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Abstract
Throughout the vehicular industry there is a drive for increased fuel efficiency.
This is the case also for heavy equipment like wheel loaders. The operation of
such machines is characterized by its highly transient nature, the episodes of
high tractive effort at low speed and that power is used by both the transmis-
sion and the working hydraulics. The present transmission is well suited for
this operation, though the efficiency is low in some modes of operation. Both
operational advantages and efficiency drawbacks are highly related to the use of
a torque converter. Continuously variable transmissions (CVTs) may hold a po-
tential for achieving similar operability with reduced fuel consumption, though
such devices increase the demand for, and importance of, active control.

Common wheel loader operation is readily described in a framework of load-
ing cycles. The general loading cycle is described, and a transmission oriented
cycle description is introduced, in deterministic and stochastic forms, and a de-
scription is made on how such cycles are created from measurements. A loading
cycle identifier is used for detecting cycles in a set of measured data, and a
stochastic cycle is formed from statistics on the detected cycles.

CVTs increase the possibility for active control, since a degree of freedom is
introduced in the engine operating point. Optimal operating point trajectories
are derived, using dynamic programming (DP), for naturally aspirated (NA)
and turbocharged (TC) engines. The NA-engine solution is analyzed with Pon-
tryagin’s maximum principle (PMP). This analysis is used for deriving PMP
based methods for finding the optimal solutions for both engines. Experience
show that these methods are ∼100 times faster than DP, but since the restric-
tions on the applicable load cases are severe, the main contribution from these
is in the pedagogic visualization of optimization. Methods for deriving subop-
timal operating point trajectories for both the NA and the TC engines are also
developed, based on the optimization results. The methods are a factor >1000
faster than DP while producing feasible trajectories with less than 5% increase
in fuel consumption compared to the optimal.

Multi-mode CVTs provide the possibility of even higher efficiency than single
mode devices. At the same time, the added complexity makes control develop-
ment increasingly time consuming and costly, while the quality of the control
is decisive for the success of the system. It is therefore important to be able
to evaluate the potential of transmission concepts before control development
commence. Stochastic dynamic programming is used and evaluated as a tool for
control independent comparing of the present transmission and a hydrostatic
multi-mode CVT concept. The introduction of a stochastic load complicates
the optimization, especially in the feasible choice of states for the optimization.
The results show that the multi-mode CVT has at least 15% lower minimum
fuel consumption than the present transmission, and that this difference is not
sensitive to prediction uncertainties.
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1

Introduction

The common operation of wheel loaders differs from that of regular on-road
vehicles in several important aspects. The present transmission is well suited to
this operation, though the efficiency is low in some modes of operation. In the
present transmission both operational advantages and efficiency drawbacks are
highly related to the use of a torque converter. Continuously variable transmis-
sions may have a potential for achieving similar operability with reduced fuel
consumption. The work presented in this thesis focus on the optimal dynamic
choice of engine operating point is such a transmission and using trajectory
optimization for evaluating the fuel saving potential of complex transmissions.

1.1 Background
Wheel loader operation is in general highly repetitive, with cycle times below
30s and driving direction changes as often as every 5 seconds not being uncom-
mon. The material handling also separate the wheel loader from most vehicles.
Filling a bucket with gravel requires high tractive effort at low speed and it is
not uncommon to have a peak working hydraulic power of the same magnitude
as the peak transmission output power. A common wheel loader transmission
layout is presented in Figure 1.1. The engine is connected to a working hy-
draulics pump and a hydrodynamic torque converter. The torque converter is
connected to an automatic gearbox, which connects to the drive shaft. In this
setup the torque converter is a crucial component, since it provides some dis-
connection between the engine and transmission speeds. This makes the system
robust by, for example, preventing the engine from stalling if the vehicle gets

1



2 Chapter 1. Introduction

stuck. Unfortunately the torque converter also cause high losses at some modes
of operation, such as during the high thrust and low speed combination when
filling the bucket. This lack of efficiency is the reason for a desire to find other
transmission concepts for wheel loaders. One alternative may be some type of
continuously or infinitely variable transmission (CVT), such as the hydrostatic
transmissions used in Zhang (2002) and in Lennevi (1995), or the diesel-electric
transmission used in Filla (2008). The first major part of this thesis is focused on
the choice of engine operating point in a CVT transmission. The second major
part is focused on the evaluation of more complex CVT-based transmissions.

Q ,p

T ,ω
Transmission

HH

ww

Figure 1.1: A common wheel loader drivetrain setup.

1.2 Motivation and previous work
Engine operating point selection

Common for CVTs are that these increase the freedom of choosing engine op-
erating point and that the engine inertia will work as a small energy storage. If
the output power demand is not constant the fuel optimal choice of operating
point is an interesting and non-trivial problem. There have been a large amount
of research regarding this choice. Liu and Paden (1997) presents a survey of
causal heuristic control concepts, and corresponding operating point trajecto-
ries. These control concepts are referred to by Pfiffner (2001) and Srivastava
and Haque (2009) among others. Since these are causal, the desired output
power cannot be delivered for all transients, and the selection of strategy be-
come highly affected by the penalty function for deviating from the desired
output power. Pfiffner (2001) also derive non-causal optimal operating point
trajectories, though the results are not thoroughly examined and explained.
Rutquist et al. (2005) perform a theoretical investigation of optimal solutions,
but only for fully stochastic future loads. There are several reasons for study-
ing the optimization of engine operation, even though direct application of the
solution requires prediction of the future load. Delprat et al. (2001) use op-
timization theory to derive a causal control concept which has become known
as the ECMS (as described in the end of Section 3.3) and gained a lot of at-
tention, as shown by Sciarretta and Guzzella (2007). A well designed online
optimization algorithm may only require a short horizon prediction. Some pro-
posals on how to obtain such predictions can be found in Asadi and Vahidi
(2011), Mitrovic (2005) and Pentland and Andrew (1999). In case the vehicle
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is made autonomous, as investigated by Ghabcheloo et al. (2009) and Koyachi
and Sarata (2009) among others, the controller may also inform the optimizer
about upcoming actions, thus providing a prediction. This motivates the work
presented in Chapter 4.

Multi-mode CVT concept evaluation

The repeated power conversions in CVTs, in a hydrostatic CVT for example
the conversions are from mechanical to hydraulic and back to mechanical, are
negative for the overall efficiency. In power-split constructions, such as those
used in Carl et al. (2006) and Gramattico et al. (2010), this is addressed by
leading part of the power through a mechanical connection. Multi-mode CVTs
are constructed so that several power-split layouts can be realized with the
same device, thus enabling high efficiency at widely separated gear ratios. The
increased complexity of such transmissions makes controller development time
consuming and costly, as exemplified by the work in Zhang (2002), and at the
same time the quality of the controller become decisive for the success of a
transmission concept. It is therefore important to know what fuel consump-
tion can be expected of a transmission concept before controller development
commence. The potential of a concept, excluding control, can be determined by
dynamic optimization methods, just as in Paganelli et al. (2000), Pfiffner (2001)
and Sciarretta and Guzzella (2007). Since wheel loaders are off-road vehicles
with highly transient operating patterns, access to accurate prediction is not to
be expected. The evaluation of the potential of a transmission concept should
therefore include an analysis of the sensitivity of the fuel saving potential to
prediction uncertainties. This motivates the work presented in Chapter 5.

1.3 Contributions
Section 2.2.2 briefly describe an automatic loading cycle detector and identi-
fier. The development of this detector is an ongoing project. In this work the
detector is used for automatic extracting of a number of loading cycles from a
measurement sequence.

Chapter 4 is based on the papers Nilsson et al. (2011) and Nilsson et al.
(2012c) and provide a thorough investigation of dynamic optimization of the
operation of naturally aspirated and turbocharged engines. Trajectory opti-
mization methods, based on Pontryagin’s maximum principle, for the two se-
tups are developed and presented in Section 4.7. These are fast but highly
restrictive on the applicable load cases and therefore of limited practical use.
The method for the naturally aspirated engine though can be graphically in-
terpreted by phase planes, which provide excellent visualization of optimization
with Pontryagin’s maximum principle. Section 4.8 present suboptimal trajec-
tory derivation methods that does not depend on an analytic engine model and
are extremely fast. These produce reference engine operating point trajectories
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that give fuel consumptions with, in all cases studied, less than five percent fuel
usage increase from the optimal.

Chapter 5 is based on the papers Nilsson et al. (2012a) and Nilsson et al.
(2012b) and analyze the fuel saving potential of two drivetrain concepts and the
use of stochastic dynamic programming for this analysis. The two concepts are
the present transmission which is based on a torque converter and an automatic
gearbox, and a hydrostatic multi-mode CVT concept. Section 5.4 shows that
the stochastic load formulation highly affect the feasible choice of states in
the optimization. Section 5.5 shows that the CVT concept has more than 15%
better fuel saving potential than the present transmission, and that this number
is not sensitive to prediction uncertainties, cycle smoothness or cycle length.

1.4 Thesis outline
Chapter 2 treats wheel loader operation and load case creation. Section 2.1
provide a description of typical wheel loader operation. Section 2.2 describe how
deterministic and stochastic driving cycles can be derived from measurements
with the aid of a driving cycle detector and identifier.

Chapter 3 describe the dynamic optimization methods and tools used. Sec-
tion 3.1 formalize the optimization problem. Section 3.2 describe deterministic
and stochastic dynamic programming and the algorithm used in this work for
solving the recursion. Section 3.3 present Pontryagin’s maximum principle and
mention optimization methods based on this principle. Section 3.4 discuss ap-
plications and issues encountered when implementing trajectory optimization.

Chapter 4 examine optimization methods and results for a standalone en-
gine with and without a turbocharger. Sections 4.1, 4.2, 4.3 and 4.4 sets up
the models and optimization problem. Section 4.5 shows the engine map and
static solutions. Section 4.6 presents the optimal solutions derived with dynamic
programming. In Section 4.7 optimization methods based on Pontryagin’s max-
imum principle are developed and evaluated. In Section 4.8 suboptimal trajec-
tory derivation methods are developed and evaluated. Section 4.9 concludes the
standalone engine analysis with a discussion of the methods developed.

Chapter 5 treats the comparative evaluation of the present transmission and
a hydrostatic multi-mode CVT concept by deterministic and stochastic dynamic
programming. Sections 5.1, 5.2 and 5.3 presents the models and load cases used.
Section 5.4 discuss the important consequences on the choice of states from the
optimization method and stochastic load formulation. Section 5.5 presents the
results of the trajectory optimization. Section 5.6 concludes the chapter with a
discussion on the optimization and the performance of the transmissions.

Chapter 6 presents conclusions drawn from the work presented in this thesis.
Section 6.1 recapitulates the outcome of the methods developed in Sections 4.7
and 4.8 and summarizes the experiences and findings regarding the application
of, especially stochastic, dynamic programming. Section 6.2 describe the con-
clusions drawn on the efficiency improvement capability of the CVT concept.
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1.5 Nomenclature

General symbols

Symbol Description Unit
D maximum displacement m3/rad
f dynamic functions, discrete time
F dynamic functions, continuous time
g cost function, discrete time
G cost function, continuous time
H Hamiltonian
I moment of inertia kgm2

J performance index
m mass kg
Mcvt CVT-mode −
MP torque converter torque map Nm
n number of - −
p pressure Pa
P power W
Q flow m3/s
rc gear −
s optimization parameter −
t time s
T terminal time s
T torque Nm
u controls, continuous/singular points
U controls, discretized (vector)
w disturbance signals
W disturbance signals
x states, continuous/singular points
X states, discretized (vector)
Y load components
z number of cogs −
ε small value −
η efficiency, efficiency parameters −
θ angle rad
λ costate function
µ torque converter torque ratio −
ν torque converter speed ratio −
ξ miscellaneous constant
Σ ”quasi static” peak efficiency curve −
τ time constant s
ψ relative displacement −
ω angular speed rad/s
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Subscripts

Symbol Description
b brake
c torque converter
e engine
f fuel
H working hydraulics
cp torque converter pump
t turbocharger
T transmission
ct torque converter turbine
v variator
w wheel/drive shaft
Σ ”quasi static” peak efficiency

Diacritics and Superscripts

Symbol Description
x̂ actual
x̃ interpolated
ẋ time derivative
x∗ optimal
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Wheel loader operation

2.1 Wheel loader operation
Wheel loaders are versatile heavy equipment machines, and as such they are
used for a wide range of tasks. The most common usages are loading and short
distance transportation of material, often bulk material such as gravel, shot rock
or wood chips. The machine uses a bucket to scoop loose material from a source
pile, transport it some distance and unload at a receiver. This type of operation
is usually highly repetitive, since the source and receiver positions in general are
stationary. Due to the repetitiveness, the operation is naturally described as
repeating cycles, just like in Filla (2005) and Fengyuan et al. (2012), the most
common being the short loading cycle, which is illustrated by Figure 2.1. This
cycle can be partitioned into phases in different ways, one being the following:

1. Forward. From standstill, acceleration and driving toward the source pile.
The phase ends at contact with the pile.

2. Loading. Penetration of the pile and filling the bucket, generally by a com-
bination of bucket movement and forward driving with high tractive effort.
The phase ends when the forward motion ends.

3. Reversing. Reversing away from the pile, including acceleration, driving
and deceleration, often coordinated with raising of the bucket.

4. Transport. From driving direction change, forward acceleration, driving
and deceleration at the load receiver. The bucket is in general raised
during or at the end of this transport.

7



8 Chapter 2. Wheel loader operation

5. Emptying. The bucket is tilted down, emptying the load. This takes place
around the direction change from transport to reversing.

6. Reversing. Reversing away from the load receiver, including acceleration,
driving and deceleration, generally while lowering the bucket.

Figure 2.1: Short loading cycle, based on a figure from Filla (2011).

This general cycle is very common, even though the material handled and the
distance driven vary. In the shortest cycles, each of the phases can be about 5
seconds, except for phase 5 which is close to instantaneous, which give a total
cycle-time of about 25s. Several interesting characteristics can be observed
from, or should be added to, this cycle description:

• Each phase is short, to the extent that delays even in the order of tenths
of a second would be significant.

• Driving direction changes are often made by changing gear direction, thus
using engine torque to decelerate and change driving direction. This is
convenient for the driver since it reduce jerk and stand-still time, though
it is wasteful use of fuel.

• The loading phase is an extended (compared to the length of the cycle)
low speed/high thrust driving episode. In this phase the transmission and
hydraulics loads are mutually dependent, as described in Filla (2008).

• Driving and hydraulics usage is coordinated, and not separated in time.

The coupling between hydraulic and transmission load complicates controller
evaluation. The coordination of traction and hydraulics use by the driver affects
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the fuel consumption and makes it difficult to separate controller and driver
effects in an even higher degree than for on-road vehicles. The evaluation would
also have to weigh material moved to time and fuel used. In an optimization
and simulation the evaluation would also require a model of the coupling, which
means a model of the source pile. To avoid introduction of a complex pile model
in the following optimization, no deviations from the desired position and force
trajectories are allowed.

2.2 Derivation of load cycles from measurements
It is desirable that the optimization is made against realistic driving cycles,
which consist of position and force trajectories. Such cycles can be derived
from measurements on wheel loader usage. Section 2.2.1 describe a position and
force trajectory formulation that suits the following optimization, and how these
trajectories can be derived from the sensor signals available in an in production
machine. The optimization also include a sensitivity analysis which require a
load case with realistic disturbances. Section 2.2.2 describe how load cases with
disturbances can be constructed from a measurement sequence.

2.2.1 Deterministic load
Measurements were made at the test-track of Volvo Construction Equipment
in Eskilstuna, Sweden, with a machine without extra sensors. The operator
performed a series of loading cycles, moving gravel from one pile to another. The
cycles, as required for this project, can be condensed into the load components
wheel speed ωw, wheel torque Tw, hydraulic pump flow QH and hydraulic pump
pressure pH . The measurements available consist of the sensor signals displayed
in Figure 2.2. In this figure continuous lines indicate mechanical connections
and dashed lines indicate hydraulic connections.

ICE

Hydraulics
pump

Valve Tilt

Valve Lift

Torque
converter

Gearbox Wheels

pLs θ1

θ2

ωctωcp rc

Figure 2.2: Reference vehicle drivetrain and measurement setup.

As seen, neither hydraulic flow nor wheel torque is directly measured. The
hydraulic flow into the lift and tilt cylinders can instead be calculated from
geometry and the derivative of the angles θ1 and θ2. Since the hydraulic fluid
is near incompressible, this flow is approximately equal to the flow from the
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working hydraulics pump QH . The pressure pLS is used as hydraulics pump
pressure pH . The torque converter has two connections: the engine side which
is denoted with index cp and the gearbox side which is denoted with index
ct. The input and output torques of the torque converter depend only on the
angular speeds at the input and output of the component. These torques can
be calculated from the scalable maps MP and µ, which have been measured at
the reference speed ωc,ref , according to Equations (2.1).

νc = ωct
ωcp

(2.1a)

Tcp = MP (νc)
(

ωcp
ωc,ref

)2
(2.1b)

Tct = µ(νc)Tcp (2.1c)

From ωct, Tct and the engaged gear rc the speed ωw and torque Tw at the
wheels are calculated. The torque Tct includes the braking torque. Since no
brake signal was available it was decided to include the brake torque in the load
torque, though it would have been beneficial to instead have this as a control
signal for the optimization. The deterministic load cases consist of one short
loading cycle with a cycle time of 27s; the ’DDP sc’ cycle (Figure 2.3), and one
long loading cycle; the ’DDP lc’ with a cycle time of 137s (Figure 2.4).
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Figure 2.3: The load case ’DDP sc’.
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Figure 2.4: The load case ’DDP lc’.

2.2.2 Stochastic load
The sensitivity analysis of the proposed transmission concept requires a load
that includes a disturbance model. This is created by introducing, for each
time interval, several possible values for each load componentWY and assigning
probabilities P (WY ) to these. The probabilities are assumed to be independent

P (WY (tk)|WY (tk−1)) = P (WY (tk)) (2.2)

This assumption affect which components of the load that may be described
as non-deterministic. A stochastic vehicle speed ωw, along with this assumption,
would require non-physical accelerations. A more realistic disturbance would
be in the acceleration, but this would require the vehicle speed to be a state.
Therefore a deterministic ωw is used. The same argument could be made for
the hydraulic flow, since this roughly correspond to bucket raise speed. The
hydraulic pump efficiency does on the other hand not depend on the bucket
height, so the models do not require this as a state, and it is assumed that in
general this height will not exceed its limits. Hydraulics flow is also supplied
to the tilting of the bucket, and the lift angle dynamics is also affected by
vehicle pitch dynamics. A fully stochastic hydraulic flow is therefore used. The
deterministic ωw also affect the wheel torque, since part of Tw depend on vehicle
acceleration. This torque is divided into two parts; Tw = TA(dωw

dt ) + TD where
TA depend on the acceleration and is deterministic, while TD describe the rolling
resistance, including force on the bucket, and is stochastic.

A loading cycle identifier has been developed for convenient measurement
data analysis. This starts by detecting the discrete events ’(change to) forward’
f , ’(change to) backward’ b, ’bucket loading’ l and ’bucket unloading’ u. The
identifier then search this event sequence for a pattern, described in automata
language (see Kelley (1998)), which correspond to a loading cycle and which is
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shown in Figure 2.5, and mark each occurrence. The identifier also mark the
driving direction changes in each cycle. When all cycles in the dataset are found,
the time scales are adjusted so that the direction changes in each cycle coincide.
The measurement used consist of 34 short loading cycles with durations between
21.5s and 30.6s. This time scale of each cycle has been changed to 10s forward
toward the pile and filling the bucket, 5s reversing, 5s forward toward, and
including, bucket emptying and finally 5s reversing; in total 25s.

q0 q1 q2 q3 q4

q5

q6

q7
f l b f

u

b

b

u

l

Figure 2.5: Transition diagram of the automata which describe a loading cycle.

At each time instant the mean E and standard deviation σ of each of the load
components that are considered stochastic are calculated, among the 34 time-
adjusted short loading cycles. The three load alternativesWY = [E−σ,E,E+σ]
of each of the three independent stochastic components Y ∈ [TD, Qh, ph] are
created, while WY = E for the components Y ∈ [ωw, TA]. The probabil-
ity vector P (WY ) = [0.25, 0.5, 0.25] is assigned to each of the components
Y ∈ [TD, Qh, ph]. The load W (t) = [ωw, Tw, Qh, ph] along with the correspond-
ing probability distributions P (WY ) makes the stochastic load cycle ’SDP mc’.
Since this work examine the effect on the optimization of using a stochastic load,
the deterministic reference case ’DDP mc’ is also created, by only including the
mean load WY = E, Y ∈ [ωw, Tw, Qh, ph]. In Figure 2.6 the load alternative of
the ’DDP mc’ cycle is indicated by the continuous lines, while the additional
load alternatives of the ’SDP mc’ cycle is indicated by the dashed lines.
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Figure 2.6: The load cases ’DDP mc’ and ’SDP mc’.



3

Dynamic optimization

3.1 Problem statement

Dynamic optimization (DO) is the process of selecting some time dependent
variable(s) in a dynamic system so that a cost function J is minimized (or
maximized), according to Bryson (1999). The notation DO is most often used
in the field of economics, such as in the book Kamien and Schwartz (1991),
while in other fields the term optimal control is usually used, just as in Bryson
(1975). The term ’optimal control’ however is also commonly used for several
other types of problems or specific subproblems. This often include optimal
choice of parameters for causal controllers. For this reason, and for clarity, the
phrase dynamic optimization will be used in this thesis. First the mathematical
problem formulation will be sketched, then a few methods and principles for
solving this type of problem will be presented.

Assume that the dynamic system can be described by a set of differen-
tial equations. Introduce the states x(t) of the system, the decision variables,
or control signals, u(t) and the time dependent, non-controllable and possibly
stochastic, signals w(t). The signals w(t) are often referred to as the distur-
bances, especially if they are stochastic. Here the disturbance signals are the
load components, as introduced in Chapter 2.2. Let a dot represent time deriva-
tive, the dynamic system can then be written as

ẋ = F (x(t), u(t), w(t)), x(0) = x0 (3.1)

13



14 Chapter 3. Dynamic optimization

A cost function, which is the target for the minimization, is formulated

J =
∫ ∞

0
G(x, u, w)dt (3.2)

The problem often has a finite terminal time, in which case the cost function is
truncated and a cost JN is assigned to the terminal state

J = JN (x(T )) +
∫ T

0
G(x, u, w)dt (3.3)

In the problems of this thesis, the final time is also fixed, and not subject to
optimization. If w(t) is deterministic the problem can now be stated as

min
u∈U

{
JN (x(T )) +

∫ T

0
G(x, u, w)dt

}
ẋ = F (x(t), u(t), w(t)) (3.4)
x(0) = x0

along with possible state and control constraints. This problem is, regardless
of the timespan, equivalent to an infinite dimension optimization problem. The
problem is in general discretized for computerized numerical solving, transform-
ing the problem into a large, but finite, dimensional optimization problem

min
u∈U

{
JN (x(T )) +

N−1∑
k=0

gk(uk, xk, wk)
}

xk+1 = f(xk, uk, t), k = 0, . . . , N − 1 (3.5)

In case there are stochastic components in the time dependent variable w(t),
the minimization is instead made over the expected cost

min
u∈U

E
{
JN (x(T )) +

∫ T

0
G(u, x, w)dt

}
(3.6)

or

min
uk∈U

E
{
JN (x(T )) +

N−1∑
k=0

gk(uk, xk, wk)
}

(3.7)

There are several proposed approaches to solving problems of this type. The
most intuitive may be to solve the problem (3.5) as a general large scale, but
well structured, nonlinear minimization problem. This method works well for
many problems, and may be expanded with more sophisticated discretization,
due to the many good software packages that exist for nonlinear optimization.
One problem is that this method requires a state and control signal initial guess,
which may have to be rather good. Other methods are based on the optimality
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principle, which states that if a trajectory is optimal for the problem (3.7) then
all sections of this are optimal for the corresponding time intervals. Dynamic
programming (DP) use this principle to recursively construct the optimal tra-
jectory for the discrete optimization problem by solving a series of one-stage
optimization problems, starting at the last time-step. This method is used both
in Chapter 4 and in Chapter 5, and will therefore be described in more detail. A
range of other methods are based on optimality criteria related to the calculus
of variations. The basic fact of this field is that if x∗, u∗ is an optimal solution,
any variation of x or u will produce a higher cost J . Pontryagin’s maximum
principle (PMP) can be used for deriving a number of necessary conditions for
a solution to a DO problem to be optimal. Since the conditions are necessary,
but not sufficient, fulfilling these criteria does not guarantee global optimality
for a general problem, but for some problems the criteria can be used for finding
an analytic solution. There is a wide range of DO algorithms that are based on
PMP. In the first two papers included in this thesis, PMP is directly applied
to the problem. Therefore this principle is described further, along with short
descriptions of some of the general PMP-based algorithms.

3.2 Dynamic programming (DP)
Dynamic programming is a recursive method for solving optimization problems
which develop in stages, such as a discrete time. The method is based on the
optimality principle, which states that if one trajectory u∗k, x∗k, k = 0, . . . , N−1,
is optimal for the problem (3.7) then each truncated trajectory u∗k, x

∗
k, k =

n, . . . , N −1, 0 < n is optimal for the corresponding time interval. This suggest
that the problem can be solved as a series of one stage optimization problems,
starting with the last stage and proceeding backward in time. According to
Bellman (1957) and Bertsekas (2005) the recursion can, for the stochastic case,
be stated as

Jk(xk) = min
u∈U

E
{
g(xk, uk, wk) + Jk+1(xk+1(xk, uk, wk))

}
(3.8)

JN (xN ) = gN (xN ) (3.9)

Details about stochastic dynamic programming (SDP) can be found in Ross
(1983). If the external load wk is deterministic the expectation E vanishes

Jk(xk) = min
u∈U

{
g(xk, uk, wk) + Jk+1(xk+1(xk, uk, wk))

}
(3.10)

in which case the method is labeled deterministic dynamic programming (DDP).
The implementation of the recursion as an algorithm includes a strategic choice.
Denote the discretized states x ∈ X. The ’cost-to-go’, Jk+1, is then only cal-
culated and stored at the grid points xk+1 ∈ X, and is not explicitly known
for other xk+1 /∈ X. The method selected for handling this highly affects the
calculatory effort. Three possible choices are presented here.
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If the function xk+1(xk, uk, wk) is invertible, that is if uk(xk, wk, xk+1) is
well defined, then g + Jk+1 can be evaluated for each {xk, xk+1} ∈ X com-
bination. With this choice the calculatory effort increase with the square of
the size of X but is independent of the controls. If inverting xk+1(xk, uk, wk)
is not possible or desirable (for example if X is large) xk+1(xk, uk, wk) can
be calculated for the discretized u ∈ U , not requiring that xk+1 ∈ X. Then
ũk(xk, wk, xk+1 ∈ X) can be found by interpolation among these uk, followed by
the calculation of g(xk, ũk, wk). Another option is to make the same calculation
of xk+1(xk, uk, wk), but to determine J̃k+1(xk+1(xk, ukwk)) by interpolation
among the Jk+1(xk+1 ∈ X). In this case the calculatory effort increase linearly
with the number of possible state and control combinations. In this thesis the
third option is used, producing the following algorithm

1: For xN ∈ XN , declare JN (x) = JN
2: for k = N − 1, . . . , 1 do
3: For each xk ∈ Xk, simulate dx

dt for tk to tk+1 for all u ∈ U to find
xk+1(xk, u, wk)

4: For each xk ∈ Xk

Jk(xk) = min
u∈U

(
g(xk, u, wk) + J̃k+1(xk+1(xk, u, wk))

)
(3.11)

in which J̃k+1(xk+1) is interpolated from Jk+1(xk+1 ∈ X)
5: end for

If the load is stochastic, step 3 is performed for each possible load combination
wl ∈Wk, and Equation (3.11) is altered to

Jk(xk) = min
u∈U

∑
wl∈Wk

(
P (wl)g(xk, u, wl) + J̃k+1(P (wl)xk+1(xk, u, wl))

)
(3.12)

This first part establishes a cost-to-go map J(x ∈ X, t). In the following part
the optimal trajectory x∗(t), u∗(t) is calculated

1: Select an initial state x∗0 = x0
2: for m = 1, . . . , N do
3: For x∗m−1, simulate dx

dt for tm−1 to tm for all u ∈ U to find xm(x∗m−1, u)
4: Select

u∗m−1 = argmin
u∈U

(
g(x∗m−1, u, wm−1)dt+ J̃m(xm(x∗m−1, u, wm−1))

)
(3.13)

in which J̃m(xm) is interpolated from Jm(xm ∈ X)
5: x∗m = xm(x∗m−1, u

∗
m−1, wm−1)

6: end for
In the second part the load wk, k = 0, . . . , N − 1 is deterministic. This second
part also show how DP can be used to implement an optimal state feedback
scheme. In each repetition of the for-loop the optimal control action u∗m−1
is calculated, depending on the state x∗m−1. Here the state x∗m−1 is found
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by simulation, but in a feedback application the actual state of the system
at t = m − 1 would be used instead. If there is then an unexpected state
disturbance so that x̂m−1 6= x∗m−1, in which x̂ is the actual state of the system,
the algorithm will find the control that minimizes the cost-to-go from this state
x̂m−1. Apart from this attractive property, the method also guarantees that
if a solution is found, this is the global optimum. This does however require
that the state grid is sufficiently dense. Consider for example the situation in
which Jk+1(xik+1) = ∞ for i ≤ j in which xi should be interpreted as the i:th
component ofX. Then there will have to exist xk+1(xhk , u) > xj+1

k+1 or else Jk(xhk)
will also be infinite. This is a situation that will more easily emerge if the state
grid is made more sparse or the time grid is made more dense. An increased
time resolution may therefore cause erroneous infinite-cost spread if the state
resolution is not also increased. Guzzella and Sciarretta (2007) contains an
introduction to dynamic programming, which also mention this pitfall.

3.3 Pontryagin’s maximum principle (PMP)
Pontryagin’s maximum (or minimum) principle is a condition necessary for op-
timality. Before the condition is stated, a function called the Hamiltonian is
introduced

H = G(x(t), u(t), w(t)) + λT (t)F (x(t), u(t), w(t)) (3.14)

in which G and F is the cost and dynamics functions from (3.4) and λ is a
set of continuous functions with one component corresponding to each of the
components of x. Then Pontryagin’s maximum principle, which was presented
in Pontryagin et al. (1962) and is described and used in Bryson (1975), state
that for x∗, u∗ to be optimal, λ∗ must exist and

H(x∗, u∗, w, λ∗) ≤ H(x∗, u, w, λ∗) ∀u, t ∈ [t0, T ] (3.15)

along with boundary conditions for λ∗, which depend on whether the final
time T is fixed or subject of optimization, must be fulfilled. By differentiating
H this condition can be rewritten as a set of necessary conditions. For the
unconstrained problem (3.4)

∂H

∂u
= 0 (3.16a)

∂H

∂x
= −λ̇ (3.16b)

∂H

∂λ
= ẋ (3.16c)

x(0) = x0, λ(T ) = ∂JN
∂x

(x∗(T )) (3.16d)

must be fulfilled for x∗, u∗ to be optimal. Condition (3.16c) is trivially fulfilled,
as can be seen by differentiating (3.14). If the problem includes state or control
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constraints the Hamiltonian must be expanded, but the conditions (3.16) are
sufficient for the analysis in Chapter 4. The general problem cannot be solved
analytically, but there is a wide range of methods that are based on PMP, for
solving DO problems. They generally relax some of the conditions, use an initial
guess for the trajectories, and iteratively tighten the relaxed condition(s). A few
types of methods are:
Gradient methods: The condition (3.16a) is relaxed, and an arbitrary control

signal is applied. This control signal is iteratively updated until∫ T

0

∣∣∣∣∂H∂u
∣∣∣∣2 dt

become sufficiently small.

Shooting: The condition (3.16d) is relaxed, and an arbitrary λ(0) is applied.
The system is simulated for t = [0, T ] and λ(0) is updated until∣∣∣∣λ(T )− ∂JN

∂x
(x∗(T ))

∣∣∣∣
become sufficiently small. In multiple shooting methods the problem is
divided into shorter time intervals to reduce instability problems.

Collocation: The condition (3.16b) and/or (3.16c) is relaxed. The problem
is discretized and formulated as a large non-linear optimization problem,
in which the differential equations are piecewise approximated by simple
functions. These approximations are updated until the discontinuities at
the discretization, or collocation, points become sufficiently small.

In some other special cases the application of the necessary conditions of PMP
has also helped in finding some simple structure of the optimal control trajec-
tory. One example can be found in Delprat et al. (2001), which show that in the
case of hybrid electric vehicles, a simplification of the battery model can make
the adjoint function λ(t) become a cycle-specific constant. This constant tells
the value of stored electricity and can be used in a causal controller that select
whether to charge or discharge the battery. Though the value of the constant is
only known if the cycle is known, this method, which is known as the ’Equiva-
lent Consumption Minimization Strategy’ or ECMS, has drawn much attention.
The theory and several varieties and references are collected and presented in
Sciarretta and Guzzella (2007).

3.4 Implementation
The results from dynamic optimization show how the vehicle should have been
controlled if the disturbance, or load, w(t) had been known beforehand. Pre-
dicting the future load is not a trivial problem, especially for off-road heavy
equipment such as that treated in this thesis. The following sections provide
and discuss examples of how to utilize and benefit from optimization results.
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3.4.1 Benchmarking
The probably most straight-forward and obvious use of the dynamic optimiza-
tion results is for evaluation of controllers or mechanical concepts. A controller
can always be made to seem good by comparing it to other controllers that per-
form worse. As an alternative, the minimized cost can be used as an objective
reference. This cost also show the magnitude of the unutilized potential of the
physical system; how much better the controller may become. In Nilsson et al.
(2011) and Nilsson et al. (2012c) the quality of the extremely simple but sub-
optimal and non-causal, state and control trajectory derivation is evaluated by
comparing the cost when using suboptimal and optimal controls. In a similar
way, the analysis in Nilsson et al. (2012a) and Nilsson et al. (2012b) is motivated
by the need for a fair evaluation and comparison of the potential of two different
mechanical systems, which strictly eliminate the influence of any controller.

3.4.2 Utilizing principles
The results of the optimization, or the optimization procedure itself, may in
the best case reveal some underlaying structure of the optimal solutions. For
example; Hellström et al. (2010) use the Euler-Lagrange equation from the
calculus of variations to show that the optimal speed for a fixed time, fixed
distance driving mission is constant and Delprat et al. (2002) use PMP to derive
the causal ECMS control strategy for hybrid vehicles. In Nilsson et al. (2011)
and Nilsson et al. (2012c) the general appearance of the optimal trajectories
inspire the derivation of the presented suboptimal methods.

3.4.3 Predictive control
The basic assumption of the optimization is that the future load is known. If
this assumption had been fulfilled the control trajectory from the optimization
could be applied directly. Applying the optimal control signal trajectory, and
assuming that this give the corresponding optimal state trajectory would be
feed-forward control, so errors would get integrated and the state errors would
eventually become unacceptably large. This could be augmented with a feed-
back controller that correct state deviations, but though this would correct state
trajectory deviations, the control signals may instead deviate from the optimal
with an adverse effect on the optimality. Dynamic programming has an advan-
tage in this aspect; J(x) is calculated not only near the optimal trajectory, but
for the entire state space. This means that if there is an unexpected disturbance
vk that affect the state x̂k+1(x∗k, uk, wk+vk) so that x̂k+1 6= x∗k+1 a new control
signal that is optimal when starting in x̂k+1 is found simply by solving

min
u∈U

(
g(x̂k+1, uk+1, wk+1) + J̃k+2(xk+2(x̂k+1, uk+1, wk+1)

)
(3.17)

in which J̃k+2(xk+2) is interpolated among the known Jk+2(xk+2). This is
identical to a step in the simulation for finding the optimal path, after the
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calculation of J(X, t), as described in Section 3.2. Still, J(X, t) is only valid for
the load, deterministic or stochastic, for which it has been calculated. Therefore
this solution is optimal from the disturbed state x̂k+1 if and only if there are
no more unexpected disturbances. The key to being able to directly use the
optimization results is therefore to obtain a load prediction, in deterministic or
stochastic form.

Predicting the future load

There are several possibilities for predicting the future load, that has been
proposed or is used in different applications.

If the vehicle is made autonomous, new possibilities for prediction and op-
timization arise. The complete operation of the vehicle, including positioning,
bucket movement and engine and transmission control may be co-optimized.
This would allow a truly global optimum to be found, though the optimiza-
tion would require a large number of states and controls, making the problem
difficult to solve. If there are widely separated time constants, it may be a
good approximation to partition the optimization into one part for the slow
states and one for the fast. For wheel loaders it could be possible to separate
vehicle and bucket movement from engine and transmission control. Regard-
less of whether the vehicle trajectories are optimized or not, they may for an
autonomous vehicle be determined some time in advance, and therefore also
be used as a load prediction for the engine and transmission. Research on au-
tonomous wheel loaders can be found, for example, in Ghabcheloo et al. (2009)
and Koyachi and Sarata (2009).

Careful selection of states and possibly changing the stage variable from time
to some other may also open new possibilities for obtaining a prediction that is
sufficient for optimization. In Hellström (2010) the speed of a truck is subject
to optimization, and road inclination is the future load. This is solved by using
GPS altitude data and changing the stage variable from time t to position or
distance s, so that the inclination prediction become the known W (s) instead
of the state and control dependent W (t).

There has also been some research on early detection of events based on
driver behavior. In Mitrovic (2005) and Pentland and Andrew (1999) this in-
cludes detecting imminent turning in a crossing or overtaking of other vehicles,
based on the first signs of positioning and braking or accelerating. In these
detectors there is a finite number of events that can be detected. If these are
not highly parametrized (parameters such as speed, power level etc) the optimal
control solution for each event can be calculated in advance and applied when
the event is detected. If there is a high number of parameters it might still be
possible to use the prediction, but in that case the optimization may have to be
performed online when the start of the event has been detected.



4

Engine

For an alternative transmission to be interesting for commercialization, it has
to enable increased efficiency without reducing productivity in the typical op-
erating conditions of the machine. Since the losses discussed in Chapter 1 are
related to the torque converter, the solution should include elimination of this
component. Elimination of the torque converter, combined with the low speeds
often encountered, makes it impractical to use a stepped gearbox. The imme-
diate alternative is to consider continuously or infinitely variable transmissions
(CVTs or IVTs), such as the diesel-electric transmission used in Filla (2008) or
the hydrostatic transmission used in Rydberg (1998). Such transmissions make
it possible to separate power demand at the wheels, from power production at
the engine, thereby enabling a free choice of engine operating point. This chap-
ter examine this choice of operating point during transients for minimization of
the amount of fuel used, for naturally aspirated and turbocharged engines.

4.1 System setup
In a series hybrid without energy storage or a CVT vehicle the transmission can
approximately be divided into one power consuming and one power producing
part. In an electric series hybrid the partitioning could be made at the electric
connection by using electric power instead of voltage and current, in a hydraulic
hybrid it could be made by using hydraulic power instead of pressure and flow,
and in a belt type CVT it could be made by using belt power instead of belt
force and speed. In this chapter it is assumed that the device has no maximum
or minimum gear ratio. If such a partitioning can be made, any driving cycle

21
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can be translated, including efficiencies on the power consuming side, to a power
demand trajectory Pload(t). The efficiencies in the power producing side of the
transmission, see Figure 4.1, can be included in the engine efficiency.

Pload

Figure 4.1: The system consist of an engine, the engine side of an infinitely
variable transmission (e.g. an electric generator) and an output power.

The engines used in the papers Nilsson et al. (2011), Nilsson et al. (2012c),
Nilsson et al. (2012a) has different maximum output powers. In this chapter
the engine from Nilsson et al. (2012a) is used, since this is also the one used
in Chapter 5 and is matched to the transmission of that chapter. Chapter 4
treats both a naturally aspirated and a turbocharged engine, while Chapter 5
only include the turbocharged engine. The differences between the setups are
mentioned as they appear. The naturally aspirated engine is referred to as the
NA-engine, while the turbocharged is referred to as the TC-engine.

Engine model

The engine speed ωe dynamics is modeled as an inertia Ie which is affected by
the engine torque Te and a load power Pload.

dωe(t)
dt

· Ie = Te(t)−
Pload(t)
ωe(t)

(4.1)

The engine torque Te depend on fuel mass per injection mf and engine speed ωe
according to a quadratic Willan’s model, as described in Rizzoni et al. (1999).
Introduce the lower heating value qlhv, the number of cylinders ncyl, the number
of strokes per injection nr and the parameters ηe00, ηe01, ηe02, ηe10, ηe11, ηeL0, ηeL2
and define

A = qlhvncyl
2πnr

(4.2)

ηe = ηe0 − ηe1mf (4.3a)
ηe0 =ηe00 + ηe01ωe + ηe02ω

2
e (4.3b)

ηe1 = ηe10 + ηe11ωe (4.3c)
ηeL = ηeL0 + ηeL2ω

2
e (4.3d)

The Willan’s model, expanded with an additional torque loss Tt caused by lack
of air intake pressure, can then be described by Equation (4.4). The torque
loss Tt is introduced for the modeling of the turbocharged engine, and for the
naturally aspirated engine this loss is zero Tt = 0.

Te = A · ηe ·mf − ηeL − Tt (4.4)
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The engine is also subject to the state and control restrictions

ωe,min ≤ ωe
0 ≤ mf

Te ≤ Te,max(ωe)
(4.5)

Turbocharger model

The torque loss Tt is caused by low air intake pressure, a pressure which de-
pend on the rotational speed of the turbocharger. The turbocharger speed is
assumed to be a first order dynamic system with the the time constant τt(ωe)
and an asymptotic speed that is a function of ωe,mf . The dynamic relations
are expressed in the corresponding asymptotic and dynamic air intake pres-
sures. Denote the asymptotic intake pressure by pt,set and the time dependent
pressure by pt. Introduce the model and effeiciency parameters ξτ0, ξτ1, ξt1,
ξt2, ξt3, ηt10, ηt11, ηt20 and ηt21 and define

τt = ξτ0 + ξτ1ωe (4.6a)
pt,set = ξt1ωe + ξt2mf + ξt3 (4.6b)
ηt1 = ηt10 + ηt11ωe (4.6c)
ηt2 = ηt20 + ηt21ωe (4.6d)

The pressure dynamics can then be described by

dpt(t)
dt

· τt(ωe) = pt,set(ωe,mf )− pt(t) (4.7)

By defining pt,off = pt,set(ωe,mf )−pt the torque loss can then be described by

Tt =
{
ηt1(ωe) · p2

t,off + ηt2(ωe) · pt,off if pt,off > 0
0 if pt,off ≤ 0 (4.8)

Efficiency definitions

The quasi-static peak efficiency line Σ is defined as the ωe, Te that maximize (4.9a)
as a function of Pload under the restrictions (4.5) and dωe

dt = dpt

dt = 0 as described
by the Equations (4.9).

ηe,static = Pload
Pmf

= Teωe
ωeAmf

(4.9a)

ωe,Σ(Pload) = argmax
ωe

ηe,static(Pload) (4.9b)

mf,Σ(Pload) = argmax
mf

ηe,static(Pload, ωe,Σ) (4.9c)

The Equations (4.9) also define Te,Σ = Te(ωe,Σ,mf,Σ). Individual points along
the line Σ is referred to as (quasi) static optimal operating points or SOOPs.
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4.2 Problem statement
The problem studied in this chapter is the minimization of the total amount of
fuel used, according to Equation (4.10)

min
∫ T

0
Aωemfdt (4.10)

while fulfilling the engine dynamics Equation (4.1) the constraints (4.5) and,
in case the engine is turbocharged, the turbo dynamics (4.7). This also means
that no deviations from the output load trajectory Pload(t) will be allowed.

4.3 Load cases
In Equation (4.1) the time dependent load Pload(t) is introduced. In this chapter
two different types of loads are used. The first type is the total output power
from the recorded ’DDP sc’ and ’DDP lc’ load cases, which is presented in
Chapter 2. These output trajectories are calculated as Pload = ωwTw + Qhph,
and are presented in Figure 4.2.

0 5 10 15 20 25
0

50

100

150

200

P
lo

a
d
  
 [
k
W

] 
  
  
D

D
P

 s
c

Time [s]

0 20 40 60 80 100 120
0

50

100

150

200

P
lo

a
d
  
 [
k
W

] 
  
  
D

D
P

 l
c

Time [s]

Figure 4.2: The output power in the load cases ’DDP sc’ and ’DDP lc’.

The other type is artificial load cases, and consist of the four pulse and step
cases presented in Table 4.1. The ’DDP sc’ and ’DDP lc’ load cases are applied
to both engine setups while the pulse load cases are primarily intended for the
NA-engine and the steps load cases are primarily intended for the TC-engine.
In all four artificial load cases the time before the first and after the last steps
are selected so that an increase in any of the times would not affect the result.
The time scales in the pulse load cases are selected so that in the slow pulse
the engine has time to settle at the static optimal operating point (SOOP) of
the intermediate output power, while in the quick step it does not. Due to the
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increased complexity of the TC-engine, this is only subjected to the steps load
cases. The power levels in these load cases are selected so that the low step
is between two SOOPs on the minimum engine speed limit, while both of the
SOOPs of the high step are above this limit (∼ 85kW ).

Table 4.1: Stylized load cases for the standalone engine.

Name Load case: Power(Duration)
Slow pulse 100kW (5s)-180kW (5s)-100kW (5s)
Quick pulse 100kW (5s)-180kW (0.8s)-100kW (5s)
Low step 50kW (5s)-80kW (5s)
High step 100kW (5s)-180kW (5s)

4.4 Application of optimization
The application of dynamic programming to this problem is straightforward.
The cost to be minimized is the total amount of fuel used. In general this cost
formulation will cause all energy stored in the system to be drained at the end
of the cycle. Here this would be seen as the engine speed approaching ωe,min,
regardless of the terminal output power. Especially for output power steps and
pulses, it is instead desired that the engine settle at the SOOP corresponding
to the terminal output power. This can be stated as x(T ) = xΣ(T ). Due
to the state discretization for DP, this cannot be exactly achieved. Since the
energy in the system increase with increasing ωe(T ), pt(T ), introducing a JN
with a sufficient penalty for ωe(T ) < ωe,Σ(T ), pt(T ) < pt,set(ωe,Σ(T ),mf,Σ(T ))
is sufficient for bringing the end state toward the static optimal operating point.
In this work the terminal cost

JN =
{

0 for xN ≥ Ω
∞ else (4.11)

is used, with Ω being equal to xΣ(Pload(T )) except when stated otherwise. The
states and controls for the two engine setups are collected in Table 4.2.

Table 4.2: Standalone engine states and controls.

NA-engine TC-engine
States X ωe ωe, pt
Controls U mf mf

Also recapitulate the PMP conditions for these two setups. For the uncon-
strained TC-engine the Hamiltonian become

H = Aωemf + λ1

Ie
(Te −

Pload
ωe

) + λ2

τt
(pt,set − pt) (4.12)
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in which λ1 is the adjoint variable related to the engine speed dynamics (4.1)
and λ2 is the adjoint variable related to the turbo pressure dynamics (4.7). This
gives the following conditions necessary for optimality

∂H

∂mf
= Aωe + λ1

∂

∂mf

dωe
dt

+ λ2
∂

∂mf

dpt
dt

= 0 (4.13a)

∂H

∂ωe
= Amf + λ1

∂

∂ωe

dωe
dt

+ λ2
∂

∂ωe

dpt
dt

= −dλ1

dt
(4.13b)

∂H

∂pt
= λ1

∂

∂pt

dωe
dt

+ λ2
∂

∂pt

dpt
dt

= −dλ2

dt
(4.13c)

The optimality conditions for the unconstrained NA-engine can be retrieved by
using λ2 = 0 and disregarding equation (4.13c).

4.5 Engine map and static optimal solution
The quasi-static optimal line Σ is defined in (4.9). The Σ for the turbo engine is
identical to that of the naturally aspirated engine, since ṗt = 0⇒ Tt = 0. This
is a simple problem which can be solved either direct as the problem (4.9) or by
solving the PMP problem with d

dt [ωe, λ1, pt, λ2] = 0. The later is valid only when
the solution fulfills ωe,min ≤ ωe though, since the state and control constraints
is not included in the presented PMP formulation. The engine efficiency map
given by equations (4.2) to (4.5) is presented in Figure 4.3 along with ωe,min,
Te,max, output power (Teωe) lines and Σ.
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Figure 4.3: Engine map showing efficiency curves, output power lines with
kW markings, state and control restrictions according to (4.5) and the quasi-
static optimal line which for output powers below ∼ 85kW coincide with ωe,min
and above ∼ 240kW with Te,max.
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4.6 DP derived optimal trajectories
The optimal engine map trajectories for the pulse load cases for the NA-engine
are presented in Figure 4.4. In both these cases the operating point move in
a counter clockwise direction; before the output power increase the operating
point diverges toward high speed. When the step occur, the operating point mo-
tion changes direction toward the new static optimum by reducing the speed and
increasing the torque. Before the power reduction the engine speed decreases,
and at the step the motion changes direction and the speed increases while the
torque falls and the operating point converges to the new static optimum.
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Figure 4.4: Engine map trajectories for the naturally aspirated engine in the
slow (4.4(a)) and quick (4.4(b)) pulse load cases.

The optimal engine map trajectories for the steps load cases for the TC-
engine are presented in Figure 4.5. Just as for the NA-engine, the engine speed
increase before the step, and when the step occur the direction of movement
of the operating point changes. After the step the engine speed drops while
the torque increases, converging toward the new static optimum. Both the
trajectories displayed in Figure 4.5 are less smooth than those for the NA-
engine. This is caused by a somewhat sparse discretization, which is motivated
by the increase in calculation time caused by the extra state.

In Figure 4.6 the engine operation trajectories of the NA- and TC-engines
are compared. Figure 4.6(a) shows the engine speed and torque during the
first 10s of the slow pulse load case for the NA-engine and Figure 4.6(b) shows
the engine speed and turbo-pressure during the high step load case for the
TC-engine. The load case parts are identical, apart from that the NA-engine
does not need to remain at the higher SOOP at 10s. The NA-engine starts
changing its state about one second before the step, while the TC-engine starts
about three seconds before the step. Note that while both setups cause a speed
overshoot, this is substantially larger for the TC-engine. Figure 4.6(b) shows
that before the step, the increasing engine speed alters the turbo set-pressure
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Figure 4.5: Engine map trajectories for the turbocharged engine in the low
(4.5(a)) and high (4.5(b)) step load cases.

so that it is roughly at the new static optimal level when the step occur. The
actual pressure start to increase as soon as the set pressure starts to change,
but at the time of the step it still is far from the new static level. After the
step, the pressure keep increasing while the set pressure remain fairly constant
and the engine speed falls back toward the new static optimum.
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Figure 4.6: Engine operation during steps for the NA- and TC-engines.

Figure 4.7 shows the engine map trajectories for the two engine setups in
the short loading cycle. These trajectories should be compared to those in
Figures 4.4 and 4.5. The movement is still counter clockwise, and the patterns
of the movement remain, though the direction changes are less pronounced
than in the solutions for the steps and pulses load cases since the output power
changes are more ramped. The engine speed is generally higher for the TC-
engine (972rpm mean) than for the NA-engine (861rpm mean), which is caused
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by the need for keeping the turbo pressure up. It should be noted that this is
despite having access to perfect prediction of future load. Note that the initial
operating point for the TC-engine is at a much higher engine speed than for the
NA-engine. The initial conditions x(t0) are selected so that the results could be
readily used for evaluation of the suboptimal methods described in Section 4.8.
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Figure 4.7: Engine map trajectories for the naturally aspirated (4.7(a)) and
the turbocharged (4.7(b)) engine in the ’DDP sc’ cycle.

4.7 PMP trajectory derivation
The solution to a DO problem must fulfill the conditions stated by Pontryagin’s
maximum principle (PMP). Section 4.7.1 analyze the NA-engine step/pulse
results presented in Section 4.6 using these conditions. In Section 4.7.2 this
analysis is utilized for developing a method for deriving the same optimization
results. Section 4.7.3 expands this method for application on the TC-engine.

The PMP formulation in Section 4.4 does not include the constraints (4.5).
A solution to the unconstrained problem (4.10) for a specific load Pload(t) is
optimal also for the constrained problem if and only if it does not violate the
constraints (4.5). It is obvious that solutions for the unconstrained problem for
steps to or from loads with ωe,Σ(Pload) = ωe,min will violate these constraints.
Therefore this section only treat load cases with ωe,Σ(Pload) > ωe,min.

4.7.1 Analysis of optimization results
This analysis treats the high step load case, which is identical to the first part of
the slow pulse load case, applied to the NA-engine. The DP result for the slow
pulse load case is presented in Figure 4.4(a), and the part used is presented
again in Figure 4.8(a). Equation (4.13a) can be used for transformation of
positions in an ωe-Te engine map into an ωe-λ1 engine map. For the NA-engine
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this relation can be rewritten as

λ1 = ωeIe
2ηe1mf − ηe0

(4.14)

Figure 4.8(b) shows such a transformation of the map of Figure 4.8(a), including
efficiency curves, output power lines with kW markings, the static optimal line
Σ, the constraints (4.5) and the DP derived optimal operating point trajectory.
In Figure 4.8(a) the trajectory starts at the lower left, moving toward the upper
right, and when the step occur the direction of motion changes so that the
maximum engine speed occur at the instant of the step. In Figure 4.8(b) this
translates to initial movement toward the lower right and a change of direction
of motion at the instant of the step.
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Figure 4.8: DP derived Optimal solution for the high step load case in ωe-Te
(4.8(a)) and ωe-λ1 (4.8(b)) engine maps.

The dynamics of the adjoint variable λ1(t) is described by Equation (4.13b)
(with λ2 = 0). This equation can for the NA-engine be rewritten as

λ̇1 = −Amf −
λ1

Ie

(
∂Te
∂ωe

+ Pload
ω2
e

)
(4.15)

in which
∂Te
∂ωe

= (ηe01 + 2ηe02ωe − ηe11mf )Amf − 2ηeL2ωe (4.16)

Since Equation (4.14) eliminate the only degree of freedom, all dynamics of
the optimal solution is governed by Equations (4.1) (the engine speed) and
(4.15) (the adjoint variable). The properties of a two dimensional autonomous
dynamic system can be visualized by phase planes. The time dependent load
means this system is not autonomous, though for piecewise constant loads,
such as steps or pulses, the system can be regarded as piecewise autonomous.
The phase planes for the system (4.1),(4.15) at the two output power levels
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of the high step load case are presented in Figure 4.9. The figure also shows
the constraints (4.5), the static optimal line Σ and the DP-derived optimal
trajectory, as shown in Figure 4.8(b).
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Figure 4.9: DP derived Optimal solution for the high step load case along with
the 100kW (4.9(a)) and 180kW (4.9(b)) ωe-λ1 phase planes.

Figure 4.9 shows the dynamics behind the optimal solution for the high
step load case. The first segment, the movement toward the lower right, occur
when Pload = 100kW and is therefore governed by the 100kW phase plane
(Figure 4.9(a)), while the second segment, the approach of the second SOOP, is
governed by the 180kW phase plane (Figure 4.9(b)). Section 4.7.2 starts with
these phase planes and presents a method not only for visualizing but also for
deriving the optimal solutions for similar load cases.

4.7.2 Optimal trajectory derivation for the NA-engine
This section shows how the reasoning in the previous section can be reversed
and optimal trajectories be derived from the PMP conditions. The phase planes
shown in Figure 4.9 indicate that, for each constant Pload, the SOOP is a saddle
point of the corresponding autonomous system (4.17). This is confirmed by
the eigenvalues of the Jacobian of this system, evaluated at the corresponding
SOOP, since one is positive and the other is negative.

d

dt
[ωe, λ1]T (Pload) (4.17)

The unstable and stable manifolds of the autonomous system can, in a small
region near the SOOP, be approximated by the eigenvectors of the Jacobian.
The stable (dashed) and unstable (dotted) eigenvectors and the previously pre-
sented phase-planes corresponding to Pload = 100kW and Pload = 180kW are
shown in Figure 4.10. More accurate approximations of the manifolds, valid
outside the vicinity of the SOOP, can be obtained by simulations backward in
time for the stable manifolds and forward in time for the unstable manifolds
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Figure 4.10: Phase planes along with stable (dashed) and unstable (dotted)
eigenvectors of the Jacobian of the dynamic system (4.17) with Pload = 100kW
(4.10(a)) and 180kW (4.10(b)).

initiated from the SOOP with small, ε, disturbances in the directions of the
eigenvectors. The result of such simulations, corresponding to the situations of
Figure 4.10, are displayed in Figure 4.11.
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Figure 4.11: Simulation derived stable (dashed) and unstable (dotted) mani-
folds of the system (4.17) with Pload = 100kW (4.11(a)) and 180kW (4.11(b)).

The optimal operating point trajectory for an output power step (in this
example 100kW −180kW ) which start and end at the SOOPs of the initial and
terminal output powers, must start by leaving the first SOOP along a path in
the unstable manifold of the earlier autonomous system. At the instant of the
step the operating point must switch to a path in the stable manifold of the
later autonomous system. Since the trajectory must be continuous the operating
point must be at an intersection of these manifolds at the instant of the step.
In general there is only one such intersection, which is easily found from the
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simulated paths. When the point of intersection is found the excess parts of the
simulated paths are cropped of and the time-scales of the simulations behind
Figure 4.11 are adjusted so that a single, continuous, ωe(t),λ1(t) trajectory
is obtained. This trajectory is then the optimal solution. Graphically, this
solution can be found by simply superposing Figure 4.11(a) with Figure 4.11(b)
and cropping of excessive parts of the paths. Figure 4.12 shows the results as
derived with this method (continuous) and with dynamic programming (dashed)
for the upward and downward steps of the slow pulse load case. This solution
can then be translated into an ωe(t),Te(t) trajectory by Equation (4.14).
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Figure 4.12: PMP (continuous) and DP (dashed) derived optimal solutions
for the slow pulse load case.

This method can be expanded to somewhat more complicated load cases. If
the case starts and ends with episodes of constant power, the optimal ωe(t),λ1(t)
trajectory must start with a leaving of the SOOP of the initial output power
along the corresponding unstable manifold, and end with an approach of the
SOOP of the terminal output power along the stable manifold. This is illus-
trated in Figure 4.13 by the solving of the quick pulse load case. This case
consist of 5s at 100kW , 0.8s at 180kW and finally 5s at 100kW . The optimal
trajectory must therefore start with a leaving of the 100kW SOOP along a path
in the corresponding unstable manifold (dotted) and end by approaching the
same SOOP along the stable manifold (dashed). Solving the quick pulse op-
timization problem therefore translates to finding a path in the 180kW phase
plane, as shown in the figure, that starts on the dotted line, ends on the dashed
line and has a transition time tT = 0.8s. If the starting point of the transition
is at ti from the initial SOOP along the unstable manifold, the problem can
be formulated as minti |tT − 0.8|, which is locally convex, making the problem
easily solved. The resulting transition trajectory is indicated in Figure 4.13(a)
by the gray line. In Figure 4.13(b) this solution (continuous) is translated to
an ωe,Te map and compared to the solution derived with DP (dashed).
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Figure 4.13: Illustration of the PMP-method for solving the quick pulse load
case. Figure 4.13(a) shows the stable and unstable 100kW manifolds along with
the 180kW phase plane and the 0.8s, 180kW transition path. In Figure 4.13(b)
the PMP (continuous) and DP (dashed) derived optimal solutions are compared.

4.7.3 Optimal trajectory derivation for the TC-engine
This section expands the method derived in the previous section for use with the
TC-engine. The optimal solutions for the TC-engine is governed by the four
dynamics Equations (4.18) and the static control relation (4.13a). The four
dimensions of this problem means that phase planes can no longer be drawn
and the problem can therefore not be solved graphically.

d

dt
[ωe, λ1, pt, λ2](Pload) (4.18)

The formulation of the torque loss Tt in Equation (4.8) may cause discontinu-
ities in the optimality conditions (4.13) due to the differentiation, which severely
complicates simulation. One solution may be to approximate the discontinuities
with a tangent function. In a step however it can instead be assumed that the
intake pressure will not cross the discontinuity; pt will fulfill pt < pt,set in an
upward step and pt,set < pt in a downward step, so that for steps the discon-
tinuity can be disregarded. In this section, just as in the previous, the upward
high step load case is studied.

In the same way as for the NA-engine, the Jacobian of the system (4.18) is
evaluated at the SOOPs of, in this example, Pload = 100kW and Pload = 180kW
and the eigenvalues are calculated. These show that the SOOPs are saddle
points, since two of the four eigenvalues are positive while the other two are
negative. For the NA-engine, the optimization problem is easily solved since
the trajectories simulated and presented in Figure 4.11 covers the entire stable
and unstable manifolds within the reasonable engine operating region, and the
point of intersection is easily found. For the TC-engine however, each of the
manifolds are two dimensional. Calculation of the complete unstable manifold
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would therefore require infinitely many simulations, initiated from the SOOP
with small disturbances in all directions that are combinations of the eigen-
vectors corresponding to the positive eigenvalues, and vice versa for the stable
manifold. Recall however that the objective is not to find the manifolds, but
only the trajectories within these manifolds that connect the SOOPs of the ini-
tial and terminal Pload. Since the manifolds are two dimensional and the state
space is four dimensional, there is in general a single point at which the mani-
folds intersect, and therefore only one combination of eigenvectors that produce
trajectories that intersect. Since the location of the intersection is unknown, the
problem is reformulated as a problem of finding the combination of eigenvec-
tors that minimizes the minimum distance between the simulated trajectories.
Similar problems are treated for example in Dellnitz et al. (2001). Denoting the
initial and terminal output powers P1 and P2 and using the notation v1,1, v1,2
for the unstable eigenvectors corresponding to P1 and v2,1, v2,2 for the stable
eigenvectors corresponding to P2 the problem is formulated as

min
s1,t1,s2,t2

‖X1(P1, t1)−X2(P2, t2)‖2 (4.19)

0 < [t1,−t2]T , 0 ≤ [s1, s2]T ≤ 2π (4.20)

in which

Xn = [ωe, λ1, pt, λ2]T (Pn, tn), n = 1, 2 (4.21)

are simulated from tn = 0 forward and backward in time with initial conditions
that are small, ε, perturbations from the SOOPs according to

Xn(tn = 0) = XΣ(Pn) + ε
(

sin(sn)vn,1 + cos(sn)vn,2
)
, n = 1, 2 (4.22)

and the components of Xn in (4.19) being scaled with the average of the values
of the component at the two SOOPs. Numerically this is solved as one external
and one internal minimization problem. The external minimizes ‖X1 − X2‖2
over the disturbance direction combination s1, s2. Inside this, with s1, s2 given,
X1(0<t1),X2(t2<0) is simulated and the minimum distance between the tra-
jectories is determined by minimizing ‖X1 −X2‖2 over t1, t2. Each of the two
internal simulations start at t1 = t2 = 0 and proceed until some state leave a
predefined reasonable operating range. If a solution to the problem is found,
the result of (4.19) should approach 0. The resulting point X1(t1) ≈ X2(t2) is
then the intersection of the manifolds. This is the point at which the output
power step occur and the operating point movement switch from one manifold
to the other. Finally the times are shifted so that t1 and t2 coincide with the
instant of the step. The result is a continuous operating point trajectory that
start at XΣ(P1), ends at XΣ(P2) and has the step correctly placed in time.

The method is illustrated by the high step load case. Figure 4.14 shows
the static optimal line (gray), the SOOPs (markers), the unstable (dotted) and
stable (dashed) trajectories and a dark gray line which indicate the position of
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the minimum distance between the trajectories. Figure 4.15 shows the ωe,Te
translated trajectories in an engine map. Figure 4.16 shows the time-adjusted
unstable and stable engine speed and turbo pressure trajectories along with the
DP-derived solution (gray). Typical calculation times experienced for finding
this solution have been around 30s, which is considerably faster than the more
than 2500s needed for finding the solution with dynamic programming. On the
other hand, this method works only for load steps and, since the engine speed
overshoots are larger for the TC-engine than for the NA-engine, at a narrow
output power range.
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Figure 4.14: Intersecting stable (dashed) and unstable (dotted) trajectories for
the high step load case in ωe,pt (Figure 4.14(a)) and λ1,λ2 (Figure 4.14(b))
maps. The minimum distance between the trajectories is marked with gray.
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Figure 4.15: Intersecting stable (dashed) and unstable (dotted) trajectories for
the high step case in an ωe,Te map. Note the minimum distance marker (gray).
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Figure 4.16: PMP-derived (dotted & dashed) compared to DP-derived (gray)
solution for the high step load case. The dark gray lines indicate XΣ(Pload(t)).

4.8 Suboptimal method development
Method for the NA-engine:

As mentioned, DP has several advantages but is slow while the PMP methods
presented above are fast but very restrictive in which load cases can be treated.
Another method which is fast and works for all load cases is desired, even if
the resulting trajectories become suboptimal. Using ωe(t) = ωe,Σ(Pload(t)) is
not possible, since output power steps would then imply engine speed steps.
Inspiration for a method can instead be found in the optimal trajectories, for
example in Figure 4.7. The operating point of the NA-engine seldom move
far from the static optimal line Σ. A natural suboptimal strategy is to keep
the operating point exactly on the line Σ at all times. Such a trajectory can be
found by adding a large cost for deviation from this line to the DP algorithm, but
solving this problem would be as computationally costly as solving the original
problem. Instead start by redefining the static optimal line by introducing
a small inclination in the minimum engine speed, so that at high torque the
minimum speed is somewhat higher, to make Te,Σ(ωe) well defined. The rule

Te(t) = Te,Σ(ωe(t)) (4.23)

then define the control signal, and thereby eliminate the only degree of freedom.
The problem is therefore reduced from an optimization problem to finding the
state and control trajectories that correspond to a set of admissible boundary
conditions. Observe that as long as Te,Σ(ωe) · ωe increase with increasing ωe
applying (4.23) will make the system unstable. This means that at the instant of
an output power step the engine must already have exactly reached the terminal
stationary operating point by a preceding divergence from the initial stationary
operating point, initiated by a small disturbance. Since the system is always
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unstable it can easily be simulated backward in time from an arbitrary terminal
engine speed, for example using the Euler method according to Equation (4.24).

ωe,k−1 = ωe,k −
(
Te,Σ(ωe,k)ωe,k − Pload

ωe,kIe

)
dt (4.24)

This method works well, as illustrated by Table 4.3, for all cases tested. The
table shows fuel usage in the solutions derived with DP and the suboptimal
method, along with typical calculation times experienced. The same x(T ) is
used in both methods and the x(0) from the suboptimal method is used as ini-
tial condition for the DP solving. The last row shows the relative increase in fuel
consumption and reduction of calculation time for the suboptimal method com-
pared to DP. Figure 4.17 shows the suboptimal and optimal engine speed and
torque trajectories. The ωe,Σ(Pload(t)), Te,Σ(Pload(t)) trajectories that would
have been applicable and indeed optimal for an engine with zero inertia Ie are
included as a reference. The figure shows that the engine speed reacts somewhat
later to upcoming load changes in the suboptimal solution than in the optimal.
The example is a cutout from the ’DDP sc’ load case.

Table 4.3: Calculation effort and fuel usage with the suboptimal method.

Fuel usage [ml] Calculation time [s]
DDP ’sc’ DDP ’lc’ DDP ’sc’ DDP ’lc’

Dynamic Programming 152.8 675.9 1270 6480
Suboptimal method 152.9 676.5 0.38 1.89
Relation +.086% +.099% 1 : 3340 1 : 3430
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Figure 4.17: Engine speed and torque. Gray is static optimum
(ωe,Σ(Pload(t)),Te,Σ(Pload(t))), continuous is suboptimal and dashed is optimal.
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Method for the TC-engine:
The expansion to the TC-engine is not trivial. The turbocharger stable in the
forward direction, so it appears unstable in the backward direction and cannot
be included in the simulation (4.24). It is tempting to derive an ωe(t), Te(t)
trajectory while disregarding pt(t), and then simulate (4.7) forward in time
while compensating for Tt with increased mf . Unfortunately this is not possible
for a general load case for this engine. This is most obvious for an upward
step between two SOOPs with ωe,Σ = ωe,min. With this method, and with a
neglectable minimum speed inclination, a step in Pload requires a step in Te,
and thereby inmf . Equations (4.6)-(4.8) indicate that the pt dynamics prevents
making arbitrarily big steps in Te simply by steps inmf . It is therefore necessary
to increase pt in preparation for upcoming output power steps and/or to use
power from the engine inertia Ie. Preparatory increasing of pt has to be done
by altering the engine speed and torque trajectories, possibly deviating from
the static optimal line. The following algorithm is therefore proposed:

1) Find ωe(t),mf (t) either by backward simulation of (4.1) assuming pt,off = 0
or by assuming Ie = τt = 0⇒ ωeTe = Pload, pt,off = 0 with Te = Te,Σ(ωe).

2) Using ωe(t),mf (t) from 1), simulate (4.7) forward in time to find a first
estimate of pt(t), and thereby also of Tt(t).

3) Update ωe(t),Te(t) by simulating (4.1) backward in time while adding the
result form 2) to the load; Te(t) = Te,Σ(ωe)− Tt(t) = Pload

ωe
− dωe

dt Ie.

4) Update mf (t),pt(t),Tt(t) by simulating pt forward in time, in each step solv-
ing Equations (4.1)-(4.6) for mf so that Te = Pload

ωe
− dωe

dt Ie.

If Ie=τt= 0 is assumed in step 1), this step can be performed inside step 2).
After step 4) a feasible ωe(t),pt(t),mf (t) trajectory has been found. This method
works well for all cases tested, as illustrated by Table 4.4. The table shows
the fuel usage in the trajectories derived with DP and the suboptimal method,
along with typical calculation times experienced. The same x(T ) is used in both
methods and the x(0) from the suboptimal method is used as initial condition
for the DP solving. This is also the cause of the high initial engine speed in
Figure 4.7(b). The last row shows the relative increase in fuel consumption and
reduction of calculation time for the suboptimal method compared to DP.

Table 4.4: Calculation effort and fuel usage with the suboptimal method.

Fuel usage [ml] Calculation time [s]
DDP ’sc’ DDP ’lc’ DDP ’sc’ DDP ’lc’

Dynamic Programming 154.8 701.0 6800 38500
Suboptimal method 157.2 725.2 2.10 10.2
Relation +1.54% +3.46% 1 : 3240 1 : 3800
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An example of resulting engine speed and turbo pressure trajectories are
compared to the optimal in Figure 4.18. The example is a cutout from the
’DDP sc’ load case. The figure shows that while the suboptimal engine speed
differs significantly from the optimal, the suboptimal turbo pressure trajectory
is close to the optimal. Since the operating point is forced to leave the static
optimal line, the engine map trajectories for the low and high steps load cases
are also presented in Figure 4.19. In the high step load case the suboptimal and
optimal trajectories are close. In the low step load case, just as in the ’DDP
sc’ case, the engine speed reacts later in preparation for upcoming loads in the
suboptimal solution.

5 6 7 8 9 10 11 12 13 14 15

800

1000

1200

1400

ω
e
  

 [
rp

m
]

5 6 7 8 9 10 11 12 13 14 15
50

100

150

200

250

p
t  

 [
k
P

a
]

Time [s]

Figure 4.18: Engine speed and turbo pressure. Gray is static optimum
(ωe,Σ(Pload(t)),pt,Σ(Pload(t))), continuous is suboptimal and dashed is optimal.
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Figure 4.19: Suboptimal (continuous) and optimal (dashed) trajectories for
the TC-engine in the low (4.19(a)) and high (4.19(b)) step load cases.
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4.9 Discussions and comments

4.9.1 Dynamic programming
The dynamic programming optimization in this chapter is fairly straight-forward.
The result for the naturally aspirated engine is a bit unexpected though; before
output power steps it is optimal to accelerate or decelerate past the upcoming
static optimal engine speed, and approach the new static optimum from the
’wrong’ direction after the step. The motion of the engine operating point is
counter clockwise in all cases studied, so that it travels toward higher engine
speeds below the static optimal line and toward lower speeds above this line.
This differs from the result presented in Pfiffner (2001), in which the operating
point move in a clockwise direction. The clockwise motion however seems to be
caused by a bad choice of initial and terminal states. In this chapter the engine
is forced to start and finish at the static optimal points corresponding to the
initial and terminal output powers, and given sufficient time to move between
these so that the trajectories would not change if more time were added to the
beginning or the end of the load cases. The primary problem with DP, which is
encountered in both engine setups but especially for the turbocharged engine,
is the high calculatory effort. The most obvious way of countering this is to re-
duce the discretization grid densities, though care has to be taken to avoid large
simulation errors and faulty infinite-cost spread (as mentioned in Section 3.2).

4.9.2 PMP based methods
The phase planes in Section 4.7.1 is used to validate the results derived with
dynamic programming and to provide insight into the the mechanisms behind
the trajectories. This insight is enhanced by the actual derivation of optimal
trajectories in Section 4.7.2, and the expansion in Section 4.7.3 which show that
the reasoning is valid also for the TC-engine. The actual solving of the dynamic
optimization problems in this section is also fast, compared to dynamic pro-
gramming. The treatment therefore provide an excellent pedagogic example of
optimization with Pontryagin’s maximum principle. The methods are however
highly restrictive in the load cases which can be treated. The PMP formulation
used does not include the state and control constraints (4.5) and the methods
are only practically usable for output power steps or, for the NA-engine, slightly
more complicated cases.

4.9.3 Suboptimal methods
The developed methods for finding suboptimal solutions works well for both of
the engine setups. In both cases the time for finding a solution is reduced by
a factor > 3000, while the amount of fuel required only increase by < 0.1%
for the NA-engine and < 5% for the TC-engine. It should be noted that in
both cases, and in particular for the TC-engine, finding even a feasible solution



42 Chapter 4. Engine

is not a trivial problem. The developed methods does not require analytic
expressions neither for the engine efficiency nor for the static optimal line. The
only requirements for the NA-engine are that Te,Σ(ωe) is well defined for all
ωe and that Te,Σ(ωe) · ωe is strictly increasing with increasing ωe, so that the
rule (4.23) makes the system unstable.



5

Multi-Mode CVT Drivetrain

Continuously variable transmissions (CVTs) give a large freedom for control of
the engine, but involve two power conversions, each of which produce losses. In
power-split constructions, such as those in Carl et al. (2006) and Gramattico
et al. (2010), this is adressed by transmitting part of the power mechanically.
The most famous power-split device is probably the Toyota Hybrid System of the
Toyota Prius, which is described in Sasaki (1998). The efficiency of such devices
do in general vary with the gear ratio. If high efficiency at widely separated
gear ratios is desired, the power-split CVT can be expanded. Multi-mode CVTs
are constructed so that several power-split layouts can be realized with the
same device, in general by applying and releasing clutches. The continuously
variable component in the device can be of any type, for example belt, electric
or hydraulic. In this chapter a hydraulic multi-mode CVT is evaluated by
comparing the fuel saving potential of this concept with that of the present setup
under deterministic and stochastic loads. The chapter presents the transmission
models, continue with a discussion on the application of dynamic programming
to the two setups and finally present and discuss the results.

5.1 System setup
The system consist of an engine which on one side is connected to the working
hydraulics pump and on the other side to the transmission. Two different types
of transmissions are studied; the reference torque converter/automatic gearbox
transmission and a multi-mode CVT transmission. The engine, the transmission
concepts and the hydraulic pump are described in the following sections.

43
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Engine

The engine used is a turbocharged diesel engine, identical to that presented
in Sections 4.1 and 4.5, though in Equation (4.1) the load torque Pload/ωe is
replaced by the transmission load TT and the hydraulic load TH , according to
Equation (5.1). The reader is referred to Sections 4.1 and 4.5 for details on the
engine model. The relation between the loads TT and TH , and the load cycle
depend both on the transmission setup and on ωe.

dωe(t)
dt

· Ie = Te(t)− TT (t)− TH(t) (5.1)

Reference transmission

The present transmission consist of a torque converter, connected to a four
speed rc ∈ {1, 2, 3, 4} forward/reverse automatic gearbox, which connects to
the drive shaft. The main source of losses in this transmission is the torque
converter, which is modeled according to Equation (5.2). Denote the engine side
connection with index cp and the gearbox side connection with index ct. The
input and output torques of the torque converter depend only on the angular
speeds at the input and output of the device. The torques are calculated from
the maps MP and µ, which have been measured at the reference speed ωc,ref .

νc = ωct
ωcp

(5.2a)

Tcp = MP (νc)
(

ωcp
ωc,ref

)2
(5.2b)

Tct = µ(νc)Tcp (5.2c)

The torque converter is connected to the engine so that ωcp = ωe and Tcp = TT ,
while the relation between ωct and Tct and the load cycle is a fix ratio which
depend on the engaged gear. This layout and model is identical to that used
in Chapter 2 to derive the load cases. The transmission layout is displayed in
Figure 5.1, in which the gray box represent the automatic gearbox.

Figure 5.1: Reference transmission scheme.

MM-CVT transmission

Multi-mode constructions combine several power split setups, thus allowing for
high efficiency at several widely separated gear ratio regions. This thesis studies
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the three mode (Mcvt ∈ {1, 2, 3}) hydrostatic CVT, which is described in the
patent Mattson and Åkerblom (2012) and has a structure similar to that of
devices used in Savaresi et al. (2004), Tanelli et al. (2007) and Lauinger et al.
(2007). The CVT functionality is provided by two hydraulic machines which
together is referred to as the variator. Changing gear ratio within a mode is done
by altering the displacement of the hydraulic machines and switching between
the modes is done by applying and releasing clutches. The proposed layout is
presented in Figure 5.2, in which the dark gray box represents a Ravigneaux
planetary gearset and the light gray box represents a regular planetary gearset.
Regular gears are omitted in the figure. The clutches 1, 2 & 3 are used to select
the mode by applying the one that corresponds to the desired mode Mcvt. The
mechanical structures of the three possible modes are presented in Figure 5.3.

Figure 5.2: Multi-mode CVT scheme.

It is assumed that all axles and cogwheels in the CVT are stiff and massless.
The planetary gearset can then be described by a kinematic condition, a power
balance and a torque balance. Denote the number of cogs by z and use the
indices r for the ring wheel, c for the planetary carrier and s for the sun wheel.
The gearset can the be described by Equation (5.3).

zsωs + zrωr − (zs + zr)ωc = 0 (5.3a)
Tsωs + Trωr + Tcωc = 0 (5.3b)
Ts + Tr + Tc = 0 (5.3c)

A Ravigneaux gearset is a planetary gearset which has been expanded with
an additional sun wheel. The expressions that describe this device is therefore
similar to those for the regular planetary gearset, but include one more kine-
matic condition. By denoting the number of cogs by z and use the indices r for
the ring wheel, c for the planetary carrier, sl for the larger sun wheel and ss for
the smaller sun wheel, this can be expressed according to Equation (5.4).

zslωsl + zrωr − (zsl + zr)ωc = 0 (5.4a)
zssωss − zrωr − (zss − zr)ωc = 0 (5.4b)
Tslωsl + Tssωss + Trωr + Tcωc = 0 (5.4c)
Tsl + Tss + Tr + Tc = 0 (5.4d)
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(a) 1st mode

(b) 2nd mode

(c) 3rd mode

Figure 5.3: Layouts of each of the three modes of the MM-CVT.

The ideal (no-load) relation between variator displacement and overall gear
ratio for the three modes is displayed in Figure 5.4. The overall gear ratio has
been normalized with the maximum gear ratio. Mode shifts are performed at
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the extremals of the variator displacement ratio, and mode shifts at these points
does not change the overall gear ratio for a lossless transmission. At mode shifts
the speed differences over the involved clutches are ideally zero, and therefore
there are no losses in the clutches, which simplifies the models. The main
source of losses in this concept is the variator, which therefore is described in
more detail. Let the index n = 1, 2 denote the two hydraulic machines and use
the notation Dv for the maximum displacement, ψv,n ∈ (0, 1) for the relative
displacement, ωn for the axle speed and Tn for the axle torque of the machines.
Also introduce pv for the variator hydraulic pressure and ηv,1,ηv,2,ηv,3,ηv,4 as
efficiency parameters. The model for this device, which is similar to and based
on models used in Lennevi (1995), can then be expressed as

ψv,1Dvω1 ± pv(2ηv1 + (|ω1|+ |ω2|)ηv,2)− ψv,2Dvω2 = τpv
ṗv (5.5)

ψv,nDvpv − Tn ± (ηv3|ωn|+ ηv4pv) = 0 (5.6)

The signs in the equations depend on the power flow direction. Equation (5.5)
describes hydraulic fluid flow and Equation (5.6) describes torque at each ma-
chine. The variator is constructed so that ψ1 + ψ2 = 1. The variator pressure
dynamics is assumed to be fast compared to the engine dynamics, that is; it
is assumed that the time constant τpv

≈ 0. The pump which powers the CVT
actuators are modeled as a constant torque loss at the transmission input.

The combination of the equations above into relations between the trans-
mission inputs (ωe,TT ) and outputs (ωw,Tw) depend on driving direction, power
flow direction and the engaged mode, as presented in Figure 5.3.

Working hydraulics

The bucket and boom are hydraulically driven. Pressure pH and flow QH of
hydraulic fluid is supplied by a pump which is connected to the engine axle, so
that the pump speed is the same as the engine speed. The pump has a variable
displacement, so that the pressure and flow are not dependent on the engine
speed, apart from the efficiency and that the maximum displacement give a time
dependent lower limit for the speed. It is assumed that the pressure dynamics
are quick compared to other dynamics of the system, and that there are no flow-
losses. Introduce the maximum displacement DH , the relative displacement
ψH ∈ [0, 1] and the efficiency ηH(pH , ψH) of the hydraulic pump. The torque
TH for driving this pump can then be calculated from Equations (5.7) and (5.8).

QH = ψHDHωe (5.7)
QHpH = ηHTHωe (5.8)

The pump efficiency ηH(pH , ψH) is modeled according to

ηH = ηH1ψH + ηH2pHψH + ηH3
√
pHψH (5.9)
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5.2 Problem statement
The problem studied in this chapter is the minimization of the total amount
of fuel used, according to Equation (4.10), while fulfilling the engine dynamics
Equation (5.1), the turbo dynamics Equation (4.7), the constraints (4.5) and
the relevant relations between load cycle and engine load (TT & TH). This also
means that the load trajectories ωw(t), Tw(t), QH(t) and pH(t) will be exactly
followed. Optimization is performed with both deterministic and stochastic
loads. In the stochastic cycles a deterministic load is applied, but optimization
is performed against an uncertain prediction of future loads.

5.3 Load cases
The load cases are specified by the wheel speed ωw, wheel torque Tw, hydraulic
flow QH and hydraulic pressure pH . The derivation of the load cases from
measurement data is described in Chapter 2. The evaluation is based on the
stochastic load case ’SDPmc’, but since one aim is to evaluate the method itself,
the corresponding deterministic case ’DDP mc’ is also used. The averaging
in the creation of these cycles essentially low pass filter the signals, so one
individual cycle from the set is also used; the ’DDP sc’. Along with these the
longer cycle ’DDP lc’ is included in the set of applied load cycles.

5.4 Application of dynamic programming
With the driving cycle description presented in Section 2.2, the dynamics of the
vehicle is in the engine speed and the turbo pressure, regardless of transmission.
These dynamics are described by Equations (4.1) and (4.7). The controls avail-
able, regarless of transmission, is the injected fuel and a possible brake torque.
Additional control signals are choice of gear for the reference vehicle and varia-
tor displacement ratio and choice of mode for the MM-CVT. When formulating
these models in the DP framework a few non-trivial choices emerge, particularly
on which states and controls to actually use when applying a stochastic load.
The choices made in the two setups are discussed here. An analogue analysis is
made for a naturally aspirated engine in Nilsson et al. (2012b).

Application to the reference vehicle

The following argument is written for a single gear but is still valid for this
vehicle since the number of gears is finite and frequent changes are not desired.

Equation (5.2) shows that the torque from the torque converter only depend
on the input and output speeds. A rapid change of output torque therefore
require an equally rapid change of engine speed. The rate of engine speed change
is limited by the engine inertia, as described by Equation (5.1). Therefore the
inertia also limit the rate of output torque change dTct

dt . Faster output torque
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changes requires preparatory increase of the engine speed, while the produced
excess torque must be balanced by the brakes. Fast torque reductions must in
the same way be smoothened by the brakes. In the deterministic load cases
this is seldom a problem, especially since the load cases has been derived from
measurements performed with a torque converter vehicle. In the stochastic load
case the probabilities are independent, as stated in Equation (2.2). This can be
interpreted as a perpetual possibility of steps in the stochastic load components,
while failure to fulfill any of the applied load combinations yield an infinite cost.
The engine speed must therefore always be high enough to manage the most
demanding possible future load, thus in general be higher than made necessary
by the actual load. The transmission output torque will therefore in general also
be higher than the load torque, and the brakes will have to be applied almost
continuously, producing unrealistic losses in both torque converter and brakes.

An alternative is to assume that the engine can change speed instantly by
assuming zero inertia, Ie = 0, in Equation (5.1). The engine speed will then be
implicitly given by the load and the selected gear, and will not be a state of the
system. This choice can be expected to cause an underestimation of the fuel
requirement for this vehicle, and thereby also of the increase in potential when
changing to an MM-CVT transmission. This underestimation is considered less
severe than a possible overestimation. The Ie = 0 assumption will inevitably
lead to non-physical engine speed changes. Since this model is primarily in-
tended as a fuel consumption reference for the MM-CVT vehicle, it was decided
that this is to be preferred over constant use of the brakes.

Since there is no engine inertia and this vehicle may not loose speed nor
lack thrust for any time, instant gear changes are assumed and the clutch losses
are disregarded by not associating any fuel use to these, which will cause an
underestimation of the fuel needed for this vehicle. A small ( 1% of maxmf )
cost for changing gear is added to J though, to prevent excessive gear changes.

The states for the reference vehicle are therefore gear rc and turbo pressure
pt and the controls are injected fuel mf , brake torque Tb and gear change ∆rc.

Table 5.1: Reference vehicle states and controls.

DDP SDP
States X rc,pt rc,pt
Controls U mf ,Tb,∆rc mf ,Tb,∆rc

Application to the MM-CVT vehicle

Since the driving cycle specify the vehicle speed, an engine speed trajectory is
equivalent to a gear ratio trajectory. The relation presented in Figure 5.4 can
therefore be interpreted as a relation between CVT mode, variator displacement
ratio and engine speed; ωe(ψv,1,Mcvt). Therefore all of these cannot be states,
or the system will be overdetermined. The function ωe(ψv,1) is invertible within
the allowed operating region, so that within a CVT-mode the choice of ωe or
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ψv,1 as state is equivalent. The possibility of restrictions on dψv,1
dt , especially

during mode-shifts, points to using ψv,1 as state. Since one of the hydraulic
machines speeds up when ψv,1 gets close to 0 or 1, the losses increase in these
regions. Because of this it is desirable to have higher state grid density near
the extremes of ψv,1, which also points to using ψv,1 as state. The dynamics
however are described in terms of ωe, so using ψv,1 as state imply the following
scheme for the simulations in the calculation of the cost-to-go map J(X, t):

ψv,1(tk+1)ωe(tk+1)
Wκ

ωe(tk)
dωe

dt
ψv,1(tk)

Wk

In the first and last steps the load is required, since ωe(ψv,1) depend on the
load. At the last step a choice has to be made whether to use κ = k or κ = k+1.
Using κ = k does not guarantee continuity in ωe and makes it possible for the
optimizer to draw a net power from the engine inertia. This is illustrated
in Figure 5.5 by the solution to the ’SDP sc’ load case, as calculated with
ψv,1,Mcvt and ωe as states. The figure shows ωe(tk) and ωe(tk+1) trajectories,
which should coincide for the engine speed to be continuous. κ = k + 1 on the
other hand guarantees continuous ωe, but causes a quadratic increase in the
number of possible load combinations in the stochastic case. Even though a
small load variation space (33 combinations) is used, the quadratic increase in
combinations would cause an unacceptable increase in calculation effort. This
means that for SDP it is not practical to use ψv,1 as a state.
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Figure 5.5: The top two figures show the engine speeds ωe,k (continuous) and
ωe,k+1 (dotted) for ψv,1,Mcvt(top) and ωe (middle) as state. The bottom figure
shows the speed errors for the two alternatives.

The choice of ψv,1 as a state would require thatMcvt is also used as at state.
As Figure 5.4 indicate, the function ωe(ψv,1,Mcvt) is invertible except exactly at
the mode switching points. When load is applied, the regions at whichMcvt(ωe)
is not well defined may no longer be infinitesimal. Mcvt should therefore be a
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state also if ωe is used as a state. Still, since the regions at which Mcvt(ωe) may
not be well defined are small, the state Mcvt is skipped and in ambiguous cases
the Mcvt which give highest efficiency is used. In Section 5.1 it is assumed that
the speed differences over the clutches are zero at mode changes. Mode changes
are therefore only allowed at the extremes of ψv,1, but since mode changes are
not explicitly controlled, this is has to be verified in the results.

In DDP the choice is made to use ψv,1,Mcvt as states, while in SDP ωe is
used as state. The turbo pressure pt is a state in both DDP and SDP. The fuel
injection mf is a control signal in both DDP and SDP, and in DDP the change
of mode ∆Mcvt is also used as a control signal.

Table 5.2: MM-CVT vehicle states and controls.

DDP SDP
States X ψv,1,Mcvt,pt ωe,pt
Controls U mf ,∆Mcvt mf

5.5 Optimization results
5.5.1 General results
The reason for introducing the multi-mode CVT transmission is to increase the
potential for fuel consumption reduction. The minimum fuel requirement for
the two transmission concepts in the four driving cycles ’DDP mc’, ’SDP mc’,
’DDP sc’ and ’DDP lc’ is presented in Table 5.3. The fuel saving potential is
consistently around 17% higher for the MM-CVT transmission. The saving in
the ’DDP mc’ loadcase is roughly the same as that in the ’SDP mc’ load case.
This indicates that the MM-CVT transmission is not more sensitive than the
present transmission to roughnesses nor to prediction uncertainties.

Table 5.3: Reference and MM-CVT vehicle fuel usage.

Reference [ml] MM-CVT [ml] Saving [%]
DDP mc 203 170 16.3
SDP mc 210 174 17.1
DDP sc 225 187 16.9
DDP lc 932 772 17.2

5.5.2 Reference vehicle ’SDP mc’ results
Figures 5.6 and 5.7 presents the state and control trajectories for the reference
vehicle. The states are gear and turbo pressure, with the set pressure indicated
by the dotted line. Since the speed is low in this cycle, the vehicle is at higher
than second gear only briefly at 17s into the cycle. Despite the cost associated
to gear changes, these are still frequent. These could have been suppressed
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further by increasing this cost, but this artificial cost would then risk obscuring
the true loss mechanisms. The controls are injected fuel and brake torque. The
brake is applied primarily at around 14 − 15s but also briefly at 20s. At both
these instances there is an infinite cost associated to low turbo pressure. The
brake is applied since the additional torque translates to increased engine speed,
which also result in higher intake set pressure, thus avoiding the infinite cost.
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Figure 5.6: Reference vehicle state trajectories for the ’SDP mc’ load case.
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Figure 5.7: Reference vehicle control trajectories for the ’SDP mc’ load case.

Figure 5.8 presents the engine speed, torque and turbo pressure for the refer-
ence vehicle. The dotted lines in the engine speed figure indicate the minimum
speeds which are given by the maximum pump displacement and the three al-
ternative hydraulics flows in the cost-to-go map calculation. The alternative in
the middle, which is dashed, is that which is actually applied in the subsequent
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optimal path simulation. At general the engine speed is above the highest al-
ternative, but at around 23s it briefly goes below this limit. In the calculation
of the cost-to-go map, this would have produced an infinite cost, but since the
engine speed is not a state this is not explicitly linked to an infinite cost in the
later forward simulation. Comparing Figure 5.8 to Figure 5.6 shows that at
around 13s and 23s the hydraulics flow causes shifts to a lower gear. At both
of these instances the engine speed peaks at just above 2000rpm.
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Figure 5.8: Reference vehicle engine trajectories for the ’SDP mc’ load case.

Figure 5.9 presents the speed, torque and power at the input and output of
the torque converter of the reference vehicle. The continuous lines show input
(engine) side and the dotted show output (gearbox) side. As expected, the
losses are the highest at the bucket filling between 4s and 9s, during which time
the vehicle speed is low and the required tractive effort is high.
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Figure 5.9: Reference vehicle transmission trajectories for the ’SDP mc case.



54 Chapter 5. Multi-Mode CVT Drivetrain

5.5.3 MM-CVT vehicle ’SDP mc’ results
Figures 5.10 and 5.11 shows the state and control trajectories for the MM-CVT
vehicle. The states are engine speed and turbo pressure. The turbo pressure set
point is indicated with a dotted line. This set pressure is smoother for the MM-
CVT than for the reference vehicle, as shown in Figure 5.6. The only control
signal is the injected fuel, though Figure 5.11 also shows the engine torque.
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Figure 5.10: MM-CVT vehicle state trajectories for the ’SDP mc’ load case.
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Figure 5.11: MM-CVT vehicle control trajectories for the ’SDP mc’ load case.

Figure 5.12 shows engine speed, torque and turbo pressure for the MM-
CVT vehicle. Along with the engine speed, the minimum speeds as given by
the hydraulic pump displacement and alternative flows, are indicated by the
dotted lines. The dashed alternative is that which is applied in the optimal path
simulation. Unlike for the reference vehicle, the engine speed is never lower than
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the highest alternative since the engine speed is a state, and therefore there can
be an infinite cost directly associated to speeds below this limit. The engine
speed is below 1500rpm for the duration of the cycle.
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Figure 5.12: MM-CVT vehicle engine trajectories for the ’SDP mc’ load case.

Figure 5.13 presents the variator displacement ratio, CVT-mode and speed
differences in the mode-clutches. Most of the time the vehicle operate at the
lowest mode, with a few excursions to the second mode. The variator displace-
ment trajectory is continuous and at its extreme at mode changes, as required
for using the engine speed as state. At the mode changes the speed differences
in the involved clutches are close to zero, as assumed in the loss model.
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Figure 5.13: MM-CVT vehicle CVT trajectories for the ’SDP mc’ load case.

Figure 5.14 presents the speed, torque and power at the input and output of
the CVT for the MM-CVT vehicle. The continuous lines show input (engine)
side and the dotted show output (driveshaft) side. Comparing this figure to
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Figure 5.9 shows that the transmission efficiency is higher for the MM-CVT
vehicle, especially during the bucket filling at 4s to 9s.
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Figure 5.14: MM-CVT vehicle CVT trajectories for the ’SDP mc’ load case.

5.5.4 Reference/MM-CVT comparison
The engine speed, torque and turbo pressure for the reference and MM-CVT
vehicles in the ’SDP mc’ load case are compared in Figure 5.15. Though the
torques are similar for most of the time, the engine speed and turbo pressure
are in general higher for the reference vehicle. Figure 5.16 presents the effi-
ciencies and losses for the two concepts, divided into engine, transmission and
hydraulics pump. The efficiencies can be increased and the losses reduced in
all three presented components by changing from the present transmission to
the proposed MM-CVT alternative. First, the CVT provide an increased free-
dom in the choice of engine operating point. This means that the mean engine
efficiency can be increased. Since the engine used has a quite flat efficiency
map, the mean efficiency increase is quite small (from 36.4% to 37.7%), but
due to the high average output power this still correspond to more than 30kW
loss reduction (from 173kW to 140kW ). Second, the removal of the torque
converter reduces the average transmission losses by more than three quarters
(from 16.0kW to 3.95kW ), and increase the efficiency from 72.1% to 92.1%.
About one fifteenth of the reference vehicle transmission losses are caused by
braking and the rest is losses in the torque converter. It should be noted that
more than one third of the MM-CVT transmission losses is caused by the trans-
mission actuator pump, and stressed once again that the reference vehicle do
not have any clutch losses. The third effect is that more efficient operating
points, which is at high displacement and low engine speed, can be selected for
the working hydraulics pump. The average pump efficiency is increased from
70.2% to 75.0%, reducing the average loss from 11.1kW to 8.65kW . Similar
values are experienced for all four load cases, except for the average hydraulics
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pump loss which is significantly smaller in the ’DDP lc’ load case. In this case
the longer transports reduce the proportion of the cycle in which the hydraulics
are used, and thereby also the average hydraulic output and loss powers.
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Figure 5.15: Reference/MM-CVT vehicle engine operation comparison for the
’SDP mc’ load case. Dotted is Reference vehicle and continuous is MM-CVT.
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Figure 5.16: Reference/MM-CVT vehicle efficiency and loss comparison

5.5.5 DDP/SDP comparison
Figure 5.17 shows the engine speed, torque and turbo pressure, and Figure 5.18
shows the engaged gear and torque converter power loss, for the reference vehilce
in the stochastic ’SDP mc’ (continuous) and deterministic ’DDP mc’ (dotted)
load cases. The gear used in the DDP cycle is always equal to or higher than in
the SDP cycle. The result is lower engine speed, which is most clearly visible
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in that the peaks at 13s and 23s do not occur for the deterministic solution.
Because of this, the turbo pressure immediately after these instances is lower
in the DDP solution. The higher engine speed at the regions at 15s and 20s in
the SDP solution also cause higher transmission losses at these instances. Much
of the additional SDP losses are caused by braking, since in the DDP case the
vehicle only make a few minor brake pulses in the region 16s to 24s.
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Figure 5.17: Reference vehicle engine operation comparison for the ’DDP mc’
and ’SDP mc’ load cases. Continuous is SDP and dotted is DDP.
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Figure 5.18: Reference vehicle transmission operation comparison for the
’DDP mc’ and ’SDP mc’ load cases. Continuous is SDP and dotted is DDP.

The engine speed, torque and turbo pressure for the MM-CVT vehicle in
the stochastic ’SDP mc’ and deterministic ’DDP mc’ load cases are compared
in Figure 5.19. In Figure 5.20 the variator displacement ratio and CVT-mode
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for the same vehicle and cycles are compared. The dotted lines are the deter-
ministic and the continuous are the stochastic solution. In the deterministic
case the engine speed is in general somewhat lower. The engine torque varies
more rapidly in the deterministic case. This is due to the several possible load
alternatives in the SDP load case making the cost-to-go map for this case less
rugged. The most visible difference is however that in the deterministic case
the vehicle change to second CVT-mode later, as seen around 2s and 22s, but
spend more time at this mode, at around 23s, and make one additional second
mode excursion at around 13s.
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Figure 5.19: Comparison of the MM-CVT vehicle engine operation in the
’DDP mc’ and ’SDP mc’ load cases. Continuous is SDP and dotted is DDP.
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Figure 5.20: Comparison of the MM-CVT vehicle CVT operation in the ’DDP
mc’ and ’SDP mc’ load cases. Continuous is SDP and dotted is DDP.
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5.6 Discussion and comments
5.6.1 Optimization
The optimization in Chapter 5 is more intricate than in Chapter 4, especially in
the choice of states. Intuitively the engine speed and turbo pressure should be
used as a states for both vehicles. For the reference vehicle the engine speed can
also be calculated from the output torque, making the system overdetermined.
Since an underestimaton of the reference vehicle fuel consumption, and thereby
of the potential increase of the MM-CVT vehicle, is considered less severe than
an overestimation, this is solved by assuming zero engine inertia and not using
the engine speed as state. For the MM-CVT vehicle the variator displacement
ratio is for several reasons preferred as state instead of the engine speed. In the
stochastic case this could only be realized to an extreme increase in calculatory
effort, and therefore this ratio is used as state only in the deterministic case.

The results of the deterministic and stochastic loads differ somewhat for
both transmissions. The most pronounced differences are that the engine speed
and turbo pressure are in general higher for the stochastic load. The differences
follow expectations, which supports the applied stochastic load formulation. It
was decided that SDP is a method that suits the transmission evaluation of
Chapter 5 since it combines the benefits of DDP; simplicity and guaranteed
global optimality, with easily controlled disturbances.

5.6.2 MM-CVT potential increase
Since dynamic optimization has been used on both transmission concepts and
effort has been made not to overestimate the fuel consumption of the reference
vehicle, it can with a high degree of certainty be stated that the increase in fuel
saving potential by changing the transmission is no less than 15% (Table 5.3).

The concept provide an increase in engine efficiency from 36.4% to 37.7%.
The mean value of the maximum engine efficiency of the instantaneous output
power is 38.5% while the maximum efficiency of the engine at the mean ouput
power is just above 40.5%. This shows that there is still an unexploited potential
for fuel consumption reduction. The concept does however reduce the transmis-
sion losses by more than three quarters, and allows for conciderable engine and
hydraulics pump efficiency improvements. The efficiency of the system increase
from 27% to 32% and the fuel requirement is reduced by more than 15%. The
performed analysis also indicate that the potential of the MM-CVT concept is
not more sensitive to prediction uncertainties, cycle smoothness or cycle length
than the present transmission. Introducing the proposed MM-CVT may lead to
savings far greater than 15%, due to the prioritization of driveability over fuel
efficiency in the present transmission, this has not been exploited though since
that would make an unfair comparison. On the other hand, the MM-CVT con-
cept requires active control, contrary to the present transmission. Any further
analysis should therefore include an evaluation of different controller concepts.
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Conclusions

6.1 Methods used and developed
Dynamic programming

Dynamic programming is used in both Chapter 4 and Chapter 5. This method
and the resulting solutions has several important benefits, but the calculatory
effort is high, and increase fast with the number of states and control signals. In
Chapter 4 dynamic programming is primarily used as a baseline method for eval-
uation of the other trajectory derivation methods developed. In Chapter 5 both
stochastic and deterministic dynamic programming is used in the evaluation of
a transmission concept. The introduction of a stochastic load is motivated by a
need for evaluating the sensitivity to prediction uncertainties, but the stochas-
tic load formulation also highly affect the solving of the dynamic optimization
problem in that restrictions is imposed on which states of the system that can
be used as states in the optimization.

PMP based methods

Section 4.7 presents methods based on Pontryagin’s maximum principle (PMP)
for finding optimal state and control trajectories. These methods are fast com-
pared to dynamic programming, but difficult to apply in practice due to the
severe restrictions on the load cases that can be treated. The methods do on
the other hand provide an excellent pedagogic example of dynamic optimization
with Pontryagin’s maximum principle, which for the naturally aspirated engine
includes visualization by phase planes.
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Suboptimal methods

Due to the high calculatory effort of dynamic programming and the load case
restrictions of the developed PMP based methods, alternative methods are de-
sired. In Section 4.8 such suboptimal methods for both the naturally aspirated
and the turbocharged engines are presented. These are close to optimality while
being extremely fast and not restricting on the load case applied. The methods
are still non-causal and require a load prediction, but follows this load exactly.

6.2 MM-CVT transmission
The evaluation presented in Chapter 5 shows that the MM-CVT concept has
at least 15% lower minimum fuel consumption than the torque converter/auto-
matic gearbox reference drivetrain. That is, a vehicle with the MM-CVT trans-
mission requires 15% less fuel than a vehicle with the reference transmission for
performing exactly the same driving mission, as specified in Section 2.2. The
evaluation also show that this potential is not sensitive to prediction uncertain-
ties, cycle smoothness or cycle length. The efficiency improvements are made
by better choice of operating points for the engine and hydraulics pump and
higher transmission efficiency due to the ellimination of the torque converter.
The transmission losses are reduced by more than three quarters, though the
largest power-loss reduction is caused by more efficient engine operation.

The fuel saving potential of the MM-CVT is greater than the presented 15%
since the reference transmission is not controlled according to the optimal as
presented in Chapter 5, due to lack of prediction and prioritization of driveabil-
ity over fuel consumption. The flexibility of the torque converter, on the other
hand, makes it possible to run the present drivetrain with little active control,
while the MM-CVT concept will not be operable without active control. Due to
the decisive importance of the controller, any further analysis of the MM-CVT
concept should include investigation of performance, requirements and applica-
bility of different controller concepts. The methods and results of Chapter 5
can in that case be used for benchmarking of such controllers.
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