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Chapter 1

Introduction

Diagnosis is an important area in automotive applications for at least two reasons:
Legislation demands that faults in components in an engine can be detected. This
is due to the fact that the major contribution to the pollution from modern cars is
from cars with engines with faulty components. It is also desirable to detect severe
faults in order to protect the car from damage. Early detection of faults can lead
to avoidance of serious damage of the car. If a fault affects some parameters of the
engine, the control system can use this information when determining the control
signal, and thus achieving better performance.

In the thesis, methods of model based diagnosis as described in [1] is applied on
the intake and exhaust system of a diesel engine. Two observer methods (Chapter 4)
will be applied to estimate fault parameters, later to be used in the diagnosis system.
The purpose of this study is to compare these two observer design methods applied
to the diagnosis problem of the air intake-exhaust systems on a diesel engine.

The method of using observers to estimate a constant parameter is based on
the observation that the parameter can be introduced as an extra state, with zero
derivative. The two observer design methods are:
Linearisation in combination with pole placement
The system is linearised, and then the observer gain is chosen such that the poles/eigenvalues
of the linear observer are some values corresponding to a tradeoff between time re-
sponse and disturbance rejection.
Feedback gain only on the parameter state
Only the fourth state, the parameter, is observed using an observer gain. The other
states are purely simulated.
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1.1 About the thesis

In Chapter 2, a short introduction to model based diagnosis is given. The structure
of the model of the system, extended with fault models, is then given in Chapter 3.
The two observer methods are discussed in Chapter 4, and in Chapter 5, the actual
evaluation between the two observer methods is carried out. In the final chapter,
Chapter 6, the results of the thesis is presented.



Chapter 2

Introduction to model based diagnosis

In some applications, it is crucial that a process runs under certain conditions for
both safety and performance reasons. When those conditions are violated, noti-
fication hereof is mandatory so that proper actions can be carried out to prevent
damage to the process and its environment. Therefore there is a need for diagnosis.
Diagnosis can be divided into three parts:

• fault detection

• fault isolation

• fault size estimation

First of all, it is important to determine if a fault has occurred or not (detection).
When a fault is present, the location of the fault is needed (isolation). It is also
desired to know, where applicable, the size of the fault (identification). In the
literature, the term Fault detection and isolation (FDI ) is often used for the two
first parts.

The isolation of a fault can be very crucial for determining what actions are to
be taken.

Example 2.1 Assume that a pump for the cooling water in a nuclear plant breaks
down. The flow of water halts, and the temperature is increased. The diagnosis
system warns for a broken pump, for stop in the cooling water flow, for increased
temperature in the plant, and for 30 less important faults resulting from the stop
of water flow. If there is an auxiliary pump, the proper action would be to start it.
However, the system triggers on the heating warning and decreases the effect of the
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plant, eventually leading to a full stop. On the other hand, if the diagnosis system
could deduce that the behaviour was caused by the faulty pump, the auxiliary pump
would be started.

2.1 Diagnosis system

In Figure 2.1, a general structure for a diagnosis system is shown. A plant, affected
by disturbances and maybe also faults, is observed during its operation. The input
u and the output y are collected, and they are fed to a diagnosis system. The
diagnosis system then makes a diagnosis statement. The diagnosis statement shows

y(t)-

�

u(t)

-

- Plant

?

Faults

6
Disturbances

Diagnosis
System

?
Diagnosis statement

Figure 2.1 General structure of a diagnosis application.

in which fault mode [1] the system can be operating. The fault mode says which
fault is present. For instance, if there are no faults, the fault mode is “No fault
mode”. If there is a sensor fault, the fault mode is “Sensor fault mode”. Note that
“No fault” is considered to be a fault mode.

Summarising the discussion so far, it is desired to find an explanation that
agrees with the collected data of the system. The diagnosis statement is the chosen
explanation of the observed behaviour. In order to find such an explanation, a
model of the system is needed. For every fault mode the diagnosis system is to
detect, a fault model is derived.

Every fault model is fed with the observed data, and the question “Can the
observed data be explained by the model?” is posed. This is actually a hypothesis
test, known from statistics [2]. Denote the set of all known fault modes by

Ω = {NF, F1, F2, . . . , Fn}
and denote the present fault mode with Fp. Assume the null hypothesis is [1]

H0 : Fp ∈ {NF, Fi}. (2.1)
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If H0 is rejected, then the alternative hypothesis

H1 : Fp ∈
⋃
j 6=i

{Fj} (2.2)

is accepted. However, if H0 is not rejected, nothing can, without further investiga-
tions, be said about which fault mode explains the observed data. For example, if
a fault affects a derivative in the system, and the system is working in a stationary
operating point, then the fault will not affect the system. Therefore, when H0 is
not rejected, Ω is said to explain the observed data. In this thesis, the hypotheses
are always on the form

Hi
0 : Fp ∈ {NF, Fi}

H i
1 : Fp ∈ ⋃

j 6=i{Fj}

If there are model uncertainties present, then the fault models model usually
only NF and one other fault Fi. Otherwise, there is a risk that the fault models
become over-parameterised. For example, if a model models {NF, F1, F2, F3, }, but
the fault mode is F4, then the model might have enough parameters to variate to
compensate for the faulty behaviour of the system, and the null hypothesis is not
rejected.

2.2 Test quantities

In order to perform the hypothesis tests, a test quantity, T (x), based on the ob-
served data x = (u y)T is required. If the value of the test quantity is outside some
predetermined range, then the null hypothesis is rejected. From a modelling point
of view, a test quantity is a model validity measure. There are several methods to
design test quantities and some of them are described below.
Prediction error: The model is fed with the observed data and predicts the
output y with ŷ. Then some measure is used on the prediction error (y − ŷ). For
example, the measure can be the mean effect, the mean energy or the average of
(y − ŷ).
Estimation: Assume that in a model there is a parameter, with nominal value θ0.
The parameter is estimated, for example with maximum likelihood or least squares
methods. If |θ − θ0| > ε, for some ε, then the null hypothesis is rejected.

2.3 Decision structure

The next question that arises is how the faults affect the test quantities. The answer
is seen in the alternative hypothesis (the complement of the null hypothesis). If
a null hypothesis is rejected, then one or some of the fault models listed in the
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alternative hypothesis is said to explain the observed data. Let Si denote the result
of the i:th hypothesis test, that is

Si =

{
S0

i = Ω when Hi
0 is not rejected

S1
i =

⋃
j 6=i{Fj} when Hi

0 is rejected
(2.3)

Since the Si:s holds the result of all the hypothesis tests, the diagnosis statement is

S =
⋂
i

Si. (2.4)

Another interpretation of the faults listed in the alternative hypothesis, is that
those faults may affect the test quantity so that that it is outside its predetermined
range, but not necessarily always. For bookkeeping reasons, or to obtain a graphical
view of the hypothesis tests structure, the null and alternative hypothesis can be
displayed in a decision structure[1] shown in Figure 2.2. In the top of the decision

NF F1 F2 F3

T1(x) 0 0 X 0
T2(x) 0 0 X X
T3(x) 0 X 0 1

Figure 2.2 Example of a decision structure

structure, NF and all the faults are listed. To the left, the test quantities are
listed. In the intersection between the column of fault mode Fi and the row of test
quantity Tj , an X is put if the fault mode Fi is both in the null and the alternative
hypothesis. If there is no doubt that the fault Fi affects the test quantity when
present, i.e.

Fi 6∈ S0
j (2.5)

when the null hypothesis is not rejected, then the X is replaced by the number 1.
This means that the fault mode always affects the test quantity when present.

Example 2.2 If the the test quantities T2 and T3 in the diagnosis system described
by Figure 2.2 indicates that H2

0 and H3
0 should be rejected, then the diagnosis

statement is
S = Ω

⋂
{F2, F3}

⋂
{F1, F3} = F3. (2.6)

On the other hand, if only H2
0 is rejected, then the diagnosis statement becomes

S = Ω
⋂

{F2, F3}
⋂

(Ω\F3) = F2. (2.7)
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2.4 Power function

To determine how well a test quantity responds to a fault, a so called power func-
tion [3] can be used. The power function is defined as

β(θ) = P (reject H0 for the given θ) (2.8)
= P (Ti(x) ∈ R|θ) (2.9)

where R is the rejection region of the test quantity and θ is the fault value. In
Chapter 5, two different test quantities for every fault case will be compared using
an estimation of the power function.
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Chapter 3

System model

In order to make a diagnosis system using the methodology adopted in Chapter 2,
a model of the system and fault models are needed. Starting with a model of a
diesel engine with an EGR system, the system, its models and fault models will
be presented. These models will be used in Chapter 4 to design the test quantities
used by the diagnosis system.

3.1 Brief description of a modern diesel engine

In Figure 3.1, a schematic overview of the air intake and exhaust system of a
diesel engine with an EGR system is shown. On the left, air from a compressor
(not shown) enters the inlet manifold, passing an air flow sensor (HFM) and a
temperature sensor. In the inlet manifold, a sensor measures the inlet manifold
pressure. If the engine is equipped with an EGR (exhaust gas recirculation) system,
exhaust fumes mix with the air from the compressor. The gas mixture flows into
the cylinder, where it is compressed. Fuel (diesel) is injected into the cylinder. Due
to the high pressure, the diesel ignition temperature is lower than the temperature
in the cylinder, and therefore the diesel ignites. This is called combustion. The
burnt gases are then let out of the cylinder into the exhaust manifold. Some of the
exhaust are recirculated via the EGR valve to the inlet manifold, and the rest exits
at the right to the turbo turbine (not shown) and then to the exhaust system.

To control the combustion, it is required to know the amount of air flowing
into the cylinder (deduced from air flow and pressure sensors), the engine speed
(measured by a cog wheel) and the amount of fuel injected. In our particular diesel
engine, it is also needed to know the amount of recirculated exhaust gases (EGR) for
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cylinder
inlet

exhaust

EGR valve

leakage

cylinder valves

piston

pressure sensor

temperature sensor

HFM (air flow) sensor

Figure 3.1 Schematic view of the air intake and exhaust system of a modern diesel
engine

the following reason: in the combustion process, nitrogen oxides, NOx, are formed.
External requirements (law, environmental opinion) put constraints on how much
NOx is allowed to be produced. By recirculating some of the exhaust gases and
letting them mix with the intake air, the combustion process will take place at a
lower temperature. This lowers the amount of NOx produced. But if too little or
too much exhaust gases are recirculated, less decrement in NOx production will
take place or the engine will not run smoothly.

What to diagnose

The aim of the diagnosis system is to detect and isolate

• leakages in the inlet manifold

• HFM (air flow) sensor fault

• IPS (pressure) sensor fault,

all indicated in Figure 3.1.

3.2 Model and fault models

Faults are treated as if they are stationary, that is, θ̇fault = 0, where θfault is the
fault parameter. The sensors measure input or output signals. Sensor faults are
modelled as a gain acting on the “true value”, ysensor = θsensor−faultytrue−value,
where θsensor−fault 6= 1 implies a fault. Leakages are considered to affect the
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pressure and mass build-up in the intake manifold, according to basic equations in
fluid dynamics. The fault parameter is viewed upon as an effective leakage area,
where θleakage > 0 denotes a fault.

Basic system model

The original model is described by a system of nonlinear differential equations, given
by the general structure

ẋ =f(x, u) (3.1a)
y =x1. (3.1b)

The states are

x =


 pinlet

minlet

pexhaust


 =


 inlet manifold pressure [Pa]

inlet manifold mass [kg]
exhaust manifold pressure [Pa]


 (3.2)

The output of the system is the inlet manifold pressure, the first component of the
state vector x. The input signals are

u =




wHFM

Nengine

χEGR

χV GT

χfuel

Tinter




=




air flow [kg/s]
engine speed [revolutions/min]

EGR valve opening (0 − 1)
vane position (on the turbo turbine) (0 − 1)

injected fuel[]
temperature before inlet manifold




(3.3)

Leakage model

Manifold leakage is modelled as an extra constant parameter θleakage added to the
model. Its effect depends only on the value of θleakage and of the state x, and it is
described by

ẋ =f(x, u) + g(x, θleakage) (3.4a)

θ̇leakage =0 (3.4b)
y =x1 (3.4c)

θleakage ∈[0, inf[, θleakage > 0 implies a fault. (3.4d)

If several leakages occur, they are lumped together and treated as one effective
leakage.

HFM sensor fault model

Sensor faults are described by (constant) gains. Note that the air flow is considered
an input signal, therefore the HFM sensor fault acts on the input signal of the
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system! The physically true input signal is denoted by u and the measured input
signal by usensor. From the beginning of this section, we know that

ui,sensor = θsensor−faultui. (3.5)

However, the only information about the system comes from the sensors, but the
real system is affected by the true signal (the real air flow). The problem is thus
to compute the number with which to multiply the sensor signal (value) to get the
true signal (value). Thus, from (3.5), the basic model equations (3.1) are changed
to

ẋ =f(x,




θ−1
HFM

1
. . .

1


usensor) (3.6a)

θ̇HFM =0 (3.6b)
y =x1 (3.6c)

θ0−1
HFM ∈[0, inf[, θHFM 6= 1 implies a fault. (3.6d)

where θ is the fault parameter.

IPS sensor fault model

Regarding the pressure sensor fault, it is seen from the basic model equations (3.1)
that only the output is affected by the fault. The pressure sensor fault model thus
becomes

ẋ =f(x, u) (3.7a)

θ̇IPS =0 (3.7b)
y =θIPSx1 (3.7c)

θIPS ∈[0, inf[, θIPS 6= 1 implies a fault. (3.7d)

3.3 Summary of the models

The fault models above have the general model structure

zi =
(

x
θi

)
(3.8a)

żi = g′(zi, u) =
(

g(zi, u)
0

)
(3.8b)

yi = h(zi), (3.8c)

where i ∈ {HFM, IPS, leakage}. This model structure will be used in the devel-
opment of the observers, discussed in Chapter 4. For the NF model, zNF = x and
g(zNF , u) = f(x, u).



Chapter 4

Test quantities

The diagnosis system which will be used on the provided diesel engine, will pose
the question “Can the model structure M(θ) explain the observed data?” rather
than “Can the model M(θ∗), θ∗ fixed, explain the observed data?” This will be
accomplished by a two stage method. First, the fault parameter θi is estimated,
and then the prediction error is used to calculate the test quantities, where fault
model i uses the estimated θi. The test quantity is

T (y, u) =
1
τ

∫ t0+τ

t0

(y − ŷ)2dt, (4.1)

that is, the mean power of the residual (y − ŷ).
θi is estimated using an observer, where the parameter θi is viewed upon as

an extra state, as in (3.8). A simple and straightforward approach is used for the
observer,

˙̂z = g(ẑ, u) + K(y − ŷ) (4.2a)
ŷ = h(ẑ) (4.2b)

K =
(

Kx

Kθ

)
, (4.2c)

that is, a vector valued observer gain K is applied on the difference between the
estimated and the measured values. The observer gain K is chosen either as the
result of a pole placement based on the linearised system or as a feedback term only
on the fault state θi; in the latter observer, Kx = 0. These two methods will be
discussed in detail later in this chapter.
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4.1 Observability

The system function f(x, u) is partially known analytically, and partially known
by measured maps. To compute a K in a systematic manner, numerical methods
must therefore be used. Since the system is nonlinear, it must be ensured that
representative data are used during the validation of the chosen observer gain.

A concern that should be dealt with first is observability. Is the system observ-
able? What is meant by observability for a nonlinear system? The representation
of the model has made it difficult to answer the first question using the analytical
tools, Lie derivatives [4, 5] for instance, available in the literature [5], so a pragmatic
approach has been taken. The system is tested against representative data, and if
the system does what is required of it, then it is said to work. The second question,
what is meant by observability, is not dealt with due to the pragmatic approach.
For the interested, the meaning of observability for nonlinear system is dealt with
in [5] for instance.

4.2 Linearisation in combination with pole place-
ment

Given a linear system (A, B, C, D), the observer is

˙̂
ζ = Aζ̂ + Bυ + K(ξ − ξ̂) = (A − KC)ζ̂ + Bυ + Kξ (4.3a)

ξ̂ = Cζ̂. (4.3b)

The observer gain K can be obtained with the method of pole placement [6], that
is, the poles of the closed system (A − KC) is chosen. If a linear system has non-
observable modes, the poles of those modes cannot be changed. Remember that, if
the matrix (A − KC) has all its poles, or eigenvalues, in the left half plane, then
the estimation error (ζ − ζ̂) will asymptotically tend to zero! Assume that the poles
of the observable modes are chosen so that they all have negative real parts. The
conclusion is then that if a system has non-observable modes, the estimation error
(ζ − ζ̂) will tend to zero if and only if the poles of the non-observable modes all
have negative real parts.

It is known that some functions can be expanded in a Taylor series in a neigh-
bourhood of an operating point

f(x, u) = f(x0, u0) +
∂f(x0, u0)

∂x
(x − x0) +

∂f(x0, u0)
∂u

(u − u0) + . . . (4.4)

If (x0, u0) is chosen so that (x0, u0) is a stationary point for the system

ẋ = f(x, u), (4.5)
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then the system can be approximated, or linearised, by

ζ̇ = Aζ + Bυ (4.6a)
ξ = Cζ + Dυ (4.6b)
ζ = x − x0, υ = u − u0 (4.6c)
ξ = y − y0 = h(x, u) − h(x0, u0) (4.6d)

A =
∂f(x0, u0)

∂x
, B =

∂f(x0, u0)
∂u

(4.6e)

C =
∂h(x0, u0)

∂x
, D =

∂h(x0, u0)
∂u

(4.6f)

4.3 Feedback on the fault state only

It is valid for any asymptotically stable system [7], that the observer

˙̂x = f(x̂, u) (4.7)

where u constant (that is, simulation of the system) will tend to the correct value
of x, as long as the initial conditions are in the stability region of the system. The
diesel engine is assumed to be an asymptotically stable system, the fault modes
included. If the system

ẋ = g((x θ)T , u) (4.8a)

θ̇ = 0 (4.8b)

is asymptotically stable, it is not farfetched, in view of the above statement, to ask
if the system

˙̂x = g(
(

x̂

θ̂

)
, u) (4.9a)

˙̂
θ = Kθ(y − ŷ) (4.9b)

ŷ = h(x̂, θ̂) (4.9c)

tends asymptotically to the correct values of x and θ.
For the system, and in all the fault models, it holds that y > 0 and θ ≥ 0. We

must now look into the four different fault models to determine their properties.

NF (no fault)

The system is asymptotically stable, and no fault state has been added. The ob-
server is equivalent to simply simulate the system, with wrong initial conditions.
However, the system is asymptotically stable when u constant, so the estimation
error will probably tend to a small value.
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IPS sensor fault

Assume that the x̂-part of the system state vector ẑ is correct! Then the observer
equation becomes

˙̂
θIPS = Kθ(yIPS − ŷIPS) (4.10)

= Kθ(x1θIPS − x̂1θ̂IPS) (4.11)

= Kθx1(θIPS − θ̂IPS) (4.12)

= Kθy(θIPS − θ̂IPS) (4.13)

Denoting the estimation error with θe = θIPS−θ̂IPS, the dynamics of the estimation
error is described by

θ̇e = −Kyθe (4.14)

If θe > 0, then θ̇e must be negative, and vice versa. Since it always holds that y > 0,
then a necessary condition for the observer to work is that the gain K is positive.

HFM sensor fault

Air and exhausts are flowing into the inlet manifold from the turbo charger and the
exhaust via the EGR system. This contributes to a mass build, which leads to a
pressure buildup. From the inlet manifold, the gas mixture flows into the cylinder.
This gives a mass loss. The net mass buildup, ṁinlet = wHFM + wEGR − wcylinder

is the main contributor to the pressure buildup ẏIPS = ẋ1 = ṗinlet. When a sensor
fault is present, discrepancies between the model and the measured pressure will be
seen. However, the true pressure buildup in the inlet manifold is unaffected.

The aim of the observer is thus to compensate for the effect of the sensor fault.
From (3.6) it is seen that this is described by

˙̂x = f(x̂,




θ̂−1
HFM

1
. . .

1


usensor) (4.15a)

˙̂
θ = K(y − ŷ) (4.15b)
ŷ = x̂1. (4.15c)

When θ > 1, the simulated pressure buildup is greater than the true (measured)
pressure buildup. Similarly, the simulated pressure fall is slower than the real
(measured) one so when y < ŷ, θ̂ should increase, that is ˙̂

θ > 0. A necessary
condition for the observer to work is thus that K is negative.



4.4. CALCULATION OF THE TEST QUANTITIES 17

Leakage

Leakages in the inlet manifold affects the true pressure buildup. If the pressure
p = x1 is greater than the ambient air pressure (≈ 100 kPa), air and exhaust gases
will flow out from the inlet manifold and the pressure will consequently drop. (It
happens rarely that the inlet manifold pressure in a diesel engine is lower than
the ambient pressure, since diesel engines usually do not have throttles, and have
therefore no way to reduce the pressure by letting less air into the inlet manifold.)

The observer equations are derived from (3.4), and are obtained simply by re-
placing x with x̂:

˙̂x =f(x̂, u) + g(x̂, θ̂leakage) (4.16a)
˙̂
θleakage =K(y − ŷ) (4.16b)

ŷ =x̂1. (4.16c)

Here, θleakage > 0 denotes a fault, and θleakage = 0 no fault. When a leakage
θleakage > 0 is present, but the model assumes no leakage, θ̂leakage = 0, the simu-
lated pressure buildup will be higher than the real (measured) one. Then (y − ŷ)

will be negative, but ˙̂
θleakage should be positive, so K must be negative.

4.4 Calculation of the test quantities

As described earlier in this chapter, a fault parameter is estimated using an observer.
With this estimated fault parameter fixed, the model is then rerun on the same
data set from which the fault parameter was estimated. On this rerun, the test
quantity (4.1)

T (y, u) =
1
τ

∫ t0+τ

t0

(y − ŷ(u, θ̂i))2dt,

is calculated.
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Chapter 5

Experiments

In the previous chapters, two methods have been described how to perform diagnosis
using test quantities and how to design these test quantities. In this chapter, the
two methods are tried on real data, and a comparison between the two observer
approaches in Chapter 4 are made in perspective of which one gives the overall best
performance of the resulting diagnosis statement. The performance measure is the
power function defined in (2.8) and an estimate of the power function is used.

5.1 Experimental setup

During the work with this thesis, an engine model of a diesel engine of the type
described in Chapter 2 was developed. At the time when the methods of this thesis
were investigated, the model was not properly tuned so instead of working directly
on data from measurements on a real car, a modified approach had to be taken.

The non-tuned model contained about 10 states. It modelled the whole en-
gine and not only the behaviour of the inlet and exhaust manifolds. The inlet and
exhaust manifold parts of the non-tuned model became the model described in Sec-
tion 3.2, hereafter denoted Navelludd. Measurements on a car with a measurement
system installed were then made. The input signal to the Navelludd model is given
in (3.3). From the measurement system, Nengine, χEGR and χV GT are obtained.
The data were fed to the non-tuned model, and the signals Nengine, χEGR, χV GT

and χfuel in combination with the output of the non-tuned model, wHFM , Tinter

and y = Pinlet became the input and reference signals to the Navelludd model. See
Figure 5.1.

The measurements were done in city traffic and on a German highway. The
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Car with
measurement

system

?
measurement data

Non-
tuned
model

- Navelludd -u
ŷ

- y

Figure 5.1 Experimental setup

data was then fed, as described above, to the non-tuned model for every fault value
listed below. The obtained data set was then divided into 29 one-minute runs. The
two approaches were then tried for each fault value on these 29 runs. The faults
tested for had the values

θHFM ∈ {0.8, 0.9, 1.0, 1.1, 1.2} (5.1a)
θIPS ∈ {0.8, 0.9, 1.0, 1.1, 1.2} (5.1b)

θLEAK ∈ {0, 0.5, 1.0, 1.5, 2.0}× 10−5[m2]. (5.1c)

The actual calculation of the test quantity is done in two steps. First the fault
parameter θi is estimated using one of the described observer methods over the
one-minute run in question. θ̂i is taken as the average value over the last 20 seconds
of the fault state in the observer. The system is then simulated with the estimated
fault parameter θ̂i fixed, and the estimated output is denoted ŷ. The test quantity
is then determined using (4.1),

Ti(y, u) =
1
τ

∫ t0+τ

t0

(y − ŷ(u, θ̂i))2dt,

with τ = 60s.
To be able to perform diagnosis, it has to be checked whether the test quantities

are in the rejection region or not. In this particular case, the null hypothesis is
rejected if the test quantity is greater than a certain value, that is a threshold is
used:

Reject Hi
0 if Ti(yj , uj) > Ji, j = j:th run

The index i on the test quantity denotes which fault model is used to calculate ŷ
in (4.1). For each fault model i, i ∈ {NF, HFM, IPS, LEAK}, there is a corre-
sponding threshold Ji. The threshold for each fault model is chosen according to
the following procedure:
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1. The test quantity Ti is fed with data from the 29 runs where the fault param-
eter θi is varied over the values given in (5.1), and the other fault parameters
are kept to their no fault values

2. The threshold Ji is set to the maximum of the set of test quantities obtained
in the first step

Depending on how crucial it is that a fault is detected or how many false alarms
that can be tolerated, different choices of the threshold J can be made. When using
a max function to determine the threshold, no false alarms are wanted, but some
missed detections are accepted.

This choice of threshold is made because the underlying probability distribution
is not known, and it is chosen to keep the number of false alarms low. However,
it can be dangerous to use the maximum of the test quantity, maxj T (yj, uj), as
an threshold since it can be determined by a value which is much larger than what
typically is the case, a so called outlier. The probability of such an outlier may
be low enough to be acceptable when wanting a low false alarm risk. If more
measurements were made, the distribution could be estimated with a histogram for
instance. The threshold could then, for example, be chosen as

J = kσ̂, (5.2)

where σ is the standard deviation and k is a real constant chosen so that the proba-
bility of false alarm or missed detection, whichever is important for the application,
is chosen to an appropriate value.

5.2 Evaluation of the two methods

If the number of times a test quantity is larger than its threshold is counted, and
then divided by the number of trials, an estimation of the power function is obtained.
In Figure 5.2, the estimated power function for the hypothesis test using the test
quantity for the NF fault model is plotted against three faults. From the left are
HFM sensor fault, IPS sensor fault and leakage fault, with the corresponding θi

values on the x-axis.
The corresponding values of the test quantities, from which the estimated power

function β̂(θi) is determined, is shown in Figure 5.3. The test quantities are
plotted against the three different fault parameters, in the same manner as for the
power functions plotted in Figure 5.2. The threshold JNF used to obtain β̂NF (θ) in
Figure 5.2 is 6500. This threshold, JNF , can be derived from Figure 5.3 by studying
the maximum of the values of the test quantities corresponding to the values of the
fault parameters when they have the values θHFM = 1, θIPS = 1 and θLEAK = 0.

On the following pages, the estimated power function for the two methods are
presented. Note that the power function in Figure 5.2 is the power function for
the NF model for both the feedback on the fault state and the pole placement
estimation observer methods, since the NF fault model has no fault parameter.
Plots for the underlying test quantities are also shown.
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Figure 5.2 Power function βNF (θi) when the null hypothesis is H0 : Fp = NF
and the NF fault model is simulated to obtain ŷ used in (4.1).

5.3 Fault state feedback observer test quantity

In this section, results from the fault state feedback observer method is shown. The
parameter is first estimated, and then the model is simulated with the estimated
fault parameter. The thresholds are

JNF = 6500
JHFM = 4600
JIPS = 3500

JLEAK = 6400.
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Figure 5.3 Test quantity calculated according to (4.1) where ŷ is determined by
simulation of the NF fault model.
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Figure 5.4 Power function for the hypothesis test H0 : Fp ∈ {NF, HFM} when
θHFM is estimated with feedback on the fault state only observer and ŷ used in (4.1)
is obtained by simulating the HFM fault model.
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Figure 5.5 Power function for the hypothesis test H0 : Fp ∈ {NF, IPS} when
θIPS is estimated with feedback on the fault state only observer and ŷ used in (4.1)
is obtained by simulating the IPS fault model.
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Figure 5.6 Power function for the hypothesis test H0 : Fp ∈ {NF, LEAK} when
θLEAK is estimated with feedback on the fault state only observer and ŷ used in (4.1)
is obtained by simulating the LEAK fault model.
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Figure 5.7 Test quantities calculated according to (4.1) where ŷ is determined
by simulation of the HFM fault model and θHFM is estimated by feedback on the
fault state only observer.
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Figure 5.8 Test quantities calculated according to (4.1) where ŷ is determined by
simulation of the IPS fault model and θIPS is estimated by feedback on the fault
state only observer.
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Figure 5.9 Test quantities calculated according to (4.1) where ŷ is determined by
simulation of the LEAK fault model and θLEAK is estimated by feedback on the
fault state only observer.

5.4 Pole placement observer based test quantity

In this section, the results from the pole placement estimation observer is shown.
First the fault parameter θi is estimated with an observer with an observer gain
determined by the method of pole placement applied to a linearised version of the
system. In the second run, the test quantity is calculated when the system is
simulated without an observer gain. The thresholds obtained are

JNF = 6500
JHFM = 2200
JIPS = 3000

JLEAK = 6400.



5.4. POLE PLACEMENT OBSERVER BASED TEST QUANTITY 27

0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ
HFM

0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ
IPS

0 1 2

x 10
−5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ
LEAK

Figure 5.10 Power function for the hypothesis test H0 : Fp ∈ {NF, HFM} when
θHFM is estimated with pole placement observer and ŷ used in (4.1) is obtained by
simulating the HFM fault model.
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Figure 5.11 Power function for the hypothesis test H0 : Fp ∈ {NF, IPS} when
θIPS is estimated with pole placement observer and ŷ used in (4.1) is obtained by
simulating the IPS fault model.
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Figure 5.12 Power function for the hypothesis test H0 : Fp ∈ {NF, LEAK} when
θLEAK is estimated with pole placement observer and ŷ used in (4.1) is obtained
by simulating the LEAK fault model.
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Figure 5.13 Test quantities calculated according to (4.1) where ŷ is determined by
simulation of the HFM fault model and θHFM is estimated by the pole placement
observer.
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Figure 5.14 Test quantities calculated according to (4.1) where ŷ is determined
by simulation of the IPS fault model and θIPS is estimated by the pole placement
observer.
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Figure 5.15 Test quantities calculated according to (4.1) where ŷ is determined by
simulation of the LEAK fault model and θLEAK is estimated by the pole placement
observer.

5.5 Comparison

A brief summary of the result of the experiments are presented in Table 5.1. The
results of the two methods will now be compared for each fault mode.
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Fault state feed-
back

Pole placement Comment

NF n/a n/a no fault parameter estimated
HFM better overall better performance
IPS better better for smaller faults
LEAK slightly better better for IPS faults and

HFM faults θHFM = 1.2

Table 5.1 Summarised results for the comparison between the two discussed meth-
ods. See the text in Section 5.5 for further details.

NF

The result for the two methods are identical since the two methods are identical
for the NF fault model. No parameter is estimated, and the test quantity (4.1) is
obtained by simply simulating the system. It is interesting to note that the NF
model can describe the effect of small leakages, thus obtaining a small probability
of rejecting the null hypothesis H0 : Fp ∈ {NF} when a leakage of the small sizes
tested are present. This is an undesired property, since it means that leakages sizes
under 1.5 10−5 m2 cannot be detected with the present model.

HFM

Comparing the two power functions for the two methods, Figure 5.4 and Figure 5.10,
the power function based on the pole placement method is around 0.8 for all IPS
faults, while the corresponding power function based on the fault state feedback
varies between the values 0.45 and 0.65. For the LEAK fault, the feedback state
observer method gives virtually a power function of 0, while the pole placement
method gives a power function with rising probabilities with increasing leakage sizes.
The differences are significant for the hypothesis test H0 : Fp ∈ {NF, HFM}, in
favour of the pole placement method.

IPS

The pole placement observer method gives a slightly better power function regarding
HFM faults than the fault state feedback observer method, as seen when compar-
ing the plots in Figure 5.5 and in Figure 5.11. However, comparing the power
functions for the leakage faults, the pole placement methods outperforms the fault
state feedback observer method. The pole placement method thus gives the best
performance for the hypothesis test H0 : Fp ∈ {NF, IPS}.

LEAK

In Figures 5.6 and 5.12, the two power function resulting from the two methods
applied to the leakage model are presented. The fault state feedback observer
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method gives a slightly better performance, but the differences are not significant.

Comment on the LEAK case

In both Figures 5.6 and 5.12, it is seen that the power function for

β̂LEAK(θHFM ), θHFM > 1

are almost always zero. According to the Navelludd model, a higher intake air
flow, which θHFM > 1 suggests, gives a higher pressure. No such pressure buildup
is observed, but according to the leakage fault model, this can be explained by air
leaking out to the surrounding environment. This could explain the obtained power
functions.

There was also a problem with the leakage fault model when testing against
sensor fault values of θHFM , θIPS = 0.8, see Figures 5.9, 5.15 . When the test
quantity were to be calculated, the simulation of ŷ could not be done because the
simulation stalled. This may be due to the fact that a higher pressure buildup than
expected has to be explained by a negative leakage area, which is not allowed in the
model.

A serious concern is that the NF fault model can describe leakages better than
the other fault models, which have one adjustable parameter to minimise discrep-
ancies between the reference and predicted values. This can be seen by comparing
Figure 5.2 with the other power functions, Figures 5.4,5.5, 5.10 and 5.11. Another
choice of θ̂i should probably be made.

Interpretation of the comparison

For the two given observers, the pole placement method works better. However,
both the observers were tuned in an ad hoc manner, and the tuning was only
iterated ≈ 5 times. In order to reach conclusive results, more effort has to be put
in systematically tuning of the two observers. Although input signals from real
driving with a car was used, no analysis has been made how typical these kind of
input signals are in everyday driving. The aim of the diagnosis system is, after all,
that it is to be used in production cars.

Because of the non-completed tuning of the observers, it can only be speculated
about the cause of the differences seen in the performances of the two observer
methods. The pole placement observer uses all known information of the behaviour
of the model. This might explain the better performance of the model.

On the other hand, the answer may lie in the two stage method applied to
calculate the test quantities. The thresholds for the pole placement observer is
lower than the thresholds for the fault state feedback gain observer, for the HFM
case even much lower. Compare for instance Figures 5.7 and 5.13. This explains why
the power functions differs som much. The remaining, and unanswered, question is
thus why the test quantities, and therefore alos the thresholds, differ so much.
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Remark
It was also tried to estimate ŷ in (4.1) with the pole placement observer, but this
resulted in the same power functions shown in Section 5.4.



Chapter 6

Conclusion

In the thesis, a model based diagnosis has been performed using the method of
structured hypothesis tests [1]. The test quantities were determined by using the
prediction error from a model structure, with an unknown parameter value taken
forth with an observer. Two observer design methods were tried, linearisation in
combination with pole placement [6], and an observer gain feedback only on the
fault state.

With the obtained observers, the method of linearisation in combination with
pole placement performed best. However, although the pole placement approach
works better when regarding the performance against faults, the feedback gain
only on the fault state method also gives a working diagnosis system. In fact, both
methods gives the decision structure in Figure 6.1 for the resulting diagnosis system.
Since the fault state feedback gain method is less complex than the pole placement
method, the result, in view of the unfinished tuning, is that no conclusive result can
be given at this point which of the two described methods is to be favoured.
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NF HFM IPS LEAK
TNF 0 X X X
THFM 0 0 X X
TIPS 0 X 0 X
TLEAK 0 X X 0

Figure 6.1 Decision structure for the diagnosis system obtained by using the
methods described in the thesis.
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