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Abstract

The aim of this study is to describe the behaviour of the pressure in the
Common Rail Diesel Injection System mathematically. In order to under-
stand the wave phenomena that may occur in the system, a physical model
is desired. The model will be used for examining the cause of problems
in the OM613 Common Rail Diesel Injection Engine that arise at certain
critical working conditions. Another object of a model of the system is to
use it together with a model of the injector for diagnosis purposes.

Two different modelling methods are used and both models are based on
well known physical relations. The first approach implies that the pressure
waves are approximated with mechanical waves in a mass spring system.
The model developed by this method does not describe the measured data
very well, which mainly depend on too inaccurate estimations of physical
parameters. The second method is developed from the general wave equa-
tion. This model describes the system more strictly and presents accordingly
much better results than the first model. For the above explained purposes
the latter model is recommended. Simulations show satisfactory results but
improvements are naturally possible.

Since the models are developed for a certain working point they can
not be expected to be valid for all working conditions. When the physical
parameters for the critical working point becomes clear, a new model can
be generated out of the first one by only correcting a few constants.
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ii Notation

Notation

General Symbols

K compressibility constant
ρ density
p pressure
p0 equilibrium pressure
xi(t) state variable
ẋi(t) time derivative of the state variable
ui(t) input signal
yi(t) output signal
ξ(t) displacement from an equilibrium position
fri frequencies of possible standing waves in the rail
fpi frequencies of possible standing waves in the pump pipe
fii frequencies of possible standing waves in the injection pipes
v speed of the wave
k harmonic number
lr length of the rail
λri wave length of the possible standing waves in the rail
L inductance
C capacitance
R resistance
i(t) current
u(t) voltage
v(t) velocity
V volume
A cross section area

Symbols used in the mass spring model

c damping constant
F(t) force
Ainj cross section area of the injector pipe
Arail cross section area of the rail
Vrail volume of the rail
l length of an uneffected spring
k spring constant
m mass



Notation iii

Symbols used in the wave equation model

η dynamic viscosity
c speed of the wave
s condensation
R damping constant

Abbreviations

CR Common Rail
CDI Common Rail Diesel Injection
ECU Engine Control Unit
DI Direct Injection
IDI Indirect Injection
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1 Introduction 1

1 Introduction

1.1 Background

The Common Rail Diesel Injection System (CR System) is a relative new
injection system for passenger cars. The main advantage of this injection
system compared to others is that due to the high pressure in the system
and the electromagnetically controlled injectors it is possible to inject the
correct amounts of fuel at exactly the right moment. This implies lower fuel
consumption and less emissions.

However at certain working conditions (i.e. different combinations of en-
gine speed and pressure) the OM613 Common Rail Diesel Injection (CDI)
Engine does not run smoothly. The reason may be that there is a significant
difference in the injected fuel quantities among the injectors. Measurements
show that the pressure at the injectors differ in behaviour, which may ex-
plain the varying injected amounts. The system can be described by su-
perposition of many different pressure waves and a wave phenomenon may
be present. If it is known how the total pressure wave along the common
rail (which from now on will be named rail only) behaves, it may be possi-
ble to avoid the varying injected amount by either controlling the injectors
separately or by moving the injector pipes to more favourable locations.

1.2 The thesis

This thesis is a study of the pressure waves generated in the Common Rail
Diesel Injection System. The main aim of the thesis is to explain the be-
haviour of the pressure waves in the high pressure accumulator (rail) by
developing a physical model of the real system in Simulink[1]. The pur-
pose of the model is to get more information about what the total pressure
wave in the rail looks like and to find out if wave phenomena, as for in-
stance standing waves, are present in the rail. A further developed model
may be used to supervise the function of the injections. To make sure that
the model is possible to implement in a car, it is kept as simple as possible.

The system is very complex and therefore some approximations are nec-
essary and the study is also limited to include normal operation behaviour
of the system and static working conditions only.

1.3 Methods

Since the model is a physical model of the real system, all the equations are
based on well known physical laws as the wave equation, Newton’s laws etc.
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The system is divided into subsystems in order to explain the behaviour of
the whole system as accurately as possible.

Two different approaches are used. In the first method the system is
approximated with a mass spring system which is modelled by using bond-
graphs to structure the problem. The other approach is more strict and
it generates a model from the continuous partial differential equation that
describes the propagation of waves, the general wave equation. As a sim-
plification the model is lumped by making the partial differential equation
discrete. Boundary conditions that describe the physical behaviour at the
ends of the rail, are determined and finally input signals are added to the
system. Both models are implemented in Simulink.

1.4 Thesis Outline

The report is structured in the following way:

Chapter 2, The Common Rail Diesel Injection System A description
of the CR System is given and its function is explained.

Chapter 3, The Common Rail Diesel Injection System from a modelling point of view
The CR System is described from a modelling point of view. The in-
put signals to the system and the validation signal are discussed and
analysed.

Chapter 4, The mass spring method The mass spring modelling method
is explained and the results are discussed.

Chapter 5, The wave equation method The modelling method based
on the general wave equation is described and the results are analysed.

Chapter 6, An extension of the model A suggestion about how the
model can be used at other working points than the one it was devel-
oped for, is presented.

Chapter 7, Conclusions Conclusions are drawn and recommendations
are given.
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2 The Common Rail Diesel Injection System

The CR System (figure 2.1) is an accumulator injection system used in
passenger cars of Mercedes-Benz. It provides more flexibility than any pre-
viously used injection system, but it also needs to handle much higher pres-
sure. A brief introduction to this system follows, but further information
about this system can be found in [2].

Figure 2.1: The Common Rail Diesel Injection System.

2.1 Injection systems

The CR System is an injection system used in direct-injection engines. It is
common to differentiate between direct-injection (DI) engines and indirect-
injection (IDI) engines. In IDI engines the fuel is injected into a prechamber
in which the combustion is initiated [2]. In the DI engines the fuel is in-
jected directly into the cylinder’s combustion chamber. DI engines feature
fuel savings of up to 20 percent compared with IDI engines, but the latter
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generates less noise than the former. The advantage of the CR System is
the high pressure in the rail, which makes it possible to use precise and
highly flexible injection processes. Other injection systems are the VP44
radial-piston distributor pump and the PE in-line injection pump. The first
system is an electronic diesel control (EDC) injection system in which the
injections are controlled by a solenoid valve. Both the duration of the injec-
tion and the injected amount of fuel depend upon the time the valve is open
and the system is accordingly named time-controlled injection system. In
this system fuel supply, high pressure generation and fuel distribution are
all combined in one component. The PE inline injection pump creates high
pressure for each cylinder in its own high-pressure chamber. The system
is called a helix-controlled injection system, since the duration of injections
and the injected fuel quantity are functions of the position of the so-called
helix with reference to a spill port. This system is suitable for providing
large injected fuel amounts, which makes it commonly used in heavy truck
engines.

The CR System system can be divided into three different functional
groups

• The high pressure circuit

• The low pressure circuit

• The ECU (Engine Control Unit) with sensors

2.2 The high pressure circuit

The high pressure circuit contains a high-pressure pump, a pressure-control
valve, a high pressure accumulator (the rail) with a rail-pressure sensor,
high pressure connection lines and the injectors (see figure 2.1). This part
of the CR System is responsible for generating a stable high pressure level
in the rail and for injecting the fuel into the engine’s combustion cham-
bers. The high-pressure pump forces the fuel into the rail and generates
a maximum pressure of 1350 bar. There is one injector for each cylinder
and the injectors contain a solenoid valve which receives a current signal
as an ’open’ command from the ECU at the time for injection. Every time
an injection occurs, fuel is taken from the rail. The pressure control valve
attempts to keep the pressure at the desired level. This control is based on
measurements from the rail pressure sensor.
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2.3 The low pressure circuit

The low pressure circuit provides the high pressure part with fuel. The fuel
is drawn out of the tank by a pre-supply pump and forced through the lines
and through a fuel filter to the high-pressure pump in the high pressure
circuit. Uninjected fuel from the rail is led back to the tank through the
pressure control valve.

2.4 The ECU with sensors

The ECU evaluates signals from different sensors and supervises the correct
functioning of the injection system as a whole. The main tasks for the ECU
in the CR System are to keep the pressure in the rail at a desired level by
controlling the pressure control valve, and to start and terminate the actual
injection processes. Some of the quantities that the ECU calculates from
the sensor measurements (e.g. rail pressure, engine speed, accelerator-pedal
position and air temperature) are the correct quantities for fuel injections
and the optimal start and duration of the injections.
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3 The Common Rail Diesel Injection System from
a modelling point of view

The CR System has already been modelled by using neural networks [3].
For this method a huge number of data-sets is needed to get reliable results.
The idea of modelling the system physically was brought up in order to
develop a method to estimate the injected fuel quantities as well as to find
out more about the wave phenomena in the rail.

In this chapter, the physical behaviour of the different parts of the system
will be described. The desired properties of the model are also stated here.

3.1 The aim of the model and the desired properties

The main aim of the model is to explain the behaviour of the pressure waves
in the high pressure accumulator of the system. The desired information
is pressure signals from points along the rail. By comparing these signals
it may be possible to understand why the measured pressure signals at the
injectors differ. If a standing wave phenomenon is present, it would be
shown in the model as well.

Since points along the rail are most interesting, the waves in the system
are approximated to only propagate in one dimension. The model is devel-
oped for the working point with an engine speed of 2300 rpm, a pressure
level in the rail of 800 bar and a temperature of 40.5◦, and then an analysis
is made to examine the domain of validity. The flow of the fuel in the rail is
neglected in comparison with the speed of a pressure wave in the fuel. This
can be done since the speed of the pressure wave is so high (i.e. between
1350-1480 m/s depending on the working conditions).

3.2 Measured signals used in the model

A general description of the model with input and output signals is given in
figure 3.1. The pump signal is a pressure signal measured at the end of the
rail where the pipe from the pump is connected, when the system is running
normally except that there are no injections. This signal is used as an input
to the system at this point. The injection signals are measured at the valve
ends of the injection pipes. The signal from one injector pipe (the sixth) is
used as input at all the 6 points where the injection pipes are connected to
the main rail. The reason for this is that, apart from a time delay, these
signals are supposed to be equal. The result of the difference in the signals
is not of interest in this study. The aim is to find out what happens in the
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The model

Injection signals

 Pump signal

modeled pressure 
signals 

Validation

Inputs Outputs

Rail signal

u1(t)

u2(t)

u3(t)

u4(t)

u5(t)

u6(t)

u7(t)

y1(t)

y2(t)

y3(t)

yn(t)

yn-1(t)

.

.

.

.

Figure 3.1: A general picture of the model with input and output signals.

rail when everything works properly. The rail signal is measured by the
same sensor as the pump signal but with injections. This signal is the only
available validation signal. The pressure at points along the rail are outputs
from the model. It is interesting to compare these outputs with the injection
signals to see that the general shape of the signals are the same. Frequencies
above 2000 Hz are considered as noice and all the measured data sets are
lowpass filtered with this cut-off frequency before they are used.

3.2.1 The pump

The high pressure pump, shown in figure 3.2, is connected to the camshaft
and therefore driven with half the engine speed. It contains three pump
plungers which are pumping fuel into the high pressure pipe that leads to
the main rail. In an ideal situation the pressure signal from the pump
would have been a constant signal. In reality the signal contains mainly
three sinus-waves with different phase. The main frequency of this signal is
therefore three times the frequency of the pump (i.e. the frequency of half
the engine speed), which means around 57 Hz at an engine speed of 2300
rpm 1. The sinus waves derive from the motions of the pump plungers in
the pump. The pump signal is shown in figure 3.3.

1( 3·N
2·60 )Hz = ( 3·2300

2·60 )Hz = 57.5Hz, where N is engine speed.
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Figure 3.2: The high pressure pump.
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Figure 3.3: The pump signal.

3.2.2 The pressure control valve

The pressure control valve at the end of the rail is electromagnetic and it
is controlled by a rectangular pulse signal from the ECU. The frequency of
the signal is always around 1000 Hz, but the duty cycle, the relative width
of the pulses (see figure 3.4), depends on the mean pressure at each working
point. The ECU gets information about the pressure level from the sensor in
the rail and calculates an adequate pulse width. The current pulse from the
ECU controls a ball that is located in the middle of the opening as figure 3.5



3 The Common Rail Diesel Injection System from a modelling
point of view 9

pulse width

period

Figure 3.4: The duty cycle c of the signal, where c = (pulsewidth
period ).

shows. For a certain pressure level the ball is expected to stand still since
the frequency of the pulses is quite high. Nevertheless a 1000 Hz frequency
component is found when frequency analyses of the pump signal and the
rail signal are made. It can be assumed that this derives from the current
pulse. The reader is referred to subsection 3.6 for a further discussion about
the frequencies.

3.2.3 The injectors

The injectors are responsible for injecting fuel into the combustion chamber.
The amount of injected fuel and the time for injections are determined by
the ECU and control signals are sent to the electromagnet in the injector

Figure 3.5: The pressure control valve.
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(see figure 3.6). The opening and closing of the valve in the injector are
then controlled by the electromagnet. First there is a pilot injection and

Figure 3.6: An injector.

then a main injection. Since the valve in the injector is closed very quickly,
a so-called water hammer is formed in the injector pipe. This phenomenon
will be described briefly here, for a more detailed explanation the reader is
referred to [4].

The water hammer is created when a valve is closed quickly in a pipe.
To be able to describe the phenomenon the flow of the fluid can not be
neglected. Consider the valve in the injector to be open and a flow in the
injector pipe. There is an initial pressure p0 and an initial velocity v in the
pipe as shown in (figure 3.7a). Suddenly the valve is closed, which creates
a pressure wave that travels toward the main rail. The fluid between the
wave and the valve will be at rest but the fluid between the wave and the
rail will still have the initial velocity v (figure 3.7b). When the wave reaches
the main rail the whole pipe will have the pressure p0+∆p, but the pressure
in the rail will still be p0. This imbalance of pressure makes the fuel flow
from the pipe back to the rail with the velocity v and a new pressure wave is
created and it travels toward the valve end of the pipe (figure 3.7c). When
the wave reaches the end, the fluid is still flowing. The pressure at this point
will be less than the initial value, p0 − ∆p. This leads to a rarefied wave
of pressure in the other direction (figure 3.7d). When this wave reaches
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Figure 3.7: The water hammer phenomenon.

the rail, the pipe will have a pressure less than that in the rail. There is
an imbalance in pressure again and the process repeats itself in a periodic
manner (figures 3.7e and 3.7f). The result is an oscillation which is damped

p0

 p

 t
          t=0

Figure 3.8: Oscillations near the valve caused by the water hammer phe-
nomenon.

because of viscous effects as figure 3.8 shows. First when an injection occurs
the valve opens and there is a pressure drop as result. Then the valve is
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Figure 3.9: Measured pressure near an injector during injection.

closed quickly and the water hammer phenomenon appears. Because of the
pilot and the main injection the pressure signal gets an appearance of two
damped oscillations after each other as shown in figure 3.9.

A model of the injection pipe is developed in a similar manner as the
model of the main rail. As an input to this model one of the injection
signals is used (see section 3.2). The output from this model is damped and
a bit time delayed, but apart from this, the signal is similar to the input.
In order to reduce the number of states of the whole model, this submodel
is replaced by a damping constant only. The signal is also delayed with
the corresponding time it takes for the pressure wave to travel through the
injector pipe. The time derivative of this signal is then used as injector
inputs to the model. The signals are triggered to agree with the actual
opening of the injectors.

3.3 Frequency analysis

To understand the system better the frequencies of the measured signals are
analysed. The first signal to be discussed is the pump signal, i.e. the rail
pressure measured without injections. Then the rail signal is analysed, the
measured signal from the same sensor but with injections. The first signal
is used as an input to the model and the latter one is used to validate the
model. The signals that are analysed are recorded at the working point for
the model (i.e. 2300 rpm, 800 bar, 40.5◦C).
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3.3.1 The pump signal

In figure 3.10 a DFT of the pump signal is shown. The DFT is generated
in Matlab [5] by first subtracting the mean value from the signal, using
zeropadding in order to get better frequency resolution and then using the
fft algorithm. In figure 3.11 the lower frequencies are zoomed in. The
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Figure 3.10: DFT of the pumpsignal.

frequency with highest amplitude is the one around 57 Hz. This is the main
frequency component in the signal from the pump. As explained earlier
in this chapter, the pump is driven with half the engine speed. At this
working point the engine speed is 2300 revolutions per minute, which implies
a frequency of 38.33 Hz. Since there are three pump plungers in the pump,
the main frequency in the generated pressure signal will be 3·38.33Hz

2 = 57.5
Hz. The first multiple of this frequency is 2 · 57.5Hz = 115 Hz which is also
found in figure 3.11. In the same manner the five following multiples can be
calculated and found in the spectrum at 172.5, 230, 287.5, 345 and 402.5 Hz.
At 1000 Hz a frequency is found which most likely comes from the pressure
control valve, since it is controlled by a current pulse with this frequency.
If frequency spectra of the rail signal for many different working points (see
figure 3.14 and figure 3.15) are studied, the 1000 Hz peak is visible for almost
all workings points. This also indicates that this frequency comes from the
pressure control valve. There is also a high amplitude at the frequency 50
Hz. This component is traced to the injectors by analysing the frequencies
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Figure 3.11: Lower frequencies in the pump signal spectrum.

from signals measured at the injectors both with and without injections.
The peak at 50 Hz is a main component in these frequency spectra and
the amplitude of this frequency component is much higher here than in
the spectrum of the pump signal. Since this frequency component has the
same amplitude in both spectra from the injector signals (with and without
injections), it can be assumed to derive from a constant influence from the
injectors. There is also a peak at 1555 Hz, but it is not obvious where
it derives from. If a standing wave phenomenon is present in the rail the
frequencies of this wave would depend on the length of the rail and the
speed of the wave v (at this working point) in the following way

fri =
k · v
λri

(3.1)

where fri means the frequencies of possible standing waves in the rail and
k is the harmonic number which identifies the order of the standing wave
[6]. The first possible standing wave, which implies k = 1, has a wavelength
λr1 which is double the length lr of the rail, since this is the simplest case
when a standing wave can occur. This means that the lowest frequency for
a standing wave at the analysed working point becomes

fr1 =
1 · 1400

λr1
=

1400
2 · 0.524

= 1335.87Hz ≈ 1336Hz (3.2)
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The lowest possible frequencies for possible standing waves in the injection
pipes fi1 and in the pump pipe fp1 are

fp1 =
1400

2 · 0.505
= 1386.13Hz ≈ 1386Hz (3.3)

and
fi1 =

1400
2 · 0.154

= 4545.45Hz ≈ 4545Hz (3.4)

Even if the 1555 Hz peak differs a lot from the lowest standing wave fre-
quency, it can not be excluded that it is caused by this wave phenomenon.
But when the spectrum of the pump signal is compared with a spectrum of
the same sensor signal but with injections, the amplitude of this frequency
increases a lot in the latter case (see figure 3.12). If it was caused by a
standing wave the amplitude would remain on almost the same level. An-
other possibility is that the 1555 Hz frequency comes from the pump and
the injections since 1610 Hz is a multiple of both 57.5 Hz and 115 Hz 2.
But as shown in figure 3.14 this peak varies in frequency along the pressure
axis. If this frequency component derives from the main frequencies of the
pump and the injections, the peak would only move on the frequency axis
when the engine speed is varied. It is also difficult to determine where the
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Figure 3.12: DFT of the rail signal.

frequencies below 40 Hz come from. It may be slow changes in the valve or
214 · 115Hz = 1610Hz and 28 · 57.5Hz = 1610Hz
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in the injectors which get more powerful with injections than without, since
the amplitudes of the frequencies are higher in the DFT of the signal with
injections.

3.3.2 The rail signal
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Figure 3.13: Lower frequencies in the rail signal spectrum.

A DFT of the rail signal is produced in the same way as the DFT of
the pump signal and it is shown in figure 3.12. Besides the frequencies
from the pump described above, there is a series of multiple frequencies
coming from the injections. For this working point (engine speed 2300
rpm) there are 6 injections each cycle (0.052 s), which leads to a main
frequency at 115 Hz for the injections. Since this is also a multiple of the
main frequency from the pump, the amplitude of this frequency becomes
high. In figure 3.13, the multiples of the main frequency from the injections
are marked. The damped oscillations in the injection signals result in many
frequencies between 700 and 1000 Hz. There are different frequencies in
all the injection signals and the signals affect each other, which makes it
difficult to determine the source of a certain frequency.
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3.3.3 Other working points

In figures 3.14 and 3.15 frequency spectra for different working points are
shown. Both spectra are developed from data sets with injections. In figure
3.14 the engine speed is fixed at around 2300 rpm and the pressure level is
varied. As the mean pressure increases the amplitudes of the frequencies
belonging to the pump and the injections increase as well. The reason is
that the amplitude of the pump signal (in the time domain) rises with the
pressure. The frequencies around 800-900 Hz, from the damped oscillations
in the injection signals, show a pattern of interest. The amplitude of this
frequency region is varying a lot along the pressure axis. It is natural that
the working points with lower pressure also get lower frequency amplitudes,
but the behaviour around 900 bar is difficult to explain. In this spectrum
(figure 3.14) a movement along the frequency axis for the frequencies around
1500 Hz is visible. It seems to be a peak that increases in frequency with
increasing pressure. This phenomena does not appear in figure 3.15, which
derives from data sets measured with mean pressure around 800 bar and
with varied engine speed. This means that the cause of this frequency
depends on pressure but not on the engine speed. The increase in amplitude
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Figure 3.14: DFT of the rail signal for different pressure levels.

of the frequencies from the pump and the injections (50-150 Hz) at lower
engine speed depends most likely on a compensation in pressure by the
pump for the slower running engine (see figure 3.15).
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Figure 3.15: DFT of the rail signal for different engine speeds.
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4 The Mass spring method

This modelling method is based on the fact that the pressure wave can be
approximated by a mechanical wave travelling in a system of masses with
springs and damping dashpots in between them.

4.1 The model

The model is developed by using established equations such as Newton’s mo-
tion law’s and Hooke’s law to described the mechanical system. Bondgraphs
are used to transfer the equations to state space form before implementing
them in Simulink.

4.1.1 The basic equation

Consider a carriage with a mass m moving frictionless on a plane as shown
in figure 4.1a. This carriage is attached to the wall via a spring with spring

c

kk

mm
c m

k

F ( t )

a b c

Figure 4.1: A mechanical example.

constant k. The motion of this mass m can be described as follows [7]:

ξ̈(t) · m = −k · ξ(t) (4.1)

where ξ(t) is the displacement from the equilibrium position. If a damper
with a damping factor c is added to the system as shown in figure 4.1b, this
will affect the system in a resistive way:

ξ̈(t) · m = −k · ξ(t) − c · ξ̇(t) (4.2)

If the mass element is driven by an external force F (t) the equation of
motion of the mass element is given by

ξ̈(t) · m + k · ξ(t) + c · ξ̇(t) = F (t) (4.3)
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and such a system is shown figure 4.1c. The fluid in the CR System can be
described by many masses with springs and damping dashpots in between
them. The mechanical wave caused by the force F (t) corresponds to the
pressure wave propagating in the medium. The whole rail can be modelled
as shown in figure 4.2.

Figure 4.2: A mechanical system that may serve as an approximation for
the CR System.

4.1.2 Bondgraphs

To make the modelling of a system more systematic, bondgraphs can be
used to follow the energy flow in the system. By studying the energy ex-
change and knowing that energy is undestroyable, this method guarantees
that nothing is forgotten. An introduction to bondgraphs is given here, for
further information the reader is referred to [8].

The essential idea of bondgraphs is that many models can be described
in terms of intensity variables e (effort) and flow variables f (flow). In an
electrical system for instance, the intensity is voltage u(t) and the flow
is current i(t). Simple electrical systems that contain resistors, coils and
capacitors can be described by using the following common relations

u(t) = L · d

dt
i(t) ⇐⇒ i(t) =

1
L

∫ t

0
u(s)ds (4.4)

i(t) = C · d

dt
u(t) ⇐⇒ u(t) =

1
C

∫ t

0
i(s)ds (4.5)

u(t) = R · i(t) (4.6)

where L is the inductance, C is the capacitance and R is the resistance. In a
resistor electrical energy is transferred to heat energy. In a coil and in a ca-
pacitor energy is stored as magnetic and electrical field energy respectively.
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In an equivalent way intensity and flow are found as force F (t) and velocity
v(t) in a mechanical system. A mechanical system without any rotations
can be described by Newton’s law and Hooke’s law of elasticity:

F (t) = m · d

dt
v(t) ⇐⇒ v(t) =

1
m

∫ t

0
F (s)ds (4.7)

F (t) = k · ξ(t)
d
dtξ(t) = v(t)

⇐⇒ F (t) = k ·
∫ t

0
v(s)ds (4.8)

F (t) = c · v(t) (4.9)

where k is the spring constant, m is the mass of the object and c is the
damping constant of a dashpot. The velocity of the object and the com-
pressed spring correspond to storage of kinetic and elastic energy. In the
damping dashpot energy transfers to heat energy as in the resistance in the
electrical case described above.

The bondgraph as a whole shows the energy flow in a system and the
bonding itself connects subsystems which are exchanging energy. The half
arrow indicates in which direction energy flows if the product e ·f is positive
(see figure 4.3). As explained earlier many physical elements result in a

Figure 4.3: A bonding.

storage of energy. The storage can either be capacitive or inductive. The
capacitive storage is found in the capacitor in the electrical case and in the
compressed spring in the mechanical case. The inductive storage on the
other hand is found in the coil in the first case and in the object’s velocity
in the latter case. This is marked in the bondgraph in figure 4.4. The
bonding symbolizes that energy flows from the rest of the system, which is
assumed to be on the left hand side of the bonding, into the element on the
right hand side. If the relation between e and f is linear

e(t) =
1
b

∫ t

f(τ)dτ (4.10)

or
f(t) =

1
a

∫ t

e(τ)dτ (4.11)

the proportional constant is marked in the system as shown in figure 4.4.
For resistive elements such as a resistance in the electric system or a dashpot
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Figure 4.4: Bondings showing intensity and flow storage.

in the mechanical system, following relation is valid:

e(t) = f(t) · c (4.12)

In this case the bondgraph is marked R : c. Inputs to a system are called
sources and are marked Se or Sf depending on whether the input signal is
intensity or flow. To connect different bondings, junctions are needed. The
two most important junctions are parallel and series junctions. In a parallel
junction all the bondings have to have the same flow, f1 = f2 = .... = fn,
and the sum of all the intensities has to be zero, e1 + e2 + .... + en = 0
(an arrow directed out from a junction means change of sign). In a series
junction, the conditions are reverse, the sum of the flows has to be zero and
all the intensities have to have the same value.

A short mechanical example will illustrate the bondgraph method. Con-
sider the system introduced in the beginning of this chapter (figure 4.5). A
carriage with mass m, which moves frictionless on the ground, is attached to
the wall by a spring with spring constant k and a dashpot with a damping
constant c. A force F (t) is applied to the carriage which gets a velocity v(t).
The force is then considered as an input to the system which results in an

k

c m

v ( t )

F ( t )

Figure 4.5: A carriage attached to the wall by a spring and a dashpot.

intensity source in the bonding graph. The energy applied to the system
will be divided into the carriage’s kinetic energy, energy loss in the dashpot



4 The Mass spring method 23

and energy storage in the spring. The kinetic energy corresponds to inten-
sity storage and in the spring flow is stored. The carriage as well as the
spring and the dashpot will be influenced by a velocity v(t) and therefore
there will be a series junction in the bondgraph (see figure 4.6). When the

s I:m

R:c

C:1/k

Se
F

vFc

v

Fi

v

Fr v

Figure 4.6: A bondgraph showing the energy flow in the system described
in figure. 4.5

graph is completed it contains all the information needed to form a state
space model. The following relations can be obtained from the bondgraph
in figure 4.6:

Se : F (t)
s : F (t) − Fr(t) − Fi(t) − Fc(t) = 0

C :
1
k

: Fc(t) = k

∫ t

0
v(τ)τ

I : m : v(t) =
1
m

∫ t

0
Fi(τ)dτ

R : c : Fr(t) = c · v(t)

When bondgraphs are used, the choice of states becomes natural. The
intensity and flow storage can be considered as the memory of the system,
wherefore all the storing elements should be given one state each. The
following state space system with x1 = v(t), x2 = Fc(t) and u(t) = F (t) is
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a possible solution:[
ẋ1(t)
ẋ2(t)

]
=

[
− c

m − 1
m

k 0

]
x(t) +

[
0
1
m

]
u(t)

4.1.3 The Bondgraph method applied to the CR System

The CR System can generally be explained as shown in figure 4.2. Fur-
thermore the pressure signals coming from the injection need to be added.
To transform these pressure signals to force signals the following relation is
used

p(t) =
F (t)
Ainj

(4.13)

where Ainj is the cross section area of the injector pipe. To get information
about the pressure in the system the behaviour of the spring is used. The
spring itself has similarities to a fluid where atoms can either be pressed
together or drawn apart. In a spring the characteristic spring constant
shows how easily this is done, in the fluid it is the compressibility constant.
The two following relations show the similarity

F (t) = −k · ξ(t) (4.14)

p(t) = −K · ∆V (t)/V (4.15)

where ∆V/V is the relative change in the fluids volume, K is the compress-
ibility constant and k is the spring constant. This means that the pressure
at a certain point along the rail can be described by a function of the force
acting upon the spring at this point. An extension or a compression of a
spring corresponds to a deviation in pressure from an equilibrium level. The
following relations are used

ξ(t) > 0 ↔ p(t) < p0

ξ(t) = 0 ↔ p(t) = p0

ξ(t) < 0 ↔ p(t) > p0

where ξ(t) represents the extension (ξ(t) > 0) or compression (ξ(t) < 0) of
the spring and p0 relates to the equilibrium pressure. The relations can be
summarized by the following equation:

p(t) = p0 − C · ξ(t) (4.16)
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where C is a positive constant. The expression can be rewritten by using
equation 4.14:

p(t) = p0 + C · F (t)
k

(4.17)

In this way the pressure can be derived from the states in the model. The
constant C is determined by using the data sets without injections. The
physical similarity between a spring and a fluid also implies that an input
pressure signal along the rail can be added to the system, shown in figure 4.2,
by adding forces that act upon the two nearest masses (an approximation
that depends on the one-dimensional case). The system with all the inputs
is shown in figure 4.7.

Figure 4.7: The approximation of the CR System with all inputs added.

The bondgraph from the example with the carriage, can be extended
with extra subsystems to explain the CR System. The whole system is
described by the general bondgraph in figure 4.8.

4.1.4 Boundary conditions

The boundary conditions of the model are shown in figure 4.7. The wave
is assumed to be completely reflected at the valve end of the rail and not
reflected at all at the other end. The conditions would be more in accordance
to reality if they could describe a partial reflection, but for this system such
a description is not found. According to these circumstances it may also be
more accurate to describe a total reflection at both ends. But the boundary
conditions that are used now is a first approximation of the behaviour at
the ends. If the mass spring method of modelling the system would have
shown better results and better prospects of development (see section 4.2
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Figure 4.8: A bondgraph that describes the energy flow in the approximated
CR System.

for an analysis of the model), this part of the model would be an object for
further studies.

4.1.5 Implementation

The physical parameters are estimated in the following way. All the masses
mi, the spring constants ki and the damping constants ci are assumed to
be equal since the system is uniform. The volume of the rail Vrail and the
density ρ at the working point are used to determine mi in the following
way:

mi =
Vrail · ρ

18
(4.18)

The division by 18 is explained by the number of masses. The length li of
an unaffected spring is estimated by dividing the total length of the rail into
18 equal parts. The volume of each part of the rail is Vi. When the spring
constant is estimated, the spring’s similarity to a fluid is used again. The
compressibility constant K for the fluid is known and by using equations
4.13, 4.14 and 4.15 the following relation between K and ki is found

K = − p(t)·Vi

∆Vi(t)
= − F (t)·Vi

Arail·∆Vi(t)
= − F (t)·πr2

railli
πr2

rail
·πr2

rail
·ξ(t) =

= − F (t)·li
πr2

rail
·ξ(t) ≈

ki·ξ(t)·li
πr2

rail
·ξ(t) = ki·li

πr2
rail

where Arail is the cross section area of the rail, Vi is the volume of one part
( 1
18) of the rail, ∆Vi(t) is the volume difference in this part when the fluid
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is compressed compared to an equilibrium state and ξ(t) corresponds to the
actual compression. The estimation is based on the assumption that the
force acting upon a cross section area of the fluid in the rail can be regarded
as the force acting upon a spring and this explains the approximate equal
sign in the second last part of the expression. The spring constant can in
other words be estimated by

ki =
K · Πr2

rail

li
(4.19)

The damping constant ci is estimated by simulating the model and using
data sets without injections.

As figures 4.7 and 4.8 show, the mechanical system contains repeating
subsystems. These subsystems are described separately in different state
space systems and put together in Simulink (see Appendix A).

4.2 Analysis of the model

To find out how well the model describes the system, it has to be validated.
This means that the behaviour of the model is compared with the behaviour
of the system and that the difference is evaluated. In this study this is done
by comparing the rail signal with the corresponding modelled signal in both
the time and the frequency domain.

Since the mass spring method approximates the CR System with a me-
chanical system, the approximation itself is a significant source of error.
Physical parameters as the masses, the spring and the damping constants,
have to be estimated by comparing the two systems, but none of them can
be determined exactly. It is also difficult to estimate the initial values for
the states since they are velocities and forces in an artificial system. It is
natural to set all the initial conditions to zero then, but this leads to a long
settling time for the output signals. However the model manages to describe
some of the main features in the system, which is shown in figure 4.9. The
model seems to produce a signal which corresponds to the mean values of the
validation signal. There are neither really deep drops nor high peaks in the
modelled signal, which indicates that the influence by the injection signals is
slight. The signals may be too much damped. In figure 4.10 the frequency
spectra of the validation signal and the modelled signal are shown. The
most obvious difference is the accumulation of frequencies around 600-700
Hz in the spectra of the modelled signal. The cause of this cluster of fre-
quency components is difficult to explain, but it seems to be related to the
frequencies deriving from the damped oscillations in the injection signals,
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Figure 4.9: The modelled signal and the validation signal.

since the cluster is located near that frequency region. There are no other
frequencies in the spectrum that possibly can derive from the oscillations in
the injector signals apart from the cluster. Besides the frequencies around
800-900 bar that derive from the injectors, almost all the frequencies in the
validation signal are found in the spectrum of the modelled signal. The am-
plitude of the frequency components do not always agree in the two spectra.
This may depend on incorrectly estimated parameters and constants.

This modelling approach has served better as a way of developing the
final model than as a proper modelling method itself. Therefore its results
are not analysed as closely as the results derived from the model created by
the wave equation method described in chapter 5. The problem that arose
with the estimation of the parameters led to a decision which implied trying
to model the system more accurately.
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Figure 4.10: Frequency spectra of the modelled signal and the validation
signal.
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5 The Wave equation method

This modelling method is developed in order to explain the behaviour of
the pressure waves more strictly than in the mass spring method.

5.1 The model

The model is developed from the general wave equation, which describes the
propagation of waves in a medium. The particular equation that describes
pressure waves is generated and then extended to serve this application.
The model is lumped by making the wave equation discrete in a certain
number of points along the rail. Pressure and time derivative of pressure in
these points are chosen as states and boundary conditions are determined.

5.1.1 The wave equation

In an idealistic case the propagation of pressure waves in one direction is
described by the one-dimensional wave equation for pressure [9]

∂2p

∂t2
= c2 ∂2p

∂x2
(5.1)

where p is pressure and c is the speed of the wave. In reality the wave
is affected by energy losses from both the medium in which the wave is
travelling and the conditions at the boundaries of the medium. Losses in
the transmitting medium may be divided into three types: viscous losses,
heat conduction losses and losses associated with molecular exchanges of
energy. Unfortunately it is not possible to represent all the losses by a
single modification of well established relations such as the wave equation.
But according to [10], acoustic losses in many materials may be adequately
described by a viscous damping term at room temperature. This is assumed
to be applicable to the diesel engine fuel oil used in the CR System, even if
the temperature at the working point the model is developed for is higher,
i.e. 40.5◦C. Therefore a wave equation which pays regard to the effects of
viscous damping, will now be derived. The displacement from the equilib-
rium position of the atoms in a fluid is called ξ. By using this conception,
pressure can be defined. If a pressure wave in a fluid is studied, consider a
part between x and x+∆x in the medium. The mass of this element can be
written as m = ρA∆x, where ρ is the density of the fluid without a wave,
A is the cross section area and ∆x is the length of the element. Pressure
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change is also defined as force F per area unit:

p(x) − p(x + ∆x) =
F

A
(5.2)

By using Newton’s equation in order to express the force differently, follow-
ing relation is developed

A(p(x) − p(x + ∆x)) = ρA∆x
∂2ξ

∂t2
(5.3)

which also can be written as:

p(x + ∆x) − p(x)
∆x

= −ρ
∂2ξ

∂t2
(5.4)

If ∆x → 0 the expression will be:

∂p

∂x
= −ρ

∂2ξ

∂t2
(5.5)

The absorption of energy from pressure waves in fluids is associated with
a time lag of the condensation s, where s = − ∂ξ

∂x , relative to the varying
pressure p. This lag depends on the characteristic time required for

• Viscous stresses associated with relative fluid particle velocities to tend
to equalize these velocities, or

• Heat conduction to occur between high pressure (high temperature)
and low pressure (low temperature) regions or

• Molecular energy changes to occur

But as stated earlier, only the viscous losses are taken into consideration. In
order to get the dissipation terms into the general wave equation, the time
lag of the condensation s and the pressure fluctuations have to be described.
Stokes developed the following equation for this purpose [11]

p = ρc2s + R
∂s

∂t
(5.6)

where ρ is the density of the medium and R = 4
3η with η as the dynamic

viscosity. By using the relation for the condensation s = − ∂ξ
∂x , the force

equation 5.5 and by taking the time derivative of the expression 5.6 twice,
an extended version of the general wave equation can be found as:

∂2p

∂t2
= c2 ∂2p

∂x2
+

R

ρ

∂3p

∂x2∂t
(5.7)
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5.1.2 Lumping the states

The propagation of the pressure wave is now described by a partial dif-
ferential equation. Now the states have to be chosen. A definition of the
conception of states can be found in [8]:

The state of a system at a time t0 implies the amount of infor-
mation that is needed to calculate an output y(t) for t> t0
if the input u(t) is given for t> t0

Since the wave equation is continuous the pressure at every point in the
rail should be chosen as states. That would lead to an infinite number of
states. The solution to this problem is to lump the state variables. This
means that variables which are similar in character are combined to one
state. This state will represent a mean value of the original states. For this
model n number of points along the rail are considered to be important.
This means that the infinite number of states can be reduced to states at
these points. To be able to use the wave equation with a limited number of
states, it has to be difference approximated in the space variable [12]. Both
backwards and forwards difference approximation are used here.

∂2pi

∂x2
=

∂pi+1

∆x − ∂pi
∆x

∆x
=

pi+1−pi

∆x − pi−pi−1

∆x

∆x
=

pi+1 − 2pi + pi−1

(∆x)2
(5.8)

If this expression is inserted into the wave equation (5.7) there will be a
discrete wave equation at each point along the rail that describes the state
at that point.

∂2pi

∂t2
= c2 pi+1 − 2pi + pi−1

(∆x)2
− R

ρ

∂(pi+1−2pi+pi−1

(∆x)2
)

∂t
(5.9)

This means that two states for each point are needed to describe the be-
haviour of the pressure wave in the rail, one for the pressure pi and the
second for the time derivative of the pressure ṗi:

xj = pi (5.10)

xj+1 = ṗi (5.11)

where i is an integer between 1 and n and j an integer between 1 and 2n.
The states will have the following form

ẋj = xj+1 (5.12)
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ẋj+1 =
c2

(∆x)2
(xj+2 − 2xj + xj−2) − R

ρ(∆x)2
(xj+3 − 2xj+1 + xj−1) (5.13)

5.1.3 Boundary conditions

The wave equation describes the behaviour of a wave propagating undis-
turbed in a medium. To be able to model the pressure waves in the rail,
the behaviour at the ends of the rail have to be taken into consideration.

The CR System is a complex system and the boundary conditions have
to be determined as an approximation. The waves are assumed to be totally
reflected at both ends of the rail. It is an approximation since there is a
valve at one end of the rail where the waves loose energy and there may also
be energy losses at the connections with the injection pipes and the pump
pipe. Total reflection in a pipe with a closed end is shown in figure 5.1.
The pressure at the two points closest to the ends will always have the same

Figure 5.1: Reflection of an acoustic wave at a closed end of a tube.

pressure and pressure changes with regard to time, since reflection occurs
without phase change [6]. That implies the following relations between the
first four states and the four last states have the equivalent relations.

p1 = p2 (5.14)

ṗ1 = ṗ2 (5.15)

p̈2 = c2

(∆x)2
(p3 − 2p2 + p1) − R

ρ(∆x)2
(ṗ3 − 2ṗ2 + ṗ1) =

= c2

(∆x)2
(p3 − p2) − R

ρ(∆x)2
(ṗ3 − ṗ2)

(5.16)
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5.1.4 State-space model

To be able to implement the model in Simulink, the system has to be
written on state space form as follows

ẋ(t) = Ax(t) + Bu(t) (5.17)

y(t) = Cx(t) + Du(t) (5.18)

where x(t) are the states of the system, u(t) are the inputs, y(t) are the
outputs and A, B, C and D are matrices. The equations developed from the
extended wave equation will form the A matrix, a system that describes the
wave propagation. The B matrix contains the inputs to the system, which
are the time derivative of the pump signal and the injector signals. Because
of the units in the state space model either the first time derivative or the
second time derivative of the signals have to be used as inputs. The reason
to chose the first derivative is that it is found more important to the model.
When the time derivative of a signal is taken, higher frequencies will be
amplified, since the derivative corresponds to a straight line (with slope 1)
in the frequency domain. Consequently, these signals are lowpass filtered
before they are used as inputs. As explained earlier, frequencies above 2000
Hz are considered as noise and therefore this frequency will be the cut-off
frequency for these lowpass filters as well. As outputs the pressure at n
points are chosen, and this is done in the C matrix. The D matrix contains
only zeros since there are no direct terms in the system. The whole system
will get the following general appearance:

ẋ(t) =




0 1 0 0 0 0 · · · 0 0 0 0 0 0
−C −N C N 0 0 · · · 0 0 0 0 0 0
0 0 0 1 0 0 · · · 0 0 0 0 0 0
C N −2C −2N C N · · · 0 0 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . . 0 0 0 0 0 0

0 0 0 0 0 0 · · · 0 0 0 1 0 0
0 0 0 0 0 0 · · · C N −2C −2N C N
0 0 0 0 0 0 · · · 0 0 0 0 0 1
0 0 0 0 0 0 · · · 0 0 C N −C −N




x(t) +




1 0 0 · · ·
0 0 0 · · ·
0 1 0 · · ·
0 0 0 · · ·
0 0 1 · · ·
0 0 0 · · ·
.
.
.

.

.

.

.

.

.
. . .


u(t)

y(t) =




1 0 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 0 1 · · ·
0 0 0 0 0 · · ·
.
.
.

.

.

.

.

.

.

.

.

.
. . .


x(t)

where C = c2

(∆x)2
and N = R

ρ(∆x)2
.
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5.1.5 Implementation

As a first try to model the system, the rail is divided into 17 parts, each ap-
proximately 3 cm long. This means that the model gets 18 ·2 states and the
positions for the pressure states are shown in figure 5.2. The physical pa-
rameters such as the compressibility constant, the viscosity and the density
of the fuel are determined by using data for the certain working point found
in [13] and [14]. The viscosity constant of the fuel is used as the η in the
wave equation as a first assumption, but as explained earlier R (in equation
5.7) may serve as a damping constant for all acoustic losses in a material.
This means that this constant may need to be increased to explained the
real system. The state space model is implemented in Simulink.

     p 1               p 2           p 3                p 4          p 5           p 6           p 7          p 8          p 9                p 1 0                   p 1 1         p 1 2               p 1 3         p 1 4             p 1 5               p 1 6         p 1 7        p 1 8

   V a l v eP u m p s i g n a l
   d p p u m p / d t

  

    d p i n j 1 / d t                         d p i n j 2 / d t                          d p i n j 3 / d t                           d p i n j 4 / d t                          d p i n j 5 / d t                        d p i n j 6 / d t

                              
                  S i g n a l s  f r o m  t h e  i n j e c t o r s

Figure 5.2: The model with inputs and outputs.

5.2 Analysis of the model

In this section the developed model will be examined and necessary im-
provements are discussed. If nothing else is mentioned the text refer to the
working point the model is developed for (i.e. 2300 rpm, 800 bar, 40.5◦C).

5.2.1 Correction of energy absorption

When the model is simulated it becomes clear that at least one of the
approximations is too optimistic. The simulation results show that the
assumption that the whole acoustic wave is reflected at the ends of the
rail does not agree completely with reality. The modelled waves reflect
completely without any phase change or energy losses and accordingly a
first order standing wave phenomenon arises. Since the rail is modelled
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with closed ends, the node appears in the middle with two antinodes at the
ends. In figure 5.3 it is possible to see the difference in the pressure signals
at a point located at the end and a point located in the middle of the rail.
In figure 5.4 the frequency spectra of the signals from figure 5.3 are shown.
In section 3.3 the frequency of the first order standing wave in the rail is
estimated to 1336 Hz. The frequencies around 1300 Hz in the spectrum for
the p1 signal in figure 5.4 agree well with this frequency.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
780

790

800

810

rail signal

pr
es

su
re

 (b
ar

)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
780

790

800

810

p1

pr
es

su
re

 (b
ar

)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
780

790

800

810

p10

time (s)

pr
es

su
re

 (b
ar

)

Figure 5.3: The validation signal and the modelled signals from positions
at the end of the rail (p1) and in the middle (p10).

Even though the approximation in the boundary conditions seems too
large, it is difficult to find relations that describe the actual conditions at
the ends better. The pressure control valve is located at one end of the rail
and the rail pressure sensor is placed at the other end. The sensor does
not reflect the wave totally, but the reflection coefficient is not known. The
valve does definitely not reflect the wave completely, but it is difficult to
describe mathematically how much of the wave’s energy that is absorbed.
The reflection itself is also hard to describe since it changes due to the mean
pressure. Energy is surely absorbed in the injection pipes too but as in the
previous cases, it is difficult to know how much.

One solution to this problem may be to describe this energy absorption
by other means. As explained in 5.1.1 the presence of viscosity leads to
absorption of the wave’s energy. The damping that comes from this phe-
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Figure 5.4: The frequency spectra of the rail signal and modelled signals
from positions at the end of the rail (p1) and in the middle (p10).

nomena seems very tiny compared to the damping needed to explain the
energy absorption at the ends. But still, in both cases it is a question of
energy absorption. The idea is to let the damping of the wave at the ends
be spread out in the medium by letting the R in the extended wave equa-
tion 5.3 refer to not only the viscosity but also to this extra damping. This
new constant can be determined by simulating the model without injections
and validating the model with another data-set than the one used in the
final validation of the model. The pressure at points where injector pipes
are connected to the rail are compared to measured data at the injectors.
These signals are chosen since there are no other signals to use and the sig-
nals should be similar even if they have different locations. Both the time
signals and the frequency spectra of the signals are used to develop the right
value for the damping constant. The measured data set does not show any
frequency components from the standing wave frequency region and this is
used to estimate the constant. It is increased until these frequencies in the
modelled data set disappear. When this is done the modelled signals get the
appearance shown in figure 5.5. Figure 5.6 shows that the standing wave
frequency at 1300 Hz is gone in the spectrum of the p1 pressure signal.
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Figure 5.5: The validation signal and the modelled signals from positions
at the end (p1) and in the middle (p10) of the rail after correction of the
damping factor.

5.2.2 Results

When the correction of the damping factor is done the model seems to
describe the real system much better (see figure 5.7). The principal features
of the system seems to be described well by the model. The scaling of
the modelled signal is not perfect, which may depend on the use of time
derivatives as inputs. These signals are lowpass filtered before they are
used which also means that they also become somewhat damped. Another
reason to the scale deviation in the modelled signal may be that the pressure
level of this signal is only determined by an initial value of the pressure state
variable at this point. This is a result of using time derivatives as inputs,
since these signals only describe the change in pressure (with regard to
time).

If the frequency spectrum from the modelled signal is compared with
the spectrum from the validation signal most of the frequencies agree (see
figure 5.8). The difference in appearance between the two spectra shows in
a sense the size of the model error. If the error is acceptable or not depends
on what the model will be used for. Based on the model error in this case
it can be assumed that the model is able to explain the main behaviour
of the system, but reliable detailed information about the conditions in
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Figure 5.6: The frequency spectra of the rail signal and modelled signals
from positions at the end (p1) and in the middle (p10) of the rail after
correction of the damping factor.

the rail may not be available (see section 5.2.4). The frequencies coming
from the damped oscillations in the injections, i.e. around 800-1200 Hz, do
not agree completely. This may depend on the use of the same injection
signal for all the inputs corresponding to the injections (see section 3.2). In
reality the damped oscillations in the injection signals have slightly different
frequencies, which also results in a different frequency spectrum. Some
frequency amplitudes in the modelled signal are not as intense as in the rail
signal. This depend partially on the damping caused by the filtering of the
input signals. The main frequency of the pump (i.e. 57 Hz) for instance,
does not get the desired amplitude in the spectrum of the modelled signal.
The amplitude of the 1555 Hz frequency component is unfortunately not so
high, which indicates that the cause of this peak is not modelled correctly.
As explained in section 3.3 it is uncertain where this frequency component
comes from, which makes it even more difficult to improve the model. Other
frequencies in the rail signal that do not appear at all in the modelled signal
are the 4th (575 Hz) and the 5th (690 Hz) multiple of the main frequency
from the injections.
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Figure 5.7: The modelled signal with the validation signal.
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Figure 5.8: Frequency spectra of the validation signal and the modelled
signal.

5.2.3 Domain of validity

The model is developed for a working point with a mean pressure of 800
bar, an engine speed of 2300 rpm and a temperature of 40.5◦ C. To examine
how well the model describes the real system at other working points, the
model is simulated with data sets shown in table 5.1 as inputs. The reason
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Data set Pressure level [bar] Engine speed [rpm] Temperature [C]
A 500 2300 40.5◦

B 1200 2300 40.5◦

C 800 1000 40.5◦

D 800 3200 40.5◦

Table 5.1: Working points

for not examine working points where the temperature is changed is that
the results of changing this parameter was found insignificant in a previous
study of this system [3]. The results are presented in figure 5.9. The model
seems to work better for the working points represented by data sets B and
C than for the other two working points. The model seems to work quite
poorly for the working point corresponding to data set A. The modelled
signal and the validation signal differ a lot sometimes. This may not only
depend on the model but also the fact that the signals used as inputs and
validation signals are not recorded in phase. This is compensated with time
delays as accurately as possible, but the right phase is difficult to find in
some signals. This problem implies that the signals can not be guaranteed
to be in phase. The only solution to this problem is to record new data
sets where the signals are in phase. An obvious difference between the
modelled signal and the validation signal in all cases is the pressure level.
The general appearance of the modelled signals agree quite well with the
validation signals, but the mean level of the signals differ for every examined
working point in figure 5.9. This may also depend on that the validation
signal and the modelled signal are not in phase.

5.2.4 The purpose of the model

The model is developed for diagnosis purposes and in order to find the cause
of the earlier discussed engine problems. The first aim can be considered to
be achieved since the model shows satisfactory results. There are no other
expressed requirements for the model that have to be fulfilled yet. To find
out if the model also answers the second purpose, a further study has to be
done. In the following section of this chapter, it is declared how the model
can be used to find out more about what happens in the rail. Since the
model is developed for a certain working point, an explanation of how a
model for the critical working points can be generated is given in chapter 6.

The differences in the measured pressure signals from the injectors are
shown in figure 5.10. The most obvious deviation is that the peaks caused
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Figure 5.9: The modelled signals (solid lines) with the validation signals
(dotted lines).

by the injections vary a lot in amplitude among the injectors. The am-
plitude of these peaks in injector signal 1 is only two thirds of the other’s
amplitude levels. These signals can be compared with the modelled signals
at the points along the rail that correspond to the connection with the in-
jection pipes (i.e. p2, p5, p14 and p17 as figure 5.2 shows). The difference
in amplitude is not as obvious among the modelled signals as among the
measured signals. If the signals are examined in detail it is possible to find
a tiny difference in amplitude. The first (p2) and the last (p17) signal have
both an amplitude that is approximately 1 bar larger than the second signal
(p5). The third signal (p14) has an amplitude that is about 5 bar less than
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the second signal. Apart from this no deviation of interest is found. This
means that the deviation among the signals found in the measured data
set is not created by the model. But for this working point the engines
are running smoothly. A similar study would anyhow be of interest for the
working points where the engine problems occur.
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Figure 5.10: Measured signals at injector 1,2,5 and 6.
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Figure 5.11: Modelled signals: p2, p5, p14 and p17.
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6 An extension of the model

The physical parameters in the model vary a lot due to the working condi-
tions for the system. The pressure varies between approximately 300 and
1350 bar, the engine speed ranges from 700 rpm to 3200 rpm and the tem-
perature varies between 40 and 120 ◦C. Parameters in the model such as the
density and the compressibility constant depend among others on pressure
and temperature. This means that the developed model from chapter 5 can
not be expected to work well for all working conditions of the system. As
shown in section 5.2.3 the model does not describe the system as properly
at these conditions as at the working point it was developed for. When the
model is used for examining the behaviour of the pressure in the rail it is
preferable to develop new models and adapt them to the current conditions
instead of using the first model for all working points.

6.1 Implementation

The development of the new models are done by using the model from
chapter 5 as a base structure. Then only the parameters that depend on the
change of the working point are modified. For these calculations hydraulic
oil is used instead of diesel engine fuel oil. The reason is that the physical
properties of the fluids are similar but more data can be found for the latter
one. According to [13] the change in the compressibility constant K and the
density ρ due to changes in pressure and temperature can be described in
the following manner:

K(p) =
1

a
10 − b

10(p−p0

10 ) + c
10(p−p0

10 )2
(6.1)

ρ(p, T ) = ρ0 · e(a(
p−p0

10
)− b

2
(

p−p0
10

)2+ c
3
(

p−p0
10

)2−βT ·T ) (6.2)

where βT is the coefficient of volume expansion (approximately constant in
this case), T is the temperature, ρ0 is the density of a fluid at a reference
pressure p0 of 130 bar and a, b and c are constants3. Relations 6.1 and 6.2
are developed to describe measured data for the hydraulic oil. The adap-
tation of parameters answering to the working point is done automaticly
by Matlab functions when the data sets of the current working point are
chosen. The m-file where this is done can be found in appendix B. The
opening of the pressure control valve changes due to the mean pressure.
This is not taken into consideration since the available information about

3a=7.4e−4, b=3.6e−6 and c=1.2e−8
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Data set Pressure level [bar] Engine speed [rpm] Temperature [C]
A 500 2300 40.5◦

B 1200 2300 40.5◦

C 800 1000 40.5◦

D 800 3200 40.5◦

Table 6.1: Working points

the behaviour of the valve is deficient. To ignore this change is considered
to be a better approximation to the real system than to make a correction
of the model based on the available information.

6.2 Results

Models for the working points shown in table 6.1 are developed to find out
how well the model structure works. The same working points are chosen as
in the analysis of the validity domain of the first model (see section 5.2.3).
This is done in order to be able to compare the results. The results from
the simulations are presented in figure 6.1. The models manage to show the
most important features of the system in all cases. But if the results are
compared it seems like the models for working points B and C describe the
system better than the two other models. The incongruity in the models for
working points A and D may depend on that the signals are not in phase as
discussed in section 5.2.3. Anyhow, it can be easily established that these
models show better results than if the first model is used for all working
points, by comparing figure 5.9 and figure 6.1.

6.3 The purpose of the model

A model that explains the problems with the engines that arise at certain
working conditions, is not found yet since the exact working points are not
known. But as soon as this information becomes clear the current physical
parameters can be inserted in the developed model structure and a model
for that working point is generated. This model has to be validated by using
the rail signal for this working point and it is not until then that it can be
stated if this purpose of the model is served.
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Figure 6.1: The modelled signal (solid lines) with the validation signal (dot-
ted lines).
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7 Conclusions and recommendations

Two different models of the pressure waves in the CR System are devel-
oped. Both are based on well known physical relations. The first modelling
approach implies approximating the real system with a mechanical system
and then modelling the mechanical waves. The second method describes the
pressure waves in the system by using an extended wave equation and then
by making the system discrete. The first approach seems to be too much
of an approximation. Many parameters have to be roughly estimated and
the idea of using another physical system makes it also hard to understand
the model and the results. The approach served well as a manner to learn
more about the system though. The latter approach describes the system
more strictly, which makes this method preferable. Simulation results show
that the final model manages to create the principal features of the system.
The aim of this study was to describe the behaviour of the pressure in the
system, which can be considered to be achieved since the results are satis-
factory. Consequently the first object of the model itself is also served, to
create a model that can be used as a part of a larger model for diagnosis
purposes. But the main purpose of the model is to find the cause of the en-
gine problems at certain working conditions. Since the exact conditions are
not known yet, a first model is developed for a working point in the middle
of the operational domain. When the physical parameters corresponding to
the critical working conditions are found, these can easily be inserted into
the generated model structure. Not until then can it be established if the
model answers this purpose.

7.1 Recommended improvements

The approximation of the boundary conditions was too optimistic and there-
fore viscous damping in the rail have to explain the energy absorption that
occurs at the ends of the rail. A further developed model may describe this
absorption more properly by using other boundary conditions. But to be
able to do that more information about the ends of the rail is needed. The
function of the pressure control valve has to be clear and also the reflection
rate at the ends. The filtering of the time derivative of the input signals is of
great importance to the model. The filter that is used in the present model
is a very simple lowpass filter. Since the model is very sensitive to changes in
the filter, an implementation of a more advanced filter such as butterworth
filter or chebyshev filter, may improve of the model. To be completely sure
of the results produced by the model, it is recommended to record new sets
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of data where the signals are in phase. Anyhow this would facilitate the
use of the model. For using the model in the present condition, the signals
do first have to be synchronized before any simulation is possible, which is
very time-consuming. Another way of improving the accuracy of the model
is to divide the rail into more numerous discrete parts when the states are
lumped (see section 5.1.2).
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Appendix A: Mass spring method

Figure A.1: The model implemented in Simulink.
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m = 0 . 0 0 2 1 1 0 3 2 7 8  %  m a s s
c o n s t a n t = 1 0 e 1 0 ;  %  c o n s t a n t  u s e d  i n  t h e  t r a n s f o r m a t i o n  o f  f o r c e s  i n t o  p r e s s u r e s
k = 4 . 9 0 5 3 3 2 0 3 7 e 6  %  s p r i n g  c o n s t a n t
b = 1 5 0 ;  %  d a m p i n g  c o n s t a n t
m 1 = m ;  m 2 = m ;  m 3 = m ;  b 1 = b ;  b 2 = b ;  b 3 = b ;  k 1 = k ;  k 2 = k ;  k 3 = k ;
%  S t a t e - s p a c e  m o d e l  f o r  t h e  f i r s t  p a r t  o f  t h e  r a i l
A 1 = [ - b 1 / m 1  - 1 / m 1  b 1 / m 1  0  0  0 ;
    k 1  0  - k 1  0  0  0 ;
    b 1 / m 2  1 / m 2  - ( b 1 + b 2 ) / m 2  - 1 / m 2  b 2 / m 2  0 ;
    0  0  k 2  0  - k 2  0 ;
    0  0  b 2 / m 3  1 / m 3  - ( b 2 + b 3 ) / m 3  - 1 / m 3 ;
    0  0  0  0  k 3  0 ] ;
B 1 = [ 1 / m 1  0  0  0 ;
    0  0  0  0 ;
    0  - 1 / m 2  0  0 ;
    0  0  0  0 ;
    0  0  1 / m 3  b 3 / m 3 ;
    0  0  0  - k 3 ] ;
C 1 = [ 0  0  0  0  b 3  1 ;
    0  1  0  0  0  0 ;
    0  0  0  1  0  0 ;
    0  0  0  0  0  1 ] ;
D 1 = [ 0  0  0  - b 3 ;
    0  0  0  0 ;
    0  0  0  0 ;
    0  0  0  0 ] ;
% S t a t e - s p a c e  m o d e l  f o r  t h e  s e c o n d  p a r t  o f  t h e  r a i l
m 4 = m ;  m 5 = m ;  m 6 = m ;  b 4 = b ;  b 5 = b ;  b 6 = b ;  k 4 = k ;  k 5 = k ;  k 6 = k ;
A 2 = [ - b 4 / m 4  - 1 / m 4  b 4 / m 4  0  0  0 ;
    k 4  0  - k 4  0  0  0 ;
    b 4 / m 5  1 / m 5  - ( b 4 + b 5 ) / m 5  - 1 / m 5  b 5 / m 5  0 ;
    0  0  k 5  0  - k 5  0 ;
    0  0  b 5 / m 6  1 / m 6  - ( b 5 + b 6 ) / m 6  - 1 / m 6 ;
    0  0  0  0  k 6  0 ] ;
B 2 = [ 1 / m 4  0  0  0 ;
    0  0  0  0 ;
    0  - 1 / m 5  0  0 ;
    0  0  0  0 ;
    0  0  1 / m 6  b 6 / m 6 ;
    0  0  0  - k 6 ] ;
C 2 = [ 0  0  0  0  b 5  1 ;
    0  1  0  0  0  0 ;
    0  0  0  1  0  0 ;
    0  0  0  0  0  1 ;
    1  0  0  0  0  0 ] ;
D 2 = [ 0  0  0  - b 6 ;
    0  0  0  0 ;
    0  0  0  0 ;
    0  0  0  0 ;
    0  0  0  0 ] ;
%  S t a t e - s p a c e  m o d e l  f o r  t h e  t h i r d  p a r t  o f  t h e  r a i l
m 7 = m ;  m 8 = m ;  m 9 = m ;  b 7 = b ;  b 8 = b ;  b 9 = b ;  k 7 = k ;  k 8 = k ;  k 9 = k ;
A 3 = [ - b 7 / m 7  - 1 / m 7  b 7 / m 7  0  0  0 ;
    k 7  0  - k 7  0  0  0 ;
    b 7 / m 8  1 / m 8  - ( b 7 + b 8 ) / m 8  - 1 / m 8  b 8 / m 8  0 ;
    0  0  k 8  0  - k 8  0 ;
    0  0  b 8 / m 9  1 / m 9  - ( b 8 + b 9 ) / m 9  - 1 / m 9 ;
    0  0  0  0  k 9  0 ] ;
B 3 = [ 1 / m 7  0  0  0 ;
    0  0  0  0 ;
    0  - 1 / m 8  0  0 ;
    0  0  0  0 ;
    0  0  1 / m 9  b 9 / m 9 ;
    0  0  0  - k 9 ] ;
C 3 = [ 0  0  0  0  b 8  1 ;
    0  1  0  0  0  0 ;
    0  0  0  1  0  0 ;
    0  0  0  0  0  1 ;
    1  0  0  0  0  0 ] ;
D 3 = [ 0  0  0  - b 9 ;
    0  0  0  0 ;
    0  0  0  0 ;
    0  0  0  0 ;
    0  0  0  0 ] ;



Appendix A: Mass spring method 53

%  S t a t e - s p a c e  m o d e l  f o r  t h e  f o u r t h  p a r t  o f  t h e  r a i l
m 1 0 = m ;  m 1 1 = m ;  m 1 2 = m ;  b 1 0 = b ;  b 1 1 = b ;  b 1 2 = b ;  k 1 0 = k ;  k 1 1 = k ;  k 1 2 = k ;
A 4 = [ - b 1 0 / m 1 0  - 1 / m 1 0  b 1 0 / m 1 0  0  0  0 ;
    k 1 0  0  - k 1 0  0  0  0 ;
    b 1 0 / m 1 1  1 / m 1 1  - ( b 1 0 + b 1 1 ) / m 1 1  - 1 / m 1 1  b 1 1 / m 1 1  0 ;
    0  0  k 1 1  0  - k 1 1  0 ;
    0  0  b 1 1 / m 1 2  1 / m 1 2  - ( b 1 1 + b 1 2 ) / m 1 2  - 1 / m 1 2 ;
    0  0  0  0  k 1 2  0 ] ;
B 4 = [ 1 / m 1 0  0  0  0 ;
    0  0  0  0 ;
    0  - 1 / m 1 1  0  0 ;
    0  0  0  0 ;
    0  0  1 / m 1 2  b 1 2 / m 1 2 ;
    0  0  0  - k 1 2 ] ;
C 4 = [ 0  0  0  0  b 1 1  1 ;
    0  1  0  0  0  0 ;
    0  0  0  1  0  0 ;
    0  0  0  0  0  1 ;
    1  0  0  0  0  0 ] ;
D 4 = [ 0  0  0  - b 1 2 ;
    0  0  0  0 ;
    0  0  0  0 ;
    0  0  0  0 ;
    0  0  0  0 ] ;
%  S t a t e - s p a c e  m o d e l  f o r  t h e  f i f t h  p a r t  o f  t h e  r a i l  
m 1 3 = m ;  m 1 4 = m ;  m 1 5 = m ;  b 1 3 = b ;  b 1 4 = b ;  b 1 5 = b ;  k 1 3 = k ;  k 1 4 = k ;  k 1 5 = k ;
A 5 = [ - b 1 3 / m 1 3  - 1 / m 1 3  b 1 3 / m 1 3  0  0  0 ;
    k 1 3  0  - k 1 3  0  0  0 ;
    b 1 3 / m 1 4  1 / m 1 4  - ( b 1 3 + b 1 4 ) / m 1 4  - 1 / m 1 4  b 1 4 / m 1 4  0 ;
    0  0  k 1 4  0  - k 1 4  0 ;
    0  0  b 1 4 / m 1 5  1 / m 1 5  - ( b 1 4 + b 1 5 ) / m 1 5  - 1 / m 1 5 ;
    0  0  0  0  k 1 5  0 ] ;
B 5 = [ 1 / m 1 3  0  0  0 ;
    0  0  0  0 ;
    0  - 1 / m 1 4  0  0 ;
    0  0  0  0 ;
    0  0  1 / m 1 5  b 1 5 / m 1 5 ;
    0  0  0  - k 1 5 ] ;
C 5 = [ 0  0  0  0  b 1 4  1 ;
    0  1  0  0  0  0 ;
    0  0  0  1  0  0 ;
    0  0  0  0  0  1 ;
    1  0  0  0  0  0 ] ;
D 5 = [ 0  0  0  - b 1 5 ;
    0  0  0  0 ;
    0  0  0  0 ;
    0  0  0  0 ;
    0  0  0  0 ] ;
%  S t a t e - s p a c e  m o d e l  f o r  t h e  s i x t h  p a r t  o f  t h e  r a i l ,  a  t e r m i n a t i n g  w a l l
m 1 6 = m ;  m 1 7 = m ;  m 1 8 = m ;  b 1 6 = b ;  b 1 7 = b ;  b 1 8 = b ;  k 1 6 = k ;  k 1 7 = k ;  k 1 8 = k ;
A 6 = [ - b 1 6 / m 1 6  - 1 / m 1 6  b 1 6 / m 1 6  0  0  0 ;
    k 1 6  0  - k 1 6  0  0  0 ;
    b 1 6 / m 1 7  1 / m 1 7  - ( b 1 6 + b 1 7 ) / m 1 7  - 1 / m 1 7  b 1 7 / m 1 7  0 ;
    0  0  k 1 7  0  - k 1 7  0 ;
    0  0  b 1 7 / m 1 8  1 / m 1 8  - ( b 1 7 + b 1 8 ) / m 1 8  - 1 / m 1 8 ;
    0  0  0  0  k 1 8  0 ] ;
B 6 = [ 1 / m 1 6  0  0  0 ;
    0  0  0  0 ;
    0  - 1 / m 1 7  0  0 ;
    0  0  0  0 ;
    0  0  1 / m 1 8  - 1 / m 1 8 ;
    0  0  0  0 ] ;
C 6 = [ 0  1  0  0  0  0 ;
    0  0  0  1  0  0 ;
    0  0  0  0  0  1 ;
    1  0  0  0  0  0 ] ;
D 6 = [ 0  0  0  0 ;
    0  0  0  0 ;
    0  0  0  0 ;
    0  0  0  0 ] ;

Figure A.2: The m-file where the physical parameters and the state space
model are defined.
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Appendix B: Wave equation method

Figure B.1: The model implemented in Simulink.
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%  C h o o s e  w o r k i n g  p o i n t ;  s e t  p u m p f i l e X = ( d e s i r e d  d a t a s e t )
e s p e e d = 2 3 0 0 ;  % e n g i n e  s p e e d
p u m p f i l e X = p u m p f i l e 2 ;  %  i n p u t  s i g n a l
r a i l f i l e X = r a i l f i l e 2 ;  %  v a l i d a t i o n  s i g n a l
i n j 6 f i l e X = i n j 6 f i l e 2 ;  %  i n p u t  s i g n a l
i n j 1 f i l e X = i n j 1 f i l e 2 ;  
t d X a = t d 2 a ;  % t o  u s e  t h e  r i g h t  t i m e  d e l a y
t d X b = t d 2 b ;
t d X c = t d 2 c ;
q = q 2 ;

% c o n s t a n t s :
T = 4 0 . 5 ;  % t e m p e r a t u r e  i n  C e l c i u s
K 1 = 0 . 0 0 0 8 6 ;  % c o e f f i c i e n t  o f  v o l u m e  e x p a n s i o n  ( c o n s t a n t  i n  t h i s  c a s e )
r a 0 = 9 1 5 ;  %  d e n s i t y  a t  a  r e f e r e n c e  p r e s s u r e
p 0 = 1 3 0 ;  % r e f e r e n c e  p r e s s u r e
a = 7 . 4 e - 4 ;
b = 3 . 6 e - 6 ;
c = 1 . 2 e - 8 ;

% s e t  p a r a m e t e r s
i n j t i m e = 1 / ( 6 * e s p e e d / ( 2 * 6 0 ) ) ;
m e a n p u m p = m e a n ( p u m p f i l e X ( : , 2 ) ) ;
m e a n r a i l = m e a n ( r a i l f i l e X ( : , 2 ) ) ;
m e a n i n j = m e a n ( i n j 6 f i l e X ( : , 2 ) ) ;
p = m e a n p u m p ;
B = a / 1 0 - ( b / 1 0 ) * ( p / 1 0 - p 0 / 1 0 ) + ( c / 1 0 ) * ( p / 1 0 - p 0 / 1 0 ) ^ 2 ;
K = 1 * 1 0 0 0 0 0 / B ;       %  c o m p r e s s i b i l i t y  c o n s t a n t  i s  c a l c u l a t e d  
r a = r a 0 * ( e x p ( a * ( p / 1 0 - p 0 / 1 0 ) - ( b * ( p / 1 0 - p 0 / 1 0 ) ^ 2 ) / 2 + ( c * ( p / 1 0 - p 0 / 1 0 ) ^ 3 ) / 3 - K 1 * T ) ) ;  
%  d e n s i t y  i s  e s t i m a t e d
g = 2 0 0 0 ;  % c u t - o f f  f r e q u e n c i e s  f o r  f i l t e r s
h = 2 0 0 0 ;
s = 0 . 0 3 ;  % d i s t a n c e  b e t w e e n  t w o  p o i n t s  a l o n g  t h e  r a i l
C = K / ( r a * s ^ 2 ) ;
N = ( 5 0 0 0 0 ) / ( r a * s ^ 2 ) ; %  %  c o n s t a n t  d e p e n d i n g  o n  e n e r g y  a b s o r p t i o n
d = m e a n p u m p * 1 0 0 0 0 0 ;  % i n i t i a l  v a l u e  f o r  t h e  p r e s s u r e  s t a t e s
e = 0 ;  %  i n i t i a l  v a l u e  f o r  t h e  t i m e  d e r i v a t i v e  o f  p r e s s u r e

A k = [ 0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   - C  - N  C  N  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  C  N  - 2 * C  - 2 * N  C  N ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  C  N  - C  - N ] ;
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B k = [ 1  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  1  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  1  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  1  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  1  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  1  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  1 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ] ;
C k = [ 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0 ;
   0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0 ] ;
D k = [ 0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ;
   0  0  0  0  0  0  0 ] ;
X = [ d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ; d ; e ] ;

Figure B.2: The m-file where the physical parameters and the state space
model are defined.
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Appendix C: Evaluation of the models in Matlab

% t o  c o m p a r e  t h e  t h e  f r e q u e n c y  s p e c t r a  o f  t h e  m o d e l e d  s i g n a l  a n d  t h e  v a l i d a t i o n  s i g n a l
f i g u r e
s u b p l o t ( 2 , 1 , 1 )
l o a d  m o d e l l r a i l X
m = ( a n s ) ' ;
m = ( m ( : , 2 ) - m e a n ( m ( : , 2 ) ) ) ;
m 0  =  [ m  ; z e r o s ( l e n g t h ( m ) , 1 ) ] ;
f = ( 1 / 2 0 0 0 0 ) * a b s ( f f t ( m 0 ) ) ;
p l o t ( ( ( 0 : l e n g t h ( f ) - 1 ) / l e n g t h ( f ) ) / ( 1 / 2 0 0 0 0 ) , f , ' b ' )
s u b p l o t ( 2 , 1 , 2 )
l o a d  m o d e l l s i g n a l X
m = ( a n s ) ' ;
m = ( m ( : , 2 ) - m e a n ( m ( : , 2 ) ) ) ;
m 0  =  [ m  ; z e r o s ( l e n g t h ( m ) , 1 ) ] ;
f = ( 1 / 2 0 0 0 0 ) * a b s ( f f t ( m 0 ) ) ;
p l o t ( ( ( 0 : l e n g t h ( f ) - 1 ) / l e n g t h ( f ) ) / ( 1 / 2 0 0 0 0 ) , f , ' b ' )

% t o  c o m p a r e  t h e  m o d e l e d  s i g n a l  a n d  t h e  v a l i d a t i o n  s i g n a l
f i g u r e
l o a d  m o d e l l r a i l X
m = ( a n s ) ' ;
m = m ( : , 2 ) ;
y = r e s a m p l e ( m , 1 3 1 0 8 , l e n g t h ( m ) ' ) ;
p l o t ( t i m e , y , ' g ' )
h o l d  o n  
l o a d  m o d e l l s i g n a l X
n = ( a n s ) ' ;
n = n ( : , 2 ) ;
x = r e s a m p l e ( n , 1 3 1 0 8 , l e n g t h ( n ) ' ) ;
p l o t ( t i m e , x , ' b ' )

Figure C.1: The most important Matlab code used to examine signals.


