping.

[Hendeby, 2008] Hendeby, G. (2008). Performance and Implementaion Aspects of
Nonlinear Filtering. PhD thesis, Linköpings universitet.

[Hou, 2000] Hou, M. (2000). Fault detection and isolation for descriptor systems,
chapter 5. Issues of Fault Diagnosis for Dynamic Systems. Springer-Verlag.

[Hou and Müller, 1999] Hou, M. and Müller, P. (1999). Observer design for
descriptor systems. IEEE Transactions on Automatic Control, 44(1):164–168.

[Hou and Müller, 1995] Hou, M. and Müller, P. C. (1995). Design of a class of
luenberger observers for descriptor systems. IEEE Transactions on Automatic
Control, 40(1):133–136.

[Izadi-Zamanabadi, 2002] Izadi-Zamanabadi, R. (2002). Structural analysis
approach to fault fiagnosis with application to fixed-wing aircraft motion.
In Proceedings of the 2002 American Control Conference, volume 5, pages 3949–
3954.

[Kaboré et al., 2000] Kaboré, P., Othman, S., McKenna, T. F., and Hammouri,
H. (2000). Observer-based fault diagnosis for a class of non-linear systems -
application to a free radical copolymerization reaction. International Journal
of Control, 73(9):787–803.

[Kailath et al., 2000] Kailath, T., Sayed, A. H., and Hassibi, B. (2000). Linear
Estimation. Prentice-Hall, Inc, Upper Saddle River, New Jersey 07458, 2 edi-
tion.

[Khalil, 1999] Khalil, H. (1999). New Directions in Nonlinear Observer Design
(Lecture Notes in Control and Information Sciences), chapter High-gain ob-
servers in Nonlinear Feedback Control. Springer.

[Kingstedt and Johansson, 2008] Kingstedt, J. and Johansson, M. (2008). Meth-
ods for residual generation using mixed causality in model based diagnosis.
Master’s thesis, Linköpings Universitet, SE-581 83 Linköping.

[Krigsman and Nilsson, 2005] Krigsman, K. and Nilsson, J. (2005). Code gen-
eration for efficient real-time execution of diagnostic residual generators.
Master’s thesis, Dept. of Microelectronics and Information Technology,
KTH. IMIT/LECS-2004-66.

[Martínez-Guerra et al., 2005] Martínez-Guerra, R., Garrido, R., and Osorio-
Miron, A. (2005). The fault detection problem in nonlinear systems using
residual generators. IMA Journal of Mathematical Control and Information,
22(2):119–136.

26 Bibliography

[Marx et al., 2003] Marx, B., Koenig, D., and Georges, D. (2003). Robust
fault diagnosis for linear descriptor systems using proportional integral ob-
servers. In Proceedings of the 42nd IEEE Conference on Decision and Control,
pages 457–462, Maui, Hawaii, USA.

[Massoumnia, 1986] Massoumnia, M. (1986). A geometric approach to the
synthesis of failure detection filters. IEEE Transactions on Automatic Control,
31(9):839–846.

[Massoumnia et al., 1989] Massoumnia, M., Verghese, G., and Willsky, A.
(1989). Failure detection and isolation. IEEE Transactions on Automatic Con-
trol, 34(3):316–321.

[Misawa and Hedrick, 1989] Misawa, E. A. and Hedrick, J. K. (1989). Nonlin-
ear observers - a state of the art survey. Transactions of the ASME, 111(344).

[Müller and Hou, 1993] Müller, P. and Hou, M. (1993). On the observer design
for descriptor systems. IEEE Transactions on Automatic Control, 38(11):1666–
1670.

[Nyberg, 1999] Nyberg, M. (1999). Automatic design of diagnosis systems
with application to an automotive engine. Control Engineering Practice,
87(8):993–1005.

[Nyberg and Krysander, 2008] Nyberg, M. and Krysander, M. (2008). Statisti-
cal properties and design criterions for AI-based fault isolation. In Proceed-
ings of the 17th IFAC World Congress, Seoul, Korea.

[Patton and Hou, 1998] Patton, R. J. and Hou, M. (1998). Design of fault de-
tection and isolation observers: A matrix pencil approach. Automatica,
34(9):1135–1140.

[Pernestål, 2007] Pernestål, A. (2007). A Bayesian Approach to Fault Isolation with
Application To Diesel Engine Diagnosis. Lic. Thesis, Royal Institute of Technol-
ogy, Stockholm, Sweden.

[Pulido and Alonso-González, 2004] Pulido, B. and Alonso-González, C.
(2004). Possible conflicts: a compilation technique for consistency-based di-
agnosis. "IEEE Trans. on Systems, Man, and Cybernetics. Part B: Cybernetics",
Special Issue on Diagnosis of Complex Systems, 34(5):2192–2206.

[Reiter, 1987] Reiter, R. (1987). A theory of diagnosis from first principles. Ar-
tificial Intelligence, 32:57–95.

[Shields, 1994] Shields, D. (1994). Robust fault detection for generalized state
space systems. In Proceedings International Conference Control, pages 1335–
1339.

Bibliography 27

[Shields, 1992] Shields, D. N. (1992). Observers for descriptor systems. Inter-
national Journal of Control, 55(1):249–256.

[Shields, 1997] Shields, D. N. (1997). Observer design and detection for non-
linear descriptor systems. International Journal of Control, 67(2):153–168.

[Slotine et al., 1987] Slotine, J., Hedrick, J. K., and Misawa, E. A. (1987). On
sliding observers for nonlinear systems. Journal of Dynamic Systems Measure-
ment and Control, 109:245–252.

[Stamatis, 1995] Stamatis, D. (1995). Failure Mode and Effect Analysis: FMEA
from Theory to Execution. ASQ Quality Press.

[Staroswiecki, 2002] Staroswiecki, M. (2002). Fault Diagnosis and Fault Tolerant
Control, chapter Structural Analysis for Fault Detection and Isolation and for
Fault Tolerant Control. Encyclopedia of Life Support Systems, Eolss Pub-
lishers, Oxford, UK.

[Staroswiecki and Declerck, 1989] Staroswiecki, M. and Declerck, P. (1989).
Analytical redundancy in non-linear interconnected systems by means of
structural analysis. In Proceedings of IFAC AIPAC’89, pages 51–55, Nancy,
France.

[Svärd and Nyberg, 2008a] Svärd, C. and Nyberg, M. (2008a). A mixed causal-
ity approach to residual generation utilizing equation system solvers and
differential-algebraic equation theory. In Proceedings of the 19th International
Workshop on Principles of Diagnosis (DX-08), Blue Mountains, Australia.

[Svärd and Nyberg, 2008b] Svärd, C. and Nyberg, M. (2008b). A mixed causal-
ity approach to residual generation utilizing equation system solvers and
differential-algebraic equation theory. Technical Report LiTH-ISY-R-2854,
Department of Electrical Engineering, Linköpings Universitet, SE-581 83
Linköping, Sweden.

[Svärd and Nyberg, 2008c] Svärd, C. and Nyberg, M. (2008c). Observer-based
residual generation for linear differential-algebraic equation systems. In Pro-
ceedings of the 17th IFAC World Congress, Seoul, Korea.

[Svärd and Nyberg, 2008d] Svärd, C. and Nyberg, M. (2008d). Observer-based
residual generation for linear differential-algebraic equation systems. In Pro-
ceedings of Reglermöte 2008, Luleå, Sweden.

[Svärd and Wassén, 2006] Svärd, C. and Wassén, H. (2006). Development
of methods for automatic design of residual generators. Master’s thesis,
Linköpings Universitet, SE-581 83 Linköping.

[United Nations, 2008] United Nations (2008). Regulation no. 49: Uniform
provisions concerning the measures to be taken against the emission of
gaseous and particulate pollutants from compressionignition engines for

28 Bibliography

use in vehicles, and the emission of gaseous pollutants from positive-
ignition engines fuelled with natural gas or liquefied petroleum gas for use
in vehicles. ECE-R49.

[Vemuri et al., 2001] Vemuri, A., Polycarpou, M., and Ciric, A. (2001). Fault
diagnosis of differential-algebraic systems. Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on, 31(2):143–152.

[Walcott et al., 1987] Walcott, B. L., Corless, M. J., and Zak, S. H. (1987). Com-
paritive study of non-linear state-observation techniques. Internatinal Jour-
nal of Control, 45(6):2109–2132.

[Zimmer and Meier, 1997] Zimmer, G. and Meier, J. (1997). On observing non-
linear descriptor systems. System and Control Letters, 32(1).

Part II

Papers

29

1

PAPER 1

An Observer-Based Residual Generation
Method for Linear Differential-Algebraic

Equation Systems1

Carl Svärd and Mattias Nyberg

Vehicular Systems, Department of Electrical Engineering,
Linköping University, S-581 83 Linköping,

Sweden.

Abstract
Residual generation for linear differential-algebraic systems is consid-
ered. A new systematic method for observer-based residual generation
is presented. The proposed design method places no restrictions on the
system to be diagnosed. If the fault of interest can be detected in the
system, the output from the design method is a residual generator in
state-space form that is sensitive to the fault of interest. The method
is iterative and relies only on constant matrix operations such as mul-
tiplications, null-space calculations and equivalence transformations,
and thereby straightforward to implement. An illustrative numerical
example is included, where the design method is applied to a non-
observable model of a robot manipulator.

1This paper has been submitted to European Journal of Control. It is based on [Svärd and
Nyberg, 2008].

31

32 Paper 1. An Observer-Based Residual Generation Method...

1 Introduction

The aim of fault diagnosis is to detect and isolate faults present in a system.
With the rising demand for reliability and safety of technical systems, fault
diagnosis has become increasingly important. One approach is to generate a
set of residuals where different subsets of residuals respond to different sub-
sets of faults. For this reason decoupling of faults in residuals is fundamental.
Furthermore, decoupling can also be used to handle disturbances or unknown
inputs.

Differential-algebraic equation (DAE) systems, or descriptor systems, are
important in the residual generation context since DAE-systems appear in large
classes of technical systems like mechanical-, electrical-, and chemical systems.
Further, DAE-systems are also the result when using physically based object-
oriented modeling tools, e.g. Modelica, [Mattson et al., 1998].

For the class of linear state-space systems, residual generation is an exten-
sively studied area. Main approaches are for example the parity-space method,
[Chow and Willsky, 1984], the factorization approach e.g. [Frank and Ding,
1994], and different observer-based methods, [Chen and Patton, 1999], [Mas-
soumnia et al., 1989], [Hou and Müller, 1994]. For the more general class of
linear DAE-systems, the list of previous works is not as extensive but includes
parity-space approaches, [Sauter et al., 1996], [Maquin et al., 1993], parity-
space-like approaches, [Nyberg and Frisk, 2006], [Varga, 2003], a paramet-
ric approach, [Duan et al., 2002], and several observer-based methods, [Hou,
2000], [Shields, 1994], [Marx et al., 2003].

Several of the above mentioned residual generation methods for DAE-sys-
tems have limitations since they have restrictions on the system to be diag-
nosed. The observer-based methods [Shields, 1994] and [Marx et al., 2003],
both assume observability and so does the parity-space method, [Sauter et al.,
1996]. In addition, [Marx et al., 2003], does not handle decoupling in the mea-
surement equation. Observability is not assumed in [Maquin et al., 1993], but
instead decoupling is not considered.

The main contribution in this paper is a new observer-based method for
residual generation in linear DAE-systems. In contrast to the above mentioned
methods, no restrictions are placed on the system to be diagnosed. This means
that if the fault of interest is possible to detect, a residual generator can be
designed with the proposed method. The method is based only on constant
matrix operations such as multiplications, null-space calculations and equiva-
lence transformations, and thereby straightforward to implement.

The paper is organized as follows. Section 2 presents preliminaries and
states the problem formulation. Section 3, outlines the principles of the design
method. Section 4 verifies in two theorems that the stated objective is met with
the proposed design method. In Section 5 the method is applied to a non-
observable DAE-model of a robot manipulator and Section 7 concludes the
paper. The design method is summarizes as a ready-to-implement algorithm
in Appendix 5.

2. Preliminaries and Problem Formulation 33

2 Preliminaries and Problem Formulation

Consider the linear time-invariant differential-algebraic equation (DAE) sys-
tem described by

Eẋ = Ax + Bu + Fd + H f (1a)
y = Cx + Du + Gd + J f (1b)

where x ∈ Rn, u ∈ Rp, y ∈ Rm, d ∈ Rq, and f ∈ Rs are vectors of the
states, inputs, outputs, disturbances, and faults of interest respectively. The
inputs and outputs are considered as known variables and the states, distur-
bances and faults as unknowns. The matrix E ∈ Rk×n may be singular and the
disturbance-vector d consists of faults and unknown inputs that are to be de-
coupled. The matrices A, B, F, H, C, D, G, and J are all constant real-coefficient
matrices of appropriate dimensions.

Before stating our main objective, the notions of fault detectability and fault
sensitivity are needed. First, let ONF denote the set of all known trajectories u
and y consistent with the DAE-system (1) under the presence of no faults, i.e.

ONF = {[u, y]|∃x, d; Eẋ = Ax + Bu + Fd, y = Cx + Du + Gd} . (2)

Note that u, y, x, and d are here considered to be trajectories. In a similar way,
O f is defined as the corresponding set when the fault f is allowed to be non-
zero, i.e.

O f = {[u, y]|∃x, d, f ; Eẋ = Ax + Bu + Fd + H f , y = Cx + Du + Gd + J f } .
(3)

The sets ONF and O f will in the sequel be referred to as observation sets. With
ONF and O f defined, fault detectability can now be defined, see also [Nyberg
and Frisk, 2006].

Definition 1 (Fault Detectability). Fault f is detectable in (1) if O f 6⊆ ONF.

It may be noted that fault detectability is a system property.
To check if given trajectories of u and y belongs to the observation set ONF

or not, i.e. if a fault is present in the system, residuals can be used. In this
work, only residuals that are outputs from state-space systems are considered,
leading to the following definition.

Definition 2 (Residual Generator). The linear time-invariant state-space system

ξ̇ = Āξ + B̄u + M̄y (4a)
r = C̄ξ + D̄u + N̄y (4b)

is a residual generator for (1) and r is a residual if

[u, y] ∈ ONF ⇒ lim
t→∞ r = 0. (5)

34 Paper 1. An Observer-Based Residual Generation Method...

Note that r may here be multi-dimensional.
The problem that we consider can now be formulated as follows. Given the

system (1), where it is assumed that the fault f is detectable, the objective is to
create a residual generator for (1) where the residual is sensitive to f , that is,
the transfer function from fault to residual is non-zero.

3 Outline of the Design Method

As stated in the problem formulation, the input to the design method is as-
sumed to be a DAE-system on the form (1), where f is detectable. The design
method consists of two main parts. First, a system in state-space form with
no disturbances present is extracted from the input system. This is done it-
eratively, where disturbances are decoupled and the dimension of the system
is reduced in each step. Second, a residual generator based on the decoupled
system is designed. The steps of the design method are outlined below.

Step 1: Write the system on the form[
E
0

]
ẋ =

[
A
C

]
x +

[
B
D

]
u +

[
M
N

]
y +

[
F
G

]
d +

[
H
J

]
f (6)

Step 2: Let

r = rank
[

F
G

]
, (7)

and

P =
[

P1 P2
P3 P4

]
, (8)

with P1 ∈ R(k+m−r)×k, P2 ∈ R(k+m−r)×m, P3 ∈ Rr×k, P4 ∈ Rr×m chosen such

that the rows of
[
P1 P2

]
form a basis for the left null-space of

[
F
G

]
, and the

rows of
[
P3 P4

]
form a basis for the image of

[
F
G

]
. This implies that

rank P = k + m, (9)
P1F + P2G = 0, (10)

rank (P3F + P4G) = r. (11)

3. Outline of the Design Method 35

Step 3: Pre-multiply (6) with the full-rank matrix P. Since (10) holds, the
result becomes

P1Eẋ = (P1 A + P2C)x + (P1B + P2D)u + (P1 M + P2N)y+
(P1H + P2 J) f (12a)

P3Eẋ = (P3 A + P4C)x + (P3B + P4D)u + (P3 M + P4N)y + (P3F + P4G)d+
(P3H + P4 J) f , (12b)

where d not is present in (12a).

Step 4: Due to (11), the matrix (P3F + P4G) has full row-rank. This implies
that (12b) can always be fulfilled, since d can be arbitrarily chosen. Hence, the
equation (12b) does not contain any usable information and is discarded.

Step 5: Let t = rank (P1E). If t = n, go to step 8, otherwise continue to step
6.

Step 6: Find, by e.g. singular-value decomposition, non-singular matrices U
and V such that

U (P1E) V =
[
Σ 0
0 0

]
, (13)

where Σ ∈ Rt×t is a non-singular matrix.

Step 7: Pre-multiply (12a) with U, then introduce the non-singular state-trans-
formation

w = V−1x, w =
[

w1
w2

]
, (14)

where w1 ∈ Rt and w2 ∈ R(n−t) to obtain[
Σ

0

]
ẇ1 =

[
A1
A3

]
w1 +

[
A2
A4

]
w2 +

[
B1
B2

]
u +

[
M1
M2

]
y +

[
H1
H2

]
f , (15)

where [
A1 A2
A3 A4

]
= U(P1 A + P2C)V,

[
B1
B2

]
= U(P1B + P2D),[

M1
M2

]
= U(P1 M + P2N),

[
H1
H2

]
= U(P1H + P2 J), (16)

and A1 ∈ Rt×t, A4 ∈ R(k+m−r−t)×(n−t), B1 ∈ Rt×p, M1 ∈ Rt×m, and H1 ∈
Rt×s. We can now consider w2 to be a disturbance, and hence the system (15)
is on the same form as (6). Thus, we return to step 1 with the system (15) as
input.

36 Paper 1. An Observer-Based Residual Generation Method...

Step 8: Find a non-singular matrix U such that

U (P1E) =
[
Π

0

]
, (17)

where Π ∈ Rn×n is non-singular.

Step 9: Pre-multiply (12a) with U, then multiply the dynamic part of the re-
sult with Π−1, to obtain

ẋ = Ā1x + B̄1u + M̄1 y + H̄1 f (18a)
0 = A2x + B2u + M2 y + H2 f (18b)

where

Ā1 = Π−1 A1, B̄1 = Π−1B1,

M̄1 = Π−1 M1, H̄1 = Π−1H1,[
A1
A2

]
= U(P1 A + P2C),

[
B1
B2

]
= U(P1B + P2D),[

H1
H2

]
= U(P1H + P2 J),

[
M1
M2

]
= U(P1 M + P2N). (19)

Step 10: Find a matrix L ∈ Rn×m such that all eigenvalues of the matrix (Ā1 +
LA2) have negative real-parts. Pre-multiply (18) with the non-singular matrix

Q =
[

I L
0 I

]
(20)

to obtain

ẋ = (Ā1 + LA2)x + (B̄1 + LB2)u + (M̄1 + LM2)y + (H̄1 + LH2) f (21a)
0 = A2x + B2u + M2 y + H2 f . (21b)

Step 11: Design the residual generator as

ξ̇ = (Ā1 + LA2)ξ + (B̄1 + LB2)u + (M̄1 + LM2)y (22a)
r = A2ξ + B2u + M2 y. (22b)

The design method is summarized as a ready-to-implement algorithm in
Appendix A.

Remark 1. Step 10 requires that (18) is observable or at least detectable, see e.g.
[Rugh, 1996]. If this is not the case, the canonical structure theorem, e.g. [Gilbert,
1963], can be used to extract the observable subsystem from (18), which instead is
used in step 10.

4. Correctness of the Design Method 37

Remark 2. The states ξ in (22) are actually an estimate of a linear combination of the
states x in (1), and (22) is sometimes referred to as a FDI (Fault Detection and Iso-
lation) observer, see e.g. [Hou and Müller, 1994]. It may also be noted that observer-
based residual generation has strong connections with the design of unknown-input
observers, see e.g. [Müller and Hou, 1994] for state-space systems and e.g. [Sun and
Cheng, 2004] for DAE-systems. The aim in these works is to estimate the states of
the system and not generate a residual suitable for fault detection. However, if an ob-
server for a system can be designed, a residual can be created as the difference between
measurements and estimated states.

Remark 3. Throughout this work, it is assumed that the system to be diagnosed is a
DAE-system and the design method is described in this framework. Still, the method
can likewise be applied to a state-space system, i.e. a system where E = I.

4 Correctness of the Design Method

In this section we verify that the objective stated in Section 2 is met. That is,
that the output from the proposed design method is a residual generator for (1),
and that the corresponding residual is sensitive to the fault f .

Since the design method (or algorithm, as in Appendix A) is iterative, the
following result is needed.

Lemma 1. With (1) as input, the design method terminates.

Proof. The system (1) has k + m equations. In step 4 at least one equation is
removed. Since t ≥ 0 in step 5, the algorithm will terminate, if not earlier, after
at most k + m iterations when the remaining system is of zero dimension.

4.1 Residual Generator Property

The output from the design method is (22) which is based on the system (21),
obviously different from (1). A key property for (22) to be a residual generator
for (1) is that the systems (1) and (21) have equal observations sets. This means
that designing a residual generator for (1) is equivalent to designing a residual
generator for (21). This property is the result of the following lemma.

Lemma 2. Let (1) be the input to the design method, ONF defined by (2) and O f
by (3). LetO′NF be the set of trajectories u and y consistent with (21) when f = 0 and
O′f the corresponding sets when f is allowed to be non-zero. It holds thatONF = O′NF
and O f = O′f .

Proof. Given (1) as input to the design method, Lemma 1 states that the method
will terminate. Two scenarios of execution of the steps 1 to 11 are possible.
Either steps 1-5 followed by steps 8-11 is performed directly, else steps 1-7
will be iterated until the condition in step 5 holds, and then steps 8-11 will

38 Paper 1. An Observer-Based Residual Generation Method...

be performed. In both cases, steps 3, 9, and 10 consist of multiplication with
non-singular matrices and does not change the sets O f and ONF in any of the
execution cases. The same holds for step 7 in the second case. Hence, the
critical part is step 4, where equation (12b) is discarded. For the first execution
case we must show that the observation sets are equal for (12) and (15) and
for the second case that the same holds for (12) and (18). Or in other words for
both cases, that (12b) can be discarded without loosing any usable information.
Here, we will consider the second case and the first case can be shown in the
same manner. Since it is trivial that the observation sets for (12) are subsets of
the observation sets for (18), only the reverse inclusion is shown. Let x̃, ũ, and
ỹ be trajectories satisfying (18) when f = 0. Since (12a) and (18) are related by a
non-singular transformation, x̃, ũ, and ỹ also satisfies (12a). As a consequence
of step 2, (11) holds. This implies that the matrix (P3F + P4G) has full row-
rank and hence the matrix has a right-inverse. Denote this right-inverse R and
choose

d̃ = RP3E ˙̃x− R(P3 A + P4C)x̃− R(P3B + P4D)ũ− R(P3 M + P4N)ỹ. (23)

With d̃ and the previously defined x̃, ũ, and ỹ, the equation (12b) is satisfied.
This shows that (12b) does not contain any usable information and can be dis-
carded. The reasoning can be repeated for the case when f is allowed to be
non-zero to show that the observation sets are equal for (12) and (18), which
completes the proof.

With help of Lemma 2, we can show that the first part of the stated objective
is met.

Theorem 1. Let (1) be the input to the design method and (22) the output. The
system (22) is a residual generator for (1) and r in (22b) is a residual.

Proof. Assume f = 0 and let [u, y] ∈ ONF, where ONF is the set defined in
(2). Lemma 2 then implies that u and y also satisfy (21). By subtracting (21a)
from (22a) and (21b) from (22b) we obtain the autonomous system

λ̇ = (Ā1 + LA2)λ (24a)
r = A2λ, (24b)

where λ = ξ − x. Since, according to step 10, the matrix L is chosen such
that all eigenvalues of (Ā1 + LA2) have negative real-parts, it follows directly
that limt→∞ r = 0 and hence (22) is a residual generator for (1) and (22b) is a
residual.

4.2 Fault Sensitivity

The aim of this section is to show that the residual generator (22) is sensitive
to the fault f , i.e. that the transfer function from f to the residual r is non-
zero. However, the residual generator (22) is written in a form without faults.

4. Correctness of the Design Method 39

By again, as in the proof to Theorem 1, subtracting (21a) from (22a) and (21b)
from (22b), the relation between f and r can be described as

λ̇ = (Ā1 + LA2)λ− (H̄1 + LH2) f (25a)
r = A2λ− H2 f , (25b)

where λ = ξ − x.
From (25), the transfer function from fault to residual can be written as

Gr f (s) = A2
(
−sI + Ā1 + LA2

)−1 (H̄1 + LH2)− H2. (26)

The result that verifies that the second part of the objective is met with the
design method here follows.

Theorem 2. Let (1) be the input to the design method and (25) the output. If f is
detectable in (1), the transfer function from fault to residual (26) is non-zero.

Proof. The transfer function (26) can by power-series expansion of(
−sI + Ā1 + LA2

)−1

be written as

Gr f (s) = A2
(
−sI + Ā1 + LA2

)−1 (H̄1 + LH2)− H2 =

−
∞
∑
i=1

A2
(

Ā1 + LA2
)i−1 (H̄1 + LH2)s−i − H2. (27)

To show the contrary of the claim, i.e. that Gr f (s) = 0 implies O f ⊆ ONF, we
assume Gr f (s) = 0. Using (27), Gr f (s) = 0 is equivalent to

H2 = 0, (28)

A2
(

Ā1 + LA2
)i−1 (H̄1 + LH2) = 0, i = 1, . . . , ∞. (29)

As a consequence of the Cayley-Hamilton theorem,
A2
(

Ā1 + LA2
)i−1, for i ≥ n + 1, can be written as a linear combination of

A2, A2
(

Ā1 + LA2
)

, . . . , A2
(

Ā1 + LA2
)n−1 , (30)

therefore it is sufficient to consider the matrix

Ω =


A2

A2
(

Ā1 + LA2
)

...
A2
(

Ā1 + LA2
)n−1

 . (31)

40 Paper 1. An Observer-Based Residual Generation Method...

The condition (29) clearly implies (H̄1 + LH2) ∈ Ker Ω and the two cases
rank Ω = n and rank Ω < n will now be studied separately.

For the first case, i.e. when (22) and (25) are both observable, dim Ker Ω =
0 which implies (H̄1 + LH2) = 0. From (28), H2 = 0 and it must hold that
O f = ONF.

For the second case, let [ũ, ỹ] ∈ O f . This means that there exist trajectories,
say f̃ and x̃ with x̃(t0) = x̃0, such that

˙̃x = (Ā1 + LA2)x̃ + (B̄1 + LB2)ũ + (M̄1 + LM2)ỹ + (H̄1 + LH2) f̃ (32a)

0 = A2 x̃ + B2ũ + M2 ỹ + H2 f̃ . (32b)

We will now show that there exists a trajectoryζ that along with the trajectories
ũ and ỹ satisfies (32) when f̃ = 0. Consider the residual generator (25) and
let λ̃(t0) = λ̃0 ∈ Ker Ω. This implies that λ̃ will be a trajectory in the non-
empty unobservable subspace of (25). Evaluation of (25) with the initial state
λ̃0, together with (28) and (29), yields r ≡ 0 independent of f . In particular,
this holds for f = f̃ and hence

˙̃λ = (Ā1 + LA2)λ̃− (H̄1 + LH2) f̃ (33a)

0 = A2λ̃− H2 f̃ . (33b)

Now form ζ = x̃ + λ̃, ζ(t0) = x̃0 + λ̃0, and combine (32) with (33) to obtain

ζ̇ = (Ā1 + LA2)ζ + (B̄1 + LB2)ũ + (M̄1 + LM2)ỹ (34a)
0 = A2ζ + B2ũ + M2 ỹ. (34b)

Thus, there exists a trajectory ζ satisfying the fault-free system (34) so that
[ũ, ỹ] ∈ ONF, implying O f ⊆ ONF and the proof is complete.

Remark 4. The two systems (22) and (25) are two ways of writing a residual gener-
ator. The form (22) is the so called computational form, and (25) is usually referred to
as internal form.

5 Application Example

To illustrate the design method, we apply it to a DAE-model of a three-link pla-
nar manipulator from [Hou, 2000] and [Hou and Müller, 1996], see Figure 1.
The objective of the manipulator is to apply a constant horizontal force in the
region between point A and B, e.g. for cleaning the region. The manipulator
consists of an end-effector, three rods, and three joints. Via actuators at ev-
ery joint, a torque can be applied to move the effector repeatedly between A
and B. The manipulator is equipped with four sensors measuring the height
of the end-effector, the contact force in the horizontal direction, and tracking

5. Application Example 41

A

B

Figure 1: The three-link planar manipulator.

signals. The DAE-model has three states for the Cartesian coordinates of the
end-effector, three states for the derivatives of the Cartesian coordinates, two
states for Lagrangian multipliers, and three states for the controller, altogether
11 states. In this example, the original fault model has been extended with a
sensor fault. The process is subjected to 3 faults. Fault f1 represents a fault in
actuator 1, f2 a fault in the tracking reference signal, and f3 a fault in sensor 4.
Hence, the form of the DAE is

Eẋ = Ax + Bu + H f (35a)
y = Cx + J f , (35b)

where x ∈ R11, u ∈ R3, y ∈ R4, and f ∈ R3. Numerical values of the matri-
ces E, A, B, C, H, and J can be found in Appendix B. The matrix E is square
with rank E = 9 and (35) is regular. Further, the system (35) is not impulse
observable ([Dai, 1989]), since

rank

 E A
0 E
0 C

 = 18 6= rank E + n = 9 + 11 = 20. (36)

This means that methods assuming observability, for example [Shields, 1994],
[Marx et al., 2003], and [Sauter et al., 1996], can not be applied to the system.

Our design objective is to create three residual generators for (35) whose
residuals r1, r2, and r3, should monitor each of the faults f1, f2, and f3, accord-
ing to the following fault signature matrix

f1 f2 f3
r1 1
r2 1
r3 1

42 Paper 1. An Observer-Based Residual Generation Method...

In residual generator 1, the transfer function from fault f1 to r1 should be non-
zero, and the same should hold for the transfer function from f2 to r2 in resid-
ual generator 2, and for the transfer function from f3 to r3 in residual generator
3. Since each residual generator should monitor only one fault, two faults need
to be decoupled in each residual generator. This means that f2 and f3 are seen
as disturbances in residual generator 1 and the matrix F1 =

[
H2 H3

]
, and

G1 =
[

J2 J3
]

can be formed, where Hi and Ji denotes the i:th column of the
matrices H and J respectively. In the same way the matrices F2, G2, F3, and G3,
with the columns from H and J corresponding to the faults to be decoupled in
each residual generator, are created.

Performing the design according to the method in Section 3 with the three
different configurations of system (35) as input, three disturbance decoupled
systems on the form (18) with 6, 5, and 5 states respectively are obtained. For
all three input systems, the algorithm terminates after 3 iterations. The three
systems are all observable, and hence it is straightforward to perform step 10.
For all three residual generators, the poles are placed in -1.

All three residual generators have two-dimensional residuals. By calculat-
ing the transfer functions from fault to residual for each residual generator, it
can be verified that Gr fi (s) = 0, when i = 2, 3 for residual generator 1, when
i = 1, 3 for residual generator 2, and when i = 1, 2 for residual generator
3. To verify that the design objective is met, the transfer functions from the
monitored faults to the residual for each residual generator is shown in Fig-
ures 3.2(a), 3.2(b), and 3.2(c). It is clear that all transfer functions are non-zero.

6 Conclusions

We have considered the problem of residual generation for linear DAE-systems.
A new systematic method for observer-based residual generation has been pre-
sented. In contrast to several previous methods, no restrictions such as observ-
ability are placed on the system to be diagnosed. This means that if the fault
of interest is detectable in the system to be diagnosed, a residual generator
can be designed with the design method in this paper. It has been verified in
Theorem 1 and 2 that the output from the design method is indeed a residual
generator, and that the corresponding transfer function from fault to residual is
non-zero. Finally note that even though the design method has been described
in the framework of DAE-systems, it can likewise be applied to state-space
systems.

References

[Chen and Patton, 1999] Chen, J. and Patton, R. (1999). Robust Model-Based
Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers.

References 43

[Chow and Willsky, 1984] Chow, E. and Willsky, A. (1984). Analytical redun-
dancy and the design of robust failure detection systems. IEEE Transactions
on Automatic Control, 29(7):603–613.

[Dai, 1989] Dai, L. (1989). Singular Control Systems. Springer-Verlag.

[Duan et al., 2002] Duan, G., Howe, D., and Patton, R. (2002). Robust fault
detection in descriptor linear systems via generalized unknown input ob-
servers. International Journal of Systems Science, 33(5):369–377.

[Frank and Ding, 1994] Frank, P. and Ding, X. (1994). Frequency domain ap-
proach to optimally robust residual generation and evalutaion for model-
based fault diagnosis. Automatica, 30(4):789–804.

[Gilbert, 1963] Gilbert, E. (1963). Controllability and observability in multi-
variable control systems. SIAM Journal on Control and Optimization, 1(2):128–
152.

[Hou, 2000] Hou, M. (2000). Fault detection and isolation for descriptor systems,
chapter 5. Issues of Fault Diagnosis for Dynamic Systems. Springer-Verlag.

[Hou and Müller, 1994] Hou, M. and Müller, P. (1994). Fault detection and
isolation observers. International Journal of Control, 60(5):827–846.

[Hou and Müller, 1996] Hou, M. and Müller, P. (1996). Tracking control for a
class of descriptor systems. In Proceedings 13th IFAC World Congress, pages
109–114, San Fransisco, USA.

[Maquin et al., 1993] Maquin, D., Gaddouna, B., and Ragot, J. (1993). Gener-
ation of parity equations for singular systems. In Proc. Int. Conf. Syst., Man
Cybern., volume 3, pages 400–405.

[Marx et al., 2003] Marx, B., Koenig, D., and Georges, D. (2003). Robust
fault diagnosis for linear descriptor systems using proportional integral ob-
servers. In Proceedings of the 42nd IEEE Conference on Decision and Control,
pages 457–462, Maui, Hawaii, USA.

[Massoumnia et al., 1989] Massoumnia, M., Verghese, G., and Willsky, A.
(1989). Failure detection and isolation. IEEE Transactions on Automatic Con-
trol, 34(3):316–321.

[Mattson et al., 1998] Mattson, S., Elmqvist, H., and Otter, M. (1998). Physical
system modeling with modelica. Control Engineering Practice, 6(4):501–510.

[Müller and Hou, 1994] Müller, P. and Hou, M. (1994). Disturbance decoupled
observer design: A unified viewpoint. IEEE Transactions on Automatic Con-
trol, 39(6):1338–1341.

44 Paper 1. An Observer-Based Residual Generation Method...

[Nyberg and Frisk, 2006] Nyberg, M. and Frisk, E. (2006). Residual genera-
tion for fault diagnosis of systems described by linear differential-algebraic
equations. IEEE Transactions on Automatic Control, 51(12):1995–2000.

[Rugh, 1996] Rugh, W. (1996). Linear System Theory, chapter 18. Prentice Hall
Information and System Sciences.

[Sauter et al., 1996] Sauter, D., Noura, H., Hamelin, F., and Theilliol, D. (1996).
Parity space approach for fault diagnosis in descriptor systems. In Proc.
CESA ’06 IMACS Multiconf. Comput. Eng. Syst. Appl., volume 1, pages 380–
383.

[Shields, 1994] Shields, D. (1994). Robust fault detection for generalized state
space systems. In Proceedings International Conference Control, pages 1335–
1339.

[Sun and Cheng, 2004] Sun, L. and Cheng, Z. (2004). State and input estmi-
tation for descriptor systems. In Proceedings of the 2004 American Control
Conference, Boston, Massachusetts.

[Svärd and Nyberg, 2008] Svärd, C. and Nyberg, M. (2008). Observer-based
residual generation for linear differential-algebraic equation systems. In Pro-
ceedings of the 17th IFAC World Congress, Seoul, Korea.

[Varga, 2003] Varga, A. (2003). On computing least order fault detectors using
rational nullspace bases. In Proc. Safeprocess 2003, pages 229–234, Washing-
ton DC.

References 45

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

Frequency [rad/s]

M
ag

ni
tu

de
 [d

B
]

(a) Transfer functions from fault f1 to the two residuals in
residual generator 1.

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

Frequency [rad/s]

M
ag

ni
tu

de
 [d

B
]

(b) Transfer functions from fault f2 to the two residuals in
residual generator 2.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

Frequency [rad/s]

M
ag

ni
tu

de
 [d

B
]

(c) Transfer functions from fault f3 to the two residuals in
residual generator 3.

Figure 2: Transfer functions from monitored faults to residuals in the obtained
residual generators.

46 Paper 1. An Observer-Based Residual Generation Method...

A Design Algorithm

The design method is below summarized as the function DESIGNRESIDUAL-
GENERATOR, taking matrices E, A, B, F, H, C, D, G, and J corresponding to a
system on the form (1) where E ∈ Rk×n, as input. The output consists of the
matrices Ā, B̄,M̄, C̄, D̄, and N̄ corresponding to a residual generator on the
form (4). The function uses the following sub-functions

• NULL computes a basis for the null-space of a matrix.

• SVD performs a singular-value decomposition.

• RANK computes the rank of a matrix.

• STABILIZE computes a feedback gain such that all eigenvalues of the re-
sulting matrix have negative real-parts.

In addition, we have used the notation (A, B; C, D) to denote the matrix
[

A B
C D

]
.

function DESIGNRESIDUALGENERATOR(E, A, B, F, H, C, D, G, J)
N := I
t := 0
while t 6= n do

(P1, P2) := NULL((F; G)T)T

t := RANK(P1E)
(U, Σ, V) := SVD(P1E)
(B; D) := U(P1B + P2D)
(H; J) := U(P1H + P2 J)
(M; N) := U(P1 M + P2N)
if t 6= n then

E := Σ

(A, F; C, G) := U(P1 A + P2C)V
end if

end while
(A; C) := U(P1 A + P2C)
L := STABILIZE(Σ−1 A, C)
Ā := Σ−1 A + LC
B̄ := Σ−1B + LD
M̄ := Σ−1 M + LN
C̄ := C
D̄ := D
N̄ := N

end function

B. Matrices for Application Example 47

B Matrices for Application Example

E =



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 18.75 −7.95 7.95 0 0 0 0 0
0 0 0 −7.95 31.82 −26.82 0 0 0 0 0
0 0 0 7.95 −26.82 26.82 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1


,

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−68.7 98.96 −77.74 −601.16 43.92 −107.77
45.23 −402.43 337.54 −906.97 −177.27 179.24
4.48 339.82 −219.17 697.11 149.56 −360.37

1 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 −68.83 −34.83 −6.41
0 0 280.46 −58.29 24.22
0 1 −236.89 48.76 −69.93
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0
0 −1 0 0 0


,

B =

 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

T

,

H =

 0 0 0 0 0 0 0 0 1 0 0
0 0 0 −36.334 76.914 −76.914 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

T

,

C =


0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

 , J =


0 0 0
0 0 0
0 0 0
0 0 1

 .

48 Paper 1. An Observer-Based Residual Generation Method...

2

PAPER 2

Residual Generators for Fault Diagnosis
using Computation Sequences with

Mixed Causality Applied to
Automotive Systems1

Carl Svärd and Mattias Nyberg

Vehicular Systems, Department of Electrical Engineering,
Linköping University, S-581 83 Linköping,

Sweden.

Abstract
Rising demands for reliability and safety of complex technical systems,
e.g. automotive systems, has made model-based fault diagnosis in-
creasingly important. An essential step in the design of a model-based
diagnosis system is to find a set of residual generators fulfilling stated
fault detection and isolation requirements. To be able to perform a
good selection, it is desirable that the method used for residual gen-
eration gives as many candidate residual generators as possible, given
a model. This paper presents a novel method for residual generation
that enables simultaneous use of integral and derivative causality, i.e.
mixed causality, and is able to handle equation sets corresponding to
algebraic and differential loops in a systematic manner. The method re-
lies on a formal framework for computing unknown variables accord-
ing to a computation sequence, in which mixed causality is utilized and
the analytical properties of the equations in the model and the available
tools for algebraic equation solving are taken into account. The pro-
posed method is applied to two models of automotive systems, a Sca-
nia diesel engine and a hydraulic braking system. Significantly more
residual generators are found with the proposed method, in compari-
son with methods using solely integral or derivative causality.

1This paper has been submitted to IEEE Transactions on Systems, Man, and Cybernetics, Part
A: Systems and Humans. It is an extended and revised version of the work presented in [Svärd
and Nyberg, 2008].

49

50 Paper 2. Residual Generators for Fault Diagnosis using...

1 Introduction

Fault diagnosis of technical systems has become increasingly important with
the rising demand for reliability and safety, driven by environmental and eco-
nomical incentives. One example is automotive engines that are by regulations
required to have high precision on-board diagnosis of failures that are harmful
for the environment [United Nations, 2008].

To obtain good detection and isolation of faults, model-based fault diagno-
sis is necessary. In the Fault Detection and Isolation (FDI) approach to model-
based fault diagnosis, residuals, signals ideally zero in the non-faulty case and
non-zero else, are used to detect and isolate faults present in the system, see
e.g. [Blanke et al., 2003]. Residuals are typically generated by utilizing a math-
ematical model of the system and measurements.

In this paper, we have the view that design of diagnosis systems is a two-
step approach, as elaborated in [Nyberg and Krysander, 2008], [Nyberg, 1999],
where in the first step a large number of candidate residual generators are
found, and in the second step the residual generators most suitable to be in-
cluded in the final diagnosis system are picked out. Since different residual
generators have different properties regarding fault and noise sensitivities, it
is for the second step important that there is a large selection of different resid-
ual generator candidates to choose between. Thus, the initial set of candidate
residual generators should be as large as possible.

One approach residual generator design [Staroswiecki and Declerck, 1989],
which has shown to be successful in real applications, [Dustegor et al., 2004],
[Izadi-Zamanabadi, 2002], [Cocquempot et al., 1998], [Svärd and Wassén, 2006],
[Hansen and Molin, 2006], is to compute unknown variables in the model by
solving equations one at a time in a sequence, i.e. according to a computa-
tion sequence, and then evaluate a redundant equation to obtain a residual. To
determine from which equations and in which order the unknown variables
should be computed, structural analysis is utilized. In addition to [Staroswiecki
and Declerck, 1989], similar approaches have been described and exploited
in e.g. [Cassar and Staroswiecki, 1997], [Staroswiecki, 2002], [Blanke et al.,
2003], [Pulido and Alonso-González, 2004], [Ploix et al., 2005], and [Travé-
Massuyès et al., 2006].

In the works mentioned above, the approach is to apply either integral or
derivative causality [Blanke et al., 2003] for differential equations. However,
as will be illustrated in this paper through application studies, it is advanta-
geous to allow simultaneous use of integral and derivative causality, i.e. mixed
causality. Furthermore, real-world applications involves complex models that
gives rise to algebraic and differential loops or cycles [Blanke et al., 2003], [Kat-
sillis and Chantler, 1997], which correspond to sets of equations that have to
be treated simultaneously. Thus, it is desirable that a method for residual gen-
eration is able to handle mixed causality and equation sets corresponding to
algebraic and differential loops. The intention with the following simple ex-
ample is to illustrate these issues. Consider the set of differential-algebraic

1. Introduction 51

equations

e1 : ẋ1 − x2 = 0
e2 : ẋ3 − x4 = 0
e3 : ẋ4x1 + 2x2x4 − y1 = 0 (1)
e4 : x3 − y3 = 0
e5 : x2 − y2 = 0,

which is a subsystem of a model describing the planar motion of a point-mass
satellite [Brockett, 1970], [De Persis and Isidori, 2001], and where x1, x2, x3,x4
are unknown variables and y1, y2, y3 known variables. Assume that we want
to use equation e5 as residual. This implies that the unknown variables x1, x2,
x3, and x4 must be computed from the equations e1, e2, e3,and e4. A structure,
i.e. which unknown variables that are contained in which equation, of the
equation set {e1, e2, e3, e4} with respect to {x1, x2, x3, x4}, in permuted form, is
depicted in (2).

x3 x4 x2 x1
e4 1
e2 1 1
e3 1 1 1
e1 1 1

(2)

This structure reveals the order and from which equations, marked with bold,
the unknown variables should be computed. It is clear that computation of
the variables will involve handling the differential loop arising in the equa-
tion set {e1, e2}, since to compute x2 the value of x1 is needed and vice versa.
Furthermore, computation of the variables according to (2) will require use of
both causality approaches, derivative causality when solving for x4 in e2 and
integral causality when solving for x1 in e1, i.e. mixed causality.

The main contribution in this paper is a novel method for residual genera-
tion that enables simultaneous use of integral and derivative causality, and is
able to handle equation sets corresponding to algebraic and differential loops
in a systematic manner. In this sense, the proposed method also general-
izes previous methods for residual generation, e.g. [Staroswiecki and Declerck,
1989]– [Travé-Massuyès et al., 2006]. To achieve this, a formal framework for
sequential computation of variables is presented. In this framework, tools for
equation solving and approximate differentiation, as well as analytical and
structural properties of the equations in the model are important.

In Section 2 some preliminaries, basic theories and references regarding
structural analysis and differential-algebraic equation systems are given. Sec-
tion 3 presents the framework for sequential computation of variables, in which
the concepts BLT semi-explicit DAE form, tools and computation sequence are im-
portant. Tools, or more precisely algebraic equation solving tools, are essential
for the ability to handle loops. In Section 4, it is shown how a computation

52 Paper 2. Residual Generators for Fault Diagnosis using...

sequence is utilized for residual generation. The resulting residual generator
is referred to as a sequential residual generator. Motivated by implementation
aspects, the concept of proper sequential residual generator is introduced as a se-
quential residual generator in which no unnecessary variables are computed
and in which computations are performed from as small equation sets as possi-
ble. A necessary condition for the existence of a proper sequential residual gen-
erator is derived, connecting proper sequential residual generators with min-
imal structurally over-determined (MSO) equation sets [Krysander et al., 2008].
An algorithm able to find proper sequential residual generators, given a model
and a set of tools, is outlined. A key step in the algorithm is to find minimal
and irreducible computation sequences, which is considered in Section 5. In
Section 6, the proposed method for residual generation is applied to models of
an automotive diesel engine and an auxiliary hydraulic braking system. The
application studies clearly show the benefits, in the sense that more residual
generators are found, of using a mixed causality approach and handling alg-
ebraic and differential loops. Finally, Section 7 concludes the paper. For read-
ability, proofs to all lemmas and theorems are collected in Appendix A.

2 Preliminaries and Background Theory

Consider a model, M(E, X, Y), or M for short, consisting of a set of equations
E = {e1, e2, . . . , em} relating a set of unknown variables X = {x1, x2, . . . , xn},
and a set of known, i.e. measured, variables Y = {y1, y2, . . . , yr}. Introduce a
third variable set D = {ẋ1, ẋ2, . . . , ẋn}, containing the (time) derivatives of the
variables in X. Without loss of generality, it is assumed that the equations in E
are in the form

ei : fi (ẋ, x, y) = 0, i = 1, 2, . . . , m (3)

where ẋ = (ẋ1, ẋ2, . . . , ẋn) is a vector of the variables in D, x = (x1, x2, . . . , xn)
a vector of the variables in X, and y = (y1, y2, . . . , yr) a vector of the variables
in Y. Also without loss of generality, it is assumed that each equation ei ∈ E
contains, at most, one differentiated variable ẋ j ∈ D and that ẋ j is contained
only in one equation.

Define the set of trajectories of the variables in Y that are consistent with the
model M(E, X, Y) as

O (M) = {y : ∃x; fi (ẋ, x, y) = 0, i = 1, 2, . . . , m} . (4)

The setO (M) is the observation set of the model M. We formally define a resid-
ual generator as follows.

Definition 1 (Residual Generator). A system with input y and output r is a resid-
ual generator for the model M(E, X, Y) and r is a residual if

y ∈ O (M)⇒ lim
t→∞ r→ 0

2. Preliminaries and Background Theory 53

2.1 Integral and Derivative Causality

In the context of the methods for residual generation mentioned in Section 1,
there are two approaches for handling differential equations, referred to as in-
tegral and derivative causality, see e.g. [Blanke et al., 2003]. When adopting in-
tegral causality, the differentiated variables, or states, of a differential equation
can be computed. The use of integral causality hence relies on the assumption
that ordinary differential equations can be solved, i.e. integrated, which in gen-
eral requires that initial conditions of the states are known. Integral causality
is used in for example [Pulido et al., 2008] and [Pulido and Alonso-González,
2004].

If instead derivative causality is applied, a differential equation is inter-
preted as an algebraic equation and only un-differentiated, i.e. algebraic, vari-
ables can be computed. Usage of derivative causality thus relies on the as-
sumption that values of the differentiated variables in a differential equation
are available. This requires in general that derivatives of known, or previ-
ously computed, variables can be computed or estimated. Derivative causality
is used in [Staroswiecki, 2002], and also adopted in e.g. [Dustegor et al., 2004].
The difference between integral and derivative causality is discussed in [Pulido
et al., 2007] and from a simulation point of view in [Cellier and Elmqvist, 1993].

The chosen causality approach naturally influences which variables that
can be computed from an equation set. For instance, consider the differential
equation e1 : ẋ1 − x2 = 0 from (1), where both x1 and x2 are unknown vari-
ables. If integral causality is used, x1 can be computed from e1 but if instead
derivative causality is used, x2 can be computed from e1.

2.2 Structure of Equation Sets

To study which unknown variables that are contained in a set of equations,
a structural representation of the equation set will be used. Let E′ ⊆ E and
introduce the notations

varX(E′) =

{
x j ∈ X : ∃ei ∈ E′,

∂ fi
∂x j
6≡ 0 ∨ ∂ fi

∂ẋ j
6≡ 0

}
,

varD(E′) =

{
ẋ j ∈ D : ∃ei ∈ E′,

∂ fi
∂ẋ j
6≡ 0

}
.

Consider the model (1) and let X = {x1, x2, x3, x4} and D = {ẋ1, ẋ2, ẋ3, ẋ4}.
For instance, it holds that

varX({e3}) = {x1, x2, x4} . (5)

Let G = (E, X, A) be a bi-partite graph where E and X are the (disjoint) sets
of vertices, and

A =
{(

ei , x j
)
∈ E× X : x j ∈ varX({ei})

}
,

54 Paper 2. Residual Generators for Fault Diagnosis using...

the set of arcs. We will call the bi-partite graph G the structure of the equation
set E with respect to X. Note that with this representation, there is no struc-
tural difference between the variable x j and the differentiated variable ẋ j. An
equivalent representation of G is the m× n bi-adjacency matrix B defined as

Bi j =
{

1 if
(
ei , x j

)
∈ A

0 otherwise

Return to the model (1). The structure of the equation set {e1, e2, e3, e3} with
respect to {x1, x2, x3, x4} is given by the bi-adjacency matrix (2). The result
in (5) corresponds to the third row of (2)

We will also consider the structure of E with respect to D which refers to
the bi-partite graph Ḡ = (E, D, Ā), where

Ā =
{(

ei , ẋ j
)
∈ E× D : ẋ j ∈ varD({ei})

}
.

2.3 Structural Decomposition

A matching on the bi-partite graph G = (E, X, A) is a subset of A such that no
two arcs have common vertices. A matching with maximum cardinality is a
maximum matching. A matching is a complete matching with respect to E (or X),
if the matching covers every vertex in E (or X). By directing the arcs contained
in a matching on the bi-partite graph G in one direction, and the remaining
arcs in the opposite direction, a directed graph can be obtained from G, see for
example [Asratian et al., 1998]. A directed graph is said to be strongly connected
if for every pair of vertices xi and x j there is a directed path from xi to x j.
The maximal strongly-connected subgraphs of a directed graph are called its
strongly-connected components (SCC).

There exists a unique structural decomposition of the bi-partite graph G =
(E, X, A), referred to as the Dulmage-Mendelsohn (DM) decomposition, [Dul-
mage and Mendelsohn, 1958], [Murota, 1987]. It decomposes G into irreducible
bi-partite subgraphs G+ =

(
E+, X+, A+), G0

i =
(
E0

i , X0
i , A0

i
)

, i = 1, 2, . . . , s,
and G− = (E−, X−, A−), called DM-components, see Figure 1. The compo-
nent G+ is the over-determined part of G, G0 =

⋃s
i=1 G0

i the just-determined
part, and G− the under-determined part. The DM-components G0

i =
(
E0

i , X0
i , A0

i
)

correspond to the SCCs of the directed graph induced by any complete match-
ing on the bi-partite graph G0, [Murota, 1987]. The equation set E0 =

⋃s
i=1 E0

i
is said to be a just-determined equation set with respect to the variables X0 =⋃s

i=1 X0
i .

Algebraic and Differential Loops

If the structure of an equation set, with respect to a set of unknown variables,
contains SCCs of larger size than one, the equation set contains loops or cy-
cles, see e.g. [Blanke et al., 2003], [Katsillis and Chantler, 1997], [Pulido et al.,

2. Preliminaries and Background Theory 55

X+ X 0 X -

E +

E 0

E -

0 0

0

E 1
0

E s
0

0

Figure 1: DM-decomposition of the bi-partite graph G = (E, X, A). The DM-
components G0

i =
(
E0

i , X0
i , A0

i
)

correspond to the SCCs of the structure of E0

with respect to X0.

2007]. If the equation set contains cyclic dependencies including unknown
differentiated variables, the loop is said to be differential, else algebraic. In the
example outlined in Section 1, the structure (2), which in fact is the result of
a DM-decomposition, revealed three SCCs which are bold-marked. The SCCs
are ({e4} , {x3}),({e2} , {x4}), and ({e2, e1} , {x1, x2}) of size 1, 1, and 2 respec-
tively. The latter corresponds to a differential loop.

2.4 Differential-Algebraic Equation Systems

Due to its general form, it is assumed that the model (3) contains both differ-
ential and algebraic equations, i.e. it is a differential-algebraic equation (DAE)
system, or descriptor system. The most general form of a DAE is f (ẋ, x, y) = 0,
where f is some vector-valued function, cf. (3). DAEs appear in large classes of
technical systems like mechanical-, electrical-, and chemical systems. Further,
DAEs are also the result when using physically based object-oriented model-
ing tools, e.g. Modelica [Mattson et al., 1998].

Differential Index

A common approach when analyzing and solving general DAE-systems, is
to seek a reformulation of the original DAE into a simpler and well-structured

56 Paper 2. Residual Generators for Fault Diagnosis using...

description with the same set of solutions [Kunkel and Mehrmann, 2006], [Bre-
nan et al., 1989]. To classify how difficult such a reformulation is, the concept
of index has been introduced. There are different index concepts depending
on what kind of reformulation that is sought. In this paper we will use the
differential index, which is defined as the minimum number of times that all or
parts of the DAE must be differentiated with respect to time in order to write
the DAE as an explicit ordinary differential equation (ODE), ẋ = g (x, y), see for
example [Brenan et al., 1989].

Semi-Explicit DAEs

An important class of DAEs are semi-explicit DAEs

ż = g (z, w, y) (6a)
0 = h (z, w, y) , (6b)

where z and w are vectors of unknown variables, and y a vector of known
variables. A semi-explicit DAE is of index one if and only if (6b) can be (locally)
solved for w so that w = h̃ (z, y), see e.g. [Brenan et al., 1989]. An explicit ODE
can easily be obtained from a semi-explicit DAE of index one by substituting
w = h̃ (z, y) into (6a).

3 Sequential Computation of Variables

In this section, a framework for sequential computation of variables is pre-
sented. The framework is built upon the concepts BLT semi-explicit DAE form,
tools, and computation sequence. The small model (1) introduced in Section 1,
will be used as a running example to illustrate and exemplify the theory.

Large sets of equations often has a sparse structure, i.e. only a few un-
known variables in each equation. This makes it possible to partition the set
of equations into subsets that can be solved, in a sequence, for only a subset
of the unknowns. The main argument for computing variables in this way is
efficiency and in some cases this may be the only feasible way to compute the
unknowns. This approach has been used in the context of equation solving,
see [Steward, 1962], [Kron, 1963] [Steward, 1965], and is also utilized in meth-
ods for non-causal simulation [Fritzon, 2004].

3.1 BLT Semi-Explicit DAE form

One property that the partitioning must fulfill, is that computation of variables
from a certain subset of equations must only use variables that are known, that
is, measured or have been computed from another subset in a previous step of
the sequence.

Furthermore, with the efficiency argument in mind, it is most desirable to
partition the set of equations into as small blocks, i.e. subsets, as possible.

3. Sequential Computation of Variables 57

However, even if the equation set has a sparse structure, there could be algeb-
raic or differential loops, that makes it impossible to consider subsets of solely
one equation.

In addition, it is desirable that the equations are partitioned into blocks or
subsets from which variables can be computed in a straightforward manner.
Since the considered set of equations (3) contains both differential and algeb-
raic equations, subsets will correspond to DAEs. Computation of variables
from semi-explicit DAEs of index one, referred to as simulation of the DAE, is
a well studied problem and several methods exist, see e.g. [Hairer and Wan-
ner, 2002], [Ascher and Petzold, 1998]. Furthermore, as said in Section 2.4,
a semi-explicit DAE of index one can trivially be transformed to an explicit
ODE. Explicit ODEs are suitable for real-time simulation in embedded sys-
tems, for example Engine Control Units (ECUs), because real-time simulation
often require use of an explicit integration method, e.g. forward Euler [Ascher
and Petzold, 1998], which assumes an explicit ODE. For a detailed discussion
regarding real-time simulation, see [Cellier and Kofman, 2006].

Motivated by these arguments, we consider a partitioning of the equation
set so that a block-lower triangular form is achieved, where each block corre-
sponds to a semi-explicit DAE of index one.

Definition 2 (BLT semi-explicit DAE form). The system

ż1 = g1 (z1, w1, y)
ż2 = g2 (z1, z2, w1, w2, y) (7)

...
żs = gs (z1, z2, . . . , zs, w1, w2, . . . , ws, y)

where wi =
(

w1
i , w2

i , . . . , wpi
i

)
and

w1
i = h1

i (Ψi , y)

w2
i = h2

i

(
Ψi , w1

i , y
)

...

wpi
i = hpi

i

(
Ψi , w2

i , . . . , wpi−1
i , y

)
,

where

Ψi = (ẇ1, ẇ2, . . . , ẇi−1, z1, z2, . . . , zi , w1, w2, . . . , wi−1) ,

for i = 1, 2, . . . , s, and where zi and wi are vectors of unknown variables, all pairwise
disjoint, and y a vector of known variables, is in Block-Lower Triangular semi-
explicit DAE form (BLT semi-explicit DAE form).

58 Paper 2. Residual Generators for Fault Diagnosis using...

Note that it is not necessary that both zi and wi are present in (7) for every
i = 1, 2, . . . , s. In particular, the system

w1 = h1 (y)
w2 = h2 (w1, y)

...
ws = hs (w1, w2, . . . , ws−1, y) ,

containing no differentiated variables at all, also is in BLT semi-explicit DAE
form.

Some Properties of the BLT Semi-Explicit DAE Form

Consider the system

ż1 = g1 (z1, w1, y) (8a)

w1
1 = h1

1 (z1, y) (8b)

w2
1 = h2

1

(
z1, w1

1, y
)

(8c)

ż2 = g2 (z1, z2, w1, w2, y) (8d)

w1
2 = h1

2 (ẇ1, z1, z2, w1, y) (8e)

w2
2 = h2

2

(
ẇ1, z1, z2, w1, w1

2, y
)

, (8f)

where w1 =
(
w1

1, w2
1
)

and w2 =
(
w1

2, w2
2
)
, is in BLT semi-explicit DAE form

with s = 2 and p1 = p2 = 2. By studying the system (8), we can deduce some
properties of the BLT semi-explicit DAE form;

Mixed Causality The form generalizes the use of integral and derivative causal-
ity, since for example integral causality is used in (8a) and derivative causality
in (8e).

Blocks are DAEs of Index One or Zero Each block, e.g. (8a)-(8c), corresponds
to a semi-explicit DAE of, at most, index one with respect to the unknown
variables in each block, i.e. z1 and w1 in the first block and z2 and w2 in the
second block. Note that in accordance with the note above, vectors z1, z2, w1,
and w2 must not all be present in (8). If, for instance, w1 is missing and hence
also (8b) and (8c), the first block is an explicit ODE, i.e. a DAE of index zero. If
both z1 and w1 are present, the first block corresponds to a semi-explicit DAE
of index one.

3. Sequential Computation of Variables 59

Transformation to ODE Due to the previous property, a system in BLT semi-
explicit DAE form can trivially be transformed to a variant of an explicit ODE.
In (8), we may substitute (8b) into (8c) and then substitute the result along
with (8b) into (8a) so that we obtain

ż1 = g1 (z1, w1, y)

= g1

(
z1,
[
h1

1 (z1, y) , h2
1

(
z1, h1

1 (z1, y)
)]

, y
)

= g̃1 (z1, y) ,

and then repeat the procedure for the second block to obtain

ż1 = g̃1 (z1, y)
ż2 = g̃2 (z1, z2, ẏ, y) .

As said above, ODEs may be preferable in real-time applications.

Blocks are SCCs Each block in the BLT semi-explicit DAE form is a SCC of
the structure of the corresponding equations with respect to the unknown vari-
ables in that block. This can be seen by studying the structure2 of the equations
in (8) with respect to the variables

{
z1, w1

1, w2
1, z2, w1

2, w2
2
}

, which is shown
in (9). In this structure, the equation in (8a) has been named e1, the equation
in (8b) has been named e2, and so forth.

z1 w1
1 w2

1 z2 w1
2 w2

2
e1 1 1 1
e2 1 1
e3 1 1 1
e4 1 1 1 1 1 1
e5 1 1 1 1 1
e6 1 1 1 1 1 1

(9)

Efficiency Recall the discussion regarding efficiency in the beginning of Sec-
tion 3.1. As a consequence of the previous property, the original set of equa-
tions is partitioned in as small blocks as possible, in the sense that there are no
dependencies between blocks, i.e. no loops occur.

Sequential Computation of Variables The block-lower triangular structure
makes it possible to compute variables sequentially by considering the blocks
one at the time, starting from the first block. Since the structure guarantees that
a certain block only contains unknown variables from the present and previous
blocks.

2It is here assumed that f (x) implies ∂ f
∂x 6≡ 0.

60 Paper 2. Residual Generators for Fault Diagnosis using...

3.2 Tools

If a system in BLT semi-explicit DAE form can be obtained from a given set of
equations and if trajectories of the unknown variables can be computed from
the resulting system, depends naturally on the properties of the equations in
the model. Equally important is also the set of tools that are available for use.

Consider the BLT semi-explicit DAE form (8). To obtain for example the
function h1

1 in (8b) from a subset of equations given in the model, some kind
of tool for algebraic equation solving is needed. To compute a trajectory of the
variable z1 from (8a), a differential equation must be solved and hence a tool
for this is needed. Furthermore, to obtain the derivative ẇ1, present in (8e),
from the trajectory of w1 computed in (8b) and (8c), a tool for differentiation is
needed.

Motivated by this discussion, we consider three types of tools; algebraic
equation solving tools, differential equation solving tools, and differentiation
tools.

Algebraic Equation Solving Tools

A tool for algebraic equation solving is typically some software package for
symbolic or numeric solving of linear or non-linear algebraic equations. Alg-
ebraic equation solving tools are essential for handling models containing alg-
ebraic loops. If, for example, the available tool for algebraic equation solving
tool only can solve scalar equations, loops can not be handled.

More precisely, an algebraic equation solving tool (AE tool) is a function
taking a set of variables Vi ⊆ X ∪ D and a set of equations Ei ⊆ E as argu-
ments, and returning a function gi, which can be a symbolic expression or nu-
meric algorithm, taking variables from {X ∪ D} \ Vi and Y as arguments and
returning a vector corresponding to the elements in Vi. Now assume that gi
is the function returned by an AE tool when Ei and Vi are used as arguments,
and that the equation set Ēi corresponds to vi = gi (ui , y), where vi is a vector
of the elements in Vi, ui a vector of the elements in Ui ⊆ {X ∪ D} \ Vi, and
y a vector of known variables. A natural assumption regarding an AE tool,
whatever algorithm or method it corresponds to, is that the AE tool should not
introduce new solutions. That is, a solution to Ēi should also be a solution to
the original equation set Ei. Moreover, an AE tool should neither remove solu-
tions, i.e. solutions to Ei must also be solutions to Ēi. Furthermore, motivated
by the idea of using sequential computation of variables for residual equation,
we are interested in unique solutions. This discussion justifies the following
assumption.

Assumption 1. Given Ui and y, the solution sets of Ēi, obtained from the AE tool,
and Ei, with respect to Vi, are equal and unique.

AE tools giving unique solutions generally assumes that the given set of
equations contains as many equations as unknown variables. For example,

3. Sequential Computation of Variables 61

Newton iteration which is a common numerical method for solving non-linear
equations require a just-determined equation set, see e.g. [Ortega and Rhein-
boldt, 2000]. In addition, under- and over-determined sets of equations for
which an unique analytical solution exists are rare. This motivates the follow-
ing assumption.

Assumption 2. An AE tool requires that its arguments Ei and Vi correspond to a
just-determined equation set.

In this work, we assume that tools for algebraic equation solving are avail-
able through existing standard software packages like e.g. Maple or Mathe-
matica, and design and implementation of such tools will not be considered.
For solving algebraic loops, also tearing can be a successful approach, [Stew-
ard, 1965]. In the following, we also assume that AE tools fulfill the properties
stated in Assumptions 1 and 2.

Differential Equation Solving Tools

A differential equation solving tool is typically a method or software for nu-
merical integration of an (explicit or implicit) ODE, i.e. a DAE of index zero.
Numerical integration is a well studied area and there are several efficient
approaches and methods, see e.g. [Brenan et al., 1989], [Ascher and Petzold,
1998]. Implementations are available in for example MATLAB and SIMULINK.

Recall from Section 3.1 that each block in a BLT semi-explicit DAE system
can be transformed to an explicit ODE. In the following, we assume that diff-
erential equation solving tools are always available and that an explicit ODE
can be solved, i.e. that trajectories of the state variables in the ODE can be com-
puted, if the initial conditions of the state variables are known and consistent.
Of course, this assumption is not always valid and numerical solving of ODEs
involves difficulties and problems such as stability and stiffness, but this is not
in the scope of this paper.

The availability of initial conditions depends on the knowledge about the
underlying system represented by the model. For complex physical systems,
object-oriented modeling tools, e.g. Modelica [Mattson et al., 1998], are fre-
quently used to build models. Often, this leads to that state variables in the
models correspond to physical quantities such as pressures and temperatures,
which makes initial conditions known.

If all equilibrium points of the considered ODE are, or with for example
state-feedback can be made (globally) asymptotically stable, see for example
[Khalil, 2002], the effect of the initial conditions are neglectable. However, the
computed trajectory will in this case differ from the true trajectory for some
time due to transients.

62 Paper 2. Residual Generators for Fault Diagnosis using...

Differentiation Tools

A differentiation tool is for example an implementation of a method for ap-
proximate differentiating of known variables. There are several approaches,
e.g. low-pass filtering or smoothing spline approximation [Wei and Li, 2006].
An extensive survey of methods can be found in [Barford et al., 1999]. Methods
for approximate differentiation is not in the scope of this paper, and will not be
further considered.

In the following, we assume that differentiation of a set of known variables
either is possible or not possible. That is, if a tool for approximate differen-
tiation is available, we assume that the quality of the measurements of the
involved variables are good enough to support the tool.

One alternative to differentiate variables directly, is to propagate unknown
differentiated variables through a set of equations so that these can be ex-
pressed as derivatives of measured variables only. Assume for example that
we want to compute the derivative ẋ1 and we also have that x1 = y1. To com-
pute ẋ1, we use a differentiation tool to compute ẏ1 and then use ẋ1 = ẏ1.

3.3 Computation Sequence

To describe the way and order in which a set of variables is computed from
a set of equations, we will introduce the concept computation sequence. Before
going into details, we need some additional notation. Let V ⊆ X ∪ D and
define

Diff (V) =
{

ẋ j ∈ D : ẋ j ∈ V ∨ x j ∈ V
}

, (10)

unDiff (V) =
{

x j ∈ X : x j ∈ V ∨ ẋ j ∈ V
}

. (11)

For instance, we have that Diff ({ẋ1, x2}) = {ẋ1, ẋ2} and unDiff ({ẋ1, x2}) =
{x1, x2}.

Now consider the model M(E, X, Y), where E is the set of equations speci-
fied in (3), X the set of unknown variables, and Y the set of known variables.

Definition 3 (Computation Sequence). Given are a set of variables X′ ⊆ X, an AE
tool T , and an ordered set

C = ((V1, E1) , (V2, E2) , . . . , (Vk, Ek)) ,

where Vi ⊆ varX(Ei) ∪ varD(Ei) and {Ei} is pairwise disjoint. The ordered set C is
a computation sequence for X′ with T , if

1. X′ ⊆ unDiff (V1 ∪V2 ∪ . . . ∪Vk), and

2. a system in BLT semi-explicit DAE form is obtained by sequentially calling the
tool T , with arguments Vi and Ei, for each element (Vi , Ei) ∈ C.

For an example, recall the model (1), where E = {e1, e2, e3, e4, e5}, X =
{x1, x2, x3, x4} and Y = {y1, y2, y3}. Assume that the given AE tool T is ideal,

4. Sequential Residual Generation 63

in the sense that it can solve all solvable linear and non-linear equations. Then
the ordered set

C = (({x3} , {e4}) , ({x4} , {e2}) , ({ẋ1} , {e1}) , ({x2} , {e3})) (12)

is a computation sequence for {x1, x2, x3, x4}with T according to Definition 3,
since

unDiff ({x3} ∪ {x4} ∪ {ẋ1} ∪ {x2}) = {x1, x2, x3, x4} ,

and the BLT semi-explicit DAE system

x3 = y3 (13a)
x4 = ẋ3 (13b)
ẋ1 = x2 (13c)

x2 =
−ẋ4x1 + y1

2x4
, (13d)

is obtained by sequentially calling T with elements from C as arguments.
Note that the obtained BLT semi-explicit DAE system (13) has three blocks;

the first block corresponds to (13a), the second to (13b), and the third to (13c)
and (13d). Also note that the equation set {e3, e1}, containing a differential
loop, corresponds to a semi-explicit DAE of index one given by (13c) and (13d),
and that derivative causality is used in (13b) and integral causality in (13c).

4 Sequential Residual Generation

In this section it is shown how a computation sequence can be utilized for
residual generation. A residual generator based on a computation sequence
will be defined as a sequential residual generator. In a sequential residual gen-
erator, the generation of a residual will consist of finite sequence of variable
computations ending with evaluation of an unused equation. The concepts of
minimal and irreducible computation sequence, as well as proper sequential
residual generator will then be introduced. A necessary condition for the exis-
tence of a proper sequential residual generator is given. The section ends with
an algorithm able to find proper sequential residual generators, given a model
and an AE tool.

An important property of a computation sequence is given by the following
lemma.

Lemma 3. Let the ordered set

C = ((V1, E1) , (V2, E2) , . . . , (Vk, Ek))

be a computation sequence for the variables X′ ⊆ X with the AE tool T , and let
Ē′ be the set of equations in BLT semi-explicit DAE form obtained from C with the
AE tool T . Then the solution sets of Ē′ and E1 ∪ E2 ∪ . . . ∪ Ek, with respect to
V1 ∪V2 ∪ . . . ∪Vk, are equal and unique.

64 Paper 2. Residual Generators for Fault Diagnosis using...

With this lemma, the following important result can be proved.

Theorem 1. Let M(E, X, Y) be a model, T an AE tool, and

C = ((V1, E1) , (V2, E2) , . . . , (Vk , Ek)) ,

a computation sequence for X′ ⊆ X with T , where Ei ⊆ E. Also, let ei ∈ E \
E1 ∪ E2 ∪ . . . ∪ Ek where varX(ei) ⊆ X′ and it is assumed that ei is written as
fi (ẋ, x, y) = 0. Then the BLT semi-explicit DAE system obtained from C with T and
r = fi (ẋ, x, y), is a residual generator for M(E, X, Y) if

1. consistent initial conditions of all states are available, and
2. all needed derivatives can be computed with the available differentiation tools.

Motivated by this theorem, we define a sequential residual generator as
follows.

Definition 4 (Sequential Residual Generator). A residual generator for M(E, X, Y)
obtained from a computation sequence C and an equation ei ∈ E, in accordance with
the description in Theorem 1, is a sequential residual generator for M(E, X, Y),
denoted S = (T (C) , ei), and ei is a residual equation.

4.1 Proper Sequential Residual Generator

Regarding implementation aspects, e.g. complexity or numerical issues, smaller
computation sequences are generally better. In particular, it is unnecessary to
compute variables that are not contained in the residual equation, or not used
to compute any of the variables contained in the residual equation. Motivated
by this discussion, we make the following definition.

Definition 5 (Minimal Computation Sequence). Given a set of variables X′ ⊆ X
and an AE tool T , a computation sequence C for X′ with T is minimal, if there is no
other computation sequence C ′ for X′ with T such that C ′ ⊂ C.

Return to the model (1) in Section 1. Consider the last two equations in the
model,

e4 : x3 − y3 = 0
e5 : x2 − y2 = 0,

and let T be an ideal AE tool. The computation sequence

C1 = (({x3}, {e4}) , ({x2}, {e5})) (14)

for {x2, x3} with T is minimal. The resulting BLT semi-explicit DAE form is
given by

x3 = y3 (15a)
x2 = y2. (15b)

4. Sequential Residual Generation 65

However, C1 is not minimal for {x3} since C2 = ({x3}, {e4}) is a (minimal)
computation sequence for {x3} with T , and C2 ⊂ C1.

Computation of variables according to a minimal computation sequence
thus implies that no unnecessary variables are computed. However, with the
complexity and numerical aspects in mind, it is also most desirable that com-
putation of variables in each step is performed from as small equation sets as
possible. This leads to the following definition.

Definition 6 (Irreducible Computation Sequence). Given a set of variables X′ ⊆
X and an AE tool T , a computation sequence

C = ((V1, E1) , (V2, E2) , . . . , (Vk , Ek)) ,

for X′ with T is irreducible, if no element (Vi , Ei) ∈ C can be partitioned as Vi =
Vi1 ∪Vi2 and Ei = Ei1 ∪ Ei2, such that

C ′ = ((V1, E1) , . . . , (Vi1, Ei1) , (Vi2, Ei2) , . . . , (Vk, Ek))

is a computation sequence for X′ with T .

Return to the equation set {e4, e5} considered above. Clearly, the ordered
set C3 = ({x2, x3}, {e4, e5}) is a minimal computation sequence for {x2, x3}
with the ideal AE tool T . The corresponding BLT semi-explicit DAE system is
given by (15). However, C3 is not irreducible since C1 given by (14) is also a
computation sequence for {x2, x3}.

From now on, we will only consider AE tools fulfilling the following, quite
non-limiting, property.

Assumption 3. Let Ei = Ei1 ∪ Ei2 and Vi = Vi1 ∪ Vi2, in accordance with Defi-
nition 6. If an AE tool can solve Ei for Vi, it can also solve Ei1 for Vi1 and Ei2 for
Vi2.

Sequential residual generators based on minimal and irreducible computa-
tion sequences are of particular interest.

Definition 7 (Proper Sequential Residual Generator). Given an equation ei ∈ E,
an AE tool T , and a computation sequence C for varX(ei) with T , a sequential resid-
ual generator S = (T (C) , ei) is proper, if C is a minimal and irreducible computa-
tion sequence for varX(ei) with T .

For construction of a sequential residual generator, a computation sequence
and a residual equation is needed. Due to Assumption 2, the equation set
contained in a computation sequence is a just-determined set of equations.
Since the residual equation is redundant, see Theorem 1, it follows that the
equations in a computation sequence and the residual equation constitute an
over-determined equation set. Hence, an over-determined set of equations
is needed to construct a sequential residual generator. For construction of
a proper sequential residual generator, a minimal structurally over-determined
(MSO) set [Krysander et al., 2008], is needed.

66 Paper 2. Residual Generators for Fault Diagnosis using...

Theorem 2. Let S = (T (C) , ei) be a proper sequential residual generator, where

C = ((V1, E1) , (V2, E2) , . . . , (Vk , Ek)) ,

then the equation set E1 ∪ E2 ∪ . . .∪ Ek ∪ ei is an MSO set with respect to varX(E1 ∪
E2 ∪ . . . ∪ Ek ∪ ei)

Note that Theorem 2 establishes a link between structural and analytical
methods. This is done without the use of any assumptions of generic equations
as in e.g. [Krysander et al., 2008], instead assumptions have been placed on the
tools.

Recall again the model (1) and consider the computation sequence C, given
by (12), with the corresponding BLT semi-explicit DAE form (13). The com-
putation sequence C together with the equation e5 is a sequential residual
generator for the model (1), if we assume that the initial condition of x1 is
known and consistent and the derivatives ẋ3 and ẋ4 can be computed with
the available differentiation tools. As a matter of fact, the residual generator
is a proper sequential residual generator since the computation sequence C for
varX(e5) = {x2} with the ideal AE tool T is minimal and irreducible. Hence,
we can by Theorem 2 conclude that the equation set E = {e1, e2, e3, e4, e5} is an
MSO set.

4.2 Finding Proper Sequential Residual Generators

Theorem 2 states a necessary condition for the existence of a proper sequential
residual generator. Hence, a first step when searching for all proper sequential
residual generators may be to find all MSO sets. There are efficient algorithms
for finding all MSO sets in large equation sets, see e.g. [Krysander et al., 2008].

Motivated by this, we propose the following algorithm for finding proper
sequential residual generators, given a model M(E, X, Y) and an AE tool T .
The function FINDALLMSOS is assumed to find all MSO sets in the equation
set E. The function FINDCOMPUTATIONSEQUENCE, taking an equation set E′,
a variable set X′ and an AE tool T , is assumed to return a minimal and proper
computation sequence for X′ with T .

1: function FINDRESIDUALGENERATORS(E, X, T)
2: R := ∅
3: MSOs := FINDALLMSOS(E, X)
4: for all Ē ∈ MSOs do
5: X′ := varX(Ē)
6: for all ei ∈ Ē do
7: E′ := Ē \ ei
8: C := FINDCOMPUTATIONSEQUENCE(E′, X′, T)
9: if C 6= ∅ then

10: R = R ∪ {(T (C) , ei)}
11: end if

5. Method for Finding a Computation Sequence 67

12: end for
13: end for
14: return R
15: end function
The algorithm is justified by the following theorem.

Theorem 3. Let M(E, X, Y) be a model and T an AE tool. Also, let R be the set re-
turned by FINDRESIDUALGENERATORS when E, X, and T are used as input. Then
all elements (T (C) , ei) ∈ R are proper sequential residual generators for M(E, X, Y)
if, in accordance with Theorem 1, consistent initial conditions of all states are available,
and all needed derivatives can be computed with the available differentiation tools.

The most important step in FINDRESIDUALGENERATORS is thus to find a
minimal and irreducible computation sequence, i.e. the function FINDCOMPU-
TATIONSEQUENCE. This is the topic of next section.

5 Method for Finding a Computation Sequence

A proper sequential residual generator consists of a BLT semi-explicit DAE
system, obtained from a minimal and irreducible computation sequence, and
a residual equation. Essential for construction of a proper sequential residual
generator is thus to find a minimal and irreducible computation sequence. The
method that we propose for finding a computation sequence is presented in
this section. First, the different steps of the method are illustrated by studying
an example.

5.1 Illustrative Example

Consider the following set of equations,

e1 : ẋ1 + x1x6 − x3 − x2
5x7 = 0

e2 : ẋ2 + x2x3 + y1 = 0
e3 : ẋ3 + x3 − x2x4 + y2 = 0
e4 : ẋ4 + x2 − x5 − y3 = 0
e5 : x1 − x2x3 − x4 + x6 − 2x7 − y4 = 0

e6 : x2
3 − x6 − x7 + y5 = 0

e7 : x4 − y6 = 0,

where X = {x1, x2, . . . , x7} are unknown variables and Z = {y1, y2 . . . , y6}
known variables. Assume that we want to find a computation sequence for X
with a given AE tool.

First identify the SCCs, recall Section 2.3, of the structure of E = {e1, e2, . . . , e7}
with respect to X, and order the corresponding partitions of the equation and

68 Paper 2. Residual Generators for Fault Diagnosis using...

variable sets accordingly

x4 x3 x2 x5 x6 x7 x1
e7 1
e3 1 1 1
e2 1 1
e4 1 1 1
e6 1 1 1
e1 1 1 1 1 1
e5 1 1 1 1 1 1

(16)

The ordered partitions are

E = ({e7} , {e2, e3} , {e4} , {e1, e5, e6})

and

X = ({x4} , {x2, x3} , {x5} , {x1, x6, x7}) ,

where each element in E is a SCC with respect to the corresponding element in
X , e.g. ({e2, e3} , {x2, x3}). The SCCs are marked with bold in (16).

The first SCC, ({e4}, {x7}), contains one linear algebraic equation. Under
assumption that our AE tool can handle such equations, e7 is solved for x4 and
we obtain

x4 = y6. (17)

Then consider the next SCC, ({e2, e3}, {x2, x3}) which contains two differential
equations. The permuted structure of {e2, e3}with respect to the differentiated
variables {ẋ2, ẋ3} is

ẋ3 ẋ2
e3 1
e2 1

(18)

As seen, the structure (18) contains two SCCs of size one, ({e3}, {ẋ3}) and
({e2}, {ẋ2}). Assuming our AE tool admits it, we then solve e3 for ẋ3 and e2
for ẋ2 and obtain

ẋ3 = −x3 + x2x4 − y2 (19)
ẋ2 = −x2x3 − y1.

The next SCC, ({e4}, {x5}), contains a differential equation. However, since x5
is the variable intended to compute from the equation, we can handle e6 as an
algebraic equation and solve it for x5,

x5 = x2 + ẋ4 − y3. (20)

5. Method for Finding a Computation Sequence 69

The SCC ({e1, e5, e6}, {x1, x6, x7}) contains the differential equation e1 and the
two algebraic equations e6 and e5. By analyzing the equations we see that
x6 and x7 are algebraic variables contained in both e6 and e5 and that x1 is a
differentiated variable present in e1. We then solve e1 for ẋ1 and obtain

ẋ1 = −x1x6 + x2
5x7 + x3. (21)

The structure of {e5, e6} with respect to {x6, x7} reveals a SCC of size two,
see (22).

x6 x7
e5 1 1
e6 1 1

(22)

Under the assumption that our AE tool can handle it, we solve the equation
system {e5, e6} for {x6, x7} and obtain

x6 = 2x2
3 + x1 − x2x3 − x4 + 2y5 − y4 (23)

x7 = x1 − x2x3 − x4 + x2
3 + y5 − y4.

Collecting the equations (17), (19), (20), (21), and (23) gives

x4 = y6 (24a)
ẋ3 = −x3 + x2x4 − y2 (24b)
ẋ2 = −x2x3 − y1 (24c)
x5 = x2 + ẋ4 − y3 (24d)

ẋ1 = −x1x6 + x2
5x7 + x3 (24e)

x6 = 2x2
3 + x1 − x2x3 − x4 + 2y5 − y4 (24f)

x7 = x1 − x2x3 − x4 + x2
3 + y5 − y4, (24g)

which is a system in BLT semi-explicit DAE form with four blocks. The equa-
tion (24a) correspond to the first block, which only contains an algebraic equa-
tion. The second block is given by (24b) and (24c), and correspond to an explicit
ODE with respect to the variables {x2, x3}. Hence, integral causality is used in
this block. The third block contains (24d), which is a differential equation in
which derivative causality is used. The equations (24e)- (24g) constitute the
fourth and last block. This block corresponds to a semi-explicit DAE of index
one, with respect to the variables {x1, x6, x7}.

The resulting computation sequence for {x1, x2, . . . , x7} with the given AE
tool is,

C = (({x4}, {e7}) , ({ẋ3}, {e3}) , ({ẋ2}, {e2}) , ({x5}, {e4}) ,
({ẋ1}, {e1}) , ({x6, x7}, {e6, e5})) .

70 Paper 2. Residual Generators for Fault Diagnosis using...

5.2 Summary of the Method

Given an AE tool and a just-determined set of equations, the proposed method
for finding a computation sequence can be outlined as follows.

1. Find the SCCs of the structure of the equation set with respect to the
unknown variables. No distinction is made between a variable and its
derivative.

2. For each SCC, split the equations into one set of differential equations and
one set of algebraic equations, and the variables into one set of differential
variables and one set of algebraic variables.

3. For the differential equations, find the SCCs of the structure of the diff-
erential equations with respect to the differentiated variables. For each
SCC, try to solve the differential equations for the intended differential
variables with the AE tool. Note that due to the assumption that each
differential equation only contains one differentiated variable, all SCCs
are of size one.

4. For the algebraic equations, find the SCCs of the structure of the algebraic
equations with respect to the algebraic variables. For each SCC, try to
solve the algebraic equations for the intended algebraic variables with
the AE tool.

5.3 Algorithm

The method is formally described in the function FINDCOMPUTATIONSEQUENCE
below. The function takes a just-determined equation set E′ ⊆ E, a set of un-
known variables X′ ⊆ X, and an AE tool T as input, and returns an ordered
set C as output. The function FINDALLSCCS is assumed to return an ordered
set of equation and variable pairs, where each pair corresponds to a SCC of
the structure of the equation set with respect to the variable set. The order of
the SCCs returned by FINDALLSCCS is assumed to be the one depicted in Fig-
ure 1, for more information regarding ordering of SCCs please refer to [Murota,
1987]. There are efficient algorithms for finding SCCs in directed graphs, see
for example [Tarjan, 1972]. The DM-decomposition [Dulmage and Mendel-
sohn, 1958] can also be utilized. In MATLAB, the DM-decomposition is imple-
mented in the function dmperm, from which also the order of the SCCs, accord-
ing to Figure 1, easily can be obtained. Other functions used in FINDCOMPU-
TATIONSEQUENCE are:

• DIFF and UNDIFF, takes a variable set as input and returns its differenti-
ated and un-differentiated correspondence, see (10) and (11).

• ISINITCONDKNOWN determines if the initial conditions of the given vari-
ables are known and consistent, and the function ISDIFFERENTIABLE de-
termines if the given variables can be differentiated with the available
differentiation tool.

5. Method for Finding a Computation Sequence 71

• ISJUSTDETERMINED is used to determine if the structure of the given
equation set, with respect to the given variable set, is just-determined.
This is essential, since otherwise the computation of SCCs makes no sense.

• GETDIFFERENTIALEQUATIONS takes a set of equations and a set of differ-
entiated variables as input, and returns the differential equations in which
the given differentiated variables are contained.

• ISTOOLSOLVABLE determines if the given AE tool can solve the given
equations for the given set of variables.

• APPEND, taking an ordered set and an element as input, simply appends
the element to the end of the set.

• The operator | · |, taking a set as input, is assumed to return the number of
elements in the set and the notion A (i) is used to refer to the i:th element
of the ordered set A.

1: function FINDCOMPUTATIONSEQUENCE(E′, X′, T)
2: C := ∅
3: S := FINDALLSCCS(E′, X′)
4: for i = 1, 2, . . . , |S| do
5: (Ei , Xi) := S (i)
6: Di := DIFF(Xi)
7: Zi := varD(Ei) ∩ Di
8: Wi := Xi \ UNDIFF(Zi)
9: if not ISINITCONDKNOWN(Zi) then

10: return ∅
11: end if
12: EZi := GETDIFFERENTIALEQUATIONS(Ei , Zi)
13: EWi := Ei \ EZi
14: SZi := FINDALLSCCS(EZi , Zi)
15: for j = 1, 2, . . . ,

∣∣SZi

∣∣ do

16:
(

E j
Zi

, Z j
i

)
:= SZi (j)

17: if ISTOOLSOLVABLE(Z j
i , E j

Zi
, T) then

18: APPEND(C ,
(

Z j
i , E j

Zi

)
)

19: else
20: return ∅
21: end if
22: end for
23: if ISJUSTDETERMINED(EWi , Wi) then
24: SWi := FINDALLSCCS(EWi , Wi)
25: for j = 1, 2, . . . ,

∣∣SWi

∣∣ do

26:
(

E j
Wi

, W j
i

)
:= SWi (j)

27: if ISTOOLSOLVABLE(W j
i ,E j

Wi
,T) then

72 Paper 2. Residual Generators for Fault Diagnosis using...

28: APPEND(C ,
(

W j
i , E j

Wi

)
)

29: else
30: return ∅
31: end if
32: end for
33: else
34: return ∅
35: end if
36: end for
37: return C
38: end function

That the ordered set C returned by FINDCOMPUTATIONSEQUENCE, indeed,
is a minimal and irreducible computation sequence is verified in the following
theorem.

Theorem 4. Let E′ ⊆ E be a just-determined set of equations with respect to the
variables X′ ⊆ X, and T an AE tool. If E′, X′, and T are used as arguments to
FINDCOMPUTATIONSEQUENCE and a non-empty C is returned, then C is a minimal
and irreducible computation sequence for X′ with T .

6 Application Studies

The objective of this section is to empirically show the benefits of the method
for finding sequential residual generators proposed in Sections 4.2 and 5.3.
This is done by applying the method to models of an automotive diesel en-
gine and an auxiliary hydraulic braking system. In addition, we illustrate how
a sequential residual generator for the diesel engine, found with the proposed
method, can be realized. The realized residual generator is then evaluated us-
ing real measurements from a truck.

6.1 Implementation and Configuration of the Method

The analytical models of the two systems were obtained from SIMULINK mod-
els by using the toolbox described in [Frisk et al., 2006]. The resulting mod-
els are complex DAEs containing non-linearities like min- and max-functions,
look-up tables, saturations, and polynomials.

The functions FINDRESIDUALGENERATORS and FINDCOMPUTATIONSEQ-
UENCE, described in Sections 4.2 and 5.3, were implemented in MATLAB. In
the implementation of FINDCOMPUTATIONSEQUENCE, the symbolic equation
solver in MAPLE was used as AE tool. To find all MSO sets, the algorithm
described in [Krysander et al., 2008] was used. The MSO sets were arranged
in classes, so that MSOs containing the same set of known variables belongs to
the same MSO class.

6. Application Studies 73

Configurations

For comparison, different configurations of FINDCOMPUTATIONSEQUENCE were
applied to the models. The following parameters, which naturally influences
the possibility to find computation sequences, were used for configuration

SCC: The ability to handle equation sets containing algebraic or differential
loops, that is, SCCs of larger size than one,

IC: The ability to use integral causality, and

DC: The ability to use derivative causality.

Note that if a configuration uses integral causality, it is assumed that all initial
conditions are available. Moreover, it is assumed that all needed derivatives
can be computed when a configuration uses derivative causality.

The six possible different configurations are shown in Table 1. For exam-
ple, configuration SI is able to handle equation sets containing loops and use
integral causality, but can not use derivative causality. The configuration cor-
responding to the novel approach for finding sequential residual generators
proposed in this paper is SDI.

D I DI SD SI SDI
SCC x x x

IC x x x x
DC x x x x

Table 1: The Six Configurations of the Method used in the Studies.

6.2 Performance Measures

A sequential residual generator is sensitive to those faults that influence its
residual equation and the equations contained in its computation sequence.
Different MSO sets correspond to different subsets of the equations in the
model. Sequential residual generators obtained from computation sequences
and residual equations originating from different MSO sets will thus naturally
be sensitive to different subsets of faults. To achieve good fault isolation, it
is hence important that residual generators can be constructed from as many
MSO sets as possible.

In the automotive applications studied here, it is especially important to
detect and isolate faults present in sensors and actuators, that is, faults affect-
ing measurements of known variables. Hence, it also important that residual
generators can be constructed from as many MSO classes as possible.

Additionally, different residual generators constructed from the same MSO
set or MSO class may have different properties regarding for example numer-
ical aspects, sensitivity to faults, and sensitivity for disturbances such as mea-
surement noise or modeling errors. Hence it is most desirable to be able to

74 Paper 2. Residual Generators for Fault Diagnosis using...

evaluate as many residual generators as possible, with real measurement data,
to decide which set of residual generators to use in the final diagnosis system.
Motivated by this discussion, we will use the following performance measures
to compare the different configurations of the method:

MSO Sets: In how many of the total number of MSO sets at least one residual
generator could be found.

MSO Classes: In how many of the total number of MSO classes at least one
residual generator could be found.

Residual Generators: The total number of residual generators found.

6.3 Automotive Diesel Engine

The studied engine is a 13-liter, 6-cylinder Scania diesel engine equipped with
exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT).
A cutaway of the engine can be found in Figure 2.

Figure 2: Cutaway of a Scania 13-liter, 6-cylinder diesel engine equipped with
EGR and VGT.

The model describes the gas-flow in the engine, see [Wahlström, 2006] for
more details. The analytical model extracted from the SIMULINK model is a
non-linear DAE system and contains 282 equations, 272 unknown variables,
and 11 known variables. Of the equations, 8 are differential and the rest are
algebraic. The differentiated variables represent physical quantities such as
pressures, temperatures, and rotational speeds.

6. Application Studies 75

MSO Sets MSO Classes Residual Generators
D 4 4 46
I 1 1 5

DI 4 4 46
SD 4 4 46
SI 23 20 58

SDI 120 72 1636
Potential 598 210 135772

Table 2: Results for Diesel Engine.

In total, 598 MSO sets could be found in the engine model. The MSO sets
could be arranged into 210 MSO classes. Theoretically, the total number of
potential residual generators that can be constructed from an MSO set is equal
to the total number of equations in the MSO set. In this case, 135772 different
residual generators could be theoretically constructed from the 598 MSO sets.

Results

The total number of residual generators found and how many of the MSO sets
and MSO classes that could be used, for each configuration of the method,
is shown in Table 2 and Figure 3. The columns to the left and in the middle
of Table 2 shows in how many of the MSO sets and MSO classes at least one
residual generator could be found. The column to the right shows the total
number of residual generators that could be found for each configuration of
the method. It is obvious that a very small fraction of the potential residual
generators were found, about 1.2 %, and that only a small fraction of the MSO
sets and MSO classes could be used, independent of configuration. The main
reason for this is the complexity of the engine model. The model contains
large algebraic and differential loops, including complex non-linear equations,
which are impossible to solve analytically. Nevertheless, many more residual
generators were found and more MSO sets could be used with configuration
SDI, in comparison with any other configuration.

6.4 Hydraulic Braking System

The Scania auxiliary hydraulic braking system, called retarder, is used on heavy
duty trucks for long continuous braking, for example to maintain constant
speed down a slope. By using the retarder, braking discs can be saved for
short time braking.

The model of the hydraulic braking system contains 49 equations, 44 un-
known variables, and 9 known variables. It is a non-linear DAE system and
contains 4 differential equations and 45 algebraic equations. The model con-
tains 125 MSO sets, which can be arranged into 83 MSO classes. The total

76 Paper 2. Residual Generators for Fault Diagnosis using...

MSO Sets MSO Classes Residual Generators
0

5

10

15

20

25

30

35

%

Results for Diesel Engine

D I DI SD

SI

SDI

D
 I

DI SD

SI

SDI

D I DI SDSI
SDI

D
 I
DI
SD
SI
SDI

Figure 3: The bars to the left and in the middle shows the fractions of the total
number of MSO sets and MSO classes in which a residual generator could be
found with each configuration of the method. The bars to the right shows the
fractions of the number of potential residual generators that could be found
with each configuration of the method.

number of possible residual generators for the model of the hydraulic braking
system is, theoretically, 4607.

Results

Table 3 and Figure 4 shows, for each configuration of the method, how many
of the MSO sets and MSO classes that could be used and the total number of
residual generators found for the model of the hydraulic braking system. As
seen, a significantly larger fraction of the MSO sets and MSO classes could be
used and more residual generators could be found with configuration SDI, in
comparison with any other configuration.

6.5 Realization of a Residual Generator for the Diesel Engine

The purpose of this section is to briefly show how a residual generator for the
diesel engine is constructed from a computation sequence obtained with the
proposed method.

6. Application Studies 77

MSO Sets MSO Classes Residual Generators
D 21 14 145
I 6 6 18

DI 21 14 147
SD 33 22 288
SI 29 29 71

SDI 65 44 1293
Potential 125 83 4607

Table 3: Results for Hydraulic Braking System

MSO Sets MSO Classes Residual Generators
0

10

20

30

40

50

60

%

Results for Hydraulic Braking System

D

 I

DI

SD
SI

SDI

D

 I

DI

SD

SI

SDI

D
 I

DI
SD

SI

SDI

D
 I
DI
SD
SI
SDI

Figure 4: The bars to the left and in the middle shows the fractions of the total
number of MSO sets and MSO classes in which a residual generator could be
found with each configuration of the method. The bars to the right shows the
fractions of the number of potential residual generators that could be found
with each configuration of the method.

78 Paper 2. Residual Generators for Fault Diagnosis using...

Properties of the Computation Sequence

The considered computation sequence originates from an MSO set containing
in total 204 equations, 203 unknown variables, and 8 known variables. Thus,
the computation sequence contains 203 equations and 203 unknown variables.
In total 33 residual generators were found in the MSO class to which the MSO
set belongs. All 33 residual generators were found with configuration SDI of
FINDCOMPUTATIONSEQUENCE.

The computation sequence contains 102 elements. All elements but the last
one contains one equation and one variable. The last element contains 102
equations and 102 variables and corresponds to a SCC of size 102. The struc-
ture of the 203 equations contained in the computation sequence, with respect
to the 203 unknown variables, is shown in Figure 5. The SCCs of the struc-
ture, corresponding to the elements in the computation sequence, marked with
squares in Figure 5. The residual equation used in the residual generator, i.e.
the equation removed from the MSO set when the corresponding computation
sequence was found, compares the measured and computed pressure in the
intake manifold of the diesel engine.

0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

Variables

E
qu

at
io

ns

Figure 5: Structure of the 203 equations in the considered computation se-
quence, with respect to the 203 unknown variables. The SCCs of the structure,
corresponding to the elements in the computation sequence, are marked with
squares. The large SCC contains 102 equations.

6. Application Studies 79

Properties of the BLT semi-explicit DAE System

Since the computation sequence contains 102 elements, the BLT semi-explicit
DAE system obtained from the computation sequence contains 102 blocks. The
BLT semi-explicit DAE system has the following form

w1 = h1 (y)
w2 = h2 (w1, y)

...
w64 = h64 (w1, w2, . . . , w63, y)
w65 = h65 (ẇ64, w1, . . . , w64, y)
w66 = h66 (w1, w2, . . . , w65, y)

...
w76 = h76 (w1, w2, . . . , w75, y)
w77 = h77 (ẇ76, w1, . . . , w76, y) (25)
w78 = h78 (w1, w2, . . . , w77, y)

...
w100 = h100 (w1, w2, . . . , w99, y)
ż101 = g101 (w1, . . . , w101, y)

w1
101 = h1

101 (z101, w1, . . . , w100, y)

w2
101 = h2

101

(
z101, w1, . . . , w100, w1

101, y
)

...

w99
101 = h99

101

(
z101, w1, . . . , w100, w1

101, . . . , w98
101, y

)
,

where w101 =
(
w1

101, w2
101, . . . , w99

101
)

and z101 is of dimension three and all wi,

w j
i of dimension one. The largest block, 101 in (25), is a semi-explicit DAE of

index one with three differential equations with variables z101 and 99 algebraic
equations with variables w1

101, . . . , w99
101, corresponding to a differential loop

and a SCC of size 102. Since the block is a semi-explicit DAE of index one,
integral causality is used in this block. In two of the blocks, 66 and 77 in (25),
derivative causality is used. The remaining blocks, 1 - 65, 67 - 76, and 78 - 100
correspond to algebraic equations. In total, the BLT semi-explicit DAE system
contains five differential equations and 198 algebraic equations.

Implementation Issues

The residual generator, i.e. the obtained BLT semi-explicit DAE system and the
residual equation, was implemented in MATLAB. To compute the values of the

80 Paper 2. Residual Generators for Fault Diagnosis using...

unknown variables, the approach described in Section 3.1 was used. To solve
the resulting explicit ODE, Euler forward with fixed step-size was utilized. All
state variables in the residual generators represent physical quantities, hence
initial conditions were easy to obtain from the available measurements.

Approximate Differentiation In the two blocks where derivative causality is
used, 66 and 77 in (25), derivatives of variables computed in previous blocks
had to be computed. By propagating the two differentiated variables through
equations in earlier blocks of the obtained BLT semi-explicit DAE system, the
differentiated variables could be expressed as derivatives of known variables
only, see Section 3.2. The known variables that had to be differentiated were
measurements of the pressure in the exhaust manifold, and the rotational speed
of the turbo turbine.

The differentiation tool, i.e. the method for differentiation of known vari-
ables, used in this case study was a sliding-window least square polynomial fit
approach. By finding a linear approximation, in a least square sense, to a set of
consecutive measurements, referred to as a window, an approximation of the
first-order derivative of the measured signal in the window can be obtained
as the slope of the linear approximation, see e.g. [Barford et al., 1999]. This
approach was used since it is simple and straight-forward to implement, and
gave good results. An implementation was done in MATLAB, a window-size
of 40 measurements, 20 past and 20 future, was used.

Results

Real measurements of the known variables in the engine model were collected
by driving a truck on the road. Two sets of measurements were collected, one
with a fault-free engine and one with an implemented fault. The implemented
fault was a constant bias in the sensor measuring the pressure in the intake
manifold of the diesel engine.

The residual generator was run off-board by using the collected measure-
ments. The residual was then low-pass filtered to remove some measurement
noise and finally scaled. In Figure 6, the resulting residual is shown. During
the first 100 seconds, the measurements are fault-free. The remaining time,
the measurements contain the implemented bias fault. It is obvious that the
residual can be used to detect the injected fault.

7 Conclusions

We have in Section 1 concluded that it is important that there is a large se-
lection of different candidate residual generators to choose between when de-
signing diagnosis systems. In this spirit we have in this paper presented a
method for deriving residual generators with the key property that it is able to
find a large number of different residual generators. This property is firstly

7. Conclusions 81

0 50 100 150 200
−1

−0.5

0

0.5

1

1.5

2

2.5

time [s]

Figure 6: The residual obtained from the constructed residual generator. No
fault is present the first 100 seconds. During the remaining 100 seconds, there
is a bias fault in the sensor measuring the pressure in the intake manifold. The
dashed lines suggests how thresholds could be chosen in order to detect the
fault.

due to the fact that the method belongs to a class of methods that we re-
fer to as sequential residual generation. This class of methods has in ear-
lier works been shown to be powerful for real non-linear systems [Dustegor
et al., 2004], [Izadi-Zamanabadi, 2002], [Cocquempot et al., 1998], [Svärd and
Wassén, 2006], [Hansen and Molin, 2006]. Secondly, which is the key contribu-
tion of the paper, we have extended these earlier methods by handling mixed
causality and also, in a systematic manner, equation sets containing differential
and algebraic loops.

The method has been presented as an algorithm utilizing an assumed given
toolbox of e.g. algebraic equation solvers. We have proven, in Theorem 1,
that the algorithm really finds residual generators and, in Theorems 3 and 4,
that the residual generators, or rather sequential residual generators, found are
proper. Properness guarantees that the residual generator is not containing un-
necessary computations, and that computations are performed from as small
equation sets as possible. We have also proven, in Theorem 2, that proper se-
quential residual generators are always found within MSO sets. This fact has
been utilized in the algorithm since there is no need to look for sequential resid-
ual generators in other equation sets than MSO sets. Furthermore, this theorem
provides a link between structural and analytical methods without the use of
any assumptions of generic equations, such as in e.g. [Krysander et al., 2008].

82 Paper 2. Residual Generators for Fault Diagnosis using...

In the empirical study in Section 6, models of real automotive systems have
been considered, and we have compared our method handling mixed causality
and differential and algebraic loops, with the alternatives using solely differ-
ential or integral causality, or only handling scalar equations. It is evident that
our method outperforms the other alternatives.

Acknowledgment

This work was sponsored by Scania CV AB and VINNOVA (Swedish Govern-
mental Agency for Innovation Systems).

References

[Ascher and Petzold, 1998] Ascher, U. M. and Petzold, L. M. (1998). Computer
Methods for Ordinary Differential Equations and Differential-Algebraic Equations.
Siam.

[Asratian et al., 1998] Asratian, A. S., Denley, T. M. J., and Häggkvist, R. (1998).
Bipartite Graphs and their Applications. Cambridge University Press. ISBN 0-
521-59345-X.

[Barford et al., 1999] Barford, L., Manders, E., Biswas, G., Mosterman, P., Ram,
V., and Barnett, J. (1999). Derivative estimation for diagnosis. Technical
report, HP Labs Technical Reports.

[Blanke et al., 2003] Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M.
(2003). Diagnosis and Fault-Tolerant Control. Springer.

[Brenan et al., 1989] Brenan, K. E., Campbell, S. L., and Petzold, L. R. (1989).
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations.
Siam.

[Brockett, 1970] Brockett, R. (1970). Finite-dimensional linear systems. Wiley,
New York.

[Cassar and Staroswiecki, 1997] Cassar, J. and Staroswiecki, M. (1997). A
structural approach for the design of failure detection and identification sys-
tems. In Proceedings of IFAC Control Ind. Syst., Belfort, France.

[Cellier and Elmqvist, 1993] Cellier, F. and Elmqvist, H. (1993). Automated
formula manipulation supports object-oriented continuous-system model-
ing. Control Systems Magazine, IEEE, 13(2):28–38.

[Cellier and Kofman, 2006] Cellier, F. and Kofman, E. (2006). Continuous Sys-
tem Simulation. Springer.

[Cocquempot et al., 1998] Cocquempot, V., Izadi-Zamanabadi, R.,
Staroswiecki, M., and Blanke, M. (1998). Residual generation for the
ship benchmark using structural approach. In Proceedings of the UKACC
International Conference on Control ’98, pages 1480–1485.

References 83

[De Persis and Isidori, 2001] De Persis, C. and Isidori, A. (2001). A geometric
approach to nonlinear fault detection and isolation. IEEE Transactions on
Automatic Control, 46:853–865.

[Dulmage and Mendelsohn, 1958] Dulmage, A. and Mendelsohn, N. (1958).
Coverings of bi-partite graphs. Canadian Journal of Mathematics, 10:517–534.

[Dustegor et al., 2004] Dustegor, D., Cocquempot, V., and Staroswiecki, M.
(2004). Structural analysis for residual generation: Towards implementa-
tion. In Proceedings of the 2004 IEEE Inter. Conf. on Control App., pages 1217–
1222.

[Frisk et al., 2006] Frisk, E., Krysander, M., Nyberg, M., and Åslund, J. (2006).
A toolbox for design of diagnosis systems. In Proceedings of IFAC Safepro-
cess’06, Beijing, China.

[Fritzon, 2004] Fritzon, P. (2004). Principles of Object-Oriented Modeling and Sim-
ulation with Modelica 2.1. IEEE Press.

[Hairer and Wanner, 2002] Hairer, E. and Wanner, G. (2002). Solving Ordinary
Equations II - Stiff and Differential-Algebraic Problems. Springer.

[Hansen and Molin, 2006] Hansen, J. and Molin, J. (2006). Design and eval-
uation of an automatically generated diagnosis system. Master’s thesis,
Linköpings Universitet, SE-581 83 Linköping.

[Izadi-Zamanabadi, 2002] Izadi-Zamanabadi, R. (2002). Structural analysis
approach to fault fiagnosis with application to fixed-wing aircraft motion.
In Proceedings of the 2002 American Control Conference, volume 5, pages 3949–
3954.

[Katsillis and Chantler, 1997] Katsillis, G. and Chantler, M. (1997). Can
dependency-based diagnosis cope with simultaneous equations? In Pro-
ceedings of the 8th Inter. Workshop on Princ. of Diagnosis, DX’97, Le Mont-Saint-
Michel, France.

[Khalil, 2002] Khalil, H. K. (2002). Nonlinear Systems. Prentice Hall.

[Kron, 1963] Kron, G. (1963). Diakoptics. Macdonald, London.

[Krysander et al., 2008] Krysander, M., Åslund, J., and Nyberg, M. (2008). An
efficient algorithm for finding minimal over-constrained sub-systems for
model-based diagnosis. IEEE Trans. on Systems, Man, and Cybernetics – Part
A: Systems and Humans, 38(1).

[Kunkel and Mehrmann, 2006] Kunkel, P. and Mehrmann, V. (2006).
Differential-Algebraic Equations - Analysis and Numerical Solution. Euro-
pean Mathematical Society.

[Mattson et al., 1998] Mattson, S., Elmqvist, H., and Otter, M. (1998). Physical
system modeling with modelica. Control Engineering Practice, 6(4):501–510.

[Murota, 1987] Murota, K. (1987). System Analysis by Graphs and Matroids.
Springer-Verlag Berlin Heidelberg.

84 Paper 2. Residual Generators for Fault Diagnosis using...

[Nyberg, 1999] Nyberg, M. (1999). Automatic design of diagnosis systems
with application to an automotive engine. Control Engineering Practice,
87(8):993–1005.

[Nyberg and Krysander, 2008] Nyberg, M. and Krysander, M. (2008). Statisti-
cal properties and design criterions for AI-based fault isolation. In Proceed-
ings of the 17th IFAC World Congress, Seoul, Korea.

[Ortega and Rheinboldt, 2000] Ortega, J. and Rheinboldt, W. (2000). Iterative
Solution of Nonlinear Equations in Several Variables. SIAM Classics.

[Ploix et al., 2005] Ploix, S., Desinde, M., and Touaf, S. (2005). Automatic de-
sign of detection tests in complex dynamic systems. In Proceedings of 16th
IFAC World Congress, Prague, Czech Republic.

[Pulido et al., 2007] Pulido, B., Alonso, C., Bregón, A., Puig, V., and Escobet, T.
(2007). Analyzing the influence of temporal constraints in possible conflicts
calculation for model-based diagnosis. In Proceedings of the 18th International
Workshop on Principles of Diagnosis (DX-07), Nashville, TN, USA.

[Pulido and Alonso-González, 2004] Pulido, B. and Alonso-González, C.
(2004). Possible conflicts: a compilation technique for consistency-based di-
agnosis. "IEEE Trans. on Systems, Man, and Cybernetics. Part B: Cybernetics",
Special Issue on Diagnosis of Complex Systems, 34(5):2192–2206.

[Pulido et al., 2008] Pulido, B., Bregón, A., and Alonso, C. (2008). Combining
state estimation and simulation in consistency-based diagnosis using possi-
ble conflicts. In Proceedings of the 19th International Workshop on Principles of
Diagnosis (DX-08), pages 339–346, Blue Mountains, NSW, Australia.

[Staroswiecki, 2002] Staroswiecki, M. (2002). Fault Diagnosis and Fault Tolerant
Control, chapter Structural Analysis for Fault Detection and Isolation and for
Fault Tolerant Control. Encyclopedia of Life Support Systems, Eolss Pub-
lishers, Oxford, UK.

[Staroswiecki and Declerck, 1989] Staroswiecki, M. and Declerck, P. (1989).
Analytical redundancy in non-linear interconnected systems by means of
structural analysis. In Proceedings of IFAC AIPAC’89, pages 51–55, Nancy,
France.

[Steward, 1962] Steward, D. V. (1962). On an approach to techniques for
the analysis of the structure of large systems of equations. SIAM Review,
4(2):321–342.

[Steward, 1965] Steward, D. V. (1965). Partitioning and tearing systems of
equations. SIAM Journal on Numerical Analysis, 2(2):345–365.

[Svärd and Nyberg, 2008] Svärd, C. and Nyberg, M. (2008). A mixed causal-
ity approach to residual generation utilizing equation system solvers and
differential-algebraic equation theory. In Proceedings of the 19th International
Workshop on Principles of Diagnosis (DX-08), Blue Mountains, Australia.

References 85

[Svärd and Wassén, 2006] Svärd, C. and Wassén, H. (2006). Development
of methods for automatic design of residual generators. Master’s thesis,
Linköpings Universitet, SE-581 83 Linköping.

[Tarjan, 1972] Tarjan, R. (1972). Depth first search and linear graph algorithms.
SIAM Journal on Computing, 1(2):146–160.

[Travé-Massuyès et al., 2006] Travé-Massuyès, L., Escobet, T., and Olive, X.
(2006). Diagnosability analysis based on component-supported analytical
redundancy. IEEE Trans. on Systems, Man, and Cybernetics – Part A: Systems
and Humans, 36(6):1146–1160.

[United Nations, 2008] United Nations (2008). Regulation no. 49: Uniform
provisions concerning the measures to be taken against the emission of
gaseous and particulate pollutants from compressionignition engines for
use in vehicles, and the emission of gaseous pollutants from positive-
ignition engines fuelled with natural gas or liquefied petroleum gas for use
in vehicles. ECE-R49.

[Wahlström, 2006] Wahlström, J. (2006). Control of EGR and VGT for emission
control and pumping work minimization in diesel engines. Technical report,
Linköpings Universitet. LiU-TEK-LIC-2006:52, Thesis No. 1271.

[Wei and Li, 2006] Wei, T. and Li, M. (2006). High order numerical derivatives
for one-dimensional scattered noisy data. Applied Mathematics and Computa-
tion, 175:1744–1759.

86 Paper 2. Residual Generators for Fault Diagnosis using...

A Proofs of Theorems and Lemmas

Proof of Lemma 3. Consider an element (Vi , Ei) ∈ C, and let Ē′i denote the set of
equations obtained when T is called with arguments Vi and Ei. It then holds
that Ē′ = Ē′1 ∪ Ē′2 ∪ . . . ∪ Ē′k. Given y, let x̃ be an arbitrary solution to Ē′, i.e.
a trajectory fulfilling every equation ei ∈ Ē′. Trivially, x̃ also is a solution to
the equations in every Ē′i, since Ē′i ⊆ Ē′. Assumption 1 then implies that x̃
is a unique solution and also a solution to every Ei, and hence to E1 ∪ E2 ∪
. . . ∪ Ek. By taking an arbitrary solution to E1 ∪ E2 ∪ . . . ∪ Ek and applying the
same arguments as above, it can be shown that this solution is unique and also
satisfies Ē′, which completes the proof.

Proof of Theorem 1. Consider the model M(E, X, Y) and assume that ỹ ∈ O (M).
Due to the definition of O (M) in (4), we know that given ỹ there exists at
least one trajectory of the variables in X that satisfies the equations in E. Since
describing E1 ∪ E2 ∪ . . . ∪ Ek ⊆ E, it holds that the trajectory ỹ also belongs to
the observation set of the sub-model of M(E, X, Y) given by E1 ∪ E2 ∪ . . . ∪ Ek,
i.e. the equation set contained in the computation sequence C. Hence, given
ỹ, there exists a trajectory x̃ of the variables in varX(E1 ∪ E2 ∪ . . . ∪ Ek) that
satisfies E1 ∪ E2 ∪ . . . ∪ Ek. By Lemma 3 we know that x̃ is a unique solution
that also satisfies the equations of the BLT semi-explicit DAE system obtained
by sequentially applying the tool T to the computation sequence C.

As said in Section 3.1, a BLT semi-explicit DAE system can be transformed
to an explicit ODE, with the exception that the ODE will contains deriva-
tives of known variables. Furthermore, after the discussion in Section 3.2,
that an explicit ODE always can be solved if initial conditions are available.
From this it follows that given ỹ, consistent initial conditions of the states in
the BLT semi-explicit DAE system, i.e. zi in (7), and the ability the compute
all needed derivatives, the trajectory x̃ can be computed from the BLT semi-
explicit DAE system. Since ei ∈ E \ E1 ∪ E2 ∪ . . . ∪ Ek and varX(ei) ⊆ X′ ⊆
varX(E1 ∪ E2 ∪ . . . ∪ Ek), the trajectory x̃ will also satisfy ei. We then have that
fi(˙̃x, x̃, ỹ) = 0. Hence, with r = fi (ẋ, x, y), ỹ ∈ O (M) implies r = 0 and we
can use r as residual. Thus the BLT semi-explicit DAE system obtained from
the computation sequence C with T , together with ei is a residual generator for
M(E, X, Y).

Some important properties of a computation sequence, used in sub-sequential
proofs, is given by the following lemma.

Lemma 4. Let C = ((V1, E1) , (V2, E2) , . . . (Vk, Ek)) be a computation sequence
for the variables X′ with the AE tool T , then {unDiff (Vi)} is pairwise disjoint and
unDiff (V1 ∪V2 ∪ . . . ∪Vk) = varX(E1 ∪ E2 ∪ . . . ∪ Ek).

Proof. From Definition 3, we have that a system in BLT semi-explicit DAE form
can be obtained by sequentially calling T with arguments Vi and Ei for every
(Vi , Ei) ∈ C. From this fact, it follows that each variable x j ∈ unDiff (Vi) is

A. Proofs of Theorems and Lemmas 87

present in some vector zk or wl in the obtained BLT semi-explicit DAE system.
Since the set of all vectors of known variables in a BLT semi-explicit DAE sys-
tem by Definition 2 is pairwise disjoint, it follows that {unDiff (Vi)} is pair-
wise disjoint and we have shown the first claim. For the second claim, we
start by noting that Vi ⊆ varX(Ei) ∪ varD(Ei) due to Definition 3. Since a
system in BLT semi-explicit DAE form can be obtained from C and, accord-
ing to Lemma 3, the solution sets of E1 ∪ E2 ∪ . . . ∪ Ek and the BLT semi-
explicit DAE system, with respect to V1 ∪V2 ∪ . . . ∪Vk, are equal and unique,
it holds that each unknown variable in E1 ∪ E2 ∪ . . . ∪ Ek, differentiated or un-
differentiated, must be present in some Vi. From this fact and by the definitions
of the operators unDiff () and varX(), it must also hold that

unDiff (V1 ∪V2 ∪ . . . ∪Vk) = varX(E1 ∪ E2 ∪ . . . ∪ Ek).

For the next proof, we need some additional graph theoretical concepts,
see e.g. [Asratian et al., 1998], [Murota, 1987], therefore consider the bi-partite
graph G = (E, X, A) describing the structure of E with respect to X, see Sec-
tion 2.2. A path on the graph G is a sequence of distinct vertices v1, v2, . . . , vn
such that (vi , vi+1) ∈ A and vi ∈ E ∪ X. An alternating path is a path in which
the edges belong alternatively to a matching and not to the matching. A vertex
is said to be free, if it is not an endpoint of an edge in a matching.

Proof of Theorem 2. In this proof we will use a characterization of an MSO set
given in [Krysander et al., 2008], saying that an equation set E is an MSO set if
and only if E is a proper structurally over-determined (PSO) set and E contains
one redundant equation. Furthermore, an equation set E is a PSO set if E =
E+, where E+ is the structurally over-determined part obtained from the DM-
decomposition, recall Section 2.3, or equivalently the equations e ∈ E such
that, for any maximal matching, there exists an alternating path between at
least one free equation and e.

Returning to our case, we must show that E1 ∪ E2 ∪ . . .∪ Ek ∪ ei is a PSO set
and contains one redundant equation, with respect to the variables varX(E1 ∪
E2 ∪ . . .∪Ek). We begin with the second property, i.e. that E1 ∪E2 ∪ . . .∪Ek ∪ ei
contains a redundant equation. Since S = (T (C) , ei) is a proper sequential
residual generator, it follows from Definition 7 that C is a minimal and irre-
ducible computation sequence for varX(ei) with T . If we let

C = ((V1, E1) , (V2, E2) , . . . , (Vk , Ek)) , (26)

we have from Definition 3 that a system in BLT semi-explicit DAE form is ob-
tained by sequentially calling the AE tool T with arguments Vi and Ei for ev-
ery (Vi , Ei) ∈ C. This and Assumption 2, implies that |Vi| = |Ei| for every
(Vi , Ei) ∈ C and hence ∑

k
i=1 |Vi| = ∑

k
i=1 |Ei|. By the definition of the opera-

tor unDiff () in (11), we can conclude that |Vi| = |unDiff (Vi)| and therefore

88 Paper 2. Residual Generators for Fault Diagnosis using...

it also holds that ∑
k
i=1 |unDiff (Vi)| = ∑

k
i=1 |Ei|. By Lemma 4 we have that

{unDiff (Vi)} is pairwise disjoint which implies that

k

∑
i=1
|unDiff (Vi)| = |unDiff (V1) ∪ unDiff (V2) ∪ . . . ∪ unDiff (Vk)|

= |unDiff (V1 ∪V2 ∪ . . . ∪Vk)| .

Definition 3 states that also {Ei} is pairwise disjoint and therefore

|E1 ∪ E2 ∪ . . . ∪ Ek| =
k

∑
i=1
|Ei| .

Thus, it holds that

|unDiff (V1 ∪V2 ∪ . . . ∪Vk)| = |E1 ∪ E2 ∪ . . . ∪ Ek| .

By Lemma 4, we have that unDiff (V1 ∪V2 ∪ . . . ∪Vk) = varX(E1 ∪ E2 ∪ . . . ∪
Ek) and therefore it also holds that

|E1 ∪ E2 ∪ . . . ∪ Ek| = |varX(E1 ∪ E2 ∪ . . . ∪ Ek)| ,

i.e. E1 ∪ E2 ∪ . . . ∪ Ek contains as many equations as unknowns. Since C is
a computation sequence for varX(ei) with T , we have from Definition 3 that
varX(ei) ⊆ unDiff (V1 ∪V2 ∪ . . . ∪Vk) = varX(E1 ∪ E2 ∪ . . . ∪ Ek), where the
last equality follows from Lemma 4, implying that adding ei to E1 ∪ E2 ∪ . . . ∪
Ek will not introduce any new unknown variables, i.e. ei is redundant. Hence,
the equation set E1 ∪ E2 ∪ . . . ∪ Ek ∪ ei contains one more equation than un-
known variables, since

|E1 ∪ E2 ∪ . . . ∪ Ek ∪ ei| = |E1 ∪ E2 ∪ . . . ∪ Ek|+ |ei|
= |varX(E1 ∪ E2 ∪ . . . ∪ Ek)|+ 1.

We will now show that E1 ∪ E2 ∪ . . . ∪ Ek ∪ ei is a PSO set with respect to
varX(E1 ∪ E2 ∪ . . . ∪ Ek ∪ ei). To show this, we must show that for any max-
imum matching on the bi-partite graph describing the structure of E1 ∪ E2 ∪
. . . ∪ Ek ∪ ei, with respect to varX(E1 ∪ E2 ∪ . . . ∪ Ek ∪ ei), there exists an al-
ternating path between a free equation and every equation in E1 ∪ E2 ∪ . . . ∪
Ek ∪ ei. We start by constructing a maximum matching and finding a free equa-
tion. Consider the computation sequence C described by (26) and recall that C,
given by (26), is a minimal and irreducible computation sequence for varX(ei)
with T . The irreducibility of C implies that for each element (Vi , Ei) ∈ C,
it holds that the structure of Ei with respect to unDiff (Vi) corresponds to a
SCC. To see this, assume that (Vi , Ei) not corresponds to a SCC. This implies
that it is possible to partition Vi and Ei into Vi = Vi1 ∪ Vi2 ∪ . . . ∪ Vis and
Ei = Ei1 ∪ Ei2 ∪ . . . ∪ Eis so that

C ′ = ((V1, E1) , . . . , (Vi1, Ei1) , . . . , (Vis, Eis) , . . . , (Vk, Ek)) ,

A. Proofs of Theorems and Lemmas 89

is also a computation sequence for varX(ei) with T , due to Assumption 3.
This contradicts the irreducibility of C and hence (Vi , Ei) must be a SCC. From
this property it follows, by the definition of a SCC, that there exists a maxi-
mum matching Γi on the bi-partite graph the structure of Ei with respect to
unDiff (Vi). This implies that a maximum matching, let it be denoted Γ , in the
structure of E1 ∪ E2 ∪ . . . ∪ Ek with respect to unDiff (V1 ∪V2 ∪ . . . ∪Vk) can
be constructed as Γ =

⋃k
i Γi, see e.g. [Murota, 1987]. By Lemma 4, we have

that unDiff (V1 ∪V2 ∪ . . . ∪Vk) = varX(E1 ∪ E2 ∪ . . . ∪ Ek) and therefore Γ is
also a maximum matching in the structure of E1 ∪ E2 ∪ . . . ∪ Ek with respect to
varX(E1 ∪ E2 ∪ . . . ∪ Ek). In the first part of this proof, we concluded that the
equation ei is redundant and therefore Γ is also a maximum matching on the
structure of E1 ∪ E2 ∪ . . . ∪ Ek ∪ ei with respect to varX(E1 ∪ E2 ∪ . . . ∪ Ek ∪ ei)
and ei is a free equation, since it is not contained in Γ .

Since it trivially exists a path between ei and ei, it is sufficient to show that
there exists an alternating path between the free equation ei and every equa-
tion in E1 ∪ E2 ∪ . . . ∪ Ek. Due to the fact that each (Vi , Ei) ∈ C corresponds to
a SCC, there exists an alternating path between any two vertices, i.e. equations
or variables, in the bi-partite graph describing the structure of Ei with respect
to unDiff (Vi), see e.g. [Asratian et al., 1998]. Moreover, the minimality of C
implies that for (Vk, Ek) ∈ C there exists at least one variable xm ∈ unDiff (Vk)
such that xm ∈ varX(ei), since otherwise C ′ = C \ (Vk, Ek) is a computation
sequence for varX(ei) and C is not minimal. With the same argument, we
have that for (Vi , Ei) ∈ C, i = 1, 2, . . . , k − 1, there exists at least one vari-
able xm ∈ unDiff (Vi) such that either xm ∈ varX(ei), or else xm ∈ varX(E j)
where

(
Vj, E j

)
∈ C and j ∈ {i + 1, i + 2, . . . , k}. This means that there exists an

alternating path between at least one variable in each (Vi , Ei) ∈ C to ei, either
directly or via one or several other

(
Vj, E j

)
∈ C. Thus, there exists an alternat-

ing path between ei and every equation in E1 ∪ E2 ∪ . . . ∪ Ek. We have by this
shown that E1 ∪ E2 ∪ . . . ∪ Ek ∪ ei is a PSO set.

The proof of Theorem 3 is based on the following lemma.

Lemma 5. Let Ē ⊆ E be an MSO set, T an AE tool, X′ = varX(Ē), and E′ = Ē \ ei,
where ei ∈ Ē. A minimal and irreducible computation sequence

C = ((V1, E1) , (V2, E2) , . . . , (Vk, Ek)) ,

for X′ with T , where Ei ⊆ Ē, is also a minimal and irreducible computation sequence
for varX(ei) with T .

Proof. Assume that C is a minimal and irreducible computation sequence for
X′ with T . First of all, since ei ∈ Ē and X′ = varX(Ē) it trivially holds that
varX(ei) ⊆ X′ and hence C is a computation sequence for varX(ei) with T . As
well, it directly follows from Definition 6 that C is an irreducible computation
sequence for any subset of X′, in particular varX(ei). To show that C also is a
minimal computation sequence for varX(ei), assume that there exists a compu-
tation sequence C ′ ⊂ C for varX(ei) with T . Let Ē′ and X̄′ = varX(Ē′) denote

90 Paper 2. Residual Generators for Fault Diagnosis using...

the equations and variables, contained in the elements of C ′ and note that since
C ′ ⊂ C, it holds that Ē′ ⊂ Ē. By the argumentation in the proof to Theorem 2,
we can conclude that |Ē′| = |X̄′|, i.e. Ē contains as many equations as un-
knowns. Since C ′ is a computation sequence for varX(ei), it must hold that
varX(ei) ⊆ X̄′. This means that Ē′ ∪ ei is a structurally over-determined set
of equations with respect to X̄′, which shows that there exists a proper struc-
turally over-determined subset of Ē. This contradicts the fact that Ē is an MSO
set, and hence there can not exist a computation sequence C ′ ⊂ C for varX(ei)
with T . Thus, C is a minimal computation sequence for varX(ei) with T .

Proof of Theorem 3. Consider the model M(E, X, Y) and let (T (C), ei) ∈ R. Due
to line 9 in FINDRESIDUALGENERATORS, we can conclude that C is non-empty.
Let

C = ((V1, E1) , (V2, E2) , . . . , (Vk, Ek)) ,

where Ei ⊆ E′, be the minimal and irreducible computation sequence for X′

with T , returned by the function FINDCOMPUATATIONSEQUENCE on line 8.
Due to lines 3-7, we have that E′ = Ē \ ei and X′ = varX(Ē), where Ē ⊆ E is
an MSO set and ei ∈ Ē \ E′. Lemma 5 then implies that C also is a minimal and
irreducible computation sequence for varX(ei) with T . Now note that since
ei ∈ Ē \ E′ and it holds that Ē ⊆ E, we have that ei ∈ E \ E′. Trivially, since
X′ = varX(Ē) and X′ ⊆ X it also holds that varX(ei) ⊆ X′ ⊆ X. Thus the
computation sequence C for varX(ei) with T and the equation ei fulfills the
prerequisites of Theorem 1. Hence, since all initial conditions are known and
all needed derivatives can be computed, we can by Theorem 1 conclude that
the BLT semi-explicit DAE system obtained from C with T and ei is a residual
generator for M(E, X, Y). Thus, (T (C), ei) is a sequential residual generator.
Since, in fact, C is a minimal and irreducible computation sequence for varX(ei)
with T , (T (C), ei) is a proper sequential residual generator.

Proof of Theorem 4. On line 3 in FINDCOMPUTATIONSEQUENCE the SCCs of the
structure of E′ with respect to X′ are computed. If we assume that the structure
contains s SCCs, the ordered set returned by the function FINDALLSCC can be
written as

S = ((E1, X1) , (E2, X2) , . . . , (Es, Xs)) , (27)

where each element (Ei , Xi) ∈ S corresponds to a SCC of the structure of E′

with respect to X′. Note that since E′ is just-determined with respect X′, the
SCCs of the structure of E′ with respect X′ are unique, see Section 2.3. As said
in Section 5.3, we assume that the SCCs in S are ordered according to Figure 1.
Note that this ordering implies the important property

varX(Ei) ∩ {Xi+1 ∪ Xi+2 ∪ . . . ∪ Xs} = ∅, (28)

for i = 1, 2, . . . , s− 1. On lines 6-8, the variables in Xi are partitioned into differ-
entiated variables Zi and un-differentiated variable Wi, i.e. Xi = unDiff (Zi) ∪

A. Proofs of Theorems and Lemmas 91

Wi, where Zi contains variables that appear as differentiated in some equation
in Ei. On lines 12-14, a corresponding partitioning of the equations in Ei into
Ei = EZi ∪ EWi is done, where EZi are equations that contain any of the differ-
entiated variables Zi, and EWi are equations that do not contain any of the dif-
ferentiated variables Zi, but may contain variables from unDiff (Zi). Now note
that, due to the assumptions regarding the model in Section 2, each equation
in EZi contains only one differentiated , which furthermore only is present in
that equation. This means first of all that EZi is just-determined with respect to
the variables in Zi, and second that the structure of EZi with respect to Zi only
contains SCCs of size one. On line 14, these SCCs are computed. Assuming
that the structure contains si SCCs, the ordered set returned by FINDALLSCC
on line 14 can be written as

SZi =
((

Z1
i , E1

Zi

)
,
(

Z2
i , E2

Zi

)
, . . . ,

(
Zsi

i , Esi
Zi

))
. (29)

Due to line 23, we know that the equation set EWi is just-determined with re-
spect to Wi, and hence the structure of EWi with respect to Wi can be uniquely
partitioned into SCCs. On line 24 these SCCs are computed and as above, the
ordered set of SCCs can be written as

SWi =
((

W1
i , E1

Wi

)
,
(

W2
i , E2

Wi

)
, . . . ,

(
Wpi

i , Epi
Wi

))
. (30)

Furthermore, as in the case with the set S in (27), the ordering of the SCCs in
SWi implies that

varX(E j
Wi

) ∩
{

W j+1
i ∪W j+2

i ∪ . . . ∪Wpi
i

}
= ∅, (31)

for j = 1, 2, . . . , pi − 1. From the discussion above, we have that a non-empty
C returned by FINDCOMPUTATIONSEQUENCE have the form

C =
((

Z1
1 , E1

Z1

)
,
(

Z2
1 , E2

Z1

)
, . . . ,

(
Zs1

1 , Es1
Z1

)
,(

W1
1 , E1

W1

)
,
(

W2
1 , E2

W1

)
, . . . ,

(
Wp1

1 , Ep1
W1

)
, . . . ,(

Z1
2 , E1

Z2

)
,
(

Z2
2 , E2

Z2

)
, . . . ,

(
Zs2

2 , Es2
Z2

)
,(

W1
2 , E1

W2

)
,
(

W2
2 , E2

W2

)
, . . . ,

(
Wp2

2 , Ep2
W2

)
, . . . ,(

Z1
s , E1

Zs

)
,
(

Z2
s , E2

Zs

)
, . . . ,

(
Zss

s , Ess
Zs

)
,(

W1
s , E1

Ws

)
,
(

W2
s , E2

Ws

)
, . . . ,

(
Wps

s , Eps
Wp

))
, (32)

where every
(

Z j
i , E j

Zi

)
∈ C and

(
W j

i , E j
Wi

)
∈ C corresponds to a SCC.

We will now utilize Definition 3 to show that the the ordered set C in (32)
is a computation sequence for X′ with T . First note that Z j

i ⊆ varD(E j
Zi

) and

92 Paper 2. Residual Generators for Fault Diagnosis using...

W j
i ⊆ varX(E j

Wi
). When the structure of a just-determined equation set with

respect to a set of variables is decomposed into its SCCs, unique partitions of
the equation and variable sets are also obtained, see for example [Dulmage
and Mendelsohn, 1958] and Figure 1 for an illustration. From this fact it fol-
lows that every equation in E′ is present in some Ei in (27) only once. When the
equations in Ei are split into differential equations EZi and algebraic equations
EWi on line 13, it is guaranteed that EZi ∩ EWi = ∅. Moreover, again due to the
fact that a decomposition into SCCs gives an unique partition of the equation
and variable set, we have that every equation in EZi is present in some equa-

tion set E j
Zi

in (29) only once and that every equation in EWi is present in some

E j
Wi

in (30) only once. Thus, we can conclude that each equation in E′ is con-
tained in only one equation set in C, that is, all equation sets in C are disjoint.
Hence, the ordered set C fulfills the prerequisites in Definition 3. According to
conditions 1) and 2) in Definition 3, C is a computation sequence for X′ with T
if

X′ ⊆
s⋃

i=1

 si⋃
j=1

unDiff
(

Z j
i

)
∪

pi⋃
j=1

W j
i

 (33)

and a system in BLT semi-explicit DAE form is obtained by sequentially calling
the tool T , with arguments Z j

i and E j
Zi

for every element
(

Z j
i , E j

Zi

)
∈ C, and

with arguments W j
i and E j

Wi
for every element

(
W j

i , E j
Wi

)
∈ C.

We start by showing condition 1), i.e. (33). From the fact mentioned above
that a decomposition of a structure into its SCCs also induces a partitioning of
the corresponding equation and variable sets, it follows that every variable in
X′ is present in some Xi in (27). That is, we have that X′ =

⋃s
i Xi. When the

variables in Xi are split into differentiated variables Zi and un-differentiated
variables Wi, it holds that Xi = unDiff (Zi) ∪Wi. In addition, it holds that
every variable in Zi is present in some variable set Z j

i in (29) and that every

variable in Wi is present in some W j
i in (30), so that Zi =

⋃si
j=1 Z j

i and Wi =⋃pi
j=1 W j

i . Hence,

X′ =
s⋃
i

Xi =
s⋃
i

(unDiff (Zi) ∪Wi)

=
s⋃
i

unDiff

 si⋃
j=1

Z j
i

 ∪ pi⋃
j=1

W j
i


=

s⋃
i

 si⋃
j=1

unDiff
(

Z j
i

)
∪

pi⋃
j=1

W j
i

 , (34)

A. Proofs of Theorems and Lemmas 93

where the last equality trivially follows from the definition of unDiff () in (11).
The property (33) and thus condition 1) has then been verified.

Condition 2) of Definition 3 will now be verified, that is, that C can be
used to obtain a system in BLT semi-explicit DAE form. Consider an element(

Z j
i , E j

Zi

)
∈ C. Since E j

Zi
⊆ EZi ⊆ Ei, and we have that (Xi , Ei) ∈ S, the

property (28) implies that

varX(E j
Zi

) ∩ {Xi+1 ∪ Xi+2 ∪ . . . ∪ Xs} = ∅, (35)

for i = 1, 2, . . . , s − 1. From lines 17-21 in the algorithm, it follows that the
AE tool T can be used to solve the equations in E j

Zi
for the variables in Z j

i .
Since we have assumed that each differential equation contains at most one
differentiated variable and (35) holds, we can use

(
Z j

i , E j
Zi

)
∈ C and the AE

tool T to obtain

ż j
i = g j

i (x1, x2, . . . , xi , y) , (36)

where ż j
i is a vector of the variables in Z j

i , xk a vector of the variables in Xk, y a

vector of the known variables in E′, and g j
i a function returned by T when the

arguments are Z j
i and E j

Zi
. From the elements

(
Z j

i , E j
Zi

)
∈ C, j = 1, 2, . . . , si,

we can thus, by using (36) and also that Xi = unDiff (Zi) ∪Wi, obtain

żi = gi (z1, z1, . . . , zi , w1, w2, . . . , wi , y) , (37)

where zi =
(
z1

i , z2
i , . . . , zsi

i
)

and a vector of the variables in Zi, wi a vector
of the variables in Wi, y a vector of the known variables in E′, and gi =(
g1

i , g2
i , . . . , gsi

i
)
.

Now instead consider an element
(

W j
i , E j

Wi

)
∈ C. Since also

(
W j

i , E j
Wi

)
∈

SWi , where SWi is given by (30) the property (31) holds. Since E j
Wi
⊆ EWi ⊆ Ei,

and (Xi , Ei) ∈ S we also have that

varX(E j
Wi

) ∩ {Xi+1 ∪ Xi+2 ∪ . . . ∪ Xs} = ∅, (38)

for i = 1, 2, . . . , s− 1. By using that the AE tool T can solve E j
Wi

for W j
i due to

lines 27-31, that Xi = unDiff (Zi)∪Wi and varD(EWi)∩ Zi = ∅ due to lines 6-8
and 12-14, and then utilize (31) and (38), we can obtain

w j
i = h j

i (ẇ1, . . . , ẇi−1, z1, . . . , zi , w1, . . . , wi−1,

w1
i , . . . , w j−1

i , y
)

, (39)

from
(

W j
i , E j

Wi

)
∈ C, where w j

i is a vector of the variables in W j
i , zi a vector of

the variables in Zi, and h j
i a function returned by T when the arguments are

94 Paper 2. Residual Generators for Fault Diagnosis using...

W j
i and E j

Wi
. Note that the absence of vectors żi in (39) is a direct implication of

the assumption that each differentiated variable is present in only one equation
in the original model and therefore also in the BLT semi-explicit DAE system.
Since żi, obviously, is present in (37), it can not be present in (39).

By using (39), we can then obtain

w1
i = h1

i (ẇ1, . . . , ẇi−1, z1, . . . , zi , w1, . . . , wi−1, y)

w2
i = h2

i

(
ẇ1, . . . , ẇi−1, z1, . . . , zi , w1, . . . , wi−1, w1

i , y
)

...

wpi
i = hpi

i (ẇ1, . . . , ẇi−1, z1, . . . , zi , w1, . . . , wi−1,

w1
i , . . . , wpi

i , y
)

(40)

from the elements
(

W j
i , E j

Wi

)
∈ C, j = 1, 2, . . . , pi. Comparing (37) and (40)

with the system in Definition 2, shows that the elements
(

Z j
i , E j

Zi

)
∈ C, j =

1, 2, . . . , si and
(

W j
i , E j

Wi

)
∈ C, j = 1, 2, . . . , pi, corresponds to the i:th block of a

BLT semi-explicit DAE form. Applying the above arguments for i = 1, 2, . . . , s
then implies that the ordered set C in (32) can be used to obtain a system in
BLT semi-explicit DAE form with s blocks. Thus, C is computation sequence
for X′ with T .

It now remains to show that C is a minimal and irreducible computation se-
quence for X′ with T . We begin with the irreducibility of C. In the beginning of
this proof, we showed that all elements of C, given by (32), correspond to SCCs.
We have also concluded that due to the assumptions regarding the model in
Section 1, all elements

(
Z j

i , E j
Zi

)
∈ C are of size one, i.e. trivially irreducible.

Now consider an element
(

W j
i , E j

Wi

)
∈ C and assume that we partition W j

i as

W j
i = W j

i1 ∪W j
i2 and E j

Wi
as E j

Wi
= E j

Wi1
∪ E j

Wi2
and form the two new elements(

W j
i1, E j

Wi1

)
and

(
W j

i2, E j
Wi2

)
. Due to the fact that

(
W j

i , E j
Wi

)
corresponds to a

SCC, E j
Wi

is a dependent equation set with respect to the variables in W j
i . This

implies that when applying T to the elements
(

W j
i1, E j

Wi1

)
and

(
W j

i2, E j
Wi2

)
,

we obtain the two equations

w j
i1 = h1

i1

(
. . . , w j

i2, . . .
)

w j
i2 = h1

i2

(
. . . , w j

i1, . . .
)

,

which clearly not has the structure of equations contained in a BLT semi-explicit
DAE system, due to the cyclic dependence between the equations. Hence, a

A. Proofs of Theorems and Lemmas 95

system in BLT semi-explicit DAE form can not be obtained when the element(
W j

i , E j
Wi

)
∈ C is partitioned, which violates condition 2) in Definition 3. We

can then conclude that no elements of C can be further partitioned and hence
C is an irreducible computation sequence for X′ with T .

The minimality of C for X′ with T trivially follows from the fact that (34)
holds. Since as (34) is fulfilled, all elements in C is needed to compute the
variables in X′. This implies that any attempt to form a computation sequence
for X′ with T by using a subset of C will violate condition 1) in Definition 3.
This completes the proof.

96 Paper 2. Residual Generators for Fault Diagnosis using...

Notes 97

98 Notes

Notes 99

100 Notes

