
Model-based diagnosis using MathModelica

Per Åkerlund

Reg.nr: LiTH-ISY-EX-3150
2001-06-01

Model-based diagnosis using MathModelica

Examensarbete utfört på Fordonssystem
vid Linköpings Tekniska Högskola

av

Per Åkerlund

Reg.nr: LiTH-ISY-EX-3150

Handledare: Mattias Nyberg, LiTH
Mats Jirstrand, MathCore AB

Examinator: Mattias Nyberg, LiTH

Linköping den 1 juni 2001

Avdelning, Institution
Division, department

Department of Electrical Engineering

Datum
Date

2001 - 06 - 01

Språk
Language

❑ Svenska/Swedish
❑ Engelska/English

❑ ______________

Rapporttyp
Report: category

❑ Licentiatavhandling
❑ Examensarbete
❑ C-uppsats
❑ D-uppsats
❑ Övrig rapport

❑ ______________

ISBN

ISRN

Serietitel och serienummer
Title of series, numbering

ISSN

LiTH-ISY-EX-3150
URL för elektronisk version

http://www.fs.isy.liu.se/

Titel
Title

Model-based diagnosis using MathModelica

Författare
Author

Per Åkerlund

Sammanfattning
Abstract

Nyckelord
Keywords

Model-based fault diagnosis, Modelica, MathModelica, modelling, electrical circuits

9
9

-0
8

-0
9

/ll
i

xx

In industrial processes, sudden faults must quickly be determined to avoid general failures. For
this purpose model-based fault diagnosis can be used, which requires a consistent model of the
real process. The powerful modelling tool MathModelica, based on the Modelica language, can
be used to accomplish this. Systems for fault diagnosis could be both time-consuming and
expensive if built manually. Instead, to automatically generate a fault diagnosis system, based on
models built with MathModelica, would provide an efficient means of fault diagnosing. This
thesis is about an algorithm which puts this into practice.

MathModelica has previously not been used for fault diagnosis, which makes this a pioneering
work. Therefore, the algorithm is limited to consider only static electrical circuits and to
diagnose constant voltage sources and linear resistors.

The algorithm takes a MathModelica model of a circuit and observations from the corresponding
real system as input. Then a fault diagnosis system is generated and all possible diagnoses are
obtained. The complexity of generating the diagnosis system grows very fast when the number
of components is increased. Therefore, the capacity of the used computer puts limitations on the
algorithm. An interesting extension would be to make the algorithm independent of the size of
the circuit concerned, which could be done by considering subsets of the circuit.

Abstract
In industrial processes, sudden faults must quickly be determined to avoid
general failures. For this purpose model-based fault diagnosis can be used,
which requires a consistent model of the real process. The powerful modelling
tool MathModelica, based on the Modelica language, can be used to accomplish
this. Systems for fault diagnosis could be both time-consuming and expensive if
built manually. Instead, to automatically generate a fault diagnosis system,
based on models built with MathModelica, would provide an efficient means of
fault diagnosing. This thesis is about an algorithm which puts this into practice.

MathModelica has previously not been used for fault diagnosis, which makes
this a pioneering work. Therefore, the algorithm is limited to consider only
static electrical circuits and to diagnose constant voltage sources and linear
resistors.

The algorithm takes a MathModelica model of a circuit and observations from
the corresponding real system as input. Then a fault diagnosis system is
generated and all possible diagnoses are obtained. The complexity of generating
the diagnosis system grows very fast when the number of components is
increased. Therefore, the capacity of the used computer puts limitations on the
algorithm. An interesting extension would be to make the algorithm
independent of the size of the circuit concerned, which could be done by
considering subsets of the circuit.

Contents

 1 Introduction... 1

 1.1 Background.. 1

 1.2 MathModelica.. 2

 1.3 Model-based diagnosis... 5
 1.3.1 About faults... 6
 1.3.2 Diagnosis in two different areas... 7

 1.4 Limitations... 8

 1.5 Reader's guide... 8

 1.6 Project partners.. 9

 2 GDE and SOPHIE III... 11

 2.1 SOPHIE III.. 13

 2.2 GDE... 15

 2.3 A summary.. 17

 3 Generating a diagnosis system... 19

 3.1 Diagnosis components.. 21
 3.1.1 The component packages... 22
 3.1.2 Component combinations.. 23
 3.1.3 Recognizing the components... 24

 3.2 Generating and simulating the diagnosis model................................ 25

 3.3 Identifying the diagnoses... 27

 3.4 Using the diagnosis system... 29
 3.4.1 Making the simulation matrix... 29
 3.4.2 Obtaining the possible diagnoses... 30
 3.4.3 Some more examples.. 31

 3.5 Using other components in the algorithm... 32

 4 Choices of implementation... 35

 4.1 The structure of the diagnosis components... 35

 4.2 Choice of behavioral models... 37

 4.3 Avoiding over- and underdetermined models................................... 37

 4.4 Ideal versus non-ideal components.. 38

 5 Future extensions of the diagnosis system... 41

 5.1 Considering subsets of circuits.. 41

 5.2 Other extensions.. 44

 6 Summary... 47

 References... 49

 Appendix A The algorithm of the diagnosis system..................................... 51

 Appendix B Diagnosis components... 65

 Appendix C Example circuit.. 69

 Appendix D Definition of a diagnosis model.. 71

1
Introduction

Introduction

This project is about model-based diagnosis of electrical circuits, modelled
using the modelling and simulation tool MathModelica. An algorithm for
diagnosing electrical circuits is described in this thesis.

This first chapter of the thesis gives a background to the work, a short
description of MathModelica, an introduction to model-based diagnosis,
limitations of the work and a reader's guide.

1.1 1.1 Background

When industrial systems are growing more complex, their needs for efficient
maintenance and to quickly point out sudden faults are increasing. This kind of
supervision can be provided by using model-based diagnosis, which requires a
consistent model of the real system. Models are best simulated using computer
programs and the language Modelica is developed for the purpose of simulating
complete physical systems, where different areas of technology can interact.

The need of a consistent model using model-based diagnosis, requires an
efficient modelling method. Further development of a certain real system leads
to some structural changes in the model, and then it should be easy to re-model.
The Modelica language offers this. Changes made in the real system also

1

implies that the corresponding diagnosis procedure needs to be updated, which
would require much time and expenses if done manually. Instead, if there
would be a way of updating the diagnosis procedure automatically, then
generating systems for model-based diagnosis using Modelica models would be
very efficient. An implementation of this kind of algorithm is possible in
MathModelica, which is based on the Modelica language.

Figure 1.1 Generation of a system for diagnosing.

The field of model-based diagnosis is new for MathModelica and also for
Modelica. Previously research within the area of this project has essentially
been made in the field of Artificial Intelligence (AI). Former model-based
diagnosis methods, close to the one presented in this thesis, are for example the
General Diagnostic Engine (GDE) [2, 5] and SOPHIE III [1]. These methods are
more developed than the algorithm described here, but they also lack the kind
of powerful modeling functionality that MathModelica can offer. This makes it
even more interesting to develop a new method for model-based diagnosis
using MathModelica models.

The purpose of this project was to develop an algorithm that takes a model of
an electrical circuit and from this generates a system for diagnosing a
corresponding real circuit. Figure 1.1 shows how the algorithm as input takes a
model of a process, models of faulty electrical components and observations
(measurements) done on the corresponding real process. The result from the
algorithm is the diagnosis for the process. All models are modelled using
MathModelica.

1.2 1.2 MathModelica

At MathCore AB in Linköping, Sweden, the modelling and simulation tool
MathModelica is developed. It is an environment for physical modelling based
on Modelica, which is an

2 Chapter 1 Introduction

i) object-oriented,
ii) multi-domain and
iii) non-causal

language developed by the Modelica design group [9]. The language has a
number of libraries [10] with components within different areas, e.g. electrical
applications, mechanics and thermodynamics. The components are connected
to each other like in a real system, which i) and iii) make possible. Different
physical domains can interact in the same model, which is what ii) describes.
The equations defining the behavior of the components are written explicitly,
which gives iii). All this makes it possible to accomplish a full system simulation.
The DC-motor in figure 1.2 shows the possibility of connecting electrical
applications to mechanical (ii). Every component is defined by equations
explaining its physical behavior (iii), for example the resistor is modeled with
Ohm's law, U = R I. This example model is found at MathCore's homepage [8].

Resistor1

Ground1

Inductor1

ConstantVoltage1 EMF1

Inertia1

Figure 1.2 Graphical model of a DC-motor in MathModelica.

MathModelica uses its own syntax, but in close connection to Modelica's. The
syntax of MathModelica is made to fit into Mathematica's standard, where the
models are being implemented and presented in textual form. Figure 1.3 shows
the MathModelica code of the DC-motor and in figure 1.4 the corresponding
Modelica syntax is shown.

1.2 MathModelica 3

Model@DCMotor,

Modelica.Electrical.Analog.Basic.Resistor Resistor1;

Modelica.Electrical.Analog.Basic.Inductor Inductor1;

Modelica.Electrical.Analog.Basic.Ground Ground1;

Modelica.Electrical.Analog.Basic.EMF EMF1;

Modelica.Electrical.Analog.Sources.ConstantVoltage

ConstantVoltage1;

Modelica.Mechanics.Rotational.Inertia Inertia1;

Equation@

Connect@ConstantVoltage1.p, Resistor1.pD;

Connect@Resistor1.n, Inductor1.pD;

Connect@Inductor1.n, EMF1.pD;

Connect@EMF1.n, Ground1.pD;

Connect@ConstantVoltage1.n, Ground1.pD;

Connect@EMF1.flangeÄb, Inertia1.flangeÄaD

D

D

Figure 1.3 Textual model of a DC-motor in MathModelica syntax.

model DCMotor

Modelica.Electrical.Analog.Basic.Resistor Resistor1;

Modelica.Electrical.Analog.Basic.Inductor Inductor1;

Modelica.Electrical.Analog.Basic.Ground Ground1;

Modelica.Electrical.Analog.Basic.EMF EMF1;

Modelica.Electrical.Analog.Sources.ConstantVoltage

ConstantVoltage1;

Modelica.Mechanics.Rotational.Inertia Inertia1;

equation

connect HConstantVoltage1.p, Resistor1.pL;

connect HResistor1.n, Inductor1.pL;

connect HInductor1.n, EMF1.pL;

connect HEMF1.n, Ground1.pL;

connect HConstantVoltage1.n, Ground1.pL;

connect HEMF1.flange_b, Inertia1.flange_aL;

end DCMotor;

Figure 1.4 Textual model of a DC-motor in Modelica syntax.

On a higher level than the language, MathCore has developed a graphical model
editor. The intension is essentially to work in the model editor where the
visualization makes the models easy to interpret and simulation neat to handle

4 Chapter 1 Introduction

(the model in figure 1.2 is made here). From the model editor, all Modelica
standard libraries are reachable [10], but also other components constructed in
MathModelica. A new component is implemented using MathModelica or
Modelica syntax in a Mathematica notebook. Such new components may be
saved as MathModelica packages and after this they can be used in the model
editor. Also the models in figure 1.3 and 1.4 are implemented and stored in
notebooks. For more information about Mathematica see [13, 14].

MathModelica is using the Dymola Kernel, which is a part of the software
Dymola developed by Dynasim [4]. When to simulate a model, the
MathModelica code first is translated to Modelica syntax. Then it is sent to the
Dymola kernel for translation to C, compilation and eventually simulation (i.e.
solving an equation system).

In notebooks, both documentation and models with their simulation results can
be integrated and stored (this thesis is a good example). Mathematica is also a
powerful tool for manipulation of analytical and numerical expressions, which
can be applied to models and their results. The essential part of this project has
involved utilization of these facilities.

Version 2.0 of MathModelica is used in this project. To read more about this
tool, see [8].

1.3 1.3 Model-based diagnosis

The diagnosis problem is to recognize if a correct built system is malfunctioning
or not and if it is, localize and identify the fault. The result of this will generate
one or several diagnoses. A diagnosis is a statement telling if the considered
system is faulted or not and also possibly how it is faulted, if it is. The
recognition of the system is made by possessing experience of the non-faulted
system. In model-based diagnosis, the experience is represented as a model of
the real system, which makes it very important for the model to be consistent
with reality. To diagnose such a system, observations (i.e. measured values) from
it are required so that these values can be compared with those generated by
the corresponding model. A discrepancy between the two tells that there is one
fault (or more) present.

1.2 MathModelica 5

1.3.1 1.3.1 About faults

The first step of the diagnosis procedure is to find out if a fault is present - fault
detection. A next step is to determine what part or parts of the system that is
faulted - fault isolation. To go further, there might be interesting to check the size
and the time-dependence of the fault - fault identification.

The different fault related states that a component may be in is referred to as the
behavioral modes, which includes one or more fault modes together with the no-
fault mode. Each behavioral mode of a component is said to be defined by a
behavioral model, i.e. how the component will function when it is in the no-fault
mode or the different fault modes, respectively. A faulty (or non-faulty) system
consisting of some components can then be diagnosed and said to be in a
certain state, dependent on the present behavioral modes of its components.
Here is an example to describe this.

Example 1.1

If a system S consists of two components A and B, each with the possible fault F,
then the behavioral modes they can take (one at a time per component) is
described by

A e 8NF, F<, B e 8NF, F<

where NF stands for no-fault mode. When just single faults are assumed, the set
of all possible diagnoses for the system can be written as

S e 8NF, FHAL, FHBL<

If for a certain moment a fault in component A is detected, then the single
diagnosis for S is FHAL.

The extension of example 1.1 is to add more fault modes Fi to the components
and also assume multiple faults to occur, i.e. both A and B may be faulty at the
same time. Example 1.2 shows this.

6 Chapter 1 Introduction

Example 1.2

If we assume multiple faults the set of possible diagnoses from example 1.1
would be extended to

S e 8NF, FHAL, FHBL, FHAL fl FHBL<.

The added diagnosis represents a double fault, i.e. both A and B are faulted.
Furthermore, if we suppose one of the components to have more behavioral
modes, for example

A e 8NF, F1, F2<

then two more possible diagnoses would be added the diagnosis set:

S e 8NF, F1HAL, F2HAL, FHBL, F1HAL fl FHBL, F2HAL fl FHBL<.

Note the difference between a single fault and a single diagnosis. A single
diagnosis may be either a single fault or a multiple fault.

1.3.2 1.3.2 Diagnosis in two different areas

Within the area of automatic control, models are based on different mathematical
equations (differential equations). For diagnosing such systems the signals of
sensors and actuators are observed. To the equations describing a certain
system, fault parameters are added for recognizing where faults are arising.

The other theoretical field where a lot of diagnosis research is carried out is
artificial intelligence (AI). Here the diagnostic problem is more directed to the
functioning or non-functioning of each component in the system. Compared to
the view in control, this is a more logical way of seeing the systems,
mathematically speaking. The term behavioral mode described above is taken
from the AI-field. The work in this thesis is close to this area of diagnosis and
therefore already developed AI methods has been studied in chapter 2.

For more readings in these two areas, see [12, 11, 6].

1.3 Model-based diagnosis 7

1.4 1.4 Limitations

Since neither Modelica nor MathModelica has been applied the diagnosis field
before starting this project, the limitation was set to look at simple analog
electrical circuits. The circuits have consisted only of the two linear, static
components resistor and constant voltage source in varying combinations. A
ground must always be connected to a circuit as a reference, but this component
together with the wires are always assumed to be non-faulted.

The nature of the components makes all simulated values constant over time
and for that reason, all measurements are also assumed to be time-invariant.
Therefore, when making the diagnoses, just a single value at a certain point of
time is considered. The algorithm is therefore not prepared to handle circuits
with any dynamic characteristics, since this would require a sequence of
measurements to be compared to a corresponding interval of simulation.

The goal when diagnosing a circuit was to look at all possible diagnoses for certain
observations. In practice this means that a single diagnosis seldom is obtained
from the diagnosis system.

1.5 1.5 Reader's guide

This report first gives an introduction to the work as well as a brief outline to
the simulation environment MathModelica and to model-based diagnosis (this
chapter). Chapter 2 describes two diagnosis algorithms developed within the
field of AI.

In chapter 3, the procedure of generating and using the diagnosis system is
presented, i.e. the implemented algorithm is described in words. Then follows
chapter 4, which motivates the choices made when implementing the algorithm.
Chapter 5 gives suggestions for further work, for example an interesting
extension of the functionality of the algorithm. Last in the report, in chapter 6, a
summary of the project results are presented.

8 Chapter 1 Introduction

1.6 Project partners

This work is a master thesis and was carried out in co-operation with Vehicular
systems at Department of Electrical Engineering (ISY), Linköping University,
and MathCore AB, Sweden, during spring semester 2001. Supervisors have
been Mats Jirstrand at MathCore and Mattias Nyberg at ISY.

1.6 Project partners 9

10 Chapter 1 Introduction

2
GDE and SOPHIE III

GDE and SOPHIE III

In this chapter, former research within the area of AI diagnosis is shortly
introduced. Two methods, General Diagnostic Engine (GDE) and SOPHIE III, are
illustrated by an example. The example is copied from a paper about the latter
method by de Kleer and Brown [1] and GDE can be read about in [2, 5]. Both
methods (algorithms) are described very shortly here and some details about
them are intentionally left out. The purpose of this chapter is to give a brief look
into what has been done before in the area of this thesis.

Figure 2.1 shows one small part of a bigger circuit, driven by some constant
voltage. (The example is reduced compared to the one in the paper.) There are
three resistors R1, R2 and R3 and two zener diodes D1 and D2. The resistance of
each resistor is written inside the components and the breakdown voltages of
the diodes are written beside them. Relevant nodes (points with equivalent
potentials) are named N1 - N5. To specify certain voltage drops and currents
through components some more parameters are defined as in table 2.1.

11

Figure 2.1 Fragment of a circuit.

Table 2.1 Definition of parameters

New
parameter

Between nodes ê
Through component

U1 N1, N5
U2 N2, N5
U3 N1, N2
U4 N2, N3
U5 N3, N5
U6 N1, N3
I1 R1
I2 D1
I3 R2
I4 D2

12 Chapter 2 GDE and SOPHIE III

2.1 2.1 SOPHIE III

SOPHIE III is a computer program, developed in the 1970's, for diagnosing
electrical circuits. The system was primary used in a laboratory setting and to
make it work with satisfaction, some presuppositions had to be made. For
example, just single faults are assumed, faults only occur in components themselves
(not in wires), the source is a constant voltage, and all components have the same
probability to fail. SOPHIE III uses a local propagator called LOCAL to calculate
expected values in the circuit, given one or more observations. SOPHIE III is not
a general diagnosis system, since LOCAL only possesses knowledge of how
electrical components work, i.e. what equations that characterize them.

Suppose that the measurements U1 = 30 V and U2 = 34 V are made in the
example in figure 2.1. In SOPHIE III this would be stored as the two expressions

(V (N1 N5) (MEASUREMENT) ())= 30

(V (N2 N5) (MEASUREMENT) ())= 34

The first element in every expression explains the type of the value considered
and the second tells the location of the value. Next element is the reason of the
value, i.e. describes how LOCAL computed the value (above it was just a
measurement). The last element contains the assumptions the value depends on,
i.e. which components that must work correctly to propagate the value (which
explains why it is empty for measurements).

After collecting observations LOCAL can now start propagating.

(V (N1 N2) (KVL N1 N2 N5) ()) = 4

(I R1 (RESISTORV R1) (R1))= 0.003

(I D1 (ZENERV D1) (D1))= 0

In the first expression KVL stands for "Kirchoffs Voltage Law", which is here
involving the three mentioned nodes. No assumptions are needed since the
both measurements gives all necessary information. This first propagation
makes it possible for LOCAL to calculate the second expression, namely the
current through R1 (because of the assumption R1). The third propagation gives
that the current through D1 is zero, since the breakdown voltage is not reached
according to the measurements.

LOCAL is, unlike the Modelica language, casually dependent, which implies that
Ohm's law, V = R I, must exist in two forms. These two forms are denoted by

2.1 SOPHIE III 13

RESISTORV and RESISTORI. RESISTORV means that the voltage are known
(similarly for ZENERV) while RESISTORI indicates that the electric current is
known. (The first one represents the equation I = V êR and the second V = I R.)

Some further propagations will be

(I R2 (KCL N2) (R1 D1)) = 0.003

(V (N3 N2) (RESISTORI R2) (R2 R1 D1)) = 7.18

(V (N3 N5) (KVL N3 N2 N5) (R2 R1 D1)) = 41.18

(V (N3 N1) (KVL N3 N2 N5) (R2 R1 D1)) = 11.18

(I D1 (ZENERV D1) (D2 R2 R1 D1)) = 0

which are explained similarly. (KCL is "Kirchoffs Current Law".)

Now suppose the voltage drop between N1 and N3 is observed to 15 volts. This
leads to a discrepancy as the propagated value is 11.18 volts. This means that
one of the assumptions for this propagation is wrong, i.e. one of the components
(R1 R2 D1) is faulted. This set is called a nogood. Using the notation from
section 1.3, the possible diagnoses for this observation would then be

8FHR1L, FHR2L, FHD1L<

where F denotes any (unspecified) fault. Note that just single faults are possible.
If the observation would be 11.18 volts, then all of (R1 R2 D1) are non-faulted
for sure. This conclusion can be drawn since single faults are assumed and a
faulty component is in SOPHIE III expected to appear faulty when it is.

Comparing other new observations with the propagations could yield more
nogoods and since only one fault is assumed to be present at the same time, the
intersection of all the nogoods will (may) reduce the number of components
that are suspiciously faulted, i.e. components who are not members in all
nogoods, cannot be faulted. For example, if we measure the electric current
through R2 to 0.01 ampere, the obtained nogood will be (R1 D1). Then the
possible components to be faulted are reduced to (R1 D1), which is the
intersection of (R1 R2 D1) and (R1 D1).

By making further observations in this way, faults can eventually be isolated.
This is how SOPHIE III is working. It proposes a next measurement using some
algorithm to quickly localize the faulted component. This algorithm will not be
described here. For more readings about SOPHIE III see [1].

14 Chapter 2 GDE and SOPHIE III

2.2 2.2 GDE

As a comparison to SOPHIE III a later developed diagnosis algorithm, GDE,
will here be described and also applied to the example in figure 2.1. GDE is
maybe the most well known diagnosis algorithm within the AI area of diagnosis.

GDE, as well as SOPHIE III, uses local propagation but also a sort of database
called ATMS (Assumption-based Truth Maintenance System) generally used
within the area of AI. The important differences from SOPHIE III, is that the
algorithm handles multiple faults and the local propagator of GDE is not made
strictly for electrical circuits, but is more general. A similarity between the local
propagators is however that they are both causal dependent.

Looking at the example, the observations from above would by the ATMS be
stored as below (the text within round brackets is not stored).

PU1=30,{}T (observation)
PU2=34,{}T (observation)

where the first element is the measured quantity and its value. The other
element contains supporting environments, which is a set of components which is
the same set that for SOPHIE III is called assumptions. The information within
brackets tells how the value was obtained. It does not illustrate any content in
the ATMS.

Now the GDE algorithm can propagate the following and add to the database
(similar to section 2.1):

PU3=4,{}T (KVL)
PI1=0.003,{R1}T (Ohm's law over R1)
PI2=0,{D1}T (zener breakdown = 36 V)
PI3=0.003,{R1,D1}T (KCL)
PU4=7.18,{R1,R2,D1}T (Ohm's law over R2)
PU5=41.18,{R1,R2,D1}T (KVL)
PU6=11.18,{R1,R2,D1}T (KVL)
PI4=0,{D2,R1,R2,D1}T (zener breakdown = 56 V)

Within the round brackets the current equation used in each propagation is
showed and, as above, these are not stored by GDE.

2.2 GDE 15

Further observations will also be added to the database and with those
additional two from section 2.1, this would give

PI3=0.01,{}T (observation)
PU6=15,{}T (observation)

With those added to the database GDE will discover a discrepancy between two
pairs, as both I3 and U6 now exists with two different values. Therefore GDE
generates the two nogoods

{R1,R2,D1}
{R1,D1}

which tells that the four possible minimal diagnoses are

F(R1)
F(D1)
F(R1)flF(R2)
F(R2)flF(D1)

where F is any unspecified fault. A minimal diagnosis is a diagnosis of which no
subset is also an obtained diagnosis, is called a minimal diagnosis [3]. For
example, the diagnosis F(R1)flF(R2)flF(D1) is not minimal, since it is a superset
of F(R1)flF(R2). The diagnosis F(R2) alone is not a possible single fault,
because the second nogood says that at least one of R1 or D1 is faulted but not
R2.

GDE also suggests further measurements, but as for SOPHIE III, this is not
described here. See [2, 5] for more about GDE.

16 Chapter 2 GDE and SOPHIE III

2.3 2.3A summary

Comparing SOPHIE III and GDE, tells that GDE, as the name says, is more
general. SOPHIE III is developed to diagnose only electrical circuits, which
GDE is not restricted to. Another difference between the two methods is that
SOPHIE III just detects single faults while GDE also can find multiple faults.
The local propagators for the two methods are both causal dependent. This
means that the equation that describes the behavior of a certain component
explicitly must be expressed in all the ways the variables can be extracted, i.e.
for Ohm's law there are two ways, namely I = V êR and V = I R.

The algorithm implemented in this project uses MathModelica for propagating
values, which makes the modelling more simple and easier to grasp. An
advantage of MathModelica is that it is non-causal.

Both GDE and SOPHIE III suggests further measurements, as mentioned. The
system for diagnosing made in this project does not have this feature.

2.3 A summary 17

18 Chapter 2 GDE and SOPHIE III

3
Generating a diagnosis system

Generating a diagnosis system

The purpose of this work was to implement an algorithm that takes an existing
MathModelica model of an electrical circuit and generates a diagnosis system for
diagnosing a real circuit. Figure 3.1 shows a general outline of this diagnosis
system. The algorithm was implemented as a script in Mathematica syntax [13,
14] with help from MathModelica commands [8].

This chapter describes how a diagnosis system is created, how the diagnosis
components are built, the procedure of diagnosis calculation and finally how to
use the algorithm.

Figure 3.1 The diagnosis system.

The existing MathModelica model (here also referred to as the original model or

19

the input model) is assumed to consist of components from the Modelica
standard library [10]. The basic idea when building the system in figure 3.1, is
to change the existing Modelica standard components of the original model to
corresponding diagnosis components. The diagnosis components are
MathModelica models defining the different behavioral modes a certain
component can be in. This makes the now changed original model able to exist
in many shapes, depending on the different combinations of the behavioral
modes of the diagnosis components. For each of these combinations a separate
behavioral circuit is generated. All these disjunctive behavioral circuits are then
assembled into a total model, the diagnosis model, which is simulated. This is the
first part of the algorithm ("Algorithm part 1" in figure 1.1), which, referring to
chapter 2, can be seen as the local propagator. The other part calculates the
possible diagnoses from given observations of a corresponding real system
("Algorithm part 2"). The diagnosis model is the basis for making these
diagnoses. The two algorithm parts together is referred to as the diagnosis
system.

In Appendix A the complete code for this is presented.

To make it easier to follow, a very simple example circuit is visualizing the
different phases. Figure 3.2 and 3.3 show this circuit as seen in the
MathModelica model editor and the MathModelica code, respectively.

R = 10 ohm

G

U = 10 V

Figure 3.2 MathModelica model with a constant voltage source and one resistor.

20 Chapter 3 Generating a diagnosis system

3.1 3.1 Diagnosis components

Model@Circuit1,

Modelica.Electrical.Analog.Basic.Resistor R@8R == 10<D;

Modelica.Electrical.Analog.Sources.ConstantVoltage

U@8V == 10<D;

Modelica.Electrical.Analog.Basic.Ground G;

Equation@

Connect@U.p, R.pD;

Connect@R.n, G.pD;

Connect@G.p, U.nD

D

D

Figure 3.3 The model in figure 3.2 expressed in MathModelica code.

3.1 Diagnosis components

The diagnosis components are implemented as models in MathModelica,
similar to the Modelica standard components in the standard library. The two
components resistor and constant voltage source are both available in the standard
library among other analog electrical components. Each diagnosis component is
related to one corresponding standard component. In both of those components
above, the superclass oneport (also from the standard library) is inherited and
the diagnosis components are also built on this superclass. (The class oneport is
a model representing any electrical component with two connect pins.)

The diagnosis components are saved as MathModelica packages and each one
has its own package file, containing MathModelica models describing all
behavioral modes, i.e. the behavioral models. Figure 3.4 illustrates the structural
similarity and difference between one of the diagnosis components and its
corresponding standard component. The package files of the diagnosis
components also includes information on what component in the standard
library it is related to, in figure 3.4 called standard component relation.

3.1 Diagnosis components 21

Figure 3.4 Tree showing how oneport is inherited in the standard and diagnosis
 component, respectively, of a resistor.

The model names NFResistor and so on in figure 3.4, are described in section
3.1.1. The long model name represents the standard component, see figure 3.3.
See also section 4.1 for a further description regarding the choices when
implementing the diagnosis components.

3.1.1 3.1.1 The component packages

The diagnosis resistor package (DiagnosisResistor) consists of three different
behavioral models:

- no-fault (NFResistor)
- open-circuit (OCResistor)
- short-circuit (SCResistor)

The names within brackets, are the actual names of the implemented found in
the code. Figure 3.5 and 3.6 shows the differences between the no-fault resistor
and the open-circuit resistor. The whole diagnosis resistor package is found in
Appendix B.2, where also an ideal resistor from the Modelica library is found
(B.4).

22 Chapter 3 Generating a diagnosis system

Model@NFResistor,

Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;

Parameter Modelica.SIunits.Resistance R == 1;

Equation@

R i == v

D

D

Figure 3.5 No-fault resistor model.

Model@OCResistor,

Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;

Parameter Modelica.SIunits.Resistance R == 1;

Modelica.SIunits.Resistance Ropen == 10^12;

Equation@

v � i Ropen

D

D

Figure 3.6 Open circuit resistor model.

Two behavioral models of the voltage source (DiagnosisConstantVoltage) are
available:

- no-fault (NFConstantVoltage)
- empty battery (EBConstantVoltage)

Their definitions can be seen in Appendix B.3 and the standard component in
B.4 for comparison.

3.1.2 3.1.2 Component combinations

It is obvious that for a great deal of components in a circuit, lots of fault
combinations will be possible. The expression

(3.1)P
i=1

n

 behavioralsi ,

3.1 Diagnosis components 23

where n is the total number of diagnosable components in the model and
behaviorals is the number of behavioral modes for component i, represents the
total number of combinations for a certain model. For example, for a circuit
with three components connected, each having three behavioral modes, there
are 3 ÿ 3 ÿ 3 = 27 different combinations.

A feature of the algorithm makes it possible to decide how many of the
combinations that should be considered. This is made by telling a maximum
fault multiplicity to obtain in the resulting diagnoses (for example only double
and single faults might be of interest).

3.1.3 3.1.3 Recognizing the components

The algorithm must be able to acquire knowledge of which diagnosis
components that exist. This because it must be possible to relate the declarations
of the components of the input model to the corresponding diagnosis
components. Figure 3.8 shows which of the diagnosis components that are
related to which of the standard components. To achieve this, a special
MathModelica package is created, called DiagnosisComponents (Appendix
B.1). Figure 3.7 visualizes from what instances the algorithm gets the
information to accomplish what described by figure 3.8. The information
consists of the names of the standard and diagnosis components.

Figure 3.7 Recognition of components.

Figure 3.8 Relations between standard and diagnosis components.

24 Chapter 3 Generating a diagnosis system

The diagnosis component package contains a model Electrical that consists of
a list with the complete names of all the standard components for which a
diagnosis component package exists, i.e. the two in figure 3.8. When further
electrical diagnosis components are implemented, the list will be added more
elements. The intention of this structure is to associate the name with the actual
area that the components are belonging to. For example, a future implemented
diagnosis area could be Mechanical.

The algorithm assumes that all the diagnosis component packages are named as
in this thesis. The packages for new components to be added in the future, shall
therefore be named Diagnosis<standard component name>. Otherwise the
recognition procedure in figure 3.7 will not work and the relations in figure 3.8
are then not found. The reason is that the algorithm uses the last part of the
name of the standard component to identify what diagnosis component it is
related to.

Furthermore, each behavioral model must be named in the same way as here,
e.g. NF<standard component name>, but this is to standardize the look of the
resulting diagnoses, i.e. how the result is printed on the screen (see section 3.4).
Though, there may be more or less than two letters to describe the behavioral
mode, e.g. A<standard component name> or ABC<standard component name>.

3.2 3.2 Generating and simulating the diagnosis model

From the original MathModelica model, the diagnosis model are being
generated and then simulated. In figure 3.1 this is referred to as "Algorithm part
1". First in this procedure, the components of the original model are identified
by their type and name. For those of which a corresponding diagnosis
component exists the type and name are stored in pairs in a type list. For the
example circuit in figure 3.2 and 3.3 this will yield the list

{{R, Modelica.Electrical.Analog.Basic.Resistor}
{U, Modelica.Electrical.Analog.Sources.ConstantVoltage}}

because the ground G does not have a corresponding diagnosis component. As
seen in the example, a very long type name (declaration) is given. This is the
complete Modelica standard library path to reach the components. To make the
algorithm work, the declarations have to be expressed in this way. Otherwise
they will not be treated as components that have corresponding diagnosis
components, i.e. they will not be diagnosed. When building models in the

3.1 Diagnosis components 25

model editor this complete declaration path is automatically generated.

Now the standard components in the type list can be changed to their
corresponding diagnosis components. Several combinations of the behavioral
models are possible (see section 3.1), as each diagnosis component can be in at
least two behavioral modes . The combinations in the example will be

{{R,NFResistor},{U,NFConstantVoltage}}
{{R,NFResistor},{U,EBConstantVoltage}}
{{R,OCResistor},{U,NFConstantVoltage}}
{{R,OCResistor},{U,EBConstantVoltage}}
{{R,SCResistor},{U,NFConstantVoltage}}
{{R,SCResistor},{U,EBConstantVoltage}}

which is the same number of combinations that expression (3.1) would yield.

For each of these combinations, a unique behavioral circuit class is defined, that
declares one behavioral circuit each in the total diagnosis model. This is the
diagnosis model for the example circuit:

Model@DiagModel,
bmclass6 m6;
bmclass5 m5;

bmclass4 m4;
bmclass3 m3;
bmclass2 m2;

bmclass1 m1
D

The behavioral circuit classes bmclassi declares the behavioral circuits mi. One
of the behavioral circuit classes has the following definition:

Model@bmclass3,
DiagnosisResistor.OCResistorR@8R == 10<D;
DiagnosisConstantVoltage.EBConstantVoltageU@8V == 10<D;

Modelica.Electrical.Analog.Basic.Ground G;
Equation@
Connect@U.p, R.pD;
Connect@R.n, G.pD;

Connect@G.p, U.nD
D

D

The standard components have here been changed into diagnosis components,
each with a certain behavioral mode present.

26 Chapter 3 Generating a diagnosis system

Simulation of the diagnosis model results in a complete set of values. To be able
to use these values to diagnose the real system, they need to be structured in
some recoverable way. Therefore, a matrix with all the simulated values is
generated, the simulation matrix, in which each row represents one of the
behavioral circuits. The example circuit yields the simulation matrix

i

k

jjjjjjjjjjjjjjjjjjjjj

8NF< 8currentHRL, voltageHRL, currentHUL, voltageHUL<
8EBÄU< 8currentHRL, voltageHRL, currentHUL, voltageHUL<
8OCÄR< 8currentHRL, voltageHRL, currentHUL, voltageHU<<

8OCÄR, EBÄU< 8currentHRL, voltageHRL, currentHUL, voltageHUL<
8SCÄR< 8currentHRL, voltageHRL, currentHUL, voltageHUL<

8SCÄR, EBÄU< 8currentHRL, voltageHRL, currentHUL, voltageHU<<

y

{

zzzzzzzzzzzzzzzzzzzzz

Note that current(X) states the electric current through the component X for
the specific behavioral circuit that the current row represents. The notation
voltage(X) similarly describes the voltage over the component X. The first
elements in each row of the matrix above ({NF},{EBÄU} and so on), are
explained in the section 3.3.

Ideal, the simulation matrix for the example circuit would look like

i

k

jjjjjjjjjjjjjjjjjjjjj

8NF< 81, 10, −1, 10<
8EBÄU< 80, 0, 0, 0,<
8OCÄR< 80, 10, 0, 10<

8OCÄR, EBÄU< 80, 0, 0, 0<
8SCÄR< 8∞, 0, −∞, 0<

8SCÄR, EBÄU< 80, 0, 0, 0<

y

{

zzzzzzzzzzzzzzzzzzzzz

The negative electrical current through U, is explained by the fact that the
positive pin of the voltage source is connected to the positive pin of R. The
definition of the components then say that U and R must have opposite direction
of their currents.

This first part of the algorithm can be seen as a local propagator, according to
the two methods described in chapter 2 and the code is shown in Appendix A.1.

3.3 3.3 Identifying the diagnoses

This section will explain how possible discrepancies between observations and
the propagated values in the simulation matrix is detected.

The simulation matrix has as first element in every row an identifying element.
This element tells what diagnosis that the following simulated values
represents. In the second part of the algorithm, observations made from the real

3.2 Generating and simulating the diagnosis model 27

system are matched against each row in the simulation matrix. For all the rows
agreeing, the current identifying element (diagnosis) is returned and forms a
resulting list of all possible diagnoses for the current observation case. The
notations of the faults differs a little from how they were written in section 1.3
and chapter 2. In the diagnosis result, that the algorithm returns, the faults are
denoted as FÄA , instead of F(A) (F is the fault and A is the component).

Simulated values and observations are most likely not exactly equal, even if the
model is built to reflect the real system (or a faulty real system). An observation
is therefore said to match a simulated value within a test interval of five percent
of the observation. When the simulation has returned a zero-value (or close to
zero), an absolute test interval of [-0.01, 0.01] is used.

To illustrate how the possible diagnoses are obtained and presented on the
screen, we go back to the simple example circuit in figure 3.2 and 3.3. Suppose
that the resistor is short-circuit, the voltage source is non-faulted and the only
observation is the voltage drop over the resistor, which is measured to 0 volts
(or close to 0). If the supposition about the resistor was not known, perhaps the
most obvious diagnosis would be {EBÄU}. However, the voltage source is
assumed to have an inner resistance (see chapter 4 for more about this), so
{SCÄR} would also be a possible diagnosis. The above observation also yields
two more diagnoses and the total list of possible diagnoses would be

{{SCÄR},{EBÄU},{OCÄR,EBÄU},{SCÄR,EBÄU}}

As seen, the last two are double faults. This is explained by the fact that if the
voltage source is empty, then it would be impossible to say anything about the
state of the resistor, i.e. it could be in any of its behavioral modes.

The possible diagnoses above are visualizing exactly how this second part of the
algorithm presents its result on the screen. Every diagnosis is assembled within
one pair of curly brackets. The algorithm also have a feature of presenting just
the minimal diagnoses (see section 2.2). For the case above, the minimal
diagnoses would be

{{SCÄR},{EBÄU}}

since both of the double faults includes at least one of these single faults.
This part of the algorithm script is presented in Appendix A.2.

28 Chapter 3 Generating a diagnosis system

Note:
1. The test intervals are easily changed in the underlying function
TestValues[.] in GetFaultMode[.]. See Appendix A.2.
2. The faults are denoted as e.g. EBÄU. The sign "Ä" is used instead of "_",
because the last one is a reserved character in Mathematica.

3.4 3.4 Using the diagnosis system

The two parts of the algorithm, described in the former sections, consists of a
number of functions, which are all stored in one Mathematica notebook (see
Appendix A). Before diagnosing, all these functions must be known by
Mathematica, which is accomplished by evaluating them. Both algorithm parts
have a top function each, which are described here.

To obtain the possible diagnoses for a certain system with respect to the
observations, the two top functions are in turn evaluated. The original
MathModelica model from which a diagnosis system is obtained, must also be
defined and evaluated.

To the simple example circuit from before, we now add two more resistors
connected in parallel with the first one. Figure 3.9 shows the new circuit, named
Circuit3. (This is the same example as first in chapter 1, figure 1.1.) The
corresponding MathModelica code is found in Appendix C.

R1 = 10 ohm R2 = 20 ohm R3 = 40 ohmU = 10 V

G

Figure 3.9 Circuit with a constant voltage source and three resistors in parallel.

3.4.1 3.4.1 Making the simulation matrix

The diagnosis system is generated by using the top function of the first part of
the algorithm, which is

3.3 Identifying the diagnoses 29

SimulateFaultModels[maxFaultSize,myModel]

where myModel is an existing model. The parameter maxFaultSize limits the
diagnosis system to a certain fault-multiplicity (see also section 3.1). For
example maxFaultSize = 2 gives a system only treating double and single
faults. If this parameter is omitted, all combinations of behavioral modes will be
represented in the resulting diagnosis system.

Applying the above function on Circuit3 (illustrated in figure 3.9) and limiting
the diagnoses to maximum double and single faults, is done by typing

diagSystem32 = SimulateFaultModels@2, Circuit3D;

The variable diagSystem32 is used for storing the result of the function, i.e. the
simulation matrix. Everything is now prepared for diagnosing the real system.

3.4.2 3.4.2 Obtaining the possible diagnoses

The observations must be arranged in a certain list structure; a structure that the
diagnosis calculation can recognize. They shall be given together with their
quantity on the form

{{quantity1, observation1}, {quantity2, observation2}, ... }

Quantities are stated as R.v for the voltage [V] over a component named R and
R.i for the current [A] through the same component. It is important to call the
component in question by its real name, i.e. the same as in the definition of
original model. Measurements for every component and quantity must not be
given, nor in a particular order.

For the new example circuit, a list of observations then could look like this:

observationList1 = 88R2.v, 10<, 8R3.i, 0.25<, 8R1.i, 1<<;

With these values measured, we see that the circuit may be intact, but it also
may not. Let's see what the diagnosis computation says about this fuzzy
prediction.

To calculate the diagnoses, the following statement is used. It is the top function
of the second part of the algorithm.

Diagnosis[myDiagnosisSelection,myObservations,myDiagnosisMatrix]

30 Chapter 3 Generating a diagnosis system

Here myObservations must be given as the list of observations mentioned
above and myDiagnosisMatrix must be created by SimulateFaultModels. The
parameter myDiagnosisSelection can be given one of the values {All, Min},
which gives, respectively, all the possible and the minimal diagnoses. Default
value is All and is set if this parameter is left out.

After evaluating SimulateFaultModels once, the diagnosis computation can be
done multiple times for different observations. However, only if changes are
made in the original model (for example in figure 3.9) or if the fault multiplicity
is changed, then a new simulation matrix have to be built.

For checking the above prediction of the observations in observationList1 we
evaluate

Diagnosis@All, observationList1, diagSystem32D

88OCÄR2<, 8NF<<

This result says that either there is no fault in the circuit or the resistor R2 might
be open, i.e. the prediction from above was pointing in the right direction. Open
circuit is diagnosed for R2 since only the voltage is measured over this
component, which does not give enough information to tell if it is broken or not;
the voltage drop is still 10 V between the measuring points. Instead, if the
current through R2 would be observed to 0.5 A, then only the diagnosis {NF}
would be made.

3.4.3 3.4.3 Some more examples

In the following diagnosis calculation for the above example (Circuit3 in
figure 3.9) an empty result is obtained, though the only observation that has
changed is the current through R1 which is now 0.9 A.

observationList2 = 88R2.v, 10<, 8R3.i, 0.25<, 8R1.i, 0.9<<;

Diagnosis@All, observationList2D

8<

Even if the observation is just ten percent lower and could originate from such
as tolerances in the resistor and accuracies in the measuring equipment, no

3.4 Using the diagnosis system 31

diagnosis can be calculated. This is depending on how the ranges in the test
interval are set (see section 3.3). However, if this interval is set too wide, they
will increase the risk of getting unrealistic or redundant diagnoses.

One last example of an observation list applied in the example in figure 3.9 is
given to show the difference between All and Min when calculating the
diagnoses. Let's say we measured all zero values:

observationList3 = 88R2.v, 0<, 8R3.i, 0<, 8R1.i, 0<<;

Diagnosis@All, observationList3, diagSystem32D

88SCÄR1, EBÄU<, 8OCÄR1, SCÄR2<, 8OCÄR1, EBÄU<,
8SCÄR2, OCÄR3<, 8SCÄR2, EBÄU<, 8SCÄR2<,
8OCÄR2, EBÄU<, 8SCÄR3, EBÄU<, 8OCÄR3, EBÄU<, 8EBÄU<<

This results in a large number of possible diagnoses, mostly with double faults.
Now if we want to look at the minimal diagnoses, the result obtained will be as
follows.

Diagnosis@Min, observationList3, diagSystem32D

88EBÄU<, 8SCÄR2<<

All double faults are now gone, which is because every one of them includes
either one of{EBÄU} and {SCÄR2} or both.

3.5 3.5 Using other components in the algorithm

Note that, even if the limitation here is set to diagnose only the static
components resistor and constant voltage source, other components may be
included in the input model. The algorithm is made to just diagnose the
standard components for which corresponding diagnosis components exists. All
the components in the input model that have not related diagnosis components,
will remain the same during the diagnosis procedure. However, the limitation
of looking at values in specific discrete moments cannot guarantee correctness
of the diagnoses made when dynamic components are included. But, if such a
component has a known time constant and if the component is stable, then it
may be included in a circuit and the possibility of obtaining correct diagnoses
will still be kept. Knowledge about when the circuit reaches stability, gives

32 Chapter 3 Generating a diagnosis system

information on how to adjust the simulation time of the diagnosis model and
when to read the simulated values. Now the simulation time is set to two
seconds, and the simulated values (which are stored in the simulation matrix)
are read after two seconds. These time choices are arbitrary picked since the
circuits in this thesis are assumed to have static characteristics. Adjustment of
these values can be done in the functions MakeTotalModel[.] and
SimSalaBim[.]. Both are found in the first part of the algorithm script, where
the simulation matrix is created. If a circuit is constructed so it never will
become stable, the now existing algorithm is not applicable.

3.5 Using other components in the algorithm 33

34 Chapter 3 Generating a diagnosis system

4
Choices of implementation

Choices of implementation

In chapter 3, the diagnosis components were presented. The functionality of
these components has appeared to be the key for making the diagnosis model
(made by the first part of the algorithm) possible to simulate. In this chapter, the
choices made when implementing the diagnosis components are explained.
Problems occurring when using ideal diagnosis components are also discussed.

4.1 4.1 The structure of the diagnosis components

Mainly there are two ways of implementing the diagnosis components, either

i) as one model with a parameter controlling the behavioral mode or
ii) as one model per behavioral mode.

In this thesis the latter case (ii) is chosen (see Appendix B.2 and B.3), both
because limitations of MathModelica and for practical reasons. The first
alternative (i) may seem more natural to choose [7], since one standard
component then just would have one corresponding diagnosis component.
Written in MathModelica code this could for a resistor look like in figure 4.1.
However, this is not possible, because MathModelica does not support defining
enumerated types, as presumed in figure 4.1 by trying to use MyBMType to
declare the variable BehavioralMode.

35

Model@DiagnosisResistor,

Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;

Parameter Modelica.SIunits.Resistance R == 1;

Modelica.SIunits.Resistance Ropen � 10^12;

Modelica.SIunits.Resistance Rshort � 10^−2;

Parameter MyBMType BehavioralMode � NF;

Equation@

If @BehavioralMode === NF, R ∗i == v,

If@BehavioralMode === OC, i � 0,

If @BehavioralMode === SC, v � i∗RshortDDD

D

D

Figure 4.1 MathModelica code for a diagnosis resistor implemented as alternative i).

Instead, if MyBMType would be changed to an integer type and BehavioralMode
for example could have the values {0, 1, 2}, then this diagnosis resistor would be
functional. But then it would be impossible for the diagnosis algorithm to know
which behavioral modes a certain component can take. For example, it does not
know that a zero is representing the no-fault mode. This kind of knowledge of
the diagnosis components is necessary for the algorithm to acquire, otherwise it
would not be general enough. By choosing ii), the names of each model can be
associated with the current behavioral mode. The lack of being able to define
enumerated types in MathModelica is therefore the strongest reason to
implement as alternative ii).

According to ii), each behavioral mode should be represented as one
MathModelica model, a behavioral model. They are named as, for example
NFResistor and SCResistor, which clearly tells the corresponding behavioral
mode and therefore easy can be detected by the algorithm. This also makes it
easier to explicitly read the definitions of an arbitrary behavioral circuit, that the
first part of the algorithm has generated (this can be done by following the
example in Appendix D). To gather the behavioral models in a logical way, they
are saved as MathModelica packages as described earlier (see section 3.1 and
Appendix B).

36 Chapter 4 Choices of implementation

4.2 4.2 Choice of behavioral models

The two types of faulted resistors (OCResistor and SCResistor) are the two
most extreme thinkable faults. If a resistor breaks, for example caused by a too
strong current, it most probable gets either short-circuit or open-circuit.
Sometimes it may be more likely that an a certain resistor has the wrong
resistance, but this type of faults are not treated here. Similar, the voltage source
is said to be faulted only when it is totally empty.

4.3 4.2 Avoiding over- and underdetermined models

If MathModelica should be able to simulate a certain model, then that model
has to generate a solvable system of equations. Therefore, this equation system
must be neither overdetermined, underdetermined nor have a singularity.
When creating behavioral circuits using ideal components, these kinds of
equation systems appear in a number of situations.

Figure 4.2 shows an example of a circuit with a constant voltage source and two
short-circuit resistors. Both the voltage source and the short circuit of the
resistors are assumed ideal. (The resistors corresponds to the component Short,
found in the Modelica standard library.) This model is not solvable in
MathModelica, since it yields an equation system with a parameter solution, i.e.
infinite number of solutions. The physical explanation to this, is that there is no
information about the current flow through the resistors R1 and R2, as no
resistance is present, i.e. the electric current can be shared in all possible ways
between the resistors. There can in fact be any circulating current in the loop
consisting of R1 and R2.

4.2 Choice of behavioral models 37

U R1 R2

Figure 4.2 Circuit with a constant voltage source and two resistors in parallel. Both
 R1 and R2 are assumed short-circuit.

One solution to this problem is to use non-ideal components. The behavioral
models defining open- and short-circuit resistors are each improved by a open-
circuit resistance and a short-circuit resistance, respectively. The constant voltage
source has an inner resistance added to it. The inner resistance is justified by
looking at a real battery where this is always existing. For the diagnosis
resistors, the two resistances are justified by the fact that physically there must
still remain some resistance, in the first case very high and in the other very
low. How this is put into the definitions of the two diagnosis components is
shown in Appendix B.2 and B.3.

4.4 4.1.1 Ideal versus non-ideal components

The Modelica standard components considered in this thesis are ideal, but to
make it possible to obtain a functioning diagnosis system, the diagnosis
components had to be made non-ideal, which is explained in section 4.3.

The NFResistor model has exactly the same structure as the corresponding
Modelica standard resistor. It may seem unnecessary to make another model
with the same functioning, but it is in line with the reasoning in section 4.1,
regarding the identifying of behavioral modes, together with keeping the
structure of the diagnosis component packages consequent. The ideal
components Short and Idle are already existing components from the
standard library. They could seem to be a substitute for OCResistor and
SCResistor, but from section 4.2 it is now known that non-ideal components is
the only way to simulate faulty circuits.

Note: The only circuit components assumed ideal are the wires. To make also
these non-ideal, a special wire resistor have to be implemented and put into the

38 Chapter 4 Choices of implementation

circuit between every ordinary component terminal. This would make it
possible to diagnose the wires, but also make the script much more complicated.

4.4 Ideal versus non-ideal components 39

40 Chapter 4 Choices of implementation

5
Future extensions of the diagnosis system

Future extensions of
the diagnosis system

The algorithm developed in this project, takes an arbitrary electrical circuit and
makes a diagnosis system for diagnosing resistors and constant voltage sources
included in the circuit. Every of these two components in the circuit is
considered in every diagnosis calculation. For circuits with a large number of
these components, this will cause the first part of the algorithm (simulation of
the diagnosis model and creation of the simulation matrix, see section 3.2) to
grow complex and therefore require too much computer time. Also, if only a
few observations are made on such a circuit, lots of possible diagnoses will be
obtained and many of them could be redundant.

A suggestion of a general extension of the algorithm, regarding the fast growing
of complexity, is discussed in this chapter. Some other proposals for widening
the functionality of the diagnosis system are also presented.

5.1 5.1 Considering subsets of circuits

With the now existing algorithm it may be possible to consider smaller parts of
a circuit, but then the user must explicitly build these circuit subsets and use
them as the input model to the diagnosis system. This methodology would be

41

quite time-consuming (mostly for the user) every time the user wants to change
the measuring points.

Instead, if the circuit subsets were automatically generated, depending on the
locations of the observations, and put into the algorithm, then the diagnosis
system would be much more powerful.

To describe qualitatively how this could be done, the example from section 3.4
is considered (Circuit3). It is visualized here again in figure 5.1. This circuit is
not unreasonable big or complex for the now existing algorithm, but it is an
appropriate example here. Any proposal of how the subsets can be chosen will
not be presented, but only how to diagnose an already picked circuit subset.

R1 = 10 ohm R2 = 20 ohm R3 = 40 ohmU = 10 V

G

Figure 5.1 Circuit with a constant voltage source and three resistors in parallel.

Suppose that there are two different measurements made, M1 and M2, where
M1 is the current through R1 and M2 is the current flowing from the positive
pin of U. From these observations, the extension of the algorithm could for
example pick a subset of the circuit that includes U, R1 and G. This subset
would look as in figure 5.2. The two resistors R2 and R3 are replaced by an
unknown part, that defines the electric current to be equal in and out of it. (This
type of component is possible to model in MathModelica.)

42 Chapter 5 Future extensions of the diagnosis system

R1 = 10 ohm UNKNOWNU = 10 V

G

Figure 5.2 Subset of Circuit3 with two resistors replaced by an unknown part.

By itself, the circuit subset in figure 5.2 yields an equation system that has
infinite number of solutions, since there is no information on how much current
is flowing through the unknown part (because of the unknown resulting
resistance). But, we see that one small part of the circuit subset should be
solvable - the part that includes the resistor R1, with knowledge of the voltage
drop U over it.

Thus, if it was possible to simulate just those parts of the circuit subset that
could yield any result, then the observations could be matched against that. For
example, MathModelica could have a command named
SimulatePossibleParts as an extension of the ordinary simulation command
Simulate. For the observation M1 from above, validation could be done, i.e. a
diagnosis could be made. The second measurement M2 though, will not bring
enough information to tell anything about the present behavioral mode of R1.
(However, M2 can instead say something about U.)

A possibility when having the subset in figure 5.2 and the measurements M1
and M2, is to add both observations to the equation system, which would then
be overdetermined. This would be a way of telling if a certain subset is possible
to validate or not. If the considered circuit subset has an overdetermined
equation system, when including the observations, then at least one part of it
can be validated. If this is put together with SimulatePossibleParts and we
assume that we have some way of choosing all relevant subsets of the circuit,
then the following subset algorithm could be usable:

5.1 Considering subsets of circuits 43

1. Choose observations M to make

2. Pick a subset ci of the circuit

3. If
i) ci together with M yields an equation system that is overdetermined, then ci
should be saved.
ii) ci together with M yields an equation system that is not overdetermined, then
throw ci.

4. If there are any ci left, then go back to 2, else continue.

5. For all saved subsets ci, use them as inputs to the diagnosis algorithm.

The input to the algorithm in the last step, should be a model with all the saved
subsets ci assembled.

To make it possible for this subset algorithm to work, some strategies have to be
developed. First, the circuit subsets must be cleverly picked, regarding the
observations. Second, a plan for deciding whether a subset ci is overdetermined
or not must exist. Third, a new simulation function, such like
SimulatePossibleParts, must be implemented in MathModelica.

5.2 5.2 Other extensions

Besides the comprehensive extension described in section 5.1, there are some
smaller additions, but not less necessary or important, that can widen the
functionality of the algorithm.

One thing to add to the features of the algorithm in the future, is to change the
matching of observations and simulated values in one single point of time into
a signal-comparison over a time interval. If this could be done, it would be
possible to implement much more electrical components, since most of them are
either dynamic (e.g. capacitors) or non-linear (e.g. sinus voltage sources).

Another interesting extension is to improve the behavioral models of the
diagnosis components. Now a resistor, for example, is either non-faulted, short-
circuit or open-circuit. A widening of this could be that the diagnosis system
would be able to determine if a resistor has the wrong resistance and to tell if

44 Chapter 5 Future extensions of the diagnosis system

the resistance seems too high or too low. For example, if the real value should
be 10 W but it is apparently just 5 W, then the result from the diagnosis system
should tell that the resistance is too low. However, this may partly be possible
to achieve if the validation thinking in section 5.1 can be used. Because if
validation says that a certain resistor is neither correct, short- nor open-circuit,
then it must hold that the resistor is faulted in an other way, for example it has
the wrong resistance.

5.2 Other extensions 45

46 Chapter 5 Future extensions of the diagnosis system

6
Conclusions

Summary

The developed diagnosis system takes a MathModelica model of an electrical
circuit and observations from a corresponding real circuit and returns as result
all the possible diagnoses for the specific case. The observations can be arbitrary
picked by the user, i.e. the number and the location of the measurements to
make.

The diagnosis system is able to diagnose constant voltage sources and resistors,
which are both linear, static components. In a circuit, also other components can
be included, but they will not be diagnosed. To diagnose circuits with a
dynamic behavior, the now implemented algorithm has to be extended (it can
be used in those cases the considered system always reaches a stable value after
some time). A necessity for making the diagnosis system work, was to
implement non-ideal diagnosis components, unlike the Modelica standard
components that are modeled ideal. Ideal diagnosis components often leads to
unsolvable equation systems.

Comparing the diagnosis system in this thesis with the two methods SOPHIE III
and GDE, the local propagator in this thesis can be seen as the first part of the
algorithm, i.e. the part generating and simulating the diagnosis model. A great
advantage of using MathModelica when propagating is that it is non-causal,
unlike these other two methods. SOPHIE III only treats single faults, which is
not a limitation for neither this diagnosis system nor GDE.

47

Electrical circuits with a large number of components will in the implemented
diagnosis system require too much computer time. It may be even too complex
for an ordinary desktop computer to handle at all. Also, when just a small
number of observations are made, according to the size of the circuit,
components far from the measuring points seems unnecessary to consider in the
diagnosis procedure. This would make it interesting to extend the algorithm, so
that just interesting subsets of the circuit are considered regarding the
observations. Such an extension requires MathModelica to be able to simulate
all possible parts of a certain model, i.e. if the whole model cannot be simulated.
Also some research to develop algorithms is needed, for example to decide how
subsets of the circuit should be picked and how to treat those of the subsets that
are actually not mathematically solvable.

Industrial systems changes are continuously made as a result of further
development. To quickly update the model-based diagnosis systems of these
industrial systems, the models of them must be easy to re-model. Also, a fast
way of generating a new corresponding diagnosis system would be needed.
Together with MathModelica, this is what the diagnosis algorithm in this thesis
can provide - an automatic generation of a diagnosis system using models built
by a powerful modeling tool.

48 Chapter 6 Summary

References

[1] J. de Kleer and J. S. Brown, Model-based diagnosis in SOPHIE III, found in [8]

[2] J. de Kleer and B.C. Williams, Diagnosing multiple faults, Artificial
Intelligense 32 (97-130), 1987; also found in [8]

[3] J. de Kleer, A. K. Mackworth and R. Reiter, Characterizing diagnoses and
systems, Artificial Intelligence 56 (197-222), 1992

@4D Dynasim AB, www.dynasim.se

[5] K. D. Forbus and J. de Kleer, Building problem solvers, MIT Press, 1993

[6] W. Hanscher, L. Console and J. de Kleer, Readings in Model-Based Diagnosis,
Morgan Kaufmann Publishers, 1992

[7] K. Lunde, Object-Oriented Modeling in Model-Based Diagnosis, Modelica 2000
Workshop Proceedings, The Modelica Association, October 2000

[8] MathCore AB, www.mathcore.com, Information about MathModelica, 2001

[9] Modelica Design Group, www.modelica.org, Information about Modelica
language, December 2000

[10] Modelica Libraries, www.modelica.org/library/library.html,
Documentation of the Modelica standard library, version 1.3.2 beta, July 2000

[11] M. Nyberg and E. Frisk, Diagnosis and Supervision of Technical Processes,
Vehicular systems, Dep. of electrical engineering, Linköping University, 2000

49

[12] R.J. Patton, P.M. Frank and R.N. Clark, Issues of Fault Diagnosis for Dynamic
Systems, Springer-Verlag, 2000

[13] S. Wolfram, The Mathematica Book, Third edition, Wolfram Media/
Cambridge University Press, 1996

[14] Wolfram Research Inc, The Mathematica Book online, www.wolfram.com,
2001

50 References

Appendix A
The algorithm of the diagnosis system

The algorithm of
the diagnosis system

A.1 Creation and simulation of fault models

Generating and simulating the diagnosis model, given an original
MathModelica model.

Starting MathModelica:

Needs@"MathModelica`"D

The variables of the original model, with the corresponding types, are fetched
and sorted into lists.

GetVarsAndTypes@mod_D :=

Cases@

GetType@modD,

HoldPattern@

Declaration@TYPE@tname_, ___D,

VariableComponent@name_, ___DDD

51

� List@name, tnameD,

80, ∞<

D;

GetComponentPositions@types_D :=

Module@

8diagAreas, expr, standardComponentNames, pos<,

diagAreas =

Cases@

GetDefinition@DiagnosisComponentsD,

HoldPattern@Model@name_ = l_DD � name,

80, ∞<D;

expr =

Map@

GetDefinition,

MapThread@

Member, 8Table@DiagnosisComponents, 8Length@diagAreasD<D,

diagAreas<

D

D;

standardComponentNames =

Cases@expr, x_Member → x, 80, ∞<D;

Do@pos@iD = Position@types, standardComponentNames@@iDDD,

8i, Length@standardComponentNamesD<D;

Sort@Fold@Join, pos@1D,

Table@pos@iD, 8i, 2, Length@standardComponentNamesD<DDD

D

MakeTypeList@mod_D :=

Module@

8varsAndTypes, posList, posListFirst<,

varsAndTypes = GetVarsAndTypes@modD;

posList = GetComponentPositions@varsAndTypesD;

posListFirst = Table@First@Part@posList, iDD,

8i, Length@posListD<D;

Part@varsAndTypes, posListFirstD

52 Appendix A

D

MakeVarList@mod_D :=

Module@

8typeList<,

typeList = MakeTypeList@modD;

Table@First@Part@typeList, iDD, 8i, Length@typeListD<D

D

Template for creating a new model with diagnosis components instead of the
Modelica standard components.

ModelTemplate@mod_, name_, typeComb_D :=

Module@

8varList, TypeRule, TypeRuleList<,

varList = MakeVarList@modD;

TypeRule@v_, t_D :=

HoldPattern@

Declaration@

TYPE@tname_, rest1___D,

VariableComponent@v, rest2___D

D

D

�

Declaration@

TYPE@t, rest1D,

VariableComponent@v, rest2D

D;

TypeRuleList@v_D := Table@TypeRule@v@@iDD, typeComb@@iDDD,

8i, Length@vD<D;

GetDefinition@mod, Format → MathModelicaFullFormD ê.

Join@8ToExpression@modD → name<, TypeRuleList@varListDD

D

53

Creating all combinations of the diagnosis components associated with the
standard components in the MathModelica model.

FaultTypeCombinations@size_, mod_D :=

Module@

8typeList, standardComponentList, FaultTypes,

GetStdCompDefinition, GetStandardComponent, typePos,

faultTypeList, NumOfNF, CheckNF, AllCombs<,

typeList = MakeTypeList@modD;

standardComponentList =

Flatten@Union@

Cases@typeList, 8v_, Member@x___, sc_D< � List@scDDD

D;

DefinitionEval@comp_D :=

GetDefinition@

ToExpression@"Diagnosis" <> ToString@compDD

D;

Map@DefintionEval, standardComponentListD;

FaultTypes@comp_D :=

DeleteCases@

ListModelNames@

ToExpression@"Diagnosis" <> ToString@compDDD,

Member@x___, compD

D;

GetStdCompDefinition@x_, y_D := GetDefinition@Member@x, yDD;

StandardComponent@comp_D :=

Flatten@Cases@

GetStdCompDefinition@

ToExpression@"Diagnosis" <> ToString@compDD, compD,

x_Member � List@xD,

80, ∞<D

D;

typePos =

54 Appendix A

typeList ê.

Table@

8var_, First@StandardComponent@

standardComponentList@@iDDDD< → 8i<,

8i, Length@standardComponentListD<D;

faultTypeList =

ReplacePart@

typeList,

Table@FaultTypes@standardComponentList@@iDDD,

8i, Length@standardComponentListD<D,

Table@8i<, 8i, Length@typeListD<D,

typePos

D;

NumOfNF@comb_D :=

Apply@

Delete@comb, #D &,

8Position@

Map@

StringPosition@#, "NF"D &,

Map@ToString, combD

D, 8<D

<

D êê Length;

CheckNF@comb__D :=

If@

NumOfNF@List@combDD ≥ Length@typeListD − size,

List@combD

D;

AllCombs@faultTypes__D :=

DeleteCases@Flatten@Outer@CheckNF, faultTypesD,

Length@faultTypeListD − 1D, NullD;

Apply@AllCombs, faultTypeListD

D

Making model instancies for all behavioral combinations and then creates a
total diagnosis model, by declaring a model for each behavioral model-class.

55

MakeAllModels@mod_, typeCombs_, names_D :=

Module@

8modelTable<,

modelTable = Table@mod, 8Length@namesD<D;

ReleaseHold@MapThread@ModelTemplate,

8modelTable, names, typeCombs<DD;

D

MakeTotalModel@mod_, obj_, faultCombs_D :=

Module@

8classNames, DeclareFunction<,

classNames = Table@ToExpression@"bmclass" <> ToString@iDD,

8i, Length@faultCombsD<D;

MakeAllModels@mod, faultCombs, classNamesD;

Model@DiagModel,

Null;D;

Within@DiagModelD;

DeclareFunction@type_, var_D := Declare@type varD;

Do@DeclareFunction@classNames@@iDD, obj@@iDDD,

8i, Length@classNamesD<D;

EndWithin@D;

res = Simulate@DiagModel, 8t, 0, 2<D

D

56 Appendix A

Making diagnoses out of all behavioral combinations.

FaultCombs2Diagnoses@combs_, mod_D :=

Module@

8varList, typeList, FMKeys, Glue, FMkey2Diagnosis,

CompleteDiags<,

varList = MakeVarList@modD;

typeList = MakeTypeList@modD ê. 8v_, Member@x__, sc_D< → sc;

FMkeys =

ToExpression@

StringReplace@

ToString@combs ê. Member@_, x_D → xD,

Table@ToString@typeList@@iDDD → "",

8i, 1, Length@typeListD<D

D

D;

Glue@a_, b_D :=

ToExpression@ToString@aD <> "Ä" <> ToString@bDD;

FMkey2Diagnosis@key_D :=

If@

key === Table@NF, 8Length@varListD<D,

8NF<,

MapThread@Glue, 8key, varList<D

D;

CompleteDiags = Map@FMkey2Diagnosis, FMkeysD;

Fold@

DeleteCases@#1, #2, 80, ∞<D &,

CompleteDiags,

Table@ToExpression@"NFÄ" <> ToString@varList@@iDDDD,

8i, Length@varListD<D

D

D

Assembling the diagnoses and simulated values into one total matrix, the

57

simulation matrix, which is used for diagnosing the model. The simulated
values are concidered at the time 2 seconds.

SimSalaBim@faultSize_, inputModel_D :=

Module@

8faultTypeCombs, objNames, varList, typeList, quantities,

AllDiags, simVarsValues, EvaluateMatrix, AddSimValue,

simQuantities<,

faultTypeCombs = FaultTypeCombinations@faultSize,

inputModelD;

objNames = Table@ToExpression@"m" <> ToString@iDD,

8i, Length@faultTypeCombsD<D;

varList = MakeVarList@inputModelD;

quantities = 8v, i<;

AllDiags = FaultCombs2Diagnoses@faultTypeCombs, inputModelD;

simVarsValues =

Flatten ê@ Outer@Member, objNames, varList, quantitiesD;

MakeTotalModel@inputModel, objNames, faultTypeCombsD;

EvaluateMatrix@matr_D :=

Map@Replace@#, # � #@2DD &, matr, 82<D;

AddSimValue@FM_, Values_D := 8FM, Values<;

simQuantities = Flatten@Outer@Member, varList, quantitiesDD;

MapThread@

AddSimValue,

8Prepend@AllDiags, 8QQ<D,

Prepend@EvaluateMatrix@simVarsValuesD, simQuantitiesD<

D

D

58 Appendix A

The top function in two forms with different input parameters.

SimulateFaultModels@faultSize_, inputModel_D :=

SimSalaBim@faultSize, inputModelD;

SimulateFaultModels@inputModel_D :=

SimSalaBim@Length@MakeTypeList@inputModelDD, inputModelD;

A.2 Diagnosis test

Calculates all possible diagnoses. Observations are matched against the
simulated values.

QQRow gives the position of the row containing the quantities, that are included
in the simulation.

QQRow@simValueMatrix_D :=

First@Flatten@Position@simValueMatrix, 8QQ<DDD;

Functions that separates quantities from measured values from the given
observations list, and sort them into lists:

ObsValues@observationList_D :=

Flatten@

DeleteCases@observationList, x_Member, 80, ∞<D

D;

ObsIndecies@observationList_, simValueMatrix_D :=

Flatten@

Cases@observationList, x_Member � x, 80, ∞<D

ê.

q_Member �

Position@

Last@Part@simValueMatrix, QQRow@simValueMatrixDDD, qD

D;

59

Compares observations with one row in the simulation matrix and returns the
corresponding diagnosis, if they are equal.

GetFaultMode@simMatrixRow_, observations_D :=

Module@

8TestValues, CheckValues<,

TestValues@simValue_, singleObs_D :=

If@

Abs@simValueD < 0.01,

singleObs < 0.01,

H∗ Fix value. Assumes observations of order ∼1

V, ∼1 A ∗L

If@

simValue < 0,

1.05∗ singleObs ≤ simValue ≤ singleObs∗ 0.95,

0.95∗ singleObs ≤ simValue ≤ singleObs∗ 1.05

H∗ Interval of 5 % of singleObs is considered ∗L

D

D;

CheckValues@simValues_D :=

MapThread@TestValues, 8simValues, observations<D

Table@True, 8Length@simValuesD<D;

If@

CheckValues@Last@simMatrixRowDD,

First@simMatrixRowD

D

D

60 Appendix A

Creating a test matrix, containing only the values that corresponds to the
quantities measured.

TestMatrix@observationList_, simValueMatrix_D :=

Module@

8deleteQQ, GetSimFMList, GetSimValueList, PickTestValues<,

deleteQQ = Delete@simValueMatrix, QQRow@simValueMatrixDD;

GetSimFMList@D := Cases@deleteQQ, 8x_, y_< � x, 81<D;

GetSimValueList@D := Cases@deleteQQ, 8x_, y_< � y, 81<D;

PickTestValues@simValueRow_D :=

Part@simValueRow, ObsIndecies@observationList,

simValueMatrixDD;

MapThread@

List,

8GetSimFMList@D,

Map@PickTestValues, GetSimValueList@DD<

D

D;

61

Calculating all possible diagnoses.

DiagnosisResult@observationInput_, simValueMatrix_D :=

Module@

8findDiagnosis, possibleDiagnoses<,

findDiagnosis =

Distribute@

GFM@TestMatrix@observationInput, simValueMatrixD,

8ObsValues@observationInputD<D,

List,

GFM,

List,

GetFaultMode

D;

possibleDiagnoses = DeleteCases@findDiagnosis, NullD

D

62 Appendix A

Modifying the result when the user chooses just to see the minimal diagnosis.

SubSetQ@set_, elems_D :=

Fold@

And,

True,

Map@MemberQ@set, #D &, elemsD

D;

MinDiag@res_D :=

Module@

8min, GetSets, sets<,

min = 8<;

GetSets@ls_D :=

Module@

8<,

sets = Select@ls, SubSetQ@#, Sort@lsD@@1DDD &D;

min = Append@min, Sort@lsD@@1DDD;

Complement@ls, setsD

D;

NestWhile@GetSets, res, ! Equal@8<, #D &, 1D;

min

D;

DiagnosisChoice@res_, choice_D :=

Module@

8<,

Which@

choice === Min,

MinDiag@resD,

choice === All,

res

D

D

63

The top function in two forms with different input parameters.

Diagnosis@choice_, observationInput_, simValueMatrix_D :=

DiagnosisChoice@

DiagnosisResult@observationInput, simValueMatrixD,

choiceD

Diagnosis@observationInput_, simValueMatrix_D :=

DiagnosisChoice@

DiagnosisResult@observationInput, simValueMatrixD,

AllD

64 Appendix A

Appendix B
Diagnosis components

Diagnosis components

Here the code of the diagnosis components are presented. The start and end
statement of each package below is written in pure Modelica syntax. In section
B.3 the code of the components from Modelica standard library is shown for
comparison. They are written in Modelica code.

B.1 The DiagnosisComponents package

¤ package DiagnosisComponents

¤ Model@Electrical =

8Modelica.Electrical.Analog.Basic.Resistor,
Modelica.Electrical.Analog.Sources.ConstantVoltage<D

¤ end DiagnosisComponents;

65

B.2 The DiagnosisResistor package

¤ package DiagnosisResistor

¤ Model@Resistor = Modelica.Electrical.Analog.Basic.ResistorD

¤ Model@NFResistor,
Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;
Parameter Modelica.SIunits.Resistance R == 1;

Equation@
R i == v

D
D

¤ Model@OCResistor,
Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;
Parameter Modelica.SIunits.Resistance R == 1;

Modelica.SIunits.Resistance Ropen == 10^12;

Equation@
v � i Ropen

D
D

¤ ModelASCResistor,
Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;
Parameter Modelica.SIunits.Resistance R == 1;

Modelica.SIunits.Resistance Rshort ==

1
����������

103
;

Equation@
v == i Rshort

D
E

66 Appendix B

¤ end DiagnosisResistor;

B.3 The DiagnosisConstantVoltage package

¤ package DiagnosisConstantVoltage

¤ Model@ConstantVoltage =

Modelica.Electrical.Analog.Sources.ConstantVoltageD

¤ ModelANFConstantVoltage,
Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;
Parameter Modelica.SIunits.Voltage V == 1;

Modelica.SIunits.Resistance Rinner ==

1
�������

10
;

Equation@
v == V − −i Rinner

D
E

¤ ModelAEBConstantVoltage,
Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;
Parameter Modelica.SIunits.Voltage V == 1;

Modelica.SIunits.Resistance Rinner ==

1
�������

10
;

Equation@
v == i Rinner

D
E

67

¤ end DiagnosisConstantVoltage;

B.4 Ideal components from Modelica library

model Resistor
extends Modelica.Electrical.Analog.Interfaces.OnePort;
parameter SIunits.Resistance R=1;
equation
R*i=v;
end Resistor;

model ConstantVoltage "Source for constant voltage"
parameter Modelica.SIunits.Voltage V=1 "Value of constant

voltage";
extends Modelica.Electrical.Analog.Interfaces.OnePort;

equation
v = V;

end ConstantVoltage;

68 Appendix B

Appendix C
Example circuit

Example circuit

The MathModelica code for the example circuit Circuit3.

Model@Circuit3,

Modelica.Electrical.Analog.Basic.Resistor R1@8R == 10<D;

Modelica.Electrical.Analog.Basic.Resistor R2@8R � 20<D;

Modelica.Electrical.Analog.Basic.Resistor R3@8R � 40<D;

Modelica.Electrical.Analog.Basic.Ground Ground ;

Modelica.Electrical.Analog.Sources.ConstantVoltage

U@8V == 10<D;

Equation@

Connect@R1.p, U.pD;

Connect@R2.p, R1.pD;

Connect@R3.p, R2.pD;

Connect@R3.n, R2.nD;

Connect@R1.n, R2.nD;

Connect@U.n, R1.nD;

Connect@Ground.p, U.nD

D

D;

69

70 Appendix C

Appendix D
Definition of a diagnosis model

Example:
Definition of a diagnosis model

This example shows how an original model is changed by the script. The circuit
consists of three resistors in parallel connected to a constant voltage source.

Model@Circuit3,

Modelica.Electrical.Analog.Basic.Resistor R1@8R � 10<D;

Modelica.Electrical.Analog.Basic.Resistor R2@8R � 20<D;

Modelica.Electrical.Analog.Basic.Resistor R3@8R � 40<D;

Modelica.Electrical.Analog.Sources.ConstantVoltage

U@8V == 10<D;

Modelica.Electrical.Analog.Basic.Ground Ground;

Equation@

Connect@U.p, R1.pD;

Connect@R1.p, R2.pD;

Connect@R2.p, R3.pD;

Connect@R3.n, R2.nD;

Connect@R2.n, R1.nD;

Connect@R1.n, Ground.pD;

Connect@Ground.p, U.nD

D

D

Creating and simulating all combinations of behavioral circuits.

71

SimulateFaultModels@2, Circuit3D;

Now all behavioral circuits are put together in one total model, the diagnosis
model, but the single behavioral classes are still readable alone. These can be
read by typing...

GetDefinition@bmclass7D

Hold@Model@bmclass7,

DiagnosisResistor.OCResistor R1@8R == 10<D;

DiagnosisResistor.SCResistor R2@8R == 20<D;

DiagnosisResistor.NFResistor R3@8R == 40<D;

Modelica.Electrical.Analog.Basic.Ground Ground;

DiagnosisConstantVoltage.NFConstantVoltage U@8V == 10<D;

Equation@

Connect@R1.p, U.pD;

Connect@R2.p, R1.pD;

Connect@R3.p, R2.pD;

Connect@R3.n, R2.nD;

Connect@R1.n, R2.nD;

Connect@U.n, R1.nD;

Connect@Ground.p, U.nD

D

DD

...and yet we can see that the four components have new declarations. Now
there are different diagnosis component types declaring the components!

72 Appendix D

