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In industrial processes, sudden faults must quickly be determined to avoid general failures. For
this purpose model-based fault diagnosis can be used, which requires a consistent model of the
real process. The powerful modelling tool MathModelica, based on the Modelica language, can
be used to accomplish this. Systems for fault diagnosis could be both time-consuming and
expensive if built manually. Instead, to automatically generate a fault diagnosis system, based on
models built with MathModelica, would provide an efficient means of fault diagnosing. This
thesis is about an algorithm which puts this into practice.

MathModelica has previously not been used for fault diagnosis, which makes this a pioneering
work. Therefore, the algorithm is limited to consider only static electrical circuits and to
diagnose constant voltage sources and linear resistors.

The algorithm takes a MathModelica model of a circuit and observations from the corresponding
real system as input. Then a fault diagnosis system is generated and all possible diagnoses are
obtained. The complexity of generating the diagnosis system grows very fast when the number
of components is increased. Therefore, the capacity of the used computer puts limitations on the
algorithm. An interesting extension would be to make the algorithm independent of the size of
the circuit concerned, which could be done by considering subsets of the circuit.
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this  a  pioneering  work.  Therefore,  the  algorithm  is  limited  to  consider  only
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generated and all possible diagnoses are obtained. The complexity of generating
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1
Introduction

Introduction

This  project  is  about  model-based  diagnosis  of  electrical  circuits,  modelled
using  the  modelling  and  simulation  tool  MathModelica.  An  algorithm  for
diagnosing electrical circuits is described in this thesis.

This  first  chapter  of  the  thesis  gives  a  background  to  the  work,  a  short
description  of  MathModelica,  an  introduction  to  model-based  diagnosis,
limitations of the work and a reader's guide.

1.1  1.1 Background

When  industrial  systems  are  growing  more  complex,  their  needs  for  efficient
maintenance and to quickly point out sudden faults are increasing. This kind of
supervision  can  be  provided  by  using  model-based  diagnosis,  which  requires  a
consistent model of the real system. Models are best simulated using computer
programs and the language Modelica is developed for the purpose of simulating
complete physical systems, where different areas of technology can interact. 

The  need  of  a  consistent  model  using  model-based  diagnosis,  requires  an
efficient modelling method. Further development of a certain real system leads
to some structural changes in the model, and then it should be easy to re-model.
The  Modelica  language  offers  this.  Changes  made  in  the  real  system  also
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implies that the corresponding diagnosis procedure needs to be updated, which
would  require  much  time  and  expenses  if  done  manually.  Instead,  if  there
would  be  a  way  of  updating  the  diagnosis  procedure  automatically,  then
generating systems for model-based diagnosis using Modelica models would be
very  efficient.  An  implementation  of  this  kind  of  algorithm  is  possible  in
MathModelica, which is based on the Modelica language.

Figure 1.1  Generation of a system for diagnosing.

The  field  of  model-based  diagnosis  is  new  for  MathModelica  and  also  for
Modelica.  Previously  research  within  the  area  of  this  project  has  essentially
been  made  in  the  field  of  Artificial  Intelligence  (AI).  Former  model-based
diagnosis methods, close to the one presented in this thesis, are for example the
General  Diagnostic  Engine  (GDE)  [2,  5]  and  SOPHIE  III  [1].  These  methods  are
more developed than the algorithm described here,  but they also lack the kind
of powerful modeling functionality that MathModelica  can offer.  This makes it
even  more  interesting  to  develop  a  new  method  for  model-based  diagnosis
using MathModelica models.

The purpose  of  this  project  was to  develop  an algorithm that  takes a  model  of
an  electrical  circuit  and  from  this  generates  a  system  for  diagnosing  a
corresponding real circuit. Figure 1.1 shows how the algorithm as input takes a
model  of  a  process,  models  of  faulty  electrical  components  and  observations
(measurements)  done  on  the  corresponding  real  process.  The  result  from  the
algorithm  is  the  diagnosis  for  the  process.  All  models  are  modelled  using
MathModelica. 

1.2  1.2 MathModelica

At  MathCore  AB  in  Linköping,  Sweden,  the  modelling  and  simulation  tool
MathModelica is developed.  It  is  an environment for  physical modelling based
on Modelica, which is an 
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i) object-oriented, 
ii) multi-domain and 
iii) non-causal 

language  developed  by  the  Modelica  design  group  [9].  The  language  has  a
number  of  libraries  [10]  with  components  within  different  areas,  e.g.  electrical
applications,  mechanics  and  thermodynamics.  The  components  are  connected
to  each  other  like  in  a  real  system,  which  i)  and  iii)  make  possible.  Different
physical  domains  can  interact  in  the  same  model,  which  is  what  ii)  describes.
The  equations  defining  the  behavior  of  the  components  are  written  explicitly,
which gives iii). All this makes it possible to accomplish a full system simulation.
The  DC-motor  in  figure  1.2  shows  the  possibility  of  connecting  electrical
applications  to  mechanical  (ii).  Every  component  is  defined  by  equations
explaining  its  physical  behavior  (iii),  for  example  the  resistor  is  modeled  with
Ohm's law, U = R I. This example model is found at MathCore's homepage [8].

Resistor1

Ground1

Inductor1

ConstantVoltage1 EMF1

Inertia1

Figure 1.2  Graphical model of a DC-motor in MathModelica.

MathModelica  uses  its  own  syntax,  but  in  close  connection  to  Modelica's.  The
syntax of  MathModelica  is  made to  fit  into Mathematica's  standard,  where the
models are being implemented and presented in textual form. Figure 1.3 shows
the  MathModelica  code  of  the  DC-motor  and  in  figure  1.4  the  corresponding
Modelica syntax is shown. 
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Model@DCMotor,

Modelica.Electrical.Analog.Basic.Resistor Resistor1;

Modelica.Electrical.Analog.Basic.Inductor Inductor1;

Modelica.Electrical.Analog.Basic.Ground Ground1;

Modelica.Electrical.Analog.Basic.EMF EMF1;

Modelica.Electrical.Analog.Sources.ConstantVoltage

ConstantVoltage1;

Modelica.Mechanics.Rotational.Inertia Inertia1;

Equation@

Connect@ConstantVoltage1.p, Resistor1.pD;

Connect@Resistor1.n, Inductor1.pD;

Connect@Inductor1.n, EMF1.pD;

Connect@EMF1.n, Ground1.pD;

Connect@ConstantVoltage1.n, Ground1.pD;

Connect@EMF1.flangeÄb, Inertia1.flangeÄaD

D

D

Figure 1.3  Textual model of a DC-motor in MathModelica syntax.

model DCMotor

Modelica.Electrical.Analog.Basic.Resistor Resistor1;

Modelica.Electrical.Analog.Basic.Inductor Inductor1;

Modelica.Electrical.Analog.Basic.Ground Ground1;

Modelica.Electrical.Analog.Basic.EMF EMF1;

Modelica.Electrical.Analog.Sources.ConstantVoltage

ConstantVoltage1;

Modelica.Mechanics.Rotational.Inertia Inertia1;

equation

connect HConstantVoltage1.p, Resistor1.pL;

connect HResistor1.n, Inductor1.pL;

connect HInductor1.n, EMF1.pL;

connect HEMF1.n, Ground1.pL;

connect HConstantVoltage1.n, Ground1.pL;

connect HEMF1.flange_b, Inertia1.flange_aL;

end DCMotor;

Figure 1.4  Textual model of a DC-motor in Modelica syntax.

On a higher level than the language, MathCore has developed a graphical model
editor.  The  intension  is  essentially  to  work  in  the  model  editor  where  the
visualization makes the models easy to interpret and simulation neat to handle
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(the  model  in  figure  1.2  is  made  here).  From  the  model  editor,  all  Modelica
standard  libraries  are  reachable  [10],  but  also  other components constructed in
MathModelica.  A  new  component  is  implemented  using  MathModelica  or
Modelica  syntax  in  a  Mathematica  notebook.  Such  new  components  may  be
saved  as  MathModelica  packages  and  after  this  they  can  be  used  in  the  model
editor.  Also  the  models  in  figure  1.3  and  1.4  are  implemented  and  stored  in
notebooks. For more information about Mathematica see [13, 14].

MathModelica  is  using  the  Dymola  Kernel,  which  is  a  part  of  the  software
Dymola  developed  by  Dynasim  [4].  When  to  simulate  a  model,  the
MathModelica code first is  translated to Modelica syntax.  Then it  is sent to the
Dymola kernel  for  translation to  C,  compilation and eventually simulation (i.e.
solving an equation system).

In notebooks, both documentation and models with their simulation results can
be integrated and stored (this thesis  is  a  good example).  Mathematica  is  also a
powerful  tool  for  manipulation of  analytical  and numerical  expressions,  which
can be applied to models and their results. The essential part of this project has
involved utilization of these facilities.

Version  2.0  of  MathModelica  is  used  in  this  project.  To  read  more  about  this
tool, see [8].

1.3  1.3 Model-based diagnosis

The diagnosis problem is to recognize if a correct built system is malfunctioning
or not and if it is, localize and identify the fault. The result of this will generate
one  or  several  diagnoses.  A  diagnosis  is  a  statement  telling  if  the  considered
system  is  faulted  or  not  and  also  possibly  how  it  is  faulted,  if  it  is.  The
recognition of  the  system is  made  by  possessing experience  of  the  non-faulted
system. In  model-based  diagnosis,  the  experience  is  represented  as  a  model  of
the  real  system,  which  makes  it  very  important  for  the  model  to  be  consistent
with reality. To diagnose such a system, observations (i.e. measured values) from
it  are  required  so  that  these  values  can  be  compared  with  those  generated  by
the corresponding model. A discrepancy between the two tells that there is one
fault (or more) present.
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1.3.1  1.3.1 About faults

The first step of the diagnosis procedure is to find out if a fault is present  - fault
detection.  A  next  step  is  to  determine  what  part  or  parts  of  the  system  that  is
faulted - fault isolation. To go further, there might be interesting to check the size
and the time-dependence of the fault - fault identification.

The different fault related states that a component may be in is referred to as the
behavioral  modes,  which  includes  one  or  more  fault  modes  together  with  the  no-
fault  mode.  Each  behavioral  mode  of  a  component  is  said  to  be  defined  by  a
behavioral model,  i.e.  how the component will function when it is in the no-fault
mode or the different fault modes, respectively. A faulty (or non-faulty) system
consisting  of  some  components  can  then  be  diagnosed  and  said  to  be  in  a
certain  state,  dependent  on  the  present  behavioral  modes  of  its  components.
Here is an example to describe this.

Example 1.1

If a system S consists of two components A and B, each with the possible fault F,
then  the  behavioral  modes  they  can  take  (one  at  a  time  per  component)  is
described  by

A e 8NF, F<, B  e 8NF, F<

where NF stands for no-fault mode. When just single faults are assumed, the set
of all possible diagnoses for the system can be written as

S e 8NF, FHAL, FHBL<

If  for  a  certain  moment  a  fault  in  component  A  is  detected,  then  the  single
diagnosis for S is FHAL.

The extension of  example 1.1  is to  add more fault  modes Fi  to  the components
and also assume multiple faults to occur, i.e. both A and B  may be faulty at the
same time. Example 1.2 shows this.
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Example 1.2

If  we  assume  multiple  faults  the  set  of  possible  diagnoses  from  example  1.1
would be extended to

S e 8NF, FHAL, FHBL, FHAL fl FHBL<.

The  added  diagnosis  represents  a  double  fault,  i.e.  both  A  and  B  are  faulted.
Furthermore,  if  we  suppose  one  of  the  components  to  have  more  behavioral
modes, for example

A e 8NF, F1, F2<

then two more possible diagnoses would be added the diagnosis set:

S e 8NF, F1HAL, F2HAL, FHBL, F1HAL fl FHBL, F2HAL fl FHBL<.

Note  the  difference  between  a  single  fault  and  a  single  diagnosis.  A  single
diagnosis may be either a single fault or a multiple fault.

1.3.2  1.3.2 Diagnosis in two different areas

Within the area of automatic control, models are based on different mathematical
equations  (differential  equations).  For  diagnosing  such  systems  the  signals  of
sensors  and  actuators  are  observed.  To  the  equations  describing  a  certain
system, fault parameters are added for recognizing where faults are arising.

The  other  theoretical  field  where  a  lot  of  diagnosis  research  is  carried  out  is
artificial  intelligence  (AI).  Here  the  diagnostic  problem is  more  directed  to  the
functioning or non-functioning of  each component in the system. Compared to
the  view  in  control,  this  is  a  more  logical  way  of  seeing  the  systems,
mathematically  speaking.  The  term  behavioral  mode  described  above  is  taken
from the AI-field.  The work in this  thesis  is  close to  this  area  of  diagnosis and
therefore already developed AI methods has been studied in chapter 2.

For more readings in these two areas, see [12, 11, 6].
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1.4  1.4 Limitations

Since neither  Modelica  nor MathModelica  has been applied  the diagnosis  field
before  starting  this  project,  the  limitation  was  set  to  look  at  simple  analog
electrical  circuits.  The  circuits  have  consisted  only  of  the  two  linear,  static
components  resistor  and  constant  voltage  source  in  varying  combinations.  A
ground must always be connected to a circuit as a reference, but this component
together with the wires are always assumed to be non-faulted. 

The  nature  of  the  components  makes  all  simulated  values  constant  over  time
and  for  that  reason,  all  measurements  are  also  assumed  to  be  time-invariant.
Therefore,  when making the diagnoses,  just a  single value at  a  certain point of
time  is  considered.  The  algorithm  is  therefore  not  prepared  to  handle  circuits
with  any  dynamic  characteristics,  since  this  would  require  a  sequence  of
measurements to be compared to a corresponding interval of simulation. 

The goal when diagnosing a circuit was to look at all possible diagnoses for certain
observations.  In  practice  this  means  that  a  single  diagnosis  seldom is  obtained
from the diagnosis system.

1.5  1.5 Reader's guide

This report  first  gives  an  introduction to  the  work  as  well  as  a  brief  outline to
the  simulation environment  MathModelica  and  to  model-based  diagnosis  (this
chapter).  Chapter  2  describes  two  diagnosis  algorithms  developed  within  the
field of AI. 

In  chapter  3,  the  procedure  of  generating  and  using  the  diagnosis  system  is
presented,  i.e.  the  implemented  algorithm is  described  in  words.  Then  follows
chapter 4, which motivates the choices made when implementing the algorithm.
Chapter  5  gives  suggestions  for  further  work,  for  example  an  interesting
extension of the functionality of the algorithm. Last in the report, in chapter 6, a
summary of the project results are presented.
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2
GDE and SOPHIE III

GDE and SOPHIE III

In  this  chapter,  former  research  within  the  area  of  AI  diagnosis  is  shortly
introduced. Two methods, General Diagnostic Engine  (GDE) and SOPHIE III, are
illustrated by an example.  The example is copied from a paper about the latter
method by  de  Kleer  and Brown [1]  and GDE can be read  about  in  [2,  5].  Both
methods  (algorithms)  are  described  very  shortly  here  and  some  details  about
them are intentionally left out. The purpose of this chapter is to give a brief look
into what has been done before in the area of this thesis.

Figure  2.1  shows  one  small  part  of  a  bigger  circuit,  driven  by  some  constant
voltage. (The example is reduced compared to the one in the paper.)  There are
three resistors R1, R2 and R3 and two zener diodes D1 and D2. The resistance of
each  resistor  is  written  inside  the  components  and  the  breakdown  voltages  of
the  diodes  are  written  beside  them.  Relevant  nodes  (points  with  equivalent
potentials)  are  named  N1  -  N5.  To  specify  certain  voltage  drops  and  currents
through components some more parameters are defined as in table 2.1.
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Figure 2.1  Fragment of a circuit.

Table 2.1  Definition of parameters

New
parameter

Between nodes ê
Through component

U1 N1, N5
U2 N2, N5
U3 N1, N2
U4 N2, N3
U5 N3, N5
U6 N1, N3
I1 R1
I2 D1
I3 R2
I4 D2

12 Chapter 2 GDE and SOPHIE III



2.1  2.1 SOPHIE III

SOPHIE  III  is  a  computer  program,  developed  in  the  1970's,  for  diagnosing
electrical  circuits.  The  system  was  primary  used  in  a  laboratory  setting  and  to
make  it  work  with  satisfaction,  some  presuppositions  had  to  be  made.  For
example, just single faults are assumed, faults only occur in components themselves
(not in wires), the source is a constant voltage, and all components have the same
probability  to  fail.  SOPHIE  III  uses  a  local  propagator  called  LOCAL  to  calculate
expected values in the circuit, given one or more observations. SOPHIE III is not
a  general  diagnosis  system,  since  LOCAL  only  possesses  knowledge  of  how
electrical components work, i.e. what equations that characterize them.

Suppose  that  the  measurements  U1 = 30 V  and  U2 = 34 V  are  made  in  the
example in figure 2.1. In SOPHIE III this would be stored as the two expressions

(V (N1 N5) (MEASUREMENT) ())= 30

(V (N2 N5) (MEASUREMENT) ())= 34

The first  element  in  every  expression explains  the type  of  the value  considered
and  the  second tells  the  location  of  the  value.  Next  element  is  the  reason  of  the
value,  i.e.  describes  how  LOCAL  computed  the  value  (above  it  was  just  a
measurement). The last element contains the assumptions  the value depends on,
i.e.  which components that  must  work correctly  to propagate  the value (which
explains why it is empty for measurements).

After collecting observations LOCAL can now start propagating.

(V (N1 N2) (KVL N1 N2 N5) ()) = 4

(I R1 (RESISTORV R1) (R1))= 0.003

(I D1 (ZENERV D1) (D1))= 0

In  the  first  expression  KVL  stands  for  "Kirchoffs  Voltage  Law",  which  is  here
involving  the  three  mentioned  nodes.  No  assumptions  are  needed  since  the
both  measurements  gives  all  necessary  information.  This  first  propagation
makes  it  possible  for  LOCAL  to  calculate  the  second  expression,  namely  the
current through R1 (because of the assumption R1). The third propagation gives
that the current through D1 is zero, since the breakdown voltage is not reached
according to the measurements. 

LOCAL is, unlike the Modelica language, casually dependent,  which implies that
Ohm's  law,  V = R I,  must  exist  in  two  forms.  These  two  forms  are  denoted  by
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RESISTORV  and  RESISTORI.  RESISTORV  means  that  the  voltage  are  known
(similarly  for  ZENERV)  while  RESISTORI  indicates  that  the  electric  current  is
known.  (The first one represents the equation I = V êR and the second V = I R.)

Some further propagations will be

(I R2 (KCL N2) (R1 D1)) = 0.003

(V (N3 N2) (RESISTORI R2) (R2 R1 D1)) = 7.18

(V (N3 N5) (KVL N3 N2 N5) (R2 R1 D1)) = 41.18

(V (N3 N1) (KVL N3 N2 N5) (R2 R1 D1)) = 11.18

(I D1 (ZENERV D1) (D2 R2 R1 D1)) = 0

which are explained similarly. (KCL is "Kirchoffs Current Law".)

Now suppose the voltage drop between N1 and N3 is observed to 15 volts. This
leads  to  a  discrepancy  as  the  propagated  value  is  11.18  volts.  This  means  that
one of the assumptions for this propagation is wrong, i.e. one of the components
(R1 R2 D1)  is  faulted.  This  set  is  called  a  nogood.  Using  the  notation  from
section 1.3, the possible diagnoses for this observation would then be

8FHR1L, FHR2L, FHD1L<

where F denotes any (unspecified) fault. Note that just single faults are possible.
If the observation would be 11.18 volts, then all of (R1 R2 D1) are non-faulted
for  sure.  This  conclusion  can  be  drawn  since  single  faults  are  assumed  and  a
faulty component is in SOPHIE III expected to appear faulty when it is.

Comparing  other  new  observations  with  the  propagations  could  yield  more
nogoods and since only one fault is assumed to be present at the same time, the
intersection  of  all  the  nogoods  will  (may)  reduce  the  number  of  components
that  are  suspiciously  faulted,  i.e.  components  who  are  not  members  in  all
nogoods,  cannot  be  faulted.  For  example,  if  we  measure  the  electric  current
through  R2  to  0.01  ampere,  the  obtained  nogood  will  be  (R1 D1).  Then  the
possible  components  to  be  faulted  are  reduced  to  (R1 D1),  which  is  the
intersection of (R1 R2 D1) and (R1 D1).

By  making  further  observations  in  this  way,  faults  can  eventually  be  isolated.
This is how SOPHIE III is working. It proposes a next measurement using some
algorithm to quickly localize the faulted component. This algorithm will not be
described here. For more readings about SOPHIE III see [1].
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2.2  2.2 GDE

As  a  comparison  to  SOPHIE  III  a  later  developed  diagnosis  algorithm,  GDE,
will  here  be  described  and  also  applied  to  the  example  in  figure  2.1.  GDE  is
maybe the most well known diagnosis algorithm within the AI area of diagnosis.

GDE, as  well  as  SOPHIE III,  uses  local  propagation but  also a  sort  of  database
called  ATMS  (Assumption-based  Truth  Maintenance  System)  generally  used
within  the  area  of  AI.  The  important  differences  from  SOPHIE  III,  is  that  the
algorithm handles  multiple  faults  and  the  local  propagator  of  GDE is  not  made
strictly for electrical circuits, but is more general. A similarity between the local
propagators is however that they are both causal dependent.

Looking  at  the  example,  the  observations  from  above  would  by  the  ATMS  be
stored as below (the text within round brackets is not stored).

PU1=30,{}T (observation)
PU2=34,{}T (observation)

where  the  first  element  is  the  measured  quantity  and  its  value.  The  other
element contains supporting environments, which is a set of components which is
the same set that  for SOPHIE III  is called assumptions. The information within
brackets  tells  how the value  was  obtained.  It  does  not illustrate  any content  in
the ATMS.

Now the GDE algorithm can propagate  the  following and add  to  the  database
(similar to section 2.1):

PU3=4,{}T (KVL)
PI1=0.003,{R1}T (Ohm's law over R1)
PI2=0,{D1}T (zener breakdown = 36 V)
PI3=0.003,{R1,D1}T (KCL)
PU4=7.18,{R1,R2,D1}T (Ohm's law over R2)
PU5=41.18,{R1,R2,D1}T (KVL)
PU6=11.18,{R1,R2,D1}T (KVL)
PI4=0,{D2,R1,R2,D1}T (zener breakdown = 56 V)

Within  the  round  brackets  the  current  equation  used  in  each  propagation  is
showed and, as above, these are not stored by GDE.
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Further  observations  will  also  be  added  to  the  database  and  with  those
additional two from section 2.1, this would give

PI3=0.01,{}T (observation)
PU6=15,{}T (observation)

With those added to the database GDE will discover a discrepancy between two
pairs,  as  both  I3  and  U6  now  exists  with  two different  values.  Therefore  GDE
generates the two nogoods

{R1,R2,D1}
{R1,D1}

which tells that the four possible minimal diagnoses are

F(R1)
F(D1)
F(R1)flF(R2)
F(R2)flF(D1)

where F is any unspecified fault. A minimal diagnosis is a diagnosis of which no
subset  is  also  an  obtained  diagnosis,  is  called  a  minimal  diagnosis  [3].  For
example, the diagnosis F(R1)flF(R2)flF(D1)  is not minimal, since it is a superset
of  F(R1)flF(R2).  The  diagnosis  F(R2)  alone  is  not  a  possible  single  fault,
because the second nogood says that at  least  one of R1  or  D1  is  faulted but not
R2.

GDE  also  suggests  further  measurements,  but  as  for  SOPHIE  III,  this  is  not
described here. See [2, 5] for more about GDE.
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2.3  2.3A summary

Comparing  SOPHIE  III  and  GDE,  tells  that  GDE,  as  the  name  says,  is  more
general.  SOPHIE  III  is  developed  to  diagnose  only  electrical  circuits,  which
GDE  is  not  restricted  to.  Another  difference  between  the  two  methods  is  that
SOPHIE  III  just  detects  single  faults  while  GDE  also  can  find  multiple  faults.
The  local  propagators  for  the  two  methods  are  both  causal  dependent.  This
means  that  the  equation  that  describes  the  behavior  of  a  certain  component
explicitly  must  be  expressed  in all  the  ways  the  variables  can  be  extracted,  i.e.
for Ohm's law there are two ways, namely I = V êR and V = I R.

The algorithm implemented in this project  uses MathModelica  for  propagating
values,  which  makes  the  modelling  more  simple  and  easier  to  grasp.  An
advantage of MathModelica is that it is non-causal.

Both  GDE  and  SOPHIE  III  suggests  further  measurements,  as  mentioned.  The
system for diagnosing made in this project does not have this feature.
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3
Generating a diagnosis system

Generating a diagnosis system

The purpose of this work was to implement an algorithm that takes an existing
MathModelica model of an electrical circuit and generates a diagnosis system for
diagnosing  a  real  circuit.  Figure  3.1  shows  a  general  outline  of  this  diagnosis
system. The algorithm was implemented as a script in Mathematica syntax [13,
14] with help from MathModelica commands [8]. 

This  chapter  describes  how  a  diagnosis  system  is  created,  how  the  diagnosis
components are built, the procedure of diagnosis calculation and finally how to
use the algorithm. 

Figure 3.1  The diagnosis system.

The existing MathModelica  model (here also referred to as the original model  or
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the  input  model)  is  assumed  to  consist  of  components  from  the  Modelica
standard library  [10].  The  basic  idea  when building the system in figure 3.1,  is
to change  the  existing Modelica  standard  components of  the  original  model  to
corresponding  diagnosis  components.  The  diagnosis  components  are
MathModelica  models  defining  the  different  behavioral  modes  a  certain
component can be in. This makes the now changed original model able to exist
in  many  shapes,  depending  on  the  different  combinations  of  the  behavioral
modes of the diagnosis  components. For each of these combinations a separate
behavioral  circuit  is  generated.  All  these  disjunctive  behavioral  circuits  are  then
assembled into a total model, the diagnosis model, which is simulated. This is the
first part of the algorithm ("Algorithm part 1" in figure 1.1),  which, referring to
chapter  2,  can  be  seen  as  the  local  propagator.  The  other  part  calculates  the
possible  diagnoses  from  given  observations  of  a  corresponding  real  system
("Algorithm  part  2").  The  diagnosis  model  is  the  basis  for  making  these
diagnoses.  The  two  algorithm  parts  together  is  referred  to  as  the  diagnosis
system.

In Appendix A the complete code for this is presented.

To  make  it  easier  to  follow,  a  very  simple  example  circuit  is  visualizing  the
different  phases.  Figure  3.2  and  3.3  show  this  circuit  as  seen  in  the
MathModelica model editor and the MathModelica code, respectively.

R = 10 ohm

G

U = 10 V

Figure 3.2  MathModelica model with a constant voltage source and one resistor.
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3.1  3.1 Diagnosis components

Model@Circuit1,

Modelica.Electrical.Analog.Basic.Resistor R@8R == 10<D;

Modelica.Electrical.Analog.Sources.ConstantVoltage

U@8V == 10<D;

Modelica.Electrical.Analog.Basic.Ground G;

Equation@

Connect@U.p, R.pD;

Connect@R.n, G.pD;

Connect@G.p, U.nD

D

D

Figure 3.3  The model in figure 3.2 expressed in MathModelica code.

3.1   Diagnosis components

The  diagnosis  components  are  implemented  as  models  in  MathModelica,
similar  to  the  Modelica  standard  components  in  the  standard  library.  The two
components resistor and constant voltage source are both available in the standard
library among other analog electrical components. Each diagnosis component is
related to one corresponding standard component. In both of those components
above, the superclass oneport  (also from the standard library) is inherited and
the diagnosis components are also built on this superclass. (The class oneport is
a model representing any electrical component with two connect pins.) 

The diagnosis  components are  saved  as  MathModelica  packages  and each  one
has  its  own  package  file,  containing  MathModelica  models  describing  all
behavioral modes, i.e. the behavioral models. Figure 3.4 illustrates the structural
similarity  and  difference  between  one  of  the  diagnosis  components  and  its
corresponding  standard  component.  The  package  files  of  the  diagnosis
components  also  includes  information  on  what  component  in  the  standard
library it is related to, in figure 3.4 called standard component relation.
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Figure 3.4   Tree showing how oneport  is  inherited in the standard  and diagnosis  
      component, respectively, of a resistor.

The model names NFResistor  and so on in figure 3.4,  are described in section
3.1.1. The long model name represents the standard component, see figure 3.3. 
See  also  section  4.1  for  a  further  description  regarding  the  choices  when
implementing the diagnosis components.

3.1.1  3.1.1 The component packages

The diagnosis resistor package (DiagnosisResistor)  consists of three different
behavioral models:

- no-fault (NFResistor)
- open-circuit (OCResistor)
- short-circuit (SCResistor)

The names within brackets,  are  the  actual  names of  the  implemented found in
the code. Figure 3.5 and 3.6 shows the differences  between the no-fault resistor
and the  open-circuit  resistor.  The whole  diagnosis  resistor  package  is  found in
Appendix  B.2,  where  also  an  ideal  resistor  from the  Modelica  library  is  found
(B.4). 
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Model@NFResistor,

Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;

Parameter Modelica.SIunits.Resistance R == 1;

Equation@

R i == v

D

D

Figure 3.5  No-fault resistor model.

Model@OCResistor,

Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;

Parameter Modelica.SIunits.Resistance R == 1;

Modelica.SIunits.Resistance Ropen == 10^12;

Equation@

v � i Ropen

D

D

Figure 3.6  Open circuit resistor model.

Two behavioral models of the voltage source (DiagnosisConstantVoltage) are
available:

- no-fault (NFConstantVoltage)
- empty battery (EBConstantVoltage)

Their  definitions  can  be  seen  in  Appendix  B.3  and  the  standard  component  in
B.4 for comparison. 

3.1.2  3.1.2 Component combinations

It  is  obvious  that  for  a  great  deal  of  components  in  a  circuit,  lots  of  fault
combinations will be possible. The expression

(3.1)P
i=1

n

 behavioralsi , 
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where  n  is  the  total  number  of  diagnosable  components  in  the  model  and
behaviorals  is  the  number  of  behavioral  modes  for  component  i,  represents  the
total  number  of  combinations  for  a  certain  model.  For  example,  for  a  circuit
with  three  components  connected,  each  having  three  behavioral  modes,  there
are 3 ÿ 3 ÿ 3 = 27 different combinations.

A  feature  of  the  algorithm  makes  it  possible  to  decide  how  many  of  the
combinations  that  should  be  considered.  This  is  made  by  telling  a  maximum
fault  multiplicity to obtain in the resulting diagnoses (for example only double
and single faults might be of interest).

3.1.3  3.1.3 Recognizing the components

The  algorithm  must  be  able  to  acquire  knowledge  of  which  diagnosis
components that exist. This because it must be possible to relate the declarations
of  the  components  of  the  input  model  to  the  corresponding  diagnosis
components.  Figure  3.8  shows  which  of  the  diagnosis  components  that  are
related  to  which  of  the  standard  components.  To  achieve  this,  a  special
MathModelica  package  is  created,  called  DiagnosisComponents (Appendix
B.1).  Figure  3.7  visualizes  from  what  instances  the  algorithm  gets  the
information  to  accomplish  what  described  by  figure  3.8.  The  information
consists of the names of the standard and diagnosis components.

Figure 3.7  Recognition of components.

Figure 3.8  Relations between standard and diagnosis components.
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The diagnosis component package contains a model Electrical that consists of
a  list  with  the  complete  names  of  all  the  standard  components  for  which  a
diagnosis  component  package  exists,  i.e.  the  two  in  figure  3.8.  When  further
electrical  diagnosis  components  are  implemented,  the  list  will  be  added  more
elements. The intention of this structure is to associate the name with the actual
area that  the components are belonging to. For example,  a future implemented
diagnosis area could be Mechanical.

The algorithm assumes that all the diagnosis component packages are named as
in this thesis. The packages for new components to be added in the future, shall
therefore  be  named  Diagnosis<standard  component  name>.  Otherwise  the
recognition procedure in figure 3.7 will not work and the relations in figure 3.8
are  then  not  found.  The  reason  is  that  the  algorithm  uses  the  last  part  of  the
name  of  the  standard  component  to  identify  what  diagnosis  component  it  is
related to. 

Furthermore,  each  behavioral  model  must  be  named  in  the  same  way as  here,
e.g.  NF<standard  component  name>,  but  this  is  to  standardize  the  look  of  the
resulting diagnoses, i.e. how the result is printed on the screen (see section 3.4).
Though,  there  may  be  more  or  less  than  two letters  to  describe  the  behavioral
mode, e.g. A<standard component name> or ABC<standard component name>.

3.2  3.2 Generating and simulating the diagnosis model

From  the  original  MathModelica  model,  the  diagnosis  model  are  being
generated and then simulated. In figure 3.1 this is referred to as "Algorithm part
1".  First  in  this  procedure,  the  components of  the  original model are  identified
by  their  type  and  name.  For  those  of  which  a  corresponding  diagnosis
component  exists  the  type  and  name  are  stored  in  pairs  in  a  type  list.  For  the
example circuit in figure 3.2 and 3.3 this will yield the list

{{R, Modelica.Electrical.Analog.Basic.Resistor}
{U, Modelica.Electrical.Analog.Sources.ConstantVoltage}}

because the ground G  does not have a corresponding diagnosis component. As
seen  in  the  example,  a  very  long  type  name  (declaration)  is  given.  This  is  the
complete Modelica standard library path to reach the components. To make the
algorithm  work,  the  declarations  have  to  be  expressed  in  this  way.  Otherwise
they  will  not  be  treated  as  components  that  have  corresponding  diagnosis
components,  i.e.  they  will  not  be  diagnosed.  When  building  models  in  the

3.1 Diagnosis components 25



model editor this complete declaration path is automatically generated.

Now  the  standard  components  in  the  type  list  can  be  changed  to  their
corresponding  diagnosis  components.  Several  combinations  of  the  behavioral
models are possible (see section 3.1),  as  each diagnosis component can be in at
least two behavioral modes . The combinations in the example will be 

{{R,NFResistor},{U,NFConstantVoltage}}
{{R,NFResistor},{U,EBConstantVoltage}}
{{R,OCResistor},{U,NFConstantVoltage}}
{{R,OCResistor},{U,EBConstantVoltage}}
{{R,SCResistor},{U,NFConstantVoltage}}
{{R,SCResistor},{U,EBConstantVoltage}}

which is the same number of combinations that expression (3.1) would yield.

For  each  of  these  combinations,  a  unique behavioral  circuit  class  is  defined,  that
declares  one  behavioral  circuit  each  in  the  total  diagnosis  model.  This  is  the
diagnosis model for the example circuit:

Model@DiagModel,
bmclass6 m6;
bmclass5 m5;

bmclass4 m4;
bmclass3 m3;
bmclass2 m2;

bmclass1 m1
D

The behavioral circuit classes bmclassi declares the behavioral circuits mi. One
of the behavioral circuit classes has the following definition:

Model@bmclass3,
DiagnosisResistor.OCResistorR@8R == 10<D;
DiagnosisConstantVoltage.EBConstantVoltageU@8V == 10<D;

Modelica.Electrical.Analog.Basic.Ground G;
Equation@
Connect@U.p, R.pD;
Connect@R.n, G.pD;

Connect@G.p, U.nD
D

D

The standard  components have  here been changed into diagnosis  components,
each with a certain behavioral mode present. 
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Simulation of the diagnosis model results in a complete set of values. To be able
to  use  these  values  to  diagnose  the  real  system,  they  need  to  be  structured  in
some  recoverable  way.  Therefore,  a  matrix  with  all  the  simulated  values  is
generated,  the  simulation  matrix,  in  which  each  row  represents  one  of  the
behavioral circuits. The example circuit yields the simulation matrix 

i

k

jjjjjjjjjjjjjjjjjjjjj

8NF< 8currentHRL, voltageHRL, currentHUL, voltageHUL<
8EBÄU< 8currentHRL, voltageHRL, currentHUL, voltageHUL<
8OCÄR< 8currentHRL, voltageHRL, currentHUL, voltageHU<<

8OCÄR, EBÄU< 8currentHRL, voltageHRL, currentHUL, voltageHUL<
8SCÄR< 8currentHRL, voltageHRL, currentHUL, voltageHUL<

8SCÄR, EBÄU< 8currentHRL, voltageHRL, currentHUL, voltageHU<<

y

{

zzzzzzzzzzzzzzzzzzzzz

Note  that  current(X)  states  the  electric  current  through  the  component  X  for
the  specific  behavioral  circuit  that  the  current  row  represents.  The  notation
voltage(X)  similarly  describes  the  voltage  over  the  component  X.  The  first
elements  in  each  row  of  the  matrix  above  ({NF},{EBÄU}  and  so  on),  are
explained in the section 3.3.

Ideal, the simulation matrix for the example circuit would look like

i

k

jjjjjjjjjjjjjjjjjjjjj

8NF< 81, 10, −1, 10<
8EBÄU< 80, 0, 0, 0,<
8OCÄR< 80, 10, 0, 10<

8OCÄR, EBÄU< 80, 0, 0, 0<
8SCÄR< 8∞, 0, −∞, 0<

8SCÄR, EBÄU< 80, 0, 0, 0<

y

{

zzzzzzzzzzzzzzzzzzzzz

The  negative  electrical  current  through  U,  is  explained  by  the  fact  that  the
positive  pin  of  the  voltage  source  is  connected  to  the  positive  pin  of  R.  The
definition of the components then say that U and R must have opposite direction
of their currents.

This  first  part  of  the  algorithm can be  seen as  a  local  propagator,  according to
the two methods described in chapter 2 and the code is shown in Appendix A.1.

3.3  3.3 Identifying the diagnoses

This section will  explain  how possible discrepancies  between observations and
the propagated values in the simulation matrix is detected.

The simulation matrix has as first element in every row an identifying element.
This  element  tells  what  diagnosis  that  the  following  simulated  values
represents. In the second part of the algorithm, observations made from the real
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system are matched against each row in the simulation matrix. For all the rows
agreeing,  the  current  identifying  element  (diagnosis)  is  returned  and  forms  a
resulting  list  of  all  possible  diagnoses  for  the  current  observation  case.  The
notations of the faults differs  a little from how they were written in section 1.3
and chapter  2.  In the diagnosis result,  that  the algorithm returns, the faults are
denoted as FÄA , instead of F(A) (F is the fault and A is the component).

Simulated values and observations are most likely not exactly equal, even if the
model is built to reflect the real system (or a faulty real system). An observation
is therefore said to match a simulated value within a test interval of five percent
of  the  observation.  When the  simulation has  returned  a  zero-value  (or  close  to
zero), an absolute test interval of [-0.01, 0.01] is used.

To  illustrate  how  the  possible  diagnoses  are  obtained  and  presented  on  the
screen, we go back to the simple example circuit in figure 3.2  and 3.3.  Suppose
that  the  resistor  is  short-circuit,  the  voltage  source  is  non-faulted  and  the  only
observation is  the  voltage  drop over  the  resistor,  which is  measured  to  0  volts
(or close to 0). If the supposition about the resistor was not known, perhaps the
most  obvious  diagnosis  would  be  {EBÄU}.  However,  the  voltage  source  is
assumed  to  have  an  inner  resistance  (see  chapter  4  for  more  about  this),  so
{SCÄR}  would  also  be  a  possible  diagnosis.  The  above  observation  also  yields
two more diagnoses and the total list of possible diagnoses would be

{{SCÄR},{EBÄU},{OCÄR,EBÄU},{SCÄR,EBÄU}}

As seen,  the last  two are  double  faults.  This is  explained by the fact  that  if  the
voltage source is empty, then it would be impossible to say anything about the
state of the resistor, i.e. it could be in any of its behavioral modes.

The possible diagnoses above are visualizing exactly how this second part of the
algorithm presents its result on the screen. Every diagnosis is assembled within
one pair  of curly  brackets.  The algorithm also have a  feature of  presenting just
the  minimal  diagnoses  (see  section  2.2).  For  the  case  above,  the  minimal
diagnoses would be

{{SCÄR},{EBÄU}}

since both of the double faults includes at least one of these single faults.
This part of the algorithm script is presented in Appendix A.2.
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Note: 
1.  The  test  intervals  are  easily  changed  in  the  underlying  function
TestValues[.] in GetFaultMode[.]. See Appendix A.2.
2.  The  faults  are  denoted  as  e.g.  EBÄU.  The  sign  "Ä"  is  used  instead  of  "_",
because the last one is a reserved character in Mathematica.

3.4  3.4 Using the diagnosis system

The  two  parts  of  the  algorithm,  described  in  the  former  sections,  consists  of  a
number  of  functions,  which  are  all  stored  in  one  Mathematica  notebook  (see
Appendix  A).  Before  diagnosing,  all  these  functions  must  be  known  by
Mathematica,  which is  accomplished by evaluating  them. Both algorithm parts
have a top function each, which are described here.

To  obtain  the  possible  diagnoses  for  a  certain  system  with  respect  to  the
observations,  the  two  top  functions  are  in  turn  evaluated.  The  original
MathModelica  model from which a  diagnosis  system is obtained,  must also be
defined and evaluated. 

To  the  simple  example  circuit  from  before,  we  now  add  two  more  resistors
connected in parallel with the first one. Figure 3.9 shows the new circuit, named
Circuit3.  (This  is  the  same  example  as  first  in  chapter  1,  figure  1.1.)  The
corresponding MathModelica code is found in Appendix C.

R1 =  10 ohm R2 = 20  ohm R3 = 40 ohmU = 10 V

G

Figure 3.9  Circuit with a constant voltage source and three resistors in parallel.

3.4.1  3.4.1 Making the simulation matrix

The diagnosis system is generated by using the top function of the first part  of
the algorithm, which is
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SimulateFaultModels[maxFaultSize,myModel]

where  myModel  is  an  existing  model.  The  parameter  maxFaultSize  limits  the
diagnosis  system  to  a  certain  fault-multiplicity  (see  also  section  3.1).  For
example  maxFaultSize  =  2  gives  a  system  only  treating  double  and  single
faults. If this parameter is omitted, all combinations of behavioral modes will be
represented in the resulting diagnosis system.

Applying the above function on Circuit3 (illustrated in figure 3.9) and limiting
the diagnoses to maximum double and single faults, is done by typing

diagSystem32 = SimulateFaultModels@2, Circuit3D;

The variable diagSystem32  is used for storing the result of the function, i.e. the
simulation matrix. Everything is now prepared for diagnosing the real system. 

3.4.2  3.4.2 Obtaining the possible diagnoses

The observations must be arranged in a certain list structure; a structure that the
diagnosis  calculation  can  recognize.  They  shall  be  given  together  with  their
quantity on the form 

{{quantity1, observation1}, {quantity2, observation2}, ... }

Quantities are stated as R.v for the voltage [V] over a component named R and
R.i  for the current [A]  through the same component. It  is important to call the
component  in  question  by  its  real  name,  i.e.  the  same  as  in  the  definition  of
original  model.  Measurements  for  every  component  and  quantity  must  not  be
given, nor in a particular order.

For the new example circuit, a list of observations then could look like this:

observationList1 = 88R2.v, 10<, 8R3.i, 0.25<, 8R1.i, 1<<;

With  these  values  measured,  we  see  that  the  circuit  may  be  intact,  but  it  also
may  not.  Let's  see  what  the  diagnosis  computation  says  about  this  fuzzy
prediction.

To calculate the diagnoses, the following statement is used. It is the top function
of the second part of the algorithm.

Diagnosis[myDiagnosisSelection,myObservations,myDiagnosisMatrix]
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Here  myObservations  must  be  given  as  the  list  of  observations  mentioned
above and myDiagnosisMatrix  must be created by SimulateFaultModels. The
parameter myDiagnosisSelection  can be given one of the values {All, Min},
which  gives,  respectively,  all  the  possible  and  the  minimal  diagnoses.  Default
value is All and is set if this parameter is left out.

After evaluating SimulateFaultModels  once, the diagnosis computation can be
done  multiple  times  for  different  observations.  However,  only  if  changes  are
made in the original model (for example in figure 3.9) or if the fault multiplicity
is changed, then a new simulation matrix have to be built.

For checking the above prediction of the observations in observationList1  we
evaluate

Diagnosis@All, observationList1, diagSystem32D

88OCÄR2<, 8NF<<

This result says that either there is no fault in the circuit or the resistor R2 might
be open, i.e. the prediction from above was pointing in the right direction. Open
circuit  is  diagnosed  for  R2  since  only  the  voltage  is  measured  over  this
component, which does not give enough information to tell if it is broken or not;
the  voltage  drop  is  still  10  V  between  the  measuring  points.  Instead,  if  the
current  through R2  would  be  observed  to  0.5  A,  then  only  the  diagnosis  {NF}
would be made.

3.4.3  3.4.3 Some more examples

In  the  following  diagnosis  calculation  for  the  above  example  (Circuit3  in
figure  3.9)  an  empty  result  is  obtained,  though  the  only  observation  that  has
changed is the current through R1 which is now 0.9 A.

observationList2 = 88R2.v, 10<, 8R3.i, 0.25<, 8R1.i, 0.9<<;

Diagnosis@All, observationList2D

8<

Even if  the observation is just ten percent lower and could originate from such
as  tolerances  in  the  resistor  and  accuracies  in  the  measuring  equipment,  no
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diagnosis  can  be  calculated.  This  is  depending  on  how  the  ranges  in  the  test
interval  are  set  (see  section  3.3).  However,  if  this  interval  is  set  too  wide,  they
will increase the risk of getting unrealistic or redundant diagnoses.

One  last  example  of  an  observation list  applied  in  the  example  in  figure  3.9  is
given  to  show  the  difference  between  All  and  Min  when  calculating  the
diagnoses. Let's say we measured all zero values:

observationList3 = 88R2.v, 0<, 8R3.i, 0<, 8R1.i, 0<<;

Diagnosis@All, observationList3, diagSystem32D

88SCÄR1, EBÄU<, 8OCÄR1, SCÄR2<, 8OCÄR1, EBÄU<,
8SCÄR2, OCÄR3<, 8SCÄR2, EBÄU<, 8SCÄR2<,
8OCÄR2, EBÄU<, 8SCÄR3, EBÄU<, 8OCÄR3, EBÄU<, 8EBÄU<<

This results in a large number of possible diagnoses, mostly with double faults.
Now if we want to look at the minimal diagnoses, the result obtained will be as
follows.

Diagnosis@Min, observationList3, diagSystem32D

88EBÄU<, 8SCÄR2<<

All  double  faults  are  now  gone,  which  is  because  every  one  of  them  includes
either one of{EBÄU} and {SCÄR2} or both.

3.5  3.5 Using other components in the algorithm

Note  that,  even  if  the  limitation  here  is  set  to  diagnose  only  the  static
components  resistor  and  constant  voltage  source,  other  components  may  be
included  in  the  input  model.  The  algorithm  is  made  to  just  diagnose  the
standard components for which corresponding diagnosis components exists. All
the components in the input model that have not related diagnosis components,
will  remain  the  same during  the  diagnosis  procedure.  However,  the  limitation
of  looking at  values  in  specific  discrete  moments cannot  guarantee  correctness
of  the  diagnoses  made  when dynamic  components are  included.  But,  if  such a
component  has  a  known  time  constant  and  if  the  component  is  stable,  then  it
may be  included  in  a  circuit  and  the  possibility of  obtaining correct  diagnoses
will  still  be  kept.  Knowledge  about  when  the  circuit  reaches  stability,  gives
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information  on  how  to  adjust  the  simulation  time  of  the  diagnosis  model  and
when  to  read  the  simulated  values.  Now  the  simulation  time  is  set  to  two
seconds,  and  the  simulated  values  (which  are  stored  in  the  simulation matrix)
are  read  after  two  seconds.  These  time  choices  are  arbitrary  picked  since  the
circuits  in  this  thesis  are  assumed  to  have  static  characteristics.  Adjustment  of
these  values  can  be  done  in  the  functions  MakeTotalModel[.]  and
SimSalaBim[.].  Both are  found in the  first  part  of  the  algorithm script,  where
the  simulation  matrix  is  created.  If  a  circuit  is  constructed  so  it  never  will
become stable, the now existing algorithm is not applicable.
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4
Choices of implementation

Choices of implementation

In  chapter  3,  the  diagnosis  components  were  presented.  The  functionality  of
these  components  has  appeared  to  be  the  key for  making the  diagnosis  model
(made by the first part of the algorithm) possible to simulate. In this chapter, the
choices  made  when  implementing  the  diagnosis  components  are  explained.
Problems occurring when using ideal diagnosis components are also discussed.

4.1  4.1 The structure of the diagnosis components

Mainly there are two ways of implementing the diagnosis components, either 

i) as one model with a parameter controlling the behavioral mode or
ii) as one model per behavioral mode.

In  this  thesis  the  latter  case  (ii)  is  chosen  (see  Appendix  B.2  and  B.3),  both
because  limitations  of  MathModelica  and  for  practical  reasons.  The  first
alternative  (i)  may  seem  more  natural  to  choose  [7],  since  one  standard
component  then  just  would  have  one  corresponding  diagnosis  component.
Written  in  MathModelica  code  this  could  for  a  resistor  look  like  in  figure  4.1.
However, this is not possible, because MathModelica does not support defining
enumerated  types,  as  presumed  in  figure  4.1  by  trying  to  use  MyBMType  to
declare the variable BehavioralMode.
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Model@DiagnosisResistor,

Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;

Parameter Modelica.SIunits.Resistance R == 1;

Modelica.SIunits.Resistance Ropen � 10^12;

Modelica.SIunits.Resistance Rshort � 10^−2;

Parameter MyBMType BehavioralMode � NF;

Equation@

If @BehavioralMode === NF, R ∗i == v,

If@BehavioralMode === OC, i � 0,

If @BehavioralMode === SC, v � i∗RshortDDD

D

D

Figure 4.1  MathModelica code for a diagnosis resistor implemented as alternative i).

Instead, if MyBMType would be changed to an integer type and BehavioralMode
for example could have the values {0, 1, 2}, then this diagnosis resistor would be
functional. But then it would be impossible for the diagnosis algorithm to know
which behavioral modes a certain component can take. For example, it does not
know that  a zero is representing the no-fault  mode. This kind of knowledge of
the diagnosis components is necessary for the algorithm to acquire, otherwise it
would not be general enough. By choosing ii),  the names of each model can be
associated  with  the  current  behavioral  mode.  The  lack  of  being  able  to  define
enumerated  types  in  MathModelica  is  therefore  the  strongest  reason  to
implement as alternative ii). 

According  to  ii),  each  behavioral  mode  should  be  represented  as  one
MathModelica  model,  a  behavioral  model.  They  are  named  as,  for  example
NFResistor  and SCResistor,  which clearly  tells  the  corresponding  behavioral
mode  and  therefore  easy  can  be  detected  by  the  algorithm.  This  also  makes  it
easier to explicitly read the definitions of an arbitrary behavioral circuit, that the
first  part  of  the  algorithm  has  generated  (this  can  be  done  by  following  the
example in Appendix D). To gather the behavioral models in a logical way, they
are  saved  as  MathModelica  packages  as  described  earlier  (see  section  3.1  and
Appendix B).
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4.2  4.2 Choice of behavioral models

The  two  types  of  faulted  resistors  (OCResistor  and  SCResistor)  are  the  two
most extreme thinkable faults.  If  a resistor breaks, for example caused by a too
strong  current,  it  most  probable  gets  either  short-circuit  or  open-circuit.
Sometimes  it  may  be  more  likely  that  an  a  certain  resistor  has  the  wrong
resistance, but this type of faults are not treated here. Similar, the voltage source
is said to be faulted only when it is totally empty.

4.3  4.2 Avoiding over- and underdetermined models

If  MathModelica  should  be  able  to  simulate  a  certain  model,  then  that  model
has to generate a  solvable system of equations. Therefore,  this equation system
must  be  neither  overdetermined,  underdetermined  nor  have  a  singularity.
When  creating  behavioral  circuits  using  ideal  components,  these  kinds  of
equation systems appear in a number of situations.

Figure 4.2 shows an example of a circuit with a constant voltage source and two
short-circuit  resistors.  Both  the  voltage  source  and  the  short  circuit  of  the
resistors are assumed ideal. (The resistors corresponds to the component Short,
found  in  the  Modelica  standard  library.)  This  model  is  not  solvable  in
MathModelica, since it yields an equation system with a parameter solution, i.e.
infinite number of solutions. The physical explanation to this, is that there is no
information  about  the  current  flow  through  the  resistors  R1  and  R2,  as  no
resistance is  present,  i.e.  the  electric  current  can be shared  in all  possible  ways
between  the  resistors.  There  can  in  fact  be  any  circulating  current  in  the  loop
consisting of R1 and R2.
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U R1 R2

Figure 4.2   Circuit  with a constant voltage  source and two resistors in parallel.  Both 
       R1 and R2 are assumed short-circuit.

One  solution  to  this  problem  is  to  use  non-ideal  components.  The  behavioral
models defining open- and short-circuit resistors  are  each improved by a  open-
circuit  resistance  and  a  short-circuit  resistance,  respectively.  The  constant  voltage
source  has  an  inner  resistance  added  to  it.  The  inner  resistance  is  justified  by
looking  at  a  real  battery  where  this  is  always  existing.  For  the  diagnosis
resistors, the two resistances are  justified by the fact  that physically there must
still  remain  some  resistance,  in  the  first  case  very  high  and  in  the  other  very
low.  How  this  is  put  into  the  definitions  of  the  two  diagnosis  components  is
shown in Appendix B.2 and B.3.

4.4  4.1.1 Ideal versus non-ideal components

The  Modelica  standard  components  considered  in  this  thesis  are  ideal,  but  to
make  it  possible  to  obtain  a  functioning  diagnosis  system,  the  diagnosis
components had to be made non-ideal, which is explained in section 4.3. 

The  NFResistor  model  has  exactly  the  same  structure  as  the  corresponding
Modelica  standard  resistor.  It  may  seem  unnecessary  to  make  another  model
with  the  same  functioning,  but  it  is  in  line  with  the  reasoning  in  section  4.1,
regarding  the  identifying  of  behavioral  modes,  together  with  keeping  the
structure  of  the  diagnosis  component  packages  consequent.  The  ideal
components  Short  and  Idle  are  already  existing  components  from  the
standard  library.  They  could  seem  to  be  a  substitute  for  OCResistor  and
SCResistor, but from section 4.2 it is now known that non-ideal components is
the only way to simulate faulty circuits.

Note:  The  only  circuit  components  assumed  ideal  are  the  wires.  To  make  also
these non-ideal, a special wire resistor have to be implemented and put into the
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circuit  between  every  ordinary  component  terminal.  This  would  make  it
possible to diagnose the wires, but also make the script much more complicated.
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5
Future extensions of the  diagnosis system

Future extensions of 
the diagnosis system

The algorithm developed in this project, takes an arbitrary electrical circuit and
makes a diagnosis system for diagnosing resistors and constant voltage sources
included  in  the  circuit.  Every  of  these  two  components  in  the  circuit  is
considered  in  every  diagnosis  calculation.  For  circuits  with  a  large  number  of
these  components,  this  will  cause  the  first  part  of  the  algorithm (simulation of
the  diagnosis  model  and  creation  of  the  simulation  matrix,  see  section  3.2)  to
grow  complex  and  therefore  require  too  much  computer  time.  Also,  if  only  a
few observations are  made  on such a  circuit,  lots of  possible  diagnoses will  be
obtained and many of them could be redundant.

A suggestion of a general extension of the algorithm, regarding the fast growing
of  complexity,  is  discussed in  this  chapter.  Some  other proposals  for  widening
the functionality of the diagnosis system are also presented.

5.1  5.1 Considering subsets of circuits

With the now existing algorithm it may be possible to consider smaller parts of
a  circuit,  but  then  the  user  must  explicitly  build  these  circuit  subsets  and  use
them as  the  input  model  to  the  diagnosis  system.  This  methodology would  be
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quite time-consuming (mostly for the user) every time the user wants to change
the measuring points.

Instead,  if  the  circuit  subsets  were  automatically  generated,  depending  on  the
locations  of  the  observations,  and  put  into  the  algorithm,  then  the  diagnosis
system would be much more powerful.

To describe  qualitatively how this could be done,  the example from section 3.4
is considered (Circuit3). It is visualized here again in figure 5.1. This circuit is
not  unreasonable  big  or  complex  for  the  now  existing  algorithm,  but  it  is  an
appropriate example here.  Any proposal of how the subsets can be chosen will
not be presented, but only how to diagnose an already picked circuit subset.

R1 =  10 ohm R2 = 20  ohm R3 = 40 ohmU = 10 V

G

Figure 5.1  Circuit with a constant voltage source and three resistors in parallel.

Suppose  that  there  are  two  different  measurements  made,  M1  and  M2,  where
M1  is  the  current  through R1  and  M2  is  the  current  flowing from the  positive
pin  of  U.  From  these  observations,  the  extension  of  the  algorithm  could  for
example  pick  a  subset  of  the  circuit  that  includes  U,  R1  and  G.  This  subset
would  look  as  in  figure  5.2.  The  two  resistors  R2  and  R3  are  replaced  by  an
unknown part,  that defines the electric current to be equal in and out of it. (This
type of component is possible to model in MathModelica.)
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R1 =  10 ohm UNKNOWNU = 10 V

G

Figure 5.2  Subset of Circuit3 with two resistors replaced by an unknown part.

By  itself,  the  circuit  subset  in  figure  5.2  yields  an  equation  system  that  has
infinite number of solutions, since there is no information on how much current
is  flowing  through  the  unknown  part  (because  of  the  unknown  resulting
resistance).  But,  we  see  that  one  small  part  of  the  circuit  subset  should  be
solvable -  the part  that  includes the resistor R1,  with knowledge of the voltage
drop U over it.

Thus,  if  it  was  possible  to  simulate  just  those  parts  of  the  circuit  subset  that
could yield any result, then the observations could be matched against that. For
example,  MathModelica  could  have  a  command  named
SimulatePossibleParts  as  an  extension of  the ordinary simulation command
Simulate.  For the  observation M1  from above,  validation could be  done,  i.e.  a
diagnosis  could  be  made.  The second measurement  M2  though,  will  not  bring
enough information  to  tell  anything  about  the  present  behavioral  mode  of  R1.
(However, M2 can instead say something about U.)

A  possibility  when  having  the  subset  in  figure  5.2  and  the  measurements  M1
and M2,  is to add both observations to the equation system, which would then
be overdetermined. This would be a way of telling if a certain subset is possible
to  validate  or  not.  If  the  considered  circuit  subset  has  an  overdetermined
equation  system,  when  including  the  observations,  then  at  least  one  part  of  it
can be validated.   If  this is put together with SimulatePossibleParts  and we
assume that  we  have  some way  of  choosing  all  relevant  subsets  of  the  circuit,
then the following subset algorithm could be usable:
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1. Choose observations M to make

2. Pick a subset ci of the circuit

3. If 
i)  ci  together  with M  yields  an  equation system that  is  overdetermined,  then ci
should be saved.
ii) ci  together with M yields an equation system that is not overdetermined, then
throw ci.

4. If there are any ci left, then go back to 2, else continue.

5. For all saved subsets ci, use them as inputs to the diagnosis algorithm.

The input to the algorithm in the last step, should be a model with all the saved
subsets ci assembled. 

To make it possible for this subset algorithm to work, some strategies have to be
developed.  First,  the  circuit  subsets  must  be  cleverly  picked,  regarding  the
observations. Second, a plan for deciding whether a subset ci  is overdetermined
or  not  must  exist.  Third,  a  new  simulation  function,  such  like
SimulatePossibleParts, must be implemented in MathModelica.

5.2  5.2 Other extensions

Besides  the  comprehensive  extension  described  in  section  5.1,  there  are  some
smaller  additions,  but  not  less  necessary  or  important,  that  can  widen  the
functionality of the algorithm.

One thing to add to the features of the algorithm in the future, is to change the
matching of observations and  simulated values in one single point of time into
a  signal-comparison  over  a  time  interval.  If  this  could  be  done,  it  would  be
possible to implement much more electrical components, since most of them are
either dynamic (e.g. capacitors) or non-linear (e.g. sinus voltage sources).

Another  interesting  extension  is  to  improve  the  behavioral  models  of  the
diagnosis components. Now a resistor, for example, is either non-faulted, short-
circuit  or  open-circuit.  A  widening  of  this  could  be  that  the  diagnosis  system
would be  able  to  determine  if  a  resistor has  the  wrong resistance  and to  tell  if
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the resistance  seems too high or  too low.  For example,  if  the real  value should
be 10  W  but it is  apparently just 5  W,  then the result  from the diagnosis system
should tell  that  the resistance is  too low. However,  this may partly  be possible
to  achieve  if  the  validation  thinking  in  section  5.1  can  be  used.  Because  if
validation says  that  a  certain resistor  is  neither correct,  short-  nor  open-circuit,
then it must hold that the resistor is faulted in an other way, for example it has
the wrong resistance.
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6
Conclusions

Summary

The  developed  diagnosis  system  takes  a  MathModelica  model  of  an  electrical
circuit and observations from a corresponding real circuit and returns as result
all the possible diagnoses for the specific case. The observations can be arbitrary
picked  by  the  user,  i.e.  the  number  and  the  location  of  the  measurements  to
make.

The diagnosis system is able to diagnose constant voltage sources and resistors,
which are both linear, static components. In a circuit, also other components can
be  included,  but  they  will  not  be  diagnosed.  To  diagnose  circuits  with  a
dynamic  behavior,  the  now implemented  algorithm has  to  be  extended  (it  can
be used in those cases the considered system always reaches a stable value after
some  time).  A  necessity  for  making  the  diagnosis  system  work,  was  to
implement  non-ideal  diagnosis  components,  unlike  the  Modelica  standard
components that  are  modeled ideal.  Ideal  diagnosis  components often leads  to
unsolvable equation systems.

Comparing the diagnosis system in this thesis with the two methods SOPHIE III
and GDE, the local  propagator in this thesis can be seen as  the first part  of the
algorithm, i.e.  the part  generating and simulating the diagnosis model.  A great
advantage  of  using  MathModelica  when  propagating  is  that  it  is  non-causal,
unlike  these  other  two  methods.  SOPHIE  III  only  treats  single  faults,  which  is
not a limitation for neither this diagnosis system nor GDE. 
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Electrical  circuits  with a  large  number  of  components will  in  the  implemented
diagnosis system require too much computer time. It may be even too complex
for  an  ordinary  desktop  computer  to  handle  at  all.  Also,  when  just  a  small
number  of  observations  are  made,  according  to  the  size  of  the  circuit,
components far from the measuring points seems unnecessary to consider in the
diagnosis procedure. This would make it interesting to extend the algorithm, so
that  just  interesting  subsets  of  the  circuit  are  considered  regarding  the
observations.  Such  an  extension  requires  MathModelica  to  be  able  to  simulate
all possible parts of a certain model, i.e. if the whole model cannot be simulated.
Also some research to develop algorithms is needed, for example to decide how
subsets of the circuit should be picked and how to treat those of the subsets that
are actually not mathematically solvable.

Industrial  systems  changes  are  continuously  made  as  a  result  of  further
development.  To  quickly  update  the  model-based  diagnosis  systems  of  these
industrial  systems,  the  models  of  them  must  be  easy  to  re-model.  Also,  a  fast
way  of  generating  a  new  corresponding  diagnosis  system  would  be  needed.
Together with MathModelica,  this is what the diagnosis algorithm in this thesis
can provide - an automatic generation of a diagnosis system using models built
by a powerful modeling tool.
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Appendix A
The algorithm of the  diagnosis system

The algorithm of
the diagnosis system

A.1  Creation and simulation of fault models

Generating  and  simulating  the  diagnosis  model,  given  an  original
MathModelica model. 

Starting MathModelica:

Needs@"MathModelica`"D

The  variables  of  the  original  model,  with  the  corresponding  types,  are  fetched
and sorted into lists.

GetVarsAndTypes@mod_D :=

Cases@

GetType@modD,

HoldPattern@

Declaration@TYPE@tname_, ___D,

VariableComponent@name_, ___DDD
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� List@name, tnameD,

80, ∞<

D;

GetComponentPositions@types_D :=

Module@

8diagAreas, expr, standardComponentNames, pos<,

diagAreas =

Cases@

GetDefinition@DiagnosisComponentsD,

HoldPattern@Model@name_ = l_DD � name,

80, ∞<D;

expr =

Map@

GetDefinition,

MapThread@

Member, 8Table@DiagnosisComponents, 8Length@diagAreasD<D,

diagAreas<

D

D;

standardComponentNames =

Cases@expr, x_Member → x, 80, ∞<D;

Do@pos@iD = Position@types, standardComponentNames@@iDDD,

8i, Length@standardComponentNamesD<D;

Sort@Fold@Join, pos@1D,

Table@pos@iD, 8i, 2, Length@standardComponentNamesD<DDD

D

MakeTypeList@mod_D :=

Module@

8varsAndTypes, posList, posListFirst<,

varsAndTypes = GetVarsAndTypes@modD;

posList = GetComponentPositions@varsAndTypesD;

posListFirst = Table@First@Part@posList, iDD,

8i, Length@posListD<D;

Part@varsAndTypes, posListFirstD
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D

MakeVarList@mod_D :=

Module@

8typeList<,

typeList = MakeTypeList@modD;

Table@First@Part@typeList, iDD, 8i, Length@typeListD<D

D

Template  for  creating  a  new  model  with  diagnosis  components  instead  of  the
Modelica standard components.

ModelTemplate@mod_, name_, typeComb_D :=

Module@

8varList, TypeRule, TypeRuleList<,

varList = MakeVarList@modD;

TypeRule@v_, t_D :=

HoldPattern@

Declaration@

TYPE@tname_, rest1___D,

VariableComponent@v, rest2___D

D

D

�

Declaration@

TYPE@t, rest1D,

VariableComponent@v, rest2D

D;

TypeRuleList@v_D := Table@TypeRule@v@@iDD, typeComb@@iDDD,

8i, Length@vD<D;

GetDefinition@mod, Format → MathModelicaFullFormD ê.

Join@8ToExpression@modD → name<, TypeRuleList@varListDD

D
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Creating  all  combinations  of  the  diagnosis  components  associated  with  the
standard components in the MathModelica model.

FaultTypeCombinations@size_, mod_D :=

Module@

8typeList, standardComponentList, FaultTypes,

GetStdCompDefinition, GetStandardComponent, typePos,

faultTypeList, NumOfNF, CheckNF, AllCombs<,

typeList = MakeTypeList@modD;

standardComponentList =

Flatten@Union@

Cases@typeList, 8v_, Member@x___, sc_D< � List@scDDD

D;

DefinitionEval@comp_D :=

GetDefinition@

ToExpression@"Diagnosis" <> ToString@compDD

D;

Map@DefintionEval, standardComponentListD;

FaultTypes@comp_D :=

DeleteCases@

ListModelNames@

ToExpression@"Diagnosis" <> ToString@compDDD,

Member@x___, compD

D;

GetStdCompDefinition@x_, y_D := GetDefinition@Member@x, yDD;

StandardComponent@comp_D :=

Flatten@Cases@

GetStdCompDefinition@

ToExpression@"Diagnosis" <> ToString@compDD, compD,

x_Member � List@xD,

80, ∞<D

D;

typePos =
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typeList ê.

Table@

8var_, First@StandardComponent@

standardComponentList@@iDDDD< → 8i<,

8i, Length@standardComponentListD<D;

faultTypeList =

ReplacePart@

typeList,

Table@FaultTypes@standardComponentList@@iDDD,

8i, Length@standardComponentListD<D,

Table@8i<, 8i, Length@typeListD<D,

typePos

D;

NumOfNF@comb_D :=

Apply@

Delete@comb, #D &,

8Position@

Map@

StringPosition@#, "NF"D &,

Map@ToString, combD

D, 8<D

<

D êê Length;

CheckNF@comb__D :=

If@

NumOfNF@List@combDD ≥ Length@typeListD − size,

List@combD

D;

AllCombs@faultTypes__D :=

DeleteCases@Flatten@Outer@CheckNF, faultTypesD,

Length@faultTypeListD − 1D, NullD;

Apply@AllCombs, faultTypeListD

D

Making  model  instancies  for  all  behavioral  combinations  and  then  creates  a
total diagnosis model, by declaring a model for each behavioral model-class.
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MakeAllModels@mod_, typeCombs_, names_D :=

Module@

8modelTable<,

modelTable = Table@mod, 8Length@namesD<D;

ReleaseHold@MapThread@ModelTemplate,

8modelTable, names, typeCombs<DD;

D

MakeTotalModel@mod_, obj_, faultCombs_D :=

Module@

8classNames, DeclareFunction<,

classNames = Table@ToExpression@"bmclass" <> ToString@iDD,

8i, Length@faultCombsD<D;

MakeAllModels@mod, faultCombs, classNamesD;

Model@DiagModel,

Null;D;

Within@DiagModelD;

DeclareFunction@type_, var_D := Declare@type varD;

Do@DeclareFunction@classNames@@iDD, obj@@iDDD,

8i, Length@classNamesD<D;

EndWithin@D;

res = Simulate@DiagModel, 8t, 0, 2<D

D
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Making diagnoses out of all behavioral combinations.

FaultCombs2Diagnoses@combs_, mod_D :=

Module@

8varList, typeList, FMKeys, Glue, FMkey2Diagnosis,

CompleteDiags<,

varList = MakeVarList@modD;

typeList = MakeTypeList@modD ê. 8v_, Member@x__, sc_D< → sc;

FMkeys =

ToExpression@

StringReplace@

ToString@combs ê. Member@_, x_D → xD,

Table@ToString@typeList@@iDDD → "",

8i, 1, Length@typeListD<D

D

D;

Glue@a_, b_D :=

ToExpression@ToString@aD <> "Ä" <> ToString@bDD;

FMkey2Diagnosis@key_D :=

If@

key === Table@NF, 8Length@varListD<D,

8NF<,

MapThread@Glue, 8key, varList<D

D;

CompleteDiags = Map@FMkey2Diagnosis, FMkeysD;

Fold@

DeleteCases@#1, #2, 80, ∞<D &,

CompleteDiags,

Table@ToExpression@"NFÄ" <> ToString@varList@@iDDDD,

8i, Length@varListD<D

D

D

Assembling  the  diagnoses  and  simulated  values  into  one  total  matrix,  the
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simulation  matrix,  which  is  used  for  diagnosing  the  model.  The  simulated
values are concidered at the time 2 seconds.

SimSalaBim@faultSize_, inputModel_D :=

Module@

8faultTypeCombs, objNames, varList, typeList, quantities,

AllDiags, simVarsValues, EvaluateMatrix, AddSimValue,

simQuantities<,

faultTypeCombs = FaultTypeCombinations@faultSize,

inputModelD;

objNames = Table@ToExpression@"m" <> ToString@iDD,

8i, Length@faultTypeCombsD<D;

varList = MakeVarList@inputModelD;

quantities = 8v, i<;

AllDiags = FaultCombs2Diagnoses@faultTypeCombs, inputModelD;

simVarsValues =

Flatten ê@ Outer@Member, objNames, varList, quantitiesD;

MakeTotalModel@inputModel, objNames, faultTypeCombsD;

EvaluateMatrix@matr_D :=

Map@Replace@#, # � #@2DD &, matr, 82<D;

AddSimValue@FM_, Values_D := 8FM, Values<;

simQuantities = Flatten@Outer@Member, varList, quantitiesDD;

MapThread@

AddSimValue,

8Prepend@AllDiags, 8QQ<D,

Prepend@EvaluateMatrix@simVarsValuesD, simQuantitiesD<

D

D
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The top function in two forms with different input parameters.

SimulateFaultModels@faultSize_, inputModel_D :=

SimSalaBim@faultSize, inputModelD;

SimulateFaultModels@inputModel_D :=

SimSalaBim@Length@MakeTypeList@inputModelDD, inputModelD;

A.2  Diagnosis test

Calculates  all  possible  diagnoses.  Observations  are  matched  against  the
simulated values.

QQRow  gives the position of the row containing the quantities, that are included
in the simulation.

QQRow@simValueMatrix_D :=

First@Flatten@Position@simValueMatrix, 8QQ<DDD;

Functions  that  separates  quantities  from  measured  values  from  the  given
observations list, and sort them into lists:

ObsValues@observationList_D :=

Flatten@

DeleteCases@observationList, x_Member, 80, ∞<D

D;

ObsIndecies@observationList_, simValueMatrix_D :=

Flatten@

Cases@observationList, x_Member � x, 80, ∞<D

ê.

q_Member �

Position@

Last@Part@simValueMatrix, QQRow@simValueMatrixDDD, qD

D;
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Compares  observations with one row in the  simulation matrix  and returns  the
corresponding diagnosis, if  they are equal.

GetFaultMode@simMatrixRow_, observations_D :=

Module@

8TestValues, CheckValues<,

TestValues@simValue_, singleObs_D :=

If@

Abs@simValueD < 0.01,

singleObs < 0.01,

H∗ Fix value. Assumes observations of order ∼1

V, ∼1 A ∗L

If@

simValue < 0,

1.05∗ singleObs ≤ simValue ≤ singleObs∗ 0.95,

0.95∗ singleObs ≤ simValue ≤ singleObs∗ 1.05

H∗ Interval of 5 % of singleObs is considered ∗L

D

D;

CheckValues@simValues_D :=

MapThread@TestValues, 8simValues, observations<D 


Table@True, 8Length@simValuesD<D;

If@

CheckValues@Last@simMatrixRowDD,

First@simMatrixRowD

D

D
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Creating  a  test  matrix,  containing  only  the  values  that  corresponds  to  the
quantities measured.

TestMatrix@observationList_, simValueMatrix_D :=

Module@

8deleteQQ, GetSimFMList, GetSimValueList, PickTestValues<,

deleteQQ = Delete@simValueMatrix, QQRow@simValueMatrixDD;

GetSimFMList@D := Cases@deleteQQ, 8x_, y_< � x, 81<D;

GetSimValueList@D := Cases@deleteQQ, 8x_, y_< � y, 81<D;

PickTestValues@simValueRow_D :=

Part@simValueRow, ObsIndecies@observationList,

simValueMatrixDD;

MapThread@

List,

8GetSimFMList@D,

Map@PickTestValues, GetSimValueList@DD<

D

D;
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Calculating all possible diagnoses.

DiagnosisResult@observationInput_, simValueMatrix_D :=

Module@

8findDiagnosis, possibleDiagnoses<,

findDiagnosis =

Distribute@

GFM@TestMatrix@observationInput, simValueMatrixD,

8ObsValues@observationInputD<D,

List,

GFM,

List,

GetFaultMode

D;

possibleDiagnoses = DeleteCases@findDiagnosis, NullD

D
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Modifying the result when the user chooses just to see the minimal diagnosis.

SubSetQ@set_, elems_D :=

Fold@

And,

True,

Map@MemberQ@set, #D &, elemsD

D;

MinDiag@res_D :=

Module@

8min, GetSets, sets<,

min = 8<;

GetSets@ls_D :=

Module@

8<,

sets = Select@ls, SubSetQ@#, Sort@lsD@@1DDD &D;

min = Append@min, Sort@lsD@@1DDD;

Complement@ls, setsD

D;

NestWhile@GetSets, res, ! Equal@8<, #D &, 1D;

min

D;

DiagnosisChoice@res_, choice_D :=

Module@

8<,

Which@

choice === Min,

MinDiag@resD,

choice === All,

res

D

D
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The top function in two forms with different input parameters.

Diagnosis@choice_, observationInput_, simValueMatrix_D :=

DiagnosisChoice@

DiagnosisResult@observationInput, simValueMatrixD,

choiceD

Diagnosis@observationInput_, simValueMatrix_D :=

DiagnosisChoice@

DiagnosisResult@observationInput, simValueMatrixD,

AllD
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Appendix B
Diagnosis components

Diagnosis components

Here  the  code  of  the  diagnosis  components  are  presented.  The  start  and  end
statement of each package below is written in pure Modelica syntax. In section
B.3  the  code  of  the  components  from  Modelica  standard  library  is  shown  for
comparison. They are written in Modelica code.

B.1  The DiagnosisComponents package

¤ package DiagnosisComponents

¤ Model@Electrical =

8Modelica.Electrical.Analog.Basic.Resistor,
Modelica.Electrical.Analog.Sources.ConstantVoltage<D

¤ end DiagnosisComponents;
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B.2  The DiagnosisResistor package

¤ package DiagnosisResistor

¤ Model@Resistor = Modelica.Electrical.Analog.Basic.ResistorD

¤ Model@NFResistor,
Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;
Parameter Modelica.SIunits.Resistance R == 1;

Equation@
R i == v

D
D

¤ Model@OCResistor,
Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;
Parameter Modelica.SIunits.Resistance R == 1;

Modelica.SIunits.Resistance Ropen == 10^12;

Equation@
v � i Ropen

D
D

¤ ModelASCResistor,
Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;
Parameter Modelica.SIunits.Resistance R == 1;

Modelica.SIunits.Resistance Rshort ==

1
����������

103
;

Equation@
v == i Rshort

D
E
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¤ end DiagnosisResistor;

B.3  The DiagnosisConstantVoltage package

¤ package DiagnosisConstantVoltage

¤ Model@ConstantVoltage =

Modelica.Electrical.Analog.Sources.ConstantVoltageD

¤ ModelANFConstantVoltage,
Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;
Parameter Modelica.SIunits.Voltage V == 1;

Modelica.SIunits.Resistance Rinner ==

1
�������

10
;

Equation@
v == V − −i Rinner

D
E

¤ ModelAEBConstantVoltage,
Extends@Modelica.Electrical.Analog.Interfaces.OnePortD;
Parameter Modelica.SIunits.Voltage V == 1;

Modelica.SIunits.Resistance Rinner ==

1
�������

10
;

Equation@
v == i Rinner

D
E
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¤ end DiagnosisConstantVoltage;

B.4  Ideal components from Modelica library

model Resistor
extends Modelica.Electrical.Analog.Interfaces.OnePort;
parameter SIunits.Resistance R=1;
equation
R*i=v;
end Resistor;

model ConstantVoltage "Source for constant voltage"
parameter Modelica.SIunits.Voltage V=1 "Value of constant

voltage";
extends Modelica.Electrical.Analog.Interfaces.OnePort;

equation
v = V;

end ConstantVoltage;
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Appendix C
Example circuit

Example circuit

The MathModelica code for the example circuit Circuit3.

Model@Circuit3,

Modelica.Electrical.Analog.Basic.Resistor R1@8R == 10<D;

Modelica.Electrical.Analog.Basic.Resistor R2@8R � 20<D;

Modelica.Electrical.Analog.Basic.Resistor R3@8R � 40<D;

Modelica.Electrical.Analog.Basic.Ground Ground ;

Modelica.Electrical.Analog.Sources.ConstantVoltage

U@8V == 10<D;

Equation@

Connect@R1.p, U.pD;

Connect@R2.p, R1.pD;

Connect@R3.p, R2.pD;

Connect@R3.n, R2.nD;

Connect@R1.n, R2.nD;

Connect@U.n, R1.nD;

Connect@Ground.p, U.nD

D

D;
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Appendix D
Definition of a diagnosis model

Example:
Definition of a diagnosis model

This example shows how an original model is changed by the script. The circuit
consists of three resistors in parallel connected to a constant voltage source.

Model@Circuit3,

Modelica.Electrical.Analog.Basic.Resistor R1@8R � 10<D;

Modelica.Electrical.Analog.Basic.Resistor R2@8R � 20<D;

Modelica.Electrical.Analog.Basic.Resistor R3@8R � 40<D;

Modelica.Electrical.Analog.Sources.ConstantVoltage

U@8V == 10<D;

Modelica.Electrical.Analog.Basic.Ground Ground;

Equation@

Connect@U.p, R1.pD;

Connect@R1.p, R2.pD;

Connect@R2.p, R3.pD;

Connect@R3.n, R2.nD;

Connect@R2.n, R1.nD;

Connect@R1.n, Ground.pD;

Connect@Ground.p, U.nD

D

D

Creating and simulating all combinations of behavioral circuits.
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SimulateFaultModels@2, Circuit3D;

Now  all  behavioral  circuits  are  put  together  in  one  total  model,  the  diagnosis
model,  but  the  single  behavioral  classes  are  still  readable  alone.  These  can  be
read by typing...

GetDefinition@bmclass7D

Hold@Model@bmclass7,

DiagnosisResistor.OCResistor R1@8R == 10<D;

DiagnosisResistor.SCResistor R2@8R == 20<D;

DiagnosisResistor.NFResistor R3@8R == 40<D;

Modelica.Electrical.Analog.Basic.Ground Ground;

DiagnosisConstantVoltage.NFConstantVoltage U@8V == 10<D;

Equation@

Connect@R1.p, U.pD;

Connect@R2.p, R1.pD;

Connect@R3.p, R2.pD;

Connect@R3.n, R2.nD;

Connect@R1.n, R2.nD;

Connect@U.n, R1.nD;

Connect@Ground.p, U.nD

D

DD

...and  yet  we  can  see  that  the  four  components  have  new  declarations.  Now
there are different diagnosis component types declaring the components!
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