
Mean Value Engine Modeling with
Modelica

Daniel Silverlind

Reg nr: LiTH-ISY-EX-3242

6th December 2001

Mean Value Engine Modeling with

Modelica

Master thesis

Performed in Vehicular Systems,
Dept. of Electrical Engineering

at Linköpings Universitet

Performed for DaimlerChrylser

by Daniel Silverlind

Reg nr: LiTH-ISY-EX-3242

Supervisor: Thomas Stutte

DaimlerChrysler
Ylva Nilsson

Linköpings Universitet

Examiner: Dr. Mattias Nyberg

Linköpings Universitet

Linköping, 6th December 2001.

Avdelning, Institution

Division, Department
Datum

Date

Spr̊ak

Language

� Svenska/Swedish

� Engelska/English

�

Rapporttyp

Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

URL för elektronisk version

ISBN

ISRN

Serietitel och serienummer

Title of series, numbering
ISSN

Titel

Title

Författare

Author

Sammanfattning

Abstract

Nyckelord

Keywords

This thesis is a study of engine modeling in Modelica. It covers the
range of models known as mean value engine models that often are used
in development of control algorithms and evaluation of new hardware
on the systems-level. The purpose is to create a package, a Modelica
library, of basic components suitable for such models. The package
is designed for a high flexibility with few rigid rules on their use and
should be reusable for a range of applications.

The components are connected to a functioning engine, a four cylin-
der turbo diesel, which is verified against an already existing model of
the same engine implemented in Simulink.

The work has been performed at DaimlerChrysler Research and Tech-
nology with assistance from MathCore.

Vehicular Systems,

Dept. of Electrical Engineering 6th December 2001

LITH-ISY-3242

—

—

—

http://www.fs.isy.liu.se

6th December 2001

Mean Value Engine Modeling with Modelica

Medelvärdesmodeller av motorer med Modelica

Daniel Silverlind

××

Modelica, MathModelica, object-oriented, non-causal, mean value en-
gine model, thermodynamic

Abstract

This thesis is a study of engine modeling in Modelica. It covers the
range of models known as mean value engine models that often are used
in development of control algorithms and evaluation of new hardware
on the systems-level. The purpose is to create a package, a Modelica
library, of basic components suitable for such models. The package
is designed for a high flexibility with few rigid rules on their use and
should be reusable for a range of applications.

The components are connected to a functioning engine, a four cylin-
der turbo diesel, which is verified against an already existing model of
the same engine implemented in Simulink.

The work has been performed at DaimlerChrysler Research and
Technology with assistance from MathCore.

Keywords Modelica, MathModelica, object-oriented, non-causal, mean
value engine model, thermodynamic

v

Preface

Thesis outline

The reader with a basic knowledge on engines can skip chapter 2, the
reader who has come across engine models might also skip the third
chapter and anyone familiar with Modelica should skip chapter 4.

Chapter 1, introduction.
Chapter 2 gives a brief description of automobile engines.
Chapter 3, some principals on engine modeling.
Chapter 4, the simulation tool.
Chapter 5 discuss design of a thermodynamic Modelica library.
Chapter 6 describes implementation of thermodynamic components.
Chapter 7 discuss modeling with the thermodynamic library.
Chapter 8 presents an engine model.
Chapter 9 makes conclusions of engine modeling with Modelica.
Chapter 10 presents ideas of future work.

The appendixes contains most of the Modelica-code from the pre-
sented models.

Acknowledgment

First a thank you to Thomas Stutte, DaimlerChrysler Research and
Technology, for all the know-how in the function and modeling of turbo-
diesels, for all the material provided, and for ”The Dilbert principle”.

Thanks to all the people at MathCore (Jan Brug̊ard, Mats Jirstrand,
Andreas Idebrant, Johan Gunnarsson) for their help with Modelica and
MathModelica.

Thanks to the people at Vehicular systems (Ylva Nilsson, Mattias
Nyberg, Lars Eriksson) for their input along the way.

Finally a thank to all the Swedes and Germans in Esslingen for a
great half year!

vi

Contents

Abstract v

Preface and Acknowledgment vi

1 Introduction 1

2 Internal combustion engines 3

2.1 Cylinders . 3

2.1.1 Physical appearance 3

2.1.2 Engine cycle . 4

2.1.3 Combustion efficiency 4

2.1.4 Volumetric efficiency 4

2.1.5 Pumping losses 4

2.2 Manifolds . 5

2.3 Turbo-charger . 5

2.4 Exhaust Gas Recirculation, EGR 5

2.5 Gas path . 6

2.6 Exhaust gases . 7

3 Mean value engine models 9

3.1 Static flow . 9

3.2 One dimensional flow . 10

3.3 Discretizised models . 10

3.4 Bidirectional flow . 10

3.5 Single gas or mixture . 10

3.6 Ideal gas law . 11

3.7 Spontaneous diffusion 11

4 Modeling and simulation tool 13

4.1 Modelica . 13

4.2 Mathematica . 15

4.3 MathModelica . 16

vii

5 Implementation of a thermodynamic library 17

5.1 Strategy . 17

5.2 Previously identified problems 18

5.2.1 Square roots . 18

5.2.2 If without else 19

5.3 Connectors . 20

5.4 Super-classes . 22

6 Thermodynamic components 23

6.1 Infinite reservoir . 24

6.2 Control volume . 24

6.3 Restriction . 25

6.4 Valve . 25

6.5 Cooler . 26

6.6 Compressor . 27

6.7 Turbine . 27

6.8 Combustion chamber . 28

6.9 Additional components 29

7 Systems of thermodynamic components 31

7.1 Combining components 31

7.2 A simple system . 32

7.3 A mechanical and thermodynamical system 32

8 Engine model 35

8.1 OM611 turbo diesel . 35

8.2 Mean value model of OM611 35

8.3 Simulation of Modelica OM611 MVEM 37

8.3.1 Driving a load 37

8.3.2 EGR back-flow 39

8.4 Comparison with reference model 40

8.5 About the simulations 43

9 Conclusions 45

10 Outlook 47

References 49

Notation 51

A Modelica functions 53

viii

B Basic components 55

B.1 Connectors . 55
B.2 Super-classes . 56
B.3 Infinite reservoirs . 57
B.4 Control volume . 57
B.5 Restrictions . 58
B.6 Valve . 59
B.7 Cooler . 60
B.8 Compressors . 61
B.9 Turbines . 62
B.10 Combustion chambers 65
B.11 Stiff axle/inertia . 66
B.12 Control block . 67

C OM611 engine 69

C.1 Input data . 69
C.2 Engine model . 70
C.3 Automobile model . 74

C.3.1 Atmosphere/environment 74
C.3.2 Dummy transmission models 75
C.3.3 Complete automobiles 75

D Simulations 77

D.1 Driving a load . 77
D.2 Back-flow through EGR 78
D.3 Fuel-step . 79
D.4 VNT-step . 80

ix

x

Chapter 1

Introduction

Efficient simulations are important in development of control algo-
rithms and evaluation of new hardware in automobile and truck en-
gines. Simulations save the time and expense of building hardware or
implementing and testing software in real engines. The current trend
is toward simulations of larger systems whereas it was earlier consid-
ered sufficient with separate simulations of components and subsystems
representing a more narrow area of the physical process.

With the general simulation tools in use today, these complex sys-
tems are difficult to survey and maintain. Writing the models is error-
prone, and little code can be reused in additional application as the
models are valid for only a small range of simulations. Various special-
ized tools are efficient and powerful in reuse but cover only a single or
a few physical domains like hydraulics or electric circuits.

Modelica is a object-oriented, multi-domain language for large phys-
ical systems. It overcomes the complexity of the general tools and ex-
tends the power of the domain-specific tools to multiple domains. This
thesis attempts to produce a Modelica package for a range of engine
models, the so called mean value model. The Modelica engine model
will have several advantages over other common implementations, e.g.
in Matlab. The functionality and appearance of the model and its
subsystems will be very similar to those in the real engine. The sub-
models will be reusable in additional applications of engine modeling.
Model maintenance will be effective as structural changes will be sim-
ple to perform. The very same model can be used for a wider range of
simulations.

The purpose of the thesis is not to achieve the best possible model
of any specific engine, although a Mercedes-Benz turbo-diesel is exem-
plified.

The work has been performed at DaimlerChrylsers Research and
Technology facility in Esslingen am Neckar, Germany. The Simulation-

1

2 Introduction

tool MathModelica 2.1 and support have been provided by MathCore
AB.

Chapter 2

Internal combustion
engines

An engine consumes fresh air and fuel and produces exhausts, usable
work and heat. In an automobile this process takes place in usually four
to eight cylinders. A number of systems that support and control the
combustion are located around the cylinders, e.g. fuel-pumps, throttles,
compressors and coolers. This chapter gives a brief description of these
systems and of the basic functionality of an engine.

2.1 Cylinders

Air and fuel flows into the cylinders, the mixture reacts and usable
energy is extracted from the heated gas which is then expelled. In a
spark ignited (SI) engine the air is mixed with fuel before entering the
cylinders. In a combustion ignited engine, or diesel, fuel is injected
directly into the cylinders and ignites spontaneously due to the high
pressure.

There are a hundred (!) aspects of the combustion process that
anyone interested can study (see [1]), this chapter explains only a few
aspects with bearing on this work.

2.1.1 Physical appearance

The cylinder is continuously swept by a piston which is connected to
the crankshaft via a rod. The top of the cylinder houses intake and
exhaust ports, a spark-plug in spark ignited engines and an injector in
diesel engines.

3

4 Chapter 2. Internal combustion engines

2.1.2 Engine cycle

This section describes the diesel cycle, an SI-engine works in a similar
manner.

Simplified, the engine works in four discrete strokes. In the first
stroke fresh air is inhaled through the intake ports as the piston moves
down, in the second stroke all valves are closed while the piston moves
up and compresses the air. At the peak of compression fuel is injected
and the expansion stroke starts, now the usable energy is extracted. In
the fourth stroke the exhausts are ejected through the exhaust ports
and the cycle is completed. Thus the crankshaft makes two revolutions
to complete a single cycle.

2.1.3 Combustion efficiency

Abbreviated η, the combustion efficiency is a number between zero and
one describing the portion of the fuels chemical energy that is trans-
formed to usable mechanical work in the crankshaft. The efficiency
varies with load and engine speed, common values range from 0.3 to
0.4 for diesel engines.

Ẇcrank = ηṁfuelQHV

2.1.4 Volumetric efficiency

A cylinder works as a pump. An ideal cylinder would inhale a mass of
gas equal to its displacement volume multiplied with the inlet manifold
(see section 2.2) density in each cycle. Due to resistance in the intake
ports, back-flow through the ports and other effects the inhaled mass
will typically be reduced which is expressed in the volumetric efficiency
ηvol. The following equation express the flow through the cylinders in
each cycle.

mcyl = ηvolρinletVdisp

ηvol is usually higher than 0.8 and can in fact exceed 1.0.

2.1.5 Pumping losses

In an internal combustion engine the pressure on the intake side will
normally be lower than on the exhaust side. Pumping gas from low to
high pressure costs energy and this energy is taken from the crankshaft.
The effect is largest in SI-engines on low load.

2.2. Manifolds 5

2.2 Manifolds

The cylinders are flanged on both sides by tubes called inlet and exhaust
manifolds. There can be one or many of each manifold in an engine,
maximum one of each per cylinder. In the following, multiple manifolds
will be lumped together and referred to as a single inlet and a single
exhaust manifold.

In SI-engines the inlet manifold pressure is reduced by a throttle in
order to control the output torque. In diesel engines output torque is
controlled via the fuel-injection and the inlet pressure is usually kept
near or above ambient pressure. This explains the higher pumping
losses in SI-engines.

2.3 Turbo-charger

Super-charging means raising the density in the inlet manifold by pump-
ing air into it with a compressor. With a high density, more air can
flow through the cylinders giving the engine a higher potential output
of power. To further increase the density some of the heat that arises
from the compression can be removed in an inter-cooler. This describes
super-charging in general.

In a turbo-charger the power consumed by the compressor is pro-
vided by a turbine located directly after the exhaust manifold. Turbine
and compressor are connected via a short shaft and works with a high
rotational speed, ranging typically from 10 000 to 180 000 rev/min.

To control the turbo-charger speed, a valve is often placed so that
it can by-pass the flow through the turbine and thus reduce its power
output, a system called a waste-gate. Another design is controllable
vanes prior to the turbine rotor called variable nozzle turbine or VNT.
With heavily choked vanes the speed of the gases entering the turbine
rotor will increase and the turbine will extract more energy, but the
exhaust manifold pressure will build up making the engine pumping
more power-consuming. While a waste-gate only can protect against
harmful over-revving and over-charging, the VNT can be used in more
intelligent control strategies, for example to accelerate the turbo to
match an increased demand of torque.

2.4 Exhaust Gas Recirculation, EGR

To reduce harmful emissions some of the exhaust can be diverted back
into the combustion process. There are two ways in which the recircu-
lation can occur.

One is called internal EGR and refers to exhausts that remains in
the cylinders after the exhaust-stroke or blows into the inlet manifold

6 Chapter 2. Internal combustion engines

when the intake-ports are opened. By controlling the timing of the
ports the internal EGR can be controlled, but some recirculation is
always present.

The second method is to connect the inlet and exhaust manifolds
with a pipe and control the flow with a valve. In order to reduce the
formation of nitrogen-oxides the EGR-system often include a cooler.

The rate of recirculation is typically less than 25 percent of the total
amount of exhausts in SI-engines and up to 50 percent in diesels.

2.5 Gas path

EGR

Exhaust
manifold

Inlet
manifold

Cylinder

Compressor Turbine

Air
filter

Exhaust
pipe

Intercooler

Fuel

Crankshaft

Cyl.

Figure 2.1: Gas path through a typical modern diesel engine.

With the major components and subsystems described, the paths
of the gas can be constructed for a common type of engines. Via the
arrows in figure 2.1 its typical direction can be followed.

Air first passes an air-filter, enters the compressor, the inter-cooler
and the inlet manifold. It flows through the intake ports into the cylin-
der where it reacts with fuel. From the cylinders the gas flows via the
exhaust manifold to the turbine and then via the exhaust system with

2.6. Exhaust gases 7

mufflers, catalysts etc out into the atmosphere. There can be paths par-
allel to the main path such as the EGR-system and ventilation pipes
from crank-house, top-lock, filters etc.

2.6 Exhaust gases

In the SI-cycle all the air passing the cylinder takes part in the com-
bustion leaving, ideally, neither oxygen nor fuel. To achieve this the
fuel and air must be mixed in exact proportions according to the stoi-
chiometry of the reaction.

The diesel cycle on the other hand works with an excess of air,
so called lean burn. Depending on the conditions in the combustion
process, a diesel engine can produce gases of quite various chemical
compositions.

In the following the gas leaving the cylinder will be divided into fresh
air, i.e. gas with ambient mixture, and exhausts, i.e. gases considered
to have taken an active part in the combustion. The purpose is to be
able to trace oxygen and other gases through the system, especially the
mixing of fresh air and exhausts in the inlet manifold.

8

Chapter 3

Mean value engine
models

Mean value engine models (MVEMs) attempts to capture dynamics in
a time-scale spanning over several combustion cycles, or a few tenths of
a second and longer. Faster events are not of interest other than their
effects on a larger scale. The pulsating flow through the inlet port is
modeled by its average value over a cycle, for example. The speed and
torque output of the engine, dynamics of the turbo-charger and the
pressure build-up in the inlet and exhaust manifolds are the aspects of
most interest in MVEMs.

As a contrast, the in-cycle engine model is designed to capture de-
tails in the combustion-cycle like the pressure inside the cylinders over
the strokes and effects of different valve-timings.

Modeling principles and approximations will vary between models
depending on their intended use. Some of the common approximations
and some of the choices made in this thesis are discussed in this chapter.
More on MVEMs can be found in [2].

3.1 Static flow

Momentum of gas is of importance when modeling very rapid dynamics
like sound waves propagating through a system. These dynamics are
to fast and detailed for mean value models. Thus momentum can be
left out, saving some variables and states.

9

10 Chapter 3. Mean value engine models

3.2 One dimensional flow

Flow in two or three dimensions is of interest when modeling effects like
mixing of gases and turbulence. This is too detailed for a MVEM in
which distributions of mixture, temperature, velocity, etc are assumed
uniform in a flow. Any aspect of the flow can therefore be described
by a single value, e.g. a single transfer rate, as if it took place in a
one-dimensional space.

3.3 Discretizised models

Flow through tubes, valves, etc are typically discretizised to points
of stagnation and points of flow in order to simplify the mathematical
representation. A tube with a narrow cross-section is not modeled with
a continuous pressure drop but as a row of restrictions and volumes.
Models of compressors, turbines and coolers are modeled in the same
manner with pointwise changes of pressure and temperature. If the
flow can be considered one-dimensional, the model components can be
regarded zero-dimensional.

3.4 Bidirectional flow

Gas flows in an engine are essentially not only one-dimensional but
also one-way. The engine inhales fresh air and exhales rest products
at the other end of the line. Flow in the wrong direction is rare but
can happen, especially in an EGR-system during highly dynamic events
when the inlet pressure for a brief moment is higher than the exhaust
pressure and the EGR-valve is open (the ambition is to close the valve
at transients, but the valve is often not very fast). In order to catch
these rare but not unimportant events the model could support flow in
two directions, at least in some subsystems. This requirement is not
standard, in many applications unidirectional flow is sufficient. The
models in this work will however support bidirectional flow.

3.5 Single gas or mixture

Modeling a one-component gas is often sufficient in MVEMs, perhaps
with different gases in different subsystems. There are however situa-
tions which require simulation of a mixture, for example when tracing
the exhausts flowing into the inlet manifold through the EGR-system.
Support for mixtures is not self-evident in MVEMs, but is included in
this thesis.

3.6. Ideal gas law 11

3.6 Ideal gas law

Physical properties of the gases such as specific heats are often con-
sidered constant with respect to temperature. This can seem quite a
rough simplification as the range of temperatures in an engine can be
about 300-1200 K, but since the range is much more narrow in each
subsystem the properties can be set to locally typical values.

The properties are further often modeled as constant with respect
to the mixture of gases, which depending on the application also can
have a narrow range locally.

In this work the temperature dependency is left out but each gas
component is assigned its own physical properties giving average values
dependent of the composition of gases.

3.7 Spontaneous diffusion

Two entities of gas in diffusive contact will mix until their temperatures
and mixtures reaches equilibrium in limt→∞. This holds even if no net
flow of gas between the entities occur.

Such spontaneous diffusion between entities is typically not modeled
in MVEMs since this process is slow compared with the rate of gas
exchange through the engine. Thus, the only way two volumes of gas
can mix in the model is by a net flow from one volume to the other.
Inside a volume mixing is considered instant and total though.

12

Chapter 4

Modeling and simulation
tool

This chapter gives a brief introduction to the modeling-language Mod-
elica and a presentation of the modeling and simulation tool MathMod-
elica.

4.1 Modelica

Modelica is a object-oriented, non-causal language for modeling of
large, multi-domain systems. It is an international effort of accom-
plishing a De-facto standard language for physical modeling. Modelica
is declarative, it lets the user write equations in their general, textbook
form. The Modelica-tool solves for individual variables and decides the
computational order, i.e. the causality.

Modelica models are typically built from classes representing lim-
ited subsystems. Connected classes form more complex ones in a model
hierarchy with each level representing a larger area of the physical pro-
cess. In the automobile example, the car is a class containing the engine
which in turn include the classes cooler, valve, cylinder, etc. Classes
may inherit and extend each other in a perpendicular class hierarchy.

Modelica lets the user construct libraries of classes and includes a
number of standard libraries like the analog electrical and mechanical
libraries. With a set of such libraries defined, modeling will appear
much like systems-construction in reality, choosing classes from the
library like choosing components from ELFA1.

A key issue is re-usability, two similar subsystems should be modeled
only once as a generic class. Re-usability is further facilitated by the

1A well-known Swedish catalogue of electrical components.

13

14 Chapter 4. Modeling and simulation tool

variable causality of the classes; since a model can be simulated with
various directions of signal flow it can be used in a more flexible manner,
e.g. a DC-motor model can be used either as an engine or as a generator
much like the real motor.

A powerful feature of Modelica is the restricted class connector

which may declare a set of variables but no equations or algorithms.
There are other restricted classes like model and type. The connector
specifies the communication between classes and will determine much
of the design and modeling capabilities. A suitable connector is typi-
cally the first thing that is defined when building a model or a library.
Transitions between domains are usually accomplished by including dif-
ferent connectors in a class, e.g. a DC-motor would include connectors
from the electrical and rotational-mechanical domains. The following
Modelica-code defines an electrical connector with voltage potential
and current.

connector Pin ‘‘Electric interface’’

Real v; ‘‘Voltage’’

flow Real i; ‘‘Current’’

end Pin;

A connect-statement with two connectors as arguments automatically
creates equations which can be seen as a communication channel be-
tween components. Other means of communication exist, via global
variables and between model levels, but the connections are the stan-
dard interfaces. If a and b are electrical pins with variables current i and
voltage potential v, the statement connect(a,b) will create equations
corresponding to Kirchhoff’s laws at a junction.

a.v = b.v;

a.i + b.i = 0;

The key-word flow in Pin states that i obeys a sum-to-zero relation-
ship.

With Pin available a simple component, a resistor, can be defined.
Resistor have the two interfaces n and p, a parameter and two equa-
tions.

model Resistor ‘‘Resistor with two interfaces’’

Pin p;

Pin n;

parameter Real R; ‘‘Resistance’’

equation

p.i+n.i=0;

p.v-n.v=R*p.i; ‘‘Ohm’s law’’

end Resistor;

4.2. Mathematica 15

With two additional components, a voltage source and a ground, the
simple electrical circuit in figure 4.1 can be assembled. The definitions
of the ground and source are as straight forward as the resistor and
are not shown here. Some model parameter are set at instantiation in
SimpleCircuit; the resistors are of 1 and 10 kΩ, the sinus frequency 50
Hz, etc.

model SimpleCircuit ‘‘Circuit with four componets’’

SinSource S(f=50, A=320);

Resistor R1(R=10^3);

Ground G(V=0);

Resistor R2(R=10*10^3);

equation

connect(S.p, R1.p); ‘‘S connected to R1’’

connect(R1.n, G.p);

connect(R1.n, R2.p);

connect(R2.n, S.n);

end SimpleCircuit;

R1

R2

S

G

Figure 4.1: Simple circuit.

Further information on Modelica is found in [3] and [4].

4.2 Mathematica

Mathematica is a tool for numerical and analytical computations. It
uses a notebook environment for all activities such as programming,
graphics, input, etc. The strength of Mathematica is the structured
environment and its ability of symbolical manipulations.

16 Chapter 4. Modeling and simulation tool

4.3 MathModelica

MathModelica from MathCore is an environment for textual and graph-
ical modeling with Modelica. It uses Mathematica notebooks for mod-
eling, simulations, plots, ordinary mathematical computations and doc-
umentation. The standard Modelica syntax as well as a special syntax
utilizing some of the notebooks typesetting capabilities can be used,
the circuit example above is written in the Modelica syntax. Math-
Modelica also includes a graphical modeling environment based on MS
Visio which can be imported into the notebooks. The Dymola [5] ker-
nel is used for parsing the Modelica-code to C, for compilation and
simulation.

More on MathModelica can be found in [6].

Chapter 5

Implementation of a
thermodynamic library

This chapter discuss principles, ideas and previously identified problems
associated with implementing a Modelica library suitable for MVEMs.
The thermodynamic connector and the super-class sets the basic design
of the library and are described here, the complete components are
described in the next chapter.

5.1 Strategy

The object-oriented Modelica supports packaging of knowledge in ba-
sic components with maintained appearances and semantics as in the
physical reality. In thermodynamics it is common to use idealized mod-
els such as reservoirs and volumes, and it seems reasonable to choose
these as the basic components of a MVEM. A set of such components
are defined in the library in chapter 6.

A thermodynamic library already exists; the ThermoFlow library
[7]. ThermoFlow is preliminary and very generic, it should be seen as
a base on which libraries can be built rather than a complete, usable
library itself. Due to its generality it is quite complex, e.g. its connector
contains eight variables whereas this work discuss the need of three or
four variables. The complexity of ThermoFlow and the fact that it is
preliminary makes it seem more efficient to define a new library for the
MVEM application.

The classes in the self-designed library are designed with a generic
number of gas-components and connectors, though most components
will be restricted to two connectors. The design is such that it should be
possible to connect any two classes directly to each other with main-
tained physical semantics. There are some limitations to this set by

17

18 Chapter 5. Implementation of a thermodynamic library

the numerical and modeling characteristics described in section 7.1.
No general laws that limits the use of the classes are however written
into the design, like consecutive volumes and flow components as in
ThermoFlow.

Physical constants like specific heats could be placed at a high level
in the model hierarchy giving all components access to them. Instead
the constants are parameterized in each component which opens the
possibility to use different physical properties in different subsystems.
For example the intake and exhaust systems could each be modeled
with a single component gas while maintaining the different physical
behavior of exhausts and fresh air. This would be especially applicable
in SI-engines without EGR and would save a few states. For the same
reason it is not recommended to include the constants in the connectors.

Even though bidirectional flow is of interest only in some subsys-
tems (EGR) in an engine, all classes will support this in order to keep
the components as general as possible. The intention has been to con-
struct components for general internal combustion engines although
some adaptations to the OM611-model (see chapter 8) could not be
avoided, in particular in the turbo-charger, combustion chamber and
coolers.

5.2 Previously identified problems

5.2.1 Square roots

Thermodynamic models are often very non-linear with square-roots de-
scribing flow through restrictions, compressors, etc. Consider equation
(5.1) describing flow of an incompressible fluid through a restriction,
ṁ is mass-flow, pa and pb are pressures at interface a and b. Previous
work [8] include discussions on how to implement this relationship.

ṁ2rTa = pa(pa − pb) (5.1)

The squared representation can not be used since, given the causal-
ity pressures to mass-flow, two solutions to equation (5.1) exist and
forcing the solver to choose the physical correct one is not possible.

A square-root expression with ṁ on the right-hand side should not
be used either. Square (and other) roots are generally a problem for
numerical solvers when the solution is close to zero since their deriva-
tives becomes very large. But even when the solution is not close to
zero the solver might start the iteration there, causing it to abort. In-
stead modified roots can be used, functions which are actual roots at
large argument values and take the value of some other function close
to zero. The modified roots used in this work utilizes second or third
degree polynomials when evaluated near zero, see LinearRoot (n:th

5.2. Previously identified problems 19

roots) and LinearRootS (square roots only) in appendix A for im-
plementation. Alternative fixes includes an interpolating table of the
square-root at discrete points, or functions resembling roots in some
interval.

Further discussions involve potential benefits of using ṁ|ṁ| on the
left-hand side of equation (5.1) to enforce a certain direction of mass-
flow. There seems to be no logical reason why this representation should
not give the same problems as the square-root, and without the simple
fix of modified roots. It might be that the Dymola solver happens to
treat this representation in a better way.

5.2.2 If without else

An implication of bidirectional flow in combination with certain con-
nectors.

Ta Tb

Tflow

T

Tflow

Volume A Volume B

Volume

Figure 5.1: Gas exchange between volumes.

Imagine two volumes exchanging gas as in the top of figure 5.1. Un-
less identical properties are assumed in both volumes some information
about the exchanged gas is needed, here this is the temperature Tflow.
The temperature of the exchanged gas switches with the direction of
the flow and this must be expressed via an event.

if flow A ⇒ B then

Tflow = Ta;
else

Tflow = Tb;
end if;

In the object-oriented approach such basic equations should be
hided inside the classes but neither volumes has access to the tem-

20 Chapter 5. Implementation of a thermodynamic library

perature in the other volume. The name-spaces are protected and the
only mean of communication is via the connectors. (As said in 4.1
other methods exist, but these are not recommendable.) Since only
the information inside a class should be used, the equations should be
written for the case in the bottom scheme of figure 5.1 and only the
first clause of the statement above could be expressed.

if flow out then
Tflow = T ;

end if;

Such a half if-statement is not allowed since it represents an equa-
tion only under some conditions and could therefore, as far as the solver
knows, produce a system with a varying number of equations but a con-
stant number of variables. But since outflow from one volume always
means inflow to the other, there is always exactly one active equation.
The solution by MathCore is to identify those half if-statements with
equal but opposite condition-clauses and combine them before simula-
tion. This function is preliminary and does not yet work with arrays.

Note that non-dynamic components with strictly two interfaces do
not need half if-statements. This includes restrictions, valves, com-
pressors, turbines, coolers and other components with equations like
∑

ṁ = 0. The combination routine is able to identify opposite condi-
tion clauses through these components, i.e. it solves and reduces the
mass-flow equations until the condition-clauses of the statements can
be directly compared.

5.3 Connectors

In the thermodynamic domain, one can think of a connector as a cut
through a flow (hence named FlowCut). The connector variables rep-
resent the conditions of the gas it cuts through. Its use in a model is as
a communication channel between classes, the connector variables are
therefore worth choosing with care since they determine much of the
modeling capabilities. An alternative view of the connector is discussed
in [9].

Three different sets of the variables pressure p, temperature T ,
mass-flow ṁ and enthalpy-flow Ḣ have been discussed in previous work,
see [8]. These are the {p, ṁ, Ḣ}, {p, T, ṁ} and {p, T, ṁ, Ḣ} connectors.
Using the first two connectors require half if-statements for support of
bidirectional flow whereas the third supports this due to the redun-
dancy Ḣ = cpTṁ. The statement below could control the flow in the

bottom scheme of figure 5.1 if implemented with {p, T, ṁ, Ḣ}.

5.3. Connectors 21

if flow out then
Tflow = T ;

else

Ḣflow = cpṁTflow;
end if;

Assuming access to half if-statements, the choice between {p, ṁ, Ḣ}
and {p, T, ṁ} will be shown to be a matter mainly of personal prefer-
ences. Many sets of three variables will function just as well, but at
least one sum-to-zero (prefix flow) and one equality variable is needed.

One argument for {p, ṁ, Ḣ} have been the ability of using a connec-
tor in more than one connection in order to construct three-way joints.
Figure 5.2 shows four combinations of volumes, restriction and valve.
The black squares represent those thermodynamic connectors associ-
ated with half if-statements, i.e. only the connectors in the volumes
are shown.

Figure 5.2: Combinations of volumes, restriction and valve.

The first combination would not be solvable with {p, ṁ, T} since the
restriction declares equal temperature in the two connectors while the
valve might declare them different. With {p, ṁ, Ḣ} this would not be
a problem, but the upper right combination would be impossible also
with this connector because it would declare three half if-statements.
Three half if-statements can not be combined to an integer number
of complete statements. This is not simply a problem for the combi-
nation routine, it would be logically troublesome as either one or two
condition-clauses would be evaluated true at any time giving a variable
number of equations. Even with {p, ṁ, Ḣ} the general rule would be to
use a connector in maximum one connection and to include additional
connectors instead. This rule involves neither extra work nor additional
code and is a less error-prone usage of the connectors. Therefore the
argument for {p, ṁ, Ḣ} falls at least partly. The two combinations in
the bottom of figure 5.2 are better alternatives to the two upper regard-
less of the connector in use. Observe that the two combinations to the

22 Chapter 5. Implementation of a thermodynamic library

right are not entirely equivalent, if the left-hand volume were replaced
by a junction-class they would however be mathematically identical. A
junction can be pictured as a volume-less volume, i.e. instant mixing
but no buffering of mass or energy.

Left to consider in the connector choice is only the convenience
of using the connector when modeling components. The {p, ṁ, Ḣ}-
connector makes dynamic components such as volumes neat and com-
prehensible while the {p, T, ṁ} looks better with non-dynamic ones
such as valves, compressors and restrictions. These components dom-
inate in the library and the choice is therefore the variables {p, T, ṁ}
where ṁ is a vector in order to support flow of multi-component gas.

An MVEM would also include components of other domains like ro-
tational mechanics and signals, requiring additional connector classes.
These are quite standard, like the rotational-mechanical Flange and
the electrical Pin, and there is no need for a description here. Only
the EnvCut-connector is non-trivial, designed to communicate proper-
ties of the atmosphere and surrounding environment to components in
thermal or diffusive contact with it.

The definitions of the connectors can be found in appendix B.

5.4 Super-classes

Base is a partial model, a base on which to construct components. It
includes thermodynamic connectors and physical properties of the gas
and it specifies help-variables with simplified notations. All thermody-
namic components will extend Base.

The number of gases modeled and the number of thermodynamic
connectors are parameterized via the two integers Ngas and Ncon and
can thereby be chosen at instantiation. The rest of the variables and
parameters, except π, are non-scalar. The mass-flow variable ṁ is
a Ngas ∗ Ncon matrix representing flow of a Ngas-component gas
through Ncon interfaces. The variables p and T are Ncon-dimension
vectors of pressures and temperatures at the connectors. The physical
properties cp, cv, R and γ are Ngas-dimension parameters.

Due to the number of components with strictly two connectors a
subclass with two connectors, TwoPin, is defined with further simpli-
fied notations. E.g. the temperature in connector 1 is available in the
variable Ta and the mass-flow in connector 2 in ṁb.

Additional partial models could be imagined, e.g. a superclass with
zero volume, or no pressure drop, or no enthalpy-change, etc. A com-
ponent could extend several of these classes (multiple inheritance is
supported), but there is a limit to the number of partial classes that
makes life more easy. Having just two partial models seem to be the
right compromise here. The implementations are found in appendix B.

Chapter 6

Thermodynamic
components

The intention of this chapter is to give a view of the basic functionalities
of the thermodynamic components in the MVEM library. The full
implementations are found in appendix B.

Most components are described with a few sample equations. Flow
is always positive in the direction into a component in these equa-
tions which differs somewhat from common thermodynamic conven-
tions where work is often positive in the outward direction. In classes
with strictly two thermodynamic connectors flow is assumed from con-
nector a to b (subscripts). The variable ṁa denotes the mass-flow in
connector a, Ta the temperature in a, etc. The if-statements expressing
bidirectional flow, vector expressions and other detailed notations are
left out. Due to the problems discussed in section 5.2.1, square-roots
are always implemented with modified root-functions.

Component Connectors Characteristics
Reservoir n FlowCuts, (EnvCut) Static, source
CtrlV ol n FlowCuts Dynamic
Restriction 2 FlowCuts Static
V alve 2 FlowCuts, Pin Static
Cooler 2 FlowCuts, (EnvCut) Static, source
Compressor 2 FlowCuts, Flange Static
Turbine 2 FlowCuts, Flange Static
Cylinder 2 FlowCuts, Flange, Pin Static, source

Figure 6.1: The thermodynamic components with interfaces. Refer-
enced connectors within parenthesis.

23

24 Chapter 6. Thermodynamic components

Figure 6.1 summarizes the thermodynamic components with some
features. A few groupings based on fundamental differences in function-
ality can be made. All components except V olume and Reservoir have
strictly two thermodynamic connectors and are considered volume-less,
i.e. no buffering of gas. All components except the cooler and combus-
tion chamber are modeled as perfectly insulated.

6.1 Infinite reservoir

In thermodynamics it is common to consider very large reservoirs. A
small system can interact with such a reservoir without changing its
temperature, pressure or other properties.

The purpose of Reservoir is to terminate one or more gas-paths and
thereby setting boundary conditions to the model. Since the reservoir
is a source of mass the temperature and mixture of the flow should be
governed by half if-statements according to section 5.2.2.

Pressure, temperature and gas composition in the reservoir are ei-
ther parameters or taken from a reference to an EnvCut-connector.
If the EnvCut is connected to a model of the outside world, intro-
ducing time or distance dependent ambient conditions in a drive-cycle
simulation is simplified.

6.2 Control volume

Another standard model in thermodynamics is the control volume. It is
idealized to model mixing of in-flowing gases as instant giving uniform
pressure and temperature throughout the volume. The control volume
is a buffer of mass and energy.

Control volumes can be modeled with different approximations. If
temperature and mixture can be considered constant a one-state vol-
ume is sufficient. If an energy balance is required another state must
be added and modeling a dynamic mixture adds one state per extra
gas-component.

The volume is named CtrlV ol in appendix B and is implemented
with mass and energy dynamics. In a common simulation the states
will be U , total stored energy, and the elements of M , the vector of
stored masses. To be precise, the solver chooses the states and it might
reduce one of them, for example if the pressure is parameter bound.
Pressure, temperature and gas composition are non-state variables.

Simplified, the equations could look like this, imagine a one-component

6.3. Restriction 25

gas and a single connector a:

Ṁ = ṁa

U̇ = ṁacpTa

U = McvT

pV = MRT

p = pa

Half if-statements should govern the temperature and mixture of the
gases entering and leaving the volume.

if ṁa < 0 then

Ta = T ;
end if;

6.3 Restriction

A flow restriction can be pictured as a slightly choked tube. The pres-
sure difference across the restriction is small enough to consider the
density equal on both sides, thus modeling an incompressible fluid.
The mass flow to pressure ratio relationship is described as

ṁa

√

rTa =
√

pa(pa − pb)

where r is a discharge coefficient describing the physical appearance of
the restriction such as effective area and friction. See [10] for deduc-
tion of the relation. The restriction for incompressible flow is called
RestrictionI in appendix B.

If large pressure differences can be expected the restriction should
be modeled assuming compressible fluids as described in section 6.4.
The restriction for compressible fluids, RestrictionC, is the same as
the valve but with constant opening. RestrictionC should be used
whenever high pressure ratios is expected to occur during a simulation,
it is thus the more general of the restriction models. It also seems that
the Dymola solver handles the equations for compressible flow better
than those in RestrictionI.

6.4 Valve

Flow through a valve should not be idealized to an incompressible
medium, its use in systems implies that the pressure drop across the
valve can be large.

26 Chapter 6. Thermodynamic components

The flow is modeled as equation (6.1) for pressure ratios larger than
the critical ratio where the velocity of sound is reached, relation (6.2).
The critical ratio is used in the place of the actual ratio in equation (6.1)
when the pressure difference is too large, under so called choked flow.
The temperature is unchanged across the valve since only stagnation
pressures and temperatures are considered. Deductions of the following
relations can be found in [10].

ṁa

√
Ta

pa

= A

√

√

√

√

1

R

2γ

γ − 1

(

(

pb

pa

)
2
γ

−
(

pb

pa

)
γ+1

γ

)

(6.1)

(

pb

pa

)

critical

=

(

2

γ + 1

)
γ+1

γ

(6.2)

A signal connector controls the valve opening via A, which represent
effective area lumped with a discharge coefficient. The signal/effective
area relation is parameterized via a one-dimensional interpolating table.

6.5 Cooler

The cooler extracts heat from the gas by setting it in thermal contact
with a cooling medium. The efficiency η is a measure of how effective
the thermal contact is and could be compared with a heat transfer coef-
ficient. The equation below governs the temperature difference between
the gas flowing in and the gas flowing out via η and the temperature
Tmedium of the cooling medium.

Tb = Ta − η(Ta − Tmedium)

In Cooler the efficiency is determined by the flow through the cooler
and the speed of the cooling medium via a two-dimensional map. The
temperature and speed of the cooling medium is either parameterized
in Cooler or taken from a reference to a EnvCut-connector. The latter
can be used in order to support varying air-speed and ambient tem-
perature in a drive-cycle simulation and is the only cooler defined in
appendix B.

The cooler model has no volume and no states, neither is there any
pressure drop across the cooler. Cooler is a energy-source.

6.6. Compressor 27

6.6 Compressor

Two very common equations in compressor models, derivation in [1]:

Mω = ṁacp(Tb − Ta) (6.3)

Tb

Ta

= 1 +
1

η

(

(

pb

pa

)
γ−1

γ

− 1

)

(6.4)

Equation (6.3) states that the enthalpy increase in the gas equals the
power transfer through the turbo-axle (torque multiplied with speed).
In (6.4) the isentropic efficiency η tells us that the energy input is not an
ideal compression, there is friction and other effects in the compressor
heating the gas more than an ideal compression would.

The compressor needs two relations that can not be derived from
basic physics and must instead be chosen to fit measurements. These
two black-boxes can be chosen with some freedom, three approaches
have been tested in this work. The first is fitted polynomials for real
and isentropic enthalpy change (and thereby isentropic efficiency). In
the second attempt a polynomial of turbo speed and pressure ratio
governs mass-flow while a polynomial of mass-flow and pressure ratio
determines the compressor efficiency. The third approach uses an inter-
polating table with speed and pressure ratio inputs for mass-flow while
a table of mass-flow and pressure ratio governs the efficiency.

The two compressor models in appendix B, CompressorS and
CompressorR, includes the two last black-box approaches. CompressorR
is a compressor lumped with two restrictions and therefore includes a
lookup table of pressure ratio across the compressor, the remaining
pressure difference is considered to occur across the restrictions.

6.7 Turbine

The equations (6.5) and (6.6) are identical to those in section 6.6 except
for the inverse efficiency. See [1] for deduction.

Mω = ṁacp(Tb − Ta) (6.5)

Tb

Ta

= 1 + η

(

(

pb

pa

)
γ−1

γ

− 1

)

(6.6)

The power Mω should normally be negative since energy is extracted
from the gas, Tb will be lower than Ta. Neither the turbines nor the
compressors includes any inertia and should therefore be connected to
some rotational mechanical component like a stiff inertial axle.

Since the turbine model cannot be derived entirely from basic physics
it needs two black boxes or fitted parameters. Three attempts have

28 Chapter 6. Thermodynamic components

been made, all modeling turbines equipped with variable vanes (see
section 2.3).

The first attempt models the flow as being through a restriction
(compressible fluid) corrected with the two terms A and K in equation
(6.7), idea from [11]. It has been found that the two terms are well
described by the two low-degree polynomials in equation (6.8)- (6.9),
where X is the vane position. Efficiency is modeled with a polynomial
of turbo speed and blade speed ratio UCs, i.e. the ratio between the
speeds of the rotor blade tips and the speed of the exhausts entering
the rotor.

ṁa

√
Ta

pa

= A

√

√

√

√

2γ

R(γ − 1)

(

(

pb

pa

)
2
γ

−
(

pb

pa

)
γ+1

γ

)

(

k0
pb

pa

)K

(6.7)

A = k1X + k2 (6.8)

K = k3X
2 + k4X + k5 (6.9)

In the second attempt efficiency is obtained by interpolating be-
tween five polynomials of turbo speed and blade speed ratio, each
polynomial representing a discrete turbine vane setting. Mass-flow is
modeled with a polynomial of pressure ratio and vane setting.

The third attempt uses an interpolating table of pressure ratio and
vane-position for mass-flow. A table of UCs, turbo speed and vane-
setting governs the efficiency. The three-dimensional interpolating ta-
ble is developed by MathCore and is not part of the Modelica standard
library.

Only the two last approaches named TurbineS and TurbineR are
shown in appendix B. The turbine and compressor components are not
very general; since so little physical knowledge about them is used they
may well need modification to fit different turbo-chargers.

6.8 Combustion chamber

The cylinders are modeled as a volume-less, steady-flow pump that
heats the gas and extracts energy. In reality the flow of gas and fuel
are far from steady as the ports are opened and fuel is injected only
once every cycle. Since the cylinders buffers gas over almost a complete
cycle there is a time-delay between changes on the intake side and
the effects on the outlet side. This delay is not modeled; Cylinder is
considered volume-less with

∑

ṁ = 0. In the same manner the effect of
fuel injection on output torque is modeled as being instant whereas in
reality there is an average delay of one crankshaft revolution between
changes in injection signal and output torque.

6.9. Additional components 29

A rotational-mechanical Flange-connector enables the cylinder to
be connected directly to the crankshaft, a model of the connecting rod
is not necessary. A signal connector, Pin, controls the fuel-injection.
The cylinder uses four interpolating tables; volumetric efficiency (ηvol),
combustion efficiency (η), heating of exhaust gases (ηexh) and a one-
dimensional map used to normalize the fuel injection.

Equation (6.10) to (6.13) are samples from Cylinder. They govern
the flow through the cylinders, the power (Mω, torque and angular
speed) delivered from the crankshaft, the heating of the gas and the
power consumed when pumping gas from the inlet to the exhaust man-
ifolds. V is the displacement volume, QHV the energy density of the
fuel and Ẇpump the pumping power.

ṁa = ηvol

ω

4π
V ρa (6.10)

Mω = Ẇpump − ηṁfuelQHV (6.11)

0 = Ḣa + Ḣb + ηexhṁfuelQHV (6.12)

Ẇpump =
ω

4π
(pb − pa)V (6.13)

Cylinder models a two-component gas, fresh air and exhausts, both
on the inlet and the outlet side. The chemical reactions changes the
relative amounts of the gases, leaving more exhausts and less fresh air.
This transformation is difficult to express in a manner which can cope
with an arbitrary number of gas-components. Therefore Cylinder must
be modified if one wish to simulate a different set of gases.

The combustion process makes the cylinder an energy-source. Since
fuel evaporates and adds to the mass-flow the cylinder model is also a
source of mass. It should therefore include half if-statements governing
mixtures and temperatures of the flow. A cylinder model with half if:s
have not been tested due to the problems described in section 5.2.2.

6.9 Additional components

In all but the most trivial models there is a need to construct special
purpose components. This section describes how additional compo-
nents can be written.

To function with the rest of the library, any new thermodynamic
component need to include the FlowCut connector (can of course also
include other connectors) and it needs the correct number of equations.
In a component with only thermodynamic connectors the correct num-
ber is determined by the numbers of declared variables, connectors and
gas-species, see equation (6.14). Here n-dimensional vector expressions

30 Chapter 6. Thermodynamic components

equals n equations and half if expressions counts as half an equation.

Nequations = Nvariables + Nconnectors(1 +
1

2
Ngases) (6.14)

Components obeying these rules can be connected to a solvable system
without any extra equations outside the components, assuming access
to half if-statements.

The easiest way to create new components is to extend the super-
class Base which provide thermodynamic connectors, a few other vari-
ables and parameters like cp and π.

Chapter 7

Systems of
thermodynamic
components

This chapter describes general model-construction with the thermody-
namic library and shows two example systems.

7.1 Combining components

The components of the library can not be combined quite arbitrarily,
there are disallowed and troublesome combinations. E.g. a reservoir
connected to another reservoir typically gives an inconsistent system.
The connection specifies that pressure is the same throughout the sys-
tem while the pressures in the reservoirs are parameter-bound, possible
to different values. For the same reason any system without pressure-
drop that terminates with two reservoirs will be inconsistent.

Two volumes can be directly connected, thus declaring their pres-
sures equal although temperatures and gas mixtures can differ. A row
of volumes can be connected to simulate a long tube with uniform
pressure but non-uniform temperature and gas-composition.

Having two consecutive non-dynamic components, i.e. classes with-
out thermodynamic states like compressors and valves, is not impossible
but might give numerical problems. It is a good idea to separate the
components with a small volume or to lump the parts together in a
new class. In CompressorR (section 6.6) the compressor and nearby
restrictions have been merged in this way.

As discussed in section 5.3 a connector can take part in at most one
connection.

31

32 Chapter 7. Systems of thermodynamic components

7.2 A simple system

Reservoir 1 Reservoir 2Valve Volume Restriction

Figure 7.1: Simple system

An example system is pictured in figure 7.1. It includes three of
the most basic classes; reservoir, control volume, restriction and valve.
The example demonstrates fundamental functionalities like pressure
equalization, adiabatic compression and bidirectional flow.

The system is simulated with high pressure in Reservoir1 and lower
in Reservoir2, temperatures follow the same distribution. Each reser-
voir, and initially also the volume, contains a unique species of gas
giving a three-component gas model. Simulation starts with V alve
closed and equal temperatures in Reservoir2 and V olume. The pres-
sure in the volume is initially lower than in Reservoir2, the restriction
can be considered a valve that opens at t = 0.

The gas-component that origins from Reservoir1, variables in
Reservoir1 and in V alve are represented with dashed lines in 7.2 and
7.3. Dot-dashed lines represent Reservoir2 and Restriction while solid
lines represent the volume.

During the first second, with V alve1 closed, the pressures in V olume
and Reservoir2 nearly reaches equilibrium and the temperature in the
volume increases due to the compression. When V alve is opened at
t = 1.0 the flow through Restriction is reversed, observe the instant
switch of temperature of the flowing gas. The temperature in V olume
increases further after t = 1.0, first transient due to the compression
and after about t = 1.5 s in a slower rate as hot gas from Reservoir1
flows into the volume.

7.3 A mechanical and thermodynamical sys-

tem

This example shows a system of components from the mechanic and
thermodynamic domains and illustrates energy conservation and trans-

7.3. A mechanical and thermodynamical system 33

0.5 1 1.5 2 2.5 3

90000

100000

110000

120000

0.5 1 1.5 2 2.5 3

270

280

290

300

310

320

330

Figure 7.2: Simulation of Simple system. Left: pressures [Pa] in
V olume (solid) and reservoirs (dashed and dot-dashed). Right: tem-
peratures [K] in V olume (solid), V alve (dashed) and Restriction (dot-
dashed). Time [s] on x-axes.

0.5 1 1.5 2 2.5 3

-0.2

-0.1

0.1

0.2

0.3

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

Figure 7.3: Simulation of Simple system. Left: mass-flows [kg/s]
through V alve (dashed) and Restriction (dot-dashed). Right: masses
[kg] in V olume.

lation of energy between different domains.
Two volumes, a compressor and a turbine form the closed gas-path

in figure 7.4, an inertia connects the compressor and the turbine. The
turbo-charger is assembled with CompressorS and TurbineS (section
6.6 and 6.7), i.e. the models with efficiency and mass-flow polynomials.

Simulation starts at a state of high turbo-charger/inertia speed and
near ambient conditions in the volumes. When the system is released
at t = 0 the high turbo-charger speed makes the compressor pump gas
from the low pressure to the high pressure volume. The gas flows back
via the turbine and thereby returns some of the energy to the turbo-
charger. Figure 7.5 shows the resulting pressures and temperatures in
the two volumes, figure 7.6 turbo-charger speed and energies. The ir-
reversible compression and expansion transforms the kinetic energy in
the inertia to heat in the gas, solid and dashed lines in the right plot
in figure 7.6. The dotted line represent the sum of kinetic and thermal
energy which is of course constant. A thermodynamic interpretation of
the process is that energy is transformed from a zero-entropy mechan-
ical state to a high-entropy heat state.

34 Chapter 7. Systems of thermodynamic components

Compressor

Turbine

InertiaLow pressure
volume

High pressure
volume

Figure 7.4: Closed system with turbo.

0.5 1 1.5 2

100000

120000

140000

160000

180000

0.5 1 1.5 2

350

400

450

500

Figure 7.5: Simulation of Closed system. Left: pressures [Pa] in the
low (dashed) and high (dot-dashed) volumes. Right: temperatures [K]
in the volumes.

0.5 1 1.5 2

2500

5000

7500

10000

12500

15000

17500

0.5 1 1.5 2

2

4

6

8

10

Figure 7.6: Simulation of Closed system. Left: turbo-speed [rad/s].
Right: kinetic (solid), thermal (dashed) and total (dotted) energies
[kJ].

Chapter 8

Engine model

This chapter describes modeling of a specific engine using the ther-
modynamic library. The purpose is to verify the functionality of the
components and to acquire a flexible model structure.

8.1 OM611 turbo diesel

The OM611 is a 2.2 liter, four-cylinder diesel engine from Mercedes-
Benz. It is equipped with a cooled EGR-system, a turbo-charger with
variable turbine vanes and an inter-cooler. Details can be found in [12].

8.2 Mean value model of OM611

The Modelica mean value model of OM611 is formed by 14 thermody-
namic components, two mechanical parts and one signal block (ECU)
as shown in figure 8.1. A two component gas mixture of air and combus-
tion products is modeled in all parts of the gas path, although anything
else than fresh air is unlikely to appear before the inlet manifold.

The ECU controls the two valves, the fuel-injection and the turbine
vanes, the signal-connections are dashed in figure 8.1 and only partly
drawn. The ECU-signals, engine speed or load and ambient conditions
can be considered the model input.

The engine includes two interfaces for communication with the out-
side world; a rotational-mechanical Flange and a EnvCut-connector,
both found in the bottom right of figure 8.1. No actual connections to
the EnvCut can be seen on this model level but the coolers and the
reservoirs refers to it.

In figure 8.2 the complete automobile in the simulation arrange-
ment is pictured. The various transmission models used here are very

35

36 Chapter 8. Engine model

Exhaust
manifold

Inlet
manifold

Cyl.

EGR

Compressor Turbine

Exhaust pipe

Inter-
cooler

Throttle

Turbo
shaft

ECU

Crank-shaft

Flange

Reservoir

EnvCut

Figure 8.1: Topology of Modelica OM611 MVEM. Thermodynamic
connections in solid, mechanical in thick solid and signal in dashed
lines.

simple, declaring either a speed or a speed-dependent load. More real-
istic transmission models would include variable gear ratio, connections
to the environment model and possibly connections to an automobile
body.

There is no model of the driver present, a such could be placed in the
same model level as the engine and transmission, i.e. in figure 8.2, and
would communicate with the engine via additional signal connectors
carrying torque demand and/or other reference signals.

8.3. Simulation of Modelica OM611 MVEM 37

Engine Tranmission

Environment

Figure 8.2: Automobile model used in simulation

8.3 Simulation of Modelica OM611 MVEM

8.3.1 Driving a load

The figures 8.3- 8.5 all show the same simulation where the engine
model is driving an inertia with a speed-dependent load while all ac-
tuators are tested back and forth. The engine uses the turbo model
with polynomial fits of efficiency and mass-flow, i.e. CompressorS and
TurbineS. The inputs are in the forms of steps at the times t according
to the scheme in figure 8.6. Typical values of ambient conditions are
used. The load is a second degree polynomial of engine speed resem-
bling the aerodynamic and frictional forces affecting a car.

The simulation starts on low load and choked VNT. When the
vanes are opened at t=1 s both the turbo-charger speed and the mani-
fold pressures, figure 8.3-8.4, decreases rapidly which is expected. The
EGR-valve and throttle settings have small effects on turbo speed and
pressures but none of the inputs during the first six seconds affects
engine speed or output torque much. At t=6 s the injection reference
signal is doubled and the vanes are choked simultaneously, the same
injection input is made at t=10 s but with open vanes. The difference
can be seen in the turbo speed which accelerates much more after the
first step, the apparent overshot is because the vanes opens again af-
ter 0.5 s. The two periods of high fuel-injection have nearly identical
effects on engine speed and torque, which depend almost entirely on
the fuel input as long as the air to fuel ratio does not fall under the
stoichiometric ratio.

The turbine efficiency plot in figure 8.5 is somewhat extreme reach-
ing too high values during the periods immediately after the actuator
steps. TurbineS is based on static test-bed measurements which do not
cover the entire operating range of a turbine application on an engine,
extrapolation can therefore be expected during highly dynamic events.

38 Chapter 8. Engine model

2 4 6 8 10 12

100000

120000

140000

160000

180000

200000

2 4 6 8 10 12

200

400

600

800

1000

1200

Figure 8.3: Modelica MVEM driving a load. Left: pressures [Pa] in
inlet (solid) and exhaust (dashed) manifolds. Right: temperatures [K]
in manifolds.

2 4 6 8 10 12

2500

5000

7500

10000

12500

15000

17500

2 4 6 8 10 12

50

100

150

200

250

300

Figure 8.4: Modelica MVEM driving a load, speeds (solid) and powers
(dashed). Left: turbo speed [rad/s] and power [W]. Right: engine
speed [rad/s] and power [kW].

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

Figure 8.5: Modelica MVEM driving a load. Left: compressor (solid)
and turbine (dashed) efficiencies. Right: combustion (solid) and volu-
metric (dashed) efficiencies.

Value t Value t Value t Value
Fuel 20 6.0 40 8.0 20 10.0 40 mg/shot
VNT 10 1.0 100 6.0 60 6.5 100 % open
EGR 0 2.0 100 3.0 0 - 0 % open
Throt. 100 4.0 20 5.0 100 - 100 % open

Figure 8.6: Modelica MVEM driving a load. Actuator reference signals
during the time-intervals between the events t.

8.3. Simulation of Modelica OM611 MVEM 39

Also within the range of the measurements the static test-bed is
somewhat different from the engine-application giving too high effi-
ciency in general. As a consequence the inlet pressure is higher than
the exhaust pressure (figure 8.3) at high engine loads which is rare in
automobiles. The lack of an air-filter model also contributes to the high
inlet pressure.

8.3.2 EGR back-flow

Section 3.4 claims that back-flow can occur through the EGR-system
during brief moments. Figure 8.7 shows a simulation where the ac-
tuators are manipulated to achieve reversed flow, this time using the
compressor and turbine with interpolating tables (see section 6.6- 6.7).
The tabular values of the turbo-charger, as well as all other tables, are
taken from the Simulink reference model described in section 8.4.

From a point of high load and choked turbine vanes the fuel is
nearly cut off and the vanes are opened at t = 2. The result is a
rapid pressure drop in the exhaust manifold and a slower decrease in
the inlet manifold, the left plot in figure 8.7. During a short period the
inlet pressure is higher than the exhaust pressure resulting in a reversed
flow through the EGR-valve, the left plot of figure 8.8.

2 2.2 2.4 2.6 2.8 3

150000

200000

250000

300000

2 2.2 2.4 2.6 2.8 3

6000

8000

10000

12000

14000

16000

18000

Figure 8.7: Modelica MVEM back-flow. Left: pressures [Pa] in inlet
(solid) and exhaust (dashed) manifolds. Right: turbo speed [rad/s].

2 2.2 2.4 2.6 2.8 3

-0.03

-0.02

-0.01

0.01

0.02

0.03

2 2.2 2.4 2.6 2.8 3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 8.8: Modelica MVEM back-flow. Left: mass-flow [kg/s] through
EGR-valve. Right: mass-flows [kg/s] through compressor (solid) and
turbine (dashed).

40 Chapter 8. Engine model

8.4 Comparison with reference model

The Modelica OM611 model is verified against a reference model imple-
mented in Simulink which is thoroughly tested and fits measurements
well. Using only another model for verification instead of comparing
with reality is of course not a recommendable approach in general, but
it will do here since the OM611 MVEM is merely an example applica-
tion.

The Modelica model is the same as in the “back-flow”-simulation,
sharing most of the maps and equations with the reference model. But
some is also different; many of the saturations, rate-limiters etc in the
Simulink model have not been transfered to the Modelica model and
therefore a very good numerical agreement should not be expected. If
all equations and maps were copied directly from the Simulink model
a near perfect agreement could probably be accomplished and only the
differences in Matlabs and Dymolas solvers would remain. But there
would certainly be more effective ways of comparing two solvers than
writing two identical MVEMs.

It will instead be sufficient if the qualitative behavior match; the
two models should respond in approximately the same way to input.
In order to compare the dynamics of the models a series of simulations
with nearly identical inputs have been made. Two of these have been
chosen to represent the main similarities and differences between the
models. Both simulations span over three seconds but the first part
is used simply to reach the desired operating point and only the time
between 1.8 and 3.0 s is displayed in the plots.

The first simulation compares the responses to a fuel-injection step
input. At a constant engine speed of 3500 rev/min the fuel reference
signal is increased from 15 to 50 mg/shot at t = 2.0 s, figure 8.9-
8.12 shows some results. The Modelica turbo acceleration is somewhat
shaky in the left plot in figure 8.10. The right plot represents the
same simulation with the reference model which have smoother turbo
dynamics and higher steady-state speeds. The rest of the differences
can be explained by the poor Modelica turbo-charger model.

In the second simulation the vanes are choked from 100% to 40%
at t = 2, again under constant engine-speed of 3500 rev/min. Figure
8.14 shows that the problem with the turbo is the turbine efficiency,
it oscillates heavily and its peaks and valleys can be traced in the
acceleration of the turbo. It also stays at a lower value than in the
Simulink simulation. The rest of the plots, figure 8.13, 8.15 and 8.16,
shows reasonable agreement if the effects of the turbine behavior are
subtracted. Temperatures in the manifolds are approximately the same
as well as the pressure difference, even though the absolute pressures
differ due to the different turbo speeds.

8.4. Comparison with reference model 41

2 2.2 2.4 2.6 2.8 3

50

100

150

200

250

300

1.8 2 2.2 2.4 2.6 2.8 3
0

50

100

150

200

250

300

Figure 8.9: Step in fuel-injection, engine torque [Nm]. Left: Modelica,
right: Simulink.

2 2.2 2.4 2.6 2.8 3

6000

8000

10000

12000

14000

16000

18000

1.8 2 2.2 2.4 2.6 2.8 3

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Figure 8.10: Step in fuel-injection, turbo speed [rad/s]. Left: Modelica,
right: Simulink.

2 2.2 2.4 2.6 2.8 3

150000

200000

250000

300000

1.8 2 2.2 2.4 2.6 2.8 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

5

Figure 8.11: Step in fuel-injection, pressure [Pa] in inlet (solid) and
exhaust (dashed) manifolds. Left: Modelica, right: Simulink.

2 2.2 2.4 2.6 2.8 3

200

400

600

800

1000

1200

1.8 2 2.2 2.4 2.6 2.8 3
0

200

400

600

800

1000

1200

Figure 8.12: Step in fuel-injection, temperatures [◦C] in inlet (solid)
and exhaust (dashed) manifolds. Left: Modelica, right: Simulink.

42 Chapter 8. Engine model

2 2.2 2.4 2.6 2.8 3

6000

8000

10000

12000

14000

16000

18000

1.8 2 2.2 2.4 2.6 2.8 3

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Figure 8.13: Step in turbine vanes, turbo speed [rad/s]. Left: Modelica,
right: Simulink.

2 2.2 2.4 2.6 2.8 3

0.2

0.4

0.6

0.8

1

1.8 2 2.2 2.4 2.6 2.8 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8.14: Step in turbine vanes, compressor (solid) and turbine
(dashed) efficiencies. Left: Modelica, right: Simulink.

2 2.2 2.4 2.6 2.8 3

150000

200000

250000

300000

1.8 2 2.2 2.4 2.6 2.8 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

5

Figure 8.15: Step in turbine vanes, pressure [Pa] in inlet (solid) and
exhaust (dashed) manifolds. Left: Modelica, right: Simulink.

2 2.2 2.4 2.6 2.8 3

200

400

600

800

1000

1200

1.8 2 2.2 2.4 2.6 2.8 3
0

200

400

600

800

1000

1200

Figure 8.16: Step in turbine vanes, temperatures [◦C] in inlet (solid)
and exhaust (dashed) manifolds. Left: Modelica, right: Simulink.

8.5. About the simulations 43

8.5 About the simulations

The success of a modeling effort rely heavily on the the simulation tool
and its numerical solver. This section deals with some aspects and
experiences with MathModelica and Dymola.

MathModelica allows the user to specify initial values of states in
the simulation call. Finding an initial state that enables the solver to
find a solution at time zero is not always easy. The intuitive approach
of choosing a physically realistic state will often not do, in the thermo-
dynamic domain it is usually better to choose somewhat higher values.
The simulate call also lets the user suggest initial values of non-state
variables. This can help the solver which otherwise starts the iteration
with all non-state variables at zero.

The initial-value problem is a well-known problem in numerical
solvers and Dymola is not unique. Another, and far more severe, prob-
lem during the simulations have been the instability of MathModel-
ica. Simulation calls locks up the Dymola kernel on a regular basis,
sometimes locks up Mathematica and occasionally the entire operat-
ing system. No explanation or solution of this problem have come
forth during the work; different models have been tested and Windows
NT have even been reinstalled in one occasion without improvements.
Hardware faults is a possibility but seems an unlikely cause. Instead
the problem seems to be correlated with the MathModelica version 1.4
and NT. On computers running Windows 2000 Professional lock ups
do not occur, at least not frequently.

Another problem have been Mathematicas dubious handling of files,
sometimes destroying days of stored work. This too seems correlated
with Windows NT.

44

Chapter 9

Conclusions

A functional package for mean value engine modeling have been pre-
sented. It can be used in a flexible manner for general internal com-
bustion engines and is easy to expand with new classes. It supports
energy and pressure dynamics, mixture of any number of gases but not
momentum or non-ideal gases. The implementation is made under the
assumption that a function for managing half if-statements would be
present.

The engine models presented verifies that fairly large systems can be
built with the library, the problems were extrapolation of one efficiency
map and a poor implementation of the other. The models also provide
a structure for further MVEMs with connections to atmosphere and
transmission models.

The Modelica language is well suited for MVEMs The physical,
object-oriented approach gives a vivid implementation even though
much of the model is “black-box”. Modeling is faster (given improved
stability of the tool), less error-prone and produces easier maintained
models than in Matlab/Simulink, C or other general tools due to the
declaration of equations instead of algorithms. The notebook environ-
ment is convenient with code, graphs, documentation and mathematical
computations in one place.

MathModelica makes modeling, simulation and visualization more
structured if the work is performed more or less exclusively in the note-
books. On the other hand it can be argued that MathModelica is yet
another environment to handle on top of those already in use. It lacks
a coupling to Matlab, which whether one like it or not is the industrial
standard today. An ability to communicate with Matlab would improve
MathModelicas practical use in the automotive industry. The version
of MathModelica used in this work suffer from severe problems with
stability, at least when used on Windows NT computers. The initial-
value problems are common to many numerical simulation tools. Yet

45

46 Chapter 9. Conclusions

another, quite severe, problem have been Mathematicas somewhat un-
safe routines for handling files when used on NT-machines.

Chapter 10

Outlook

This chapter presents some ideas for future extensions.
When a function for half if-statements is available an engine model

could be tested with the proper definitions of the components. The
preliminary version of the function seems promising but can only be
used with quite simple models. Alternatively the modeling principle
suggested in [9] could be tested.

It could be advantageous to implement the MVEM-components
with the ThermoFlow library [7], which is yet under development. The
chance is that [7] will become the standard base in the thermodynamic
domain, perhaps also included in the Modelica standard library. If so
the MVEM-library could add to a more general collection of libraries
which would make exchange between MVEM:s and other thermody-
namic models possible as more people would be familiar with the basic
design.

47

48

References

[1] John B. Heywood. Internal Combustion Engine Fundamentals.
McGraw-Hill, New York, USA, 1988.

[2] L. Nielsen and L. Eriksson. Course material vehicular sys-
tems. Technical report, Vehicular Systems, Department of Elec-
trical Engineering, Linköpings Universitet, Linköpings Universitet,
Linköping, Sweden, 1999.

[3] Modelica Association. Modelica tutorial version 1.4. December
2000. www.modelica.org/documents.sthml.

[4] Modelica Association. Modelica language specification version 1.4.
December 2000. www.modelica.org/documents.sthml.

[5] Dymola. Dynasim ab. www.dynasim.se.

[6] Mats Jirstrand. Mathmodelica - a full simulation tool. MathCore
AB. www.mathcore.com/documents/index.html.

[7] J. Eborn, H. Tummescheit, and W. Wagner. Thermoflow, a
thermo-hydraulic library in modelica. Technical report, Depart-
ment of Automatic Control, Lund University, Sweden and Depart-
ment of Energy Engineering, Technical University of Denmark,
1999. www.control.lth.se/ hubertus/ThermoFluid/.

[8] A. Stankovic. Modelling of air flows in automotive engines using
modelica. Master’s thesis LiTH-ISY-EX-3065, Department of Elec-
trical Engineering, Linköpings Universitet, Linköping, Sweden,
August 2000. www.fs.isy.liu.se/Publications/Masters Theses2000.

[9] J. Brugȧrd, L. Eriksson, and L. Nielsen. Mean value engine mod-
eling of a turbo charged spark ignited engine - a principle study.
Report LiTH-ISY-R-2370, Vehicular Systems, Department of Elec-
trical Engineering, Linköpings Universitet, August 2001.

[10] Y. Nakayama and F. Boucher, R. Introduction to Fluid Mechanics.
Arnold, London, Great Britain, 1999.

49

50 REFERENCES

[11] R. Isermann, O. Lost, and A. Schwarte. Modellgestützte regleren-
twicklung für einen abgasturbolader mit variabler turbinengeome-
trie an einem di-dieselmotor. Motortechnische Zeitung, (3):61,
March 2000.

[12] R. Klingmanm, W. Fick, H. Brueggemann, D. Naber, K.H. Hoff-
mann, and A. Peters. Die neuen common-rail dieselmotoren mit
direkteinspritzung in der modellgepflegten e-klasse. Motortechnis-

che Zeitung, 7,8,9, 1999.

Notation

Symbols, abbreviations and other notations used in the thesis.

General

Modelica-constructs like Connect-statements are typeset in plain style

in the report while self-defined types and variables like the connector-
type FlowCut and its instance a are typeset in mathematical style.

Variables and parameters

cv Specific heat at constant volume.
cp Specific heat at constant pressure.
R Gas constant, cp-cv.
γ Ratio of specific heats, cp/cv.
pa Pressure at point (connector) a.
Ta Temperature at point (connector) a.
ṁa Mass-flow through cut (connector) a or of substance a.

Ḣa Enthalpy-flow through cut (connector) a.
ρa Density at point (connector) a.
M Context volume: mass. Context mechanics: torque.
U Total energy.
W Mechanical work.
ω Rotational speed.
η Efficiency, different contexts.

ηvol Volumetric efficiency.
ηexh “Efficiency” of heating exhausts.
V Volume.

QHV Energy density of fuel.
UCs Blade speed ratio.

51

52 Notation

Abbreviations

MVEM Mean Value Engine Model
VNT Variable Nozzle Turbine.
EGR Exhaust Gas Recirculation.
SI Spark Ignited.
OS Operating System.
NT MS Windows NT.

Appendix A

Modelica functions

function LinearRoot

input Real x "input x";

input Real p "power";

input Real dx "linearization limit";

output Real y "output";

protected

Real Gamma;

Real C3;

Real C1;

Real adx;

Real padx;

algorithm

adx := abs(dx);

if x > adx then

y := x^(p);

else

if x < -adx then

y := -(-x)^(p);

else

padx := adx^((p-1));

C1 := (1.5-0.5*p)*padx;

C3 := 0.5*(p-1.)*padx/(adx*adx);

y := (C1+C3*x*x)*x;

end if;

end if;

end LinearRoot;

function LinearRootS

53

54 Appendix A. Modelica functions

input Real x;

input Real dx;

output Real y;

algorithm

if x > dx then

y := x^(0.5);

else

y := 3/(2*dx^(1/2))*x - 1/(2*dx^(3/2))*x^(2);

end if;

end LinearRoot;

function AvgConst

input Real[2] C;

input Real[2] m;

output Real Cavg;

algorithm

if abs(sum(m)) > 10^(-3) then

Cavg := (C*m)/sum(m);

else

Cavg := sum(C)/size(C,1);

end if;

end AvgConst;

Appendix B

Basic components

B.1 Connectors

connector FlowCut

parameter Integer n;

Real p;

Real T;

flow Real[n] mdot;

end FlowCut;

connector Flange

Real omega;

flow Real M;

end Flange;

connector Pin

Real signal;

end Pin;

connector EnvCut

parameter Integer n;

Real p;

Real T;

Real[n] MassFraction;

Real AirSpeed;

Real Incline;

end EnvCut;

55

56 Appendix B. Basic components

B.2 Super-classes

General with parameterized number of connectors and specialization
with two connectors.

model Base

parameter Integer Ngas;

parameter Integer Ncon;

FlowCut[Ncon] Cut(n=Ngas);

Real[Ncon,Ngas] mdot;

Real[Ncon] p(start=10^(5)*ones(Ncon));

Real[Ncon] T(start=293*ones(Ncon));

parameter Real[Ngas] c_p=1005*ones(Ncon);

parameter Real[Ngas] gamma=1.4*ones(Ncon);

Real[Ngas] R;

Real[Ngas] c_v;

constant Real Pi=Modelica.Constants.pi;

equation

p = Cut.p;

T = Cut.T;

mdot = Cut.mdot;

R = c_p-c_v;

for i in 1:Ngas loop

c_v[i] = c_p[i]/gamma[i];

end for;

end Base;

model TwoPin

extends Base(Ncon=2);

Real[Ncon] mdot_a, mdot_b;

Real T_a, T_b, p_a, p_b;

equation

mdot_a = mdot[1,:];

mdot_b = mdot[2,:];

T_a = T[1];

T_b = T[2];

p_a = p[1];

p_b = p[2];

end TwoPin;

B.3. Infinite reservoirs 57

B.3 Infinite reservoirs

model ReservoirP

extends Base;

parameter Real p_Infinity;

parameter Real T_Infinity;

parameter Real[Ngas] MassFraction;

equation

p = p_Infinity*ones(Ncon);

end Reservoir;

model Reservoir

extends Base;

outer EnvCut Env(n=Ngas);

EnvCut env;

Real p_Infinity;

Real T_Infinity;

Real[Ngas] MassFraction;

equation

connect(env, Env);

p_Infinity = env.p;

T_Infinity = env.T;

MassFraction = env.MassFraction;

p = p_Infinity*ones(Ncon);

end Reservoir;

B.4 Control volume

model CtrlVol

extends Base;

Real[Ngas] M;

Real U_Infinity, M_Infinity;

Real p_Infinity, T_Infinity;

Real[Ngas] MassFraction;

parameter Real V=1;

equation

der(M) = transpose(mdot)*ones(Ncon);

M_Infinity = sum(M);

der(U) = sum(diagonal(mdot*c_p)*T);

U = (c_v*M)*T_Infinity;

58 Appendix B. Basic components

p_Infinity*V = (M*R)*T_Infinity;

p = p_Infinity*ones(Ncon);

MassFraction = M/M_Infinity;

end CtrlVol;

B.5 Restrictions

Restrictions for incompressible (. . . I) and compressible (. . . C) flow.

model RestrictionI

extends TwoPin;

parameter Real r=10^(7);

parameter Real sigma=10^((-2));

equation

mdot_a+mdot_b = zeros(2);

T_a = T_b;

if p__a > p_b then

sum(mdot_a) = LinearRootS(p_a*(p_a-p_b)/(r*T_a),sigma);

else

sum(mdot_b) = LinearRootS(p_b*(p_b-p_a)/(r*T_b),sigma);

end if;

end RestrictionI;

model RestrictionC

extends TwoPin;

Real p_r;

Real Psi;

Real gamma_avg, R_avg;

Real p_rC;

parameter Real A=2*10^((-3));

equation

mdot_a+mdot_b = zeros(2);

gamma_avg = AvgConst(gamma,mdot_a);

R_avg = AvgConst(R,mdot_a);

p_rC = (2/(gamma_avg+1))^((gamma_avg/(gamma_avg-1)));

T_b = T_a;

p_r = if p_a < p_b then

p_a/p_b

else

p_b/p_a;

Psi = if p_r > p_rC then

B.6. Valve 59

LinearRoot((2*gamma_avg/(gamma_avg-1))*

(p_r^((2/gamma_avg))-

p_r^(((gamma_avg+1)/gamma_avg))),

0.5,10^((-6)))

else

LinearRoot((2*gamma_avg/(gamma_avg-1))*

(p_rC^((2/gamma_avg))-

p_rC^(((gamma_avg+1)/gamma_avg))),

0.5,10^((-6)));

if p_a > p_b then

sum(mdot_a) = A*p_a/LinearRoot(R_avg*T_a,0.5,1000)*Psi;

else

sum(mdot_b) = A*p_b/LinearRoot(R_avg*T_b,0.5,1000)*Psi;

end if;

end RestrictionC;

B.6 Valve

model Valve

extends TwoPin;

input Pin pin;

Real X, A;

Real p_r;

Real Psi;

Real gamma_avg, R_avg;

Real p_rC;

parameter Real[:,:] EffArea;

ModelicaAdditions.Tables.CombiTable1D

AreaTable(table=EffArea);

equation

X = pin.signal;

mdot_a+mdot_b = zeros(2);

gamma_avg = AvgConst(gamma,mdot_a);

R_avg = AvgConst(R,mdot_a);

p_rC = (2/(gamma_avg+1))^((gamma_avg/(gamma_avg-1)));

T_b = T_a;

p_r = if p_a < p_b then

p_a/p_b

else

p_b/p_a;

Psi = if p_r > p_rC then

LinearRoot((2*gamma_avg/(gamma_avg-1))*

60 Appendix B. Basic components

(p_r^((2/gamma_avg))-

p_r^(((gamma_avg+1)/gamma_avg))),

0.5,10^((-6)))

else

LinearRoot((2*gamma_avg/(gamma_avg-1))*

(p_rC^((2/gamma_avg))-

p_rC^(((gamma_avg+1)/gamma_avg))),

0.5,10^((-6)));

{X} = AreaTable.u;

A = AreaTable.y[1];

if p_a > p_b then

sum(mdot_a) = A*p_a/LinearRoot(R_avg*T_a,0.5,1000)*Psi;

else

sum(mdot_b) = A*p_b/LinearRoot(R_avg*T_b,0.5,1000)*Psi;

end if;

end Valve;

B.7 Cooler

model Cooler

outer EnvCut Env(n=Ngas);

EnvCut env;

extends TwoPin;

parameter Real[:,:] efficiency;

ModelicaAdditions.Tables.CombiTable2D

EfficiencyTable(table=efficiency);

Real eta;

Real nu;

Real T_amb;

equation

connect(env, Env);

nu = env.AirSpeed;

T_amb = env.T;

mdot_a+mdot_b = zeros(2);

p_a = p_b;

nu = EfficiencyTable.u1;

abs(sum(mdot_a)) = EfficiencyTable.u2;

eta = EfficiencyTable.y;

if sum(mdot_a) > 0 then

T_b = T_a-eta*(T_a-T_amb);

else

T_a = T_b-eta*(T_b-T_amb);

end if;

B.8. Compressors 61

end Cooler;

B.8 Compressors

Polynomial (. . . S) and tabular interpolation (. . . R) of mass-flow and
efficiency.

model CompressorS

extends TwoPin;

Flange f_a;

Real M, omega, N, phi, eta, N_corr, p_r;

Real limit, LowFlow, gamma_avg, c_pavg;

parameter Real D_2;

parameter Real c_1, c_2, c_3, c_4;

parameter Real c_5, c_6, c_7, c_8;

parameter Real a_1, a_2, a_3;

parameter Real k_1, k_2, k_3, k_4, k_5;

parameter Real k_6, k_7, k_8, k_9;

equation

omega = f_a.omega;

omega = (2*Pi/60)*N;

M = f_a.M;

c_pavg = AvgConst(c_p,mdot_a);

gamma_avg = AvgConst(gamma,mdot_a);

phi = sum(mdot_a)*LinearRoot(T_a,0.5,100)/p_a;

N_corr = N/LinearRoot(T_a,0.5,100);

p_r = p_b/p_a;

mdot_a+mdot_b = zeros(2);

M*omega = sum(mdot_a)*c_pavg*(T_b-T_a);

T_b/T_a = 1+1/eta*(p_r^(((gamma_avg-1)/gamma_avg))-1);

limit = a_1+a_2*N_corr+a_3*N_corr^(2);

LowFlow = c_1+c_2*N_corr+c_3*N_corr^(2)+c_4*p_r+

c_5*N_corr^(2)*p_r+c_6*p_r^(2)+

c_7*N_corr*p_r^(2)+c_8*N_corr^(2)*p_r^(2);

phi = if p_r < limit then

LowFlow

else

10^((-6));

eta = k_1+k_2*phi+k_3*phi^(2)+k_4*p_r+k_5*phi*p_r+

k_6*phi^(2)*p_r+k_7*p_r^(2)+k_8*phi*p_r^(2)+

k_9*phi^(2)*p_r^(2);

end CompressorS;

62 Appendix B. Basic components

model CompressorR

extends TwoPin;

Flange f_a;

parameter Real[:,:] efficiency;

parameter Real[:,:] phitab;

parameter Real[:,:] pressureratio;

ModelicaAdditions.Tables.CombiTable2D

EfficiencyTable(table=efficiency);

ModelicaAdditions.Tables.CombiTable2D

CorrMassTable(table=phitab);

ModelicaAdditions.Tables.CombiTable2D

CorrPRTable(table=pressureratio);

Real phi, M, omega, N, omega_corr;

Real eta, p_r, gamma_avg, c_pavg;

equation

M = f_a.M;

omega = f_a.omega;

omega = (2*Pi/60)*N;

c_pavg = AvgConst(c_p,mdot_a);

gamma_avg = AvgConst(gamma,mdot_a);

omega_corr = omega/LinearRoot(T_a,0.5,100);

sum(mdot_a) = p_a/LinearRoot(T_a,0.5,100)*phi;

mdot_a+mdot_b = zeros(2);

M*omega = sum(mdot_a)*c_pavg*(T_b-T_a);

T_b/T_a = 1+1/eta*(p_r^(((gamma_avg-1)/gamma_avg))-1);

omega_corr = CorrMassTable.u1;

p_b/p_a = CorrMassTable.u2;

phi = CorrMassTable.y;

omega_corr = CorrPRTable.u1;

p_b/p_a = CorrPRTable.u2;

p_r = CorrPRTable.y;

phi = EfficiencyTable.u1;

p_r = EfficiencyTable.u2;

eta = EfficiencyTable.y;

end CompressorR;{inj_

B.9 Turbines

Polynomial (. . . S) and tabular interpolation (. . . R) of mass-flow and
efficiency.

model TurbineS

extends TwoPin;

Flange f_a;

B.9. Turbines 63

input Pin pin;

Real eta, M, omega, N;

Real nu, N_corr, p_r(start=0.59), phi, gamma_avg, c_pavg;

Real eta_1, eta_2, eta_3, eta_4, eta_5;

Real X;

parameter Real D;

parameter Real X_1, X_2, X_3, X_4, X_5;

parameter Real k_1, k_2, k_3, k_4, k_5, k_6;

parameter Real a_1, a_2, a_3, a_4, a_5, a_6;

parameter Real b_1, b_2, b_3, b_4, b_5, b_6;

parameter Real c_1, c_2, c_3, c_4, c_5, c_6;

parameter Real d_1, d_2, d_3, d_4, d_5, d_6;

parameter Real e_1, e_2, e_3, e_4, e_5, e_6;

equation

omega = f_a.omega;

omega = (2*Pi/60)*N;

M = f_a.M;

c_pavg = AvgConst(c_p,mdot_a);

gamma_avg = AvgConst(gamma,mdot_a);

X = 10.4*(1-pin.signal);

p_r = p_b/p_a;

phi = sum(mdot_a)*LinearRoot(T_a,0.5,100)/p_a;

N_corr = N/LinearRoot(T_a,0.5,100);

nu = Pi*D*N/(60*LinearRoot(2*c_pavg*T_a*

(1-p_r^(((gamma_avg-1)/gamma_avg))),0.5,0.1));

mdot_a+mdot_b = zeros(2);

M*omega = sum(mdot_a)*c_pavg*(T_b-T_a);

T_b/T_a = 1-eta*(1-p_r^(((gamma_avg-1)/gamma_avg)));

phi = k_1+k_2*p_r+k_3*p_r^(2)+k_4*p_r*X+

k_5*p_r^(2)*X+k_6*X^(2);

eta_1 = a_1+a_2*N_corr+a_3*nu+a_4*nu*N_corr+

a_5*nu^(2)+a_6*nu^(2)*N_corr;

eta_2 = b_1+b_2*N_corr+b_3*nu+b_4*nu*N_corr+

b_5*nu^(2)+b_6*nu^(2)*N_corr;

eta_3 = c_1+c_2*N_corr+c_3*nu+c_4*nu*N_corr+

c_5*nu^(2)+c_6*nu^(2)*N_corr;

eta_4 = d_1+d_2*N_corr+d_3*nu+d_4*nu*N_corr+

d_5*nu^(2)+d_6*nu^(2)*N_corr;

eta_5 = e_1+e_2*N_corr+e_3*nu+e_4*nu*N_corr+

e_5*nu^(2)+e_6*nu^(2)*N_corr;

eta = (1+sign(X_2-X))/2*

((X_2-X)/(X_2-X_1)*eta_1+(X-X_1)/(X_2-X_1)*eta_2)+

(1+sign(X-X_2))/2*(1-sign(X-X_3))/2*

64 Appendix B. Basic components

((X_3-X)/(X_3-X_2)*eta_2+(X-X_2)/(X_3-X_2)*eta_3)+

(1+sign(X-X_3))/2*(1-sign(X-X_4))/2*

((X_4-X)/(X_4-X_3)*eta_3+(X-X_3)/(X_4-X_3)*eta_4)+

(1+sign(X-X_4))/2*

((X_5-X)/(X_5-X_4)*eta_4+(X-X_4)/(X_5-X_4)*eta_5);

end TurbineS;

model TurbineR

extends TwoPin;

Flange f_a;

input Pin pin;

Pin PulsePin;

parameter Real[:,:,:] efficiency;

parameter Real[:,:] pulse;

ModelicaAdditions.Tables.CombiTable2D

PulseTable(table=pulse);

parameter Real[:,:] phitab;

ModelicaAdditions.Tables.CombiTable2D

PhiTable(table=phitab);

Real M, omega, eta, N, N_eng, eta_comp, omega_corr;

Real nu, capitalPhi, tableID, X, gamma_avg, c_pavg;

constant Real D;

equation

M = f_a.M;

omega = f_a.omega;

omega = (2*Pi/60)*N;

X = 1-pin.signal;

PulsePin.signal = N_eng;

c_pavg = AvgConst(c_p,mdot_a);

gamma_avg = AvgConst(gamma,mdot_a);

omega_corr = omega/LinearRoot(T_a,0.5,100);

nu = D*omega/(2*LinearRoot(2*c_pavg*T_a*(1-(p_b/p_a)^

(((gamma_avg-1)/gamma_avg))),0.5,0.001));

sum(mdot_a) = capitalPhi*p_a/LinearRoot(T_a,0.5,100);

mdot_a+mdot_b = zeros(2);

M*omega = sum(mdot_a)*c_pavg*(T_b-T_a);

T_b/T_a = 1-eta*eta_comp*(1-(p_b/p_a)^

(((gamma_avg-1)/gamma_avg)));

N_eng = PulseTable.u1;

p_a/p_b = PulseTable.u2;

eta_comp = PulseTable.y;

tableID = dymTable3Init(efficiency,0);

B.10. Combustion chambers 65

eta = dymTableIpo3(tableID,omega_corr,nu,X);

p_a/p_b = PhiTable.u1;

X = PhiTable.u2;

capitalPhi = PhiTable.y;

end TurbineR;

B.10 Combustion chambers

CylinderP in extends with an extra interface for engine-speed.

model Cylinder

extends TwoPin;

Flange f;

input Pin pin;

parameter Real[:,:] maxfuel;

parameter Real[:,:] combeff;

parameter Real[:,:] exhaust;

parameter Real[:,:] voleff;

ModelicaAdditions.Tables.CombiTable1D

MaxFuelingTable(table=maxfuel);

ModelicaAdditions.Tables.CombiTable2D

EfficiencyTable(table=combeff);

ModelicaAdditions.Tables.CombiTable2D

ExhaustEnergyTable(table=exhaust);

ModelicaAdditions.Tables.CombiTable2D

VolEffTable(table=voleff);

Real omega, N, M, mdot__fuel, eta__vol, q__comb;

Real q__pump, rho__in, Hdot__a, Hdot__b;

Real inj__fuel, inj__norm, inj__max, eta, exhWpart;

parameter Real V=0.00215;

parameter Real num_cyl=4;

parameter Real T_fuel=273+30;

parameter Real Q_HV=42.9*10^(6);

parameter Real Q_vapour=400*10^(3);

parameter Real AF_s=14.7;

parameter Real cp_Fuel=800;

equation

omega = f.omega;

omega = (2*Pi/60)*N;

M = f.M;

pin.signal = inj_fuel;

rho_in = p_a/(AvgConst(R,mdot_a)*T_a);

N = VolEffTable.u1;

rho_in = VolEffTable.u2;

66 Appendix B. Basic components

eta_vol = VolEffTable.y;

{N} = MaxFuelingTable.u;

{inj_max} = MaxFuelingTable.y;

inj_norm = inj_fuel/inj_max;

N = EfficiencyTable.u1;

inj_norm = EfficiencyTable.u2;

eta = EfficiencyTable.y;

N = ExhaustEnergyTable.u1;

inj_norm = ExhaustEnergyTable.u2;

exhWpart = ExhaustEnergyTable.y;

sum(mdot_a) = eta_vol*N/(2*60)*V*rho_in;

mdot_fuel = num_cyl*N/(2*60)*inj_fuel;

mdot_b[2]+mdot_a[2]+mdot_fuel+

(if mdot_fuel < mdot_a[1]/AF_s then

AF_s*mdot_fuel

else

mdot_a[1]) = 0;

Hdot_a = (c_p*mdot_a)*T_a;

Hdot_b = (c_p*mdot_b)*T_b;

q_comb = if mdot_fuel < mdot_a[1]/AF_s then

mdot_fuel*Q_HV

else

mdot_a[1]/AF_s*Q_HV;

q_pump = omega*(p_b-p_a)*V/(4*Pi);

M*omega = q_pump-eta*q_comb;

end Cylinder;

model CylinderPin

extends Cylinder;

Pin PulsePin;

equation

PulsePin.signal = N;

end CylinderPin;

B.11 Stiff axle/inertia

model AxelTwo

Flange f_a, f_b;

Real omega, N;

parameter Real I=1;

constant Real Pi=Modelica.Constants.pi;

B.12. Control block 67

equation

f_a.omega = f_b.omega;

omega = f_a.omega;

omega = (2*Pi/60)*N;

I*der(omega) = f_a.M+f_b.M;

end AxelTwo;_a*

B.12 Control block

Interpolating time-tables for reference-signals filtered to actual actuator-
settings.

model Controller

output Pin xvgt;

output Pin inj;

output Pin throttle;

output Pin egr;

parameter Real tau_t=0.01;

parameter Real tau_i=0.006;

parameter Real tau_x=0.02;

parameter Real tau_e=0.01;

Real t;

Real e;

Real i;

Real x;

parameter Real[6,2]

SpjallTabell={{0.,1.},{1.,1.},{2.,1.},

{4.,1.},{8.,1.},{10.,1.}};

parameter Real[6,2]

SoppaTabell={{0.,35*10^((-6))},{1.,50*10^((-6))},

{2.,50*10^((-6))},{2.,10*10^((-6))},

{4.,10*10^((-6))},{7.,10*10^((-6))}};

parameter Real[6,2]

VgtTabell={{0.,1.},{1.,0.2},{1.1,0.2},

{2.,0.2},{2.,1.},{8.,1.}};

parameter Real[6,2]

EgrTabell={{0.,0.45},{2.,0.45},{3.,0.45},

{4.,0.45},{8.,0.45},{10.,0.45}};

Modelica.Blocks.Sources.TimeTable

ThrottleTable(table=SpjallTabell);

ModelicaAdditions.Tables.CombiTableTime

InjectionTable(table=SoppaTabell);

Modelica.Blocks.Sources.TimeTable

XVGTTable(table=VgtTabell);

Modelica.Blocks.Sources.TimeTable

68 Appendix B. Basic components

EGRTable(table=EgrTabell);

equation

tau_t*der(t)+t = ThrottleTable.y[1];

throttle.signal = t;

tau_e*der(e)+e = EGRTable.y[1];

egr.signal = e;

tau_i*der(i)+i = InjectionTable.y[1];

inj.signal = i;

tau_x*der(x)+x = XVGTTable.y[1];

xvgt.signal = x;

end Controller;

Appendix C

OM611 engine

C.1 Input data

Example of how the 3D turbine efficiency table could be constructed
in Mathematica. Data and grid-values must be merged into a single
tensor. The values of η are here chosen at random (well, via an obscure
function), the real data used in the model is a 5*40*60 table.

The input variables to the table are corrected turbo speed, blade
speed ratio and VNT-position.

TurbCorrSpeed = {150.0, 400.0, 600.0};

TurbUCs = {0.0, 0.67, 1.33, 2.0};

TurbXVGT = {0.0, 1.0};

TurbEfficiency =

Table[Max[0.1, (0.5+0.05j)(1+0.3k)Sin[i]],

{k, 0, 1}, {j, 1, 3}, {i, 0, 3}];

For[i=1; temp = {}, i<=Length[TurbXVGT], i++,

temp = Append[temp,

Prepend[Transpose[Prepend[TurbEfficiency[[i]],

TurbUCs]],

Prepend[TurbCorrSpeed, TurbXVGT[[i]]]]]];

TurbEffMatrix = Transpose[temp, {1, 3, 2}];

69

70 Appendix C. OM611 engine

0.
0.

0.67
1.33
2.

150.
0.1

0.4628
0.5001

0.1

400.
0.1

0.5049
0.5456

0.1

600.
0.1

0.5470
0.5910

0.1

1.
0

0.67
1.33
2.

150.
0.1

0.6017
0.6501
0.1009

400.
0.1

0.6563
0.7093
0.1101

600.
0.1

0.7110
0.7684
0.1192

The remaining tables are one- or two-dimensional. Below the con-
struction of a 2D combustion efficiency table. Grid-values and data are
merged here too. The η-values are of course gibberish also here, typical
actual values are smaller and the size of the real table much larger.

SpeedList = Table[1000.0+i*1500, {i, 0, 2}];

FuelProportion = Prepend[Table[0.2+i*0.4, {i, 0, 2}], 0.0];

EtaList = {{0.5, 0.5, 0.5}, {0.5, 0.5, 0.5}, {0.5, 0.5, 0.5}};

EtaMatrix =

Prepend[Transpose[Prepend[Transpose[EtaList],

SpeedList]],

FuelProportion];

0.0 0.2 0.6 1.0
1000.0 0.5 0.5 0.5
2500.0 0.5 0.5 0.5
4000.0 0.5 0.5 0.5

C.2 Engine model

This is the OM611 model with interpolating tables in turbine and
compressor, the model with polynomial fits is not presented. The if-
statements should be replaced by half-if:s in the basic components when
the function that handles them is available.

To be able to read data from the Mathematica work-space, the
model is written as a Mathematica-function which reads tabular values
for various maps. The function-call at the end of the section actually
defines the engine-model.

ReadTables[Maxfuel_, Combeff_, Exhaust_, Voleff_,

C.2. Engine model 71

InterCoolerEff_, EgrCoolerEff_, EgrArea_, ThrotArea_,

CompEff_, CompPR_, CompPhi_, TurbEff_, TurbPhi_,

TurbPulse_]:=

model EngineR

parameter Integer ngas=2;

parameter Real[ngas] cp={1005,1150};

parameter Real[ngas] gamma1={1.4,1.39};

inner EnvCut Env(n=ngas);

Flange f;

Reservoir AmbIn(Ncon=1,Ngas=ngas,c_p=cp,gamma=gamma1);

Reservoir AmbOut(Ncon=1,Ngas=ngas,c_p=cp,gamma=gamma1);

CtrlVol Inter(V=6.3*10^((-3)),Ncon=2,

Ngas=ngas,c_p=cp,gamma=gamma1);

CtrlVol Inlet(V=3.2*10^((-3)),Ncon=3,

Ngas=ngas,c_p=cp,gamma=gamma1);

CtrlVol Exmani(V=0.844*10^((-3)),Ncon=3,

Ngas=ngas,c_p=cp,gamma=gamma1);

CtrlVol Expipe(V=0.01,Ncon=2,Ngas=ngas,

c_p=cp,gamma=gamma1);

CylinderPin Cyl(Ngas=ngas, maxfuel=Maxfuel,

combeff=Combeff, exhaust=Exhaust,

voleff=Voleff, c_p=cp,

gamma=gamma1);

Axel CrankShaft(I=0.02);

CompressorR Komp(Ngas=ngas, efficiency=CompEff,

phitab=CompPhi, pressureratio=CompPR,

c_p=cp, gamma=gamma1);

TurbineR Turb(Ngas=ngas, efficiency=TurbEff,

phitab=TurbPhi, pulse=TurbPulse,

c_p=cp, gamma=gamma1);

Axel TurboShaft(I=7.71*10^(-6));

Cooler InterCooler(Ngas=ngas,

efficiency=InterCoolerEff,

c_p=cp, gamma=gamma1);

Cooler EgrCooler(Ngas=ngas, efficiency=EgrCoolerEff,

c_p=cp, gamma=gamma1);\[IndentingNewLine]

Valve MainThrottle(Ngas=ngas, EffArea=ThrotArea,

c_p=cp, gamma=gamma1);

Valve EgrThrottle(Ngas=ngas,EffArea=EgrArea,c_p=cp,

gamma=gamma1);

RestrictionC R(Ngas=ngas,A=1.5*10^((-3)),c_p=cp,

gamma=gamma1);

Controller ECU;

72 Appendix C. OM611 engine

equation

connect(AmbIn.Cut[1], Komp.Cut[1]);

connect(Komp.Cut[2], InterCooler.Cut[1]);

connect(InterCooler.Cut[2], Inter.Cut[1]);

connect(Inter.Cut[2], MainThrottle.Cut[1]);

connect(MainThrottle.Cut[2], Inlet.Cut[1]);

connect(Inlet.Cut[2], Cyl.Cut[1]);

connect(Cyl.Cut[2], Exmani.Cut[1]);

connect(Exmani.Cut[2], Turb.Cut[1]);

connect(Turb.Cut[2], Expipe.Cut[1]);

connect(Expipe.Cut[2], R.Cut[1]);

connect(R.Cut[2], AmbOut.Cut[1]);

connect(Exmani.Cut[3], EgrCooler.Cut[1]);

connect(EgrCooler.Cut[2], EgrThrottle.Cut[1]);

connect(EgrThrottle.Cut[2], Inlet.Cut[3]);

connect(Cyl.f, CrankShaft.f_a);

connect(CrankShaft.f_b, f);

connect(Komp.f_a, TurboShaft.f_a);

connect(TurboShaft.f_b, Turb.f_a);

connect(Turb.pin, ECU.xvgt);

connect(Cyl.pin, ECU.inj);

connect(MainThrottle.pin, ECU.throttle);

connect(EgrThrottle.pin, ECU.egr);

connect(Cyl.PulsePin, Turb.PulsePin);

if sum(AmbIn.mdot[1,:]) < 0 then

AmbIn.T[1] = AmbIn.T_Infinity;

else

Inter.T[1] = Inter.T_Infinity;

end if;

if sum(AmbIn.mdot[1,:]) < 0 then

AmbIn.mdot[1,2] =

AmbIn.MassFraction[2]*sum(AmbIn.mdot[1,:]);

else

Inter.mdot[1,2] =

Inter.MassFraction[2]*sum(Inter.mdot[1,:]);

end if;

if sum(Inter.mdot[2,:]) < 0 then

Inter.T[2] = Inter.T_Infinity;

else

C.2. Engine model 73

Inlet.T[1] = Inlet.T_Infinity;

end if;

if sum(Inter.mdot[2,:]) < 0 then

Inter.mdot[2,2] =

Inter.MassFraction[2]*sum(Inter.mdot[2,:]);

else

Inlet.mdot[1,2] =

Inlet.MassFraction[2]*sum(Inlet.mdot[1,:]);

end if;

if sum(Inlet.mdot[2,:]) < 0 then

Inlet.T[2] = Inlet.T_Infinity;

else

Cyl.Hdot_a+Cyl.Hdot_b+Cyl.exhWpart*Cyl.q_comb = 0;

end if;

if sum(Inlet.mdot[2,:]) < 0 then

Inlet.mdot[2,2] =

Inlet.MassFraction[2]*sum(Inlet.mdot[2,:]);

else

sum(Cyl.mdot_a)+Cyl.mdot_fuel+sum(Cyl.mdot_b) = 0;

end if;

if sum(Cyl.mdot_b) < 0 then

Cyl.Hdot_a+Cyl.Hdot_b+Cyl.exhWpart*Cyl.q_comb = 0;

else

Exmani.T[1] = Exmani.T_Infinity;

end if;

if sum(Cyl.mdot_b) < 0 then

sum(Cyl.mdot_a)+Cyl.mdot_fuel+sum(Cyl.mdot_b) = 0;

else

Exmani.mdot[1,2] =

Exmani.MassFraction[2]*sum(Exmani.mdot[1,:]);

end if;

if sum(Exmani.mdot[2,:]) < 0 then

Exmani.T[2] = Exmani.T_Infinity;

else

Expipe.T[1] = Expipe.T_Infinity;

end if;

if sum(Exmani.mdot[2,:]) < 0 then

Exmani.mdot[2,2] =

Exmani.MassFraction[2]*sum(Exmani.mdot[2,:]);

else

Expipe.mdot[1,2] =

Expipe.MassFraction[2]*sum(Expipe.mdot[1,:]);

end if;

if sum(AmbOut.mdot[1,:]) < 0 then

74 Appendix C. OM611 engine

AmbOut.T[1] = AmbOut.T_Infinity;

else

Expipe.T[2] = Expipe.T_Infinity;

end if;

if sum(AmbOut.mdot[1,:]) < 0 then

AmbOut.mdot[1,2] =

AmbOut.MassFraction[2]*sum(AmbOut.mdot[1,:]);

else

Expipe.mdot[2,2] =

Expipe.MassFraction[2]*sum(Expipe.mdot[2,:]);

end if;

if sum(Exmani.mdot[3,:]) < 0 then

Exmani.T[3] = Exmani.T_Infinity;

else

Inlet.T[3] = Inlet.T_Infinity;

end if;

if sum(Exmani.mdot[3,:]) < 0 then

Exmani.mdot[3,2] =

Exmani.MassFraction[2]*sum(Exmani.mdot[3,:]);

else

Inlet.mdot[3,2] =

Inlet.MassFraction[2]*sum(Inlet.mdot[3,:]);

end if;

end EngineR;

ReadTables[MaxFuelMatrix, EtaMatrix, ExhMatrix,

VolEffMatrix, EffMatrixInter, EffMatrixEGR,

AreaMatrixEGRThrot, AreaMatrixMainThrot,

CompEffMatrix, CompCorrPRMatrix,

CompPhiMatrix, TurbEffMatrix,

TurbPhiMatrix, TurbPulseMatrix];

C.3 Automobile model

C.3.1 Atmosphere/environment

model Environment

parameter Integer ngas=2;

EnvCut Env(n=ngas);

parameter Real p_amb=10^(5);

parameter Real T_amp=293;

parameter Real[:] Mixture={1,0};

parameter Real Incline=0;

C.3. Automobile model 75

equation

Env.p = p_amb;

Env.T = T_amp;

Env.MassFraction = Mixture;

Env.AirSpeed = 30;

Env.Incline = Incline;

end Environment;

C.3.2 Dummy transmission models

model AxelLoad

Flange f;

Real omega, N, M;

parameter Real I=1;

parameter Real B_dry=1;

parameter Real B_wet=1;

parameter Real B_aero=1;

constant Real Pi=Modelica.Constants.pi;

equation

omega = f.omega;

omega = (2*Pi/60)*N;

M = f.M;

I*der(omega) = M-B_dry-B_wet*omega-B_aero*omega^(2);

end AxelLoad;

model AxelSpeed

Flange f;

Real omega, N, M;

constant Real Pi=Modelica.Constants.pi;

parameter Real N_const=2500;

equation

omega = f.omega;

omega = (2*Pi/60)*N;

M = f.M;

N = N_const;

end AxelSpeed;omega;

C.3.3 Complete automobiles

This is the model used in the “Back-flow through EGR”-simulation and
in the comparison with the Simulink model.

76 Appendix C. OM611 engine

model Speed

EngineR engine;

AxelSpeed clutch;

Environment environment;

equation

connect(engine.f, clutch.f);

connect(engine.Env, environment.Env);

end Speed;

This model is used in the “Driving a load”-simulation. The engine
model EngineS is not accounted for here, but it includes CompressorS
and TurbineS.

model AutoLoad

EngineS engine;

AxelLoad clutch;

Environment environment;

equation

connect(engine.f, clutch.f);

connect(engine.Env, environment.Env);

end AutoLoad;

Appendix D

Simulations

The simulation-calls with initial values of states and inputs via the
ECU and transmission modules.

D.1 Driving a load

load=Simulate[AutoLoad, {t, 0, 12},

ParameterValues -> {

clutch.B_dry == 5,

clutch.B_wet == 0.1,

clutch.B_aero == 2.5*10^(-3),

clutch.I == 0.2,

engine.ECU.SoppaTabell ==

{{0.0, 20*10^(-6)}, {6.0, 20*10^(-6)},

{6.0, 40*10^(-6)}, {8.0, 40*10^(-6)},

{8.0, 20*10^(-6)}, {10.0, 20*10^(-6)},

{10.0, 40*10^(-6)}, {12.0, 40*10^(-6)}},

engine.ECU.VgtTabell ==

{{0.0, 0.1}, {1.0, 0.1},

{1.0, 1.0}, {6.0, 1.0},

{6.0, 0.6}, {6.5, 0.6}

{6.5, 1.0}, {12.0, 1.0}},

engine.ECU.EgrTabell ==

{{0.0, 0.0}, {2.0, 0.0},

{2.0, 1.0}, {3.0, 1.0},

{3.0, 0.0}, {12.0, 0.0}},

engine.ECU.SpjallTabell ==

{{0.0, 1.0}, {4.0, 1.0},

{4.0, 0.2}, {5.0, 0.2},

77

78 Appendix D. Simulations

{5.0, 1.0}, {12.0, 1.0}}},

InitialValues -> {

engine.TurboShaft.omega == 5.5*10^3,

clutch.omega == 180,

engine.Inter.M == {7.3*10^(-3), 0.1*10^(-3)},

engine.Inter.U == 1600,

engine.Inlet.M == {3.6*10^(-3), 0.1*10^(-3)},

engine.Inlet.U == 800,

engine.Exmani.M == {0.5*10^(-3), 0.1*10^(-3)},

engine.Exmani.U == 230,

engine.Expipe.M == {4.5*10^(-3), 0.1*10^(-3)},

engine.Expipe.U == 2500,

engine.ECU.i == 20*10^(-6),

engine.ECU.x == 1,

engine.ECU.t == 1,

engine.ECU.e == 0,

engine.Cyl.mdot_a == {0.08, 0.01},

engine.Cyl.mdot_b[[1]] == -0.09,

engine.Exmani.T[[1]] == 1000,

engine.Exmani.T[[2]] == 900,

engine.Inlet.T[[2]] == 390},

NumberOfIntervals->12000

];

D.2 Back-flow through EGR

backflow=Simulate[AutoSpeed, {t, 0, 4},

ParameterValues -> {

clutch.N_const == 3500,

engine.ECU.SoppaTabell ==

{{0.0, 35 10^(-6)}, {1.0, 50*10^(-6)},

{2.0, 50*10^(-6)}, {2.0, 10*10^(-6)},

{4.0, 10*10^(-6)}, {7.0, 10*10^(-6)}},

engine.ECU.VgtTabell ==

{{0.0, 1.0}, {1.0, 0.2}, {1.1, 0.2},

{2.0, 0.2}, {2.0, 1.0}, {8.0, 1.0}},

engine.ECU.EgrTabell ==

{{0.0, 0.45}, {2.0, 0.45}, {3.0, 0.45},

{4.0, 0.45}, {8.0, 0.45}, {10.0, 0.45}},

engine.ECU.tau_i == 0.006, engine.ECU.tau_x == 0.02},

D.3. Fuel-step 79

InitialValues -> {

engine.TurboShaft.omega == 7.5*10^3,

engine.Inter.M == {10*10^(-3), 0.0001*10^(-3)},

engine.Inter.U == 3000,

engine.Inlet.M == {5*10^(-3), 0.0001*10^(-3)},

engine.Inlet.U == 1500,

engine.Exmani.M == {0.5*10^(-3), 0.0001*10^(-3)},

engine.Exmani.U == 800,

engine.Expipe.M == {0.0064, 0.001*10^(-3)},

engine.Expipe.U == 4200,

engine.ECU.i == 35*10^(-6),

engine.ECU.x == 1}

];

D.3 Fuel-step

fuelstep=Simulate[AutoSpeed, {t, 0, 4},

ParameterValues -> {

clutch.N_const == 3500,

engine.ECU.SoppaTabell ==

{{0.0, 35*10^(-6)}, {1.0, 15*10^(-6)},

{2.0, 15*10^(-6)}, {2.0, 50*10^(-6)},

{4.0, 50*10^(-6)}, {10.0, 15*10^(-6)}},

engine.ECU.VgtTabell ==

{{0.0, 1.0}, {2.0, 1.0}, {2.0, 1.0},

{3.5, 1.0}, {3.6, 1.0}, {4.0, 1.0}},

engine.ECU.EgrTabell ==

{{0.0, 0.0}, {2.0, 0.0}, {3.0, 0.0},

{4.0, 0.0}, {8.0, 0.0}, {10.0, 0.0}},

engine.ECU.tau_i == 0.006,

engine.ECU.tau_x == 0.02},

InitialValues -> {

engine.TurboShaft.omega == 7.5*10^3,

engine.Inter.M == {10*10^(-3), 0.0001*10^(-3)},

engine.Inter.U == 3000,

engine.Inlet.M == {5*10^(-3), 0.0001*10^(-3)},

engine.Inlet.U == 1500,

engine.Exmani.M == {0.5*10^(-3), 0.0001*10^(-3)},

engine.Exmani.U == 800,

engine.Expipe.M == {0.0064, 0.001*10^(-3)},

engine.Expipe.U == 4200,

engine.ECU.i == 35*10^(-6),

80 Appendix D. Simulations

engine.ECU.x == 1}

];

D.4 VNT-step

vgtstep=Simulate[AutoSpeed, {t, 0, 4},

ParameterValues -> {

clutch.N_const == 3500,

engine.ECU.SoppaTabell ==

{{0.0, 35*10^(-6)}, {2.0, 35*10^(-6)},

{2.0, 35*10^(-6)}, {4.0, 35*10^(-6)},

{7.0, 15*10^(-6)}, {10.0, 15*10^(-6)}},

engine.ECU.VgtTabell ==

{{0.0, 1.0}, {2.0, 1.0}, {2.0, 0.4},

{4.0, 0.4}, {5.0, 0.4}, {10.0, 0.4}},

engine.ECU.EgrTabell ==

{{0.0, 0.0}, {2.0, 0.0}, {3.0, 0.0},

{4.0, 0.0}, {8.0, 0.0}, {10.0, 0.0}}},

InitialValues -> {

engine.TurboShaft.omega == 5.5*10^3,

engine.Inter.M == {10*10^(-3), 0.0001*10^(-3)},

engine.Inter.U == 3000,

engine.Inlet.M == {5*10^(-3), 0.0001*10^(-3)},

engine.Inlet.U == 1500,

engine.Exmani.M == {0.5*10^(-3), 0.0001*10^(-3)},

engine.Exmani.U == 800,

engine.Expipe.M == {0.0064, 0.001*10^(-3)},

engine.Expipe.U == 4200,

engine.ECU.i == 35*10^(-6),

engine.ECU.x == 1}

];

