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Reg nr: LiTH-ISY-EX-3462-2004

25th February 2004





A comparative study of two structural
methods for fault isolability analysis

Master’s thesis

performed in Vehicular Systems,
Dept. of Electrical Engineering
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Dilek Düstegör
Lille University of Science and Technology

Examiner: Erik Frisk
Linköpings Universitet
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Abstract

Technical systems of today are often complex and integrated. If a fault
occurs, the consequences can be disastrous both for the system itself
and its surroundings. To maintain the operation and the security it is
necessary to have a surveillance system which can detect a fault in an
early stage.

In this thesis two structural methods for fault isolation analysis are
discussed. The result from the studied algorithms shows what fault
isolation properties a diagnostic model is expected to have. If the isola-
bility is not good enough, it also gives information on where further
modelling needs to be done.

To base a comparison of the two structural analysis algorithms on,
four criteria are defined concerning for example realizability of residu-
als and time complexity. One interesting part of the methods is how
dynamic models are handled. It is shown how differential constraints
can end up in differential cycles which implies calculatory problems and
what effects structural differentiation has on a system.

The algorithms have been tested on an application from the research
training network DAMADICS. The result shows how different types of
input models in this case give the same result.

Keywords: Structural analysis, Model based diagnosis, DAMADICS
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Chapter 1

Introduction

Technical systems of today are often complex and integrated. If a fault
occurs, the consequences can be disastrous both for the system itself
and its surroundings. To maintain the operation and the security it
is necessary to have a surveillance system which can detect a fault at
an early stage. Preferably, the surveillance system is connected with a
diagnosis system which can interpret the systems behavior and more
precisely isolate the faulty component [? ].

A model based method of supervision and diagnosis is based on verify-
ing the consistency between a model of the system and measurements
from the process. If they are consistent, the system is probably in a
functioning mode. If they are not consistent, a fault is detected. De-
pending on the accuracy of the model, and its extent, a diagnosis can
be made.

One disadvantage with this method is that modelling is an expensive
and time consuming process and even if a detailed model is used, its
fault detectability/isolability, (FDI) can be low. It would be of great ad-
vantage if the FDI properties of a diagnosis system could be estimated
at an early stage and if they are not satisfactory, receiving information
on where to model further and/or place additional sensors.

Structural analysis is a method which can be used to determine proper-
ties of a model such as fault detectability/isolability. Its strength lies in
that it is not dependent on analytical relations, but only the existence
of a relation between a variable and a constraint. Consider for example
the well known analytical equation describing the velocity below:

constraint, c : velocity, v =
distance, d

time, t

1



2 Chapter 1. Introduction

Its structural correspondence is:

constraint c contains the variables velocity, distance and time

or shorter:

c : v, d, t.

With this way to represent a system it is possible to investigate what
to expect of a diagnosis system. How the analysis is made is going to
be thoroughly explained in this thesis.

The structural analysis can be used for other purposes than fault detec-
tion/isolation. Other applications can for example be sensor placement
for fault detection/isolation [? ] and reconfigurability analysis for fault
tolerant control [? ]. This thesis will focus on structural analysis for
fault detection and isolation.

1.1 Objectives

Fault detection/isolation has been studied in for example [? ], [? ]
and [? ]. There is not yet a standardized way to perform a struc-
tural analysis and the methods vary when it comes to handling dy-
namic systems for example. In this thesis two structural analysis al-
gorithms are studied. One is developed at Department of Vehicular
systems at Linköping University, Sweden and the other at Laboratoire
d’Automatique et d’Informatique Industrielle de Lille, France. The
objectives of this report is threefold.

• Define criteria to base a comparison of the algorithms on.

• Point out the differences between the two structural analysis
methods, and to discuss their advantages and disadvantages con-
cerning the choice of models, implementations and performance.

• Use the two methods on a real application taken from a valve in
a sugar factory in Poland.

The last point is a part of a European research training network called
DAMADICS 1.

1Development and Application of Methods for Actuator Diagnosis in Industrial
Control Systems, 1/7/2000 - 30/6/2003
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1.2 Contributions

The main contribution of this thesis is a discussion about the differences
in the two algorithms and the criteria which the discussion is partly
based upon. Furthermore a graphical user interface was implemented
to fit the Lille algorithm and functions performing decoupling of faults
were developed.

1.3 Outline of the thesis

The first five chapters of this thesis can be considered as an introduction
to understand what structural analysis is. In Chapter 2 the foundations
for structural analysis are explained and in Chapter 3 it is highlighted
which desired properties such an algorithm should posses. Chapter 4
describes shortly the algorithms based on what has been discussed in
Chapter 2 and in Chapter 5 they are exemplified with a small tank
example. In Chapter 6, a thorough discussion is made based upon
the previous chapters. This is the main contribution of my work. In
Chapter 7 the two algorithms are run on an example from a valve
in a sugar factory. Chapter 8 shows my programming contributions
and in Chapter 9 my conclusions and suggestions for further work are
presented.





Chapter 2

Introduction to
structural analysis for
fault isolation

Structural analysis is based on only the existence of relations between
variables and equations in a model. Normally when dealing with models
the variables and the equations are connected via analytical functions
and parameters. In structural analysis however only the information
that a variable appears in an equation is considered. This way of regard-
ing a system permits investigations concerning the structure without
the complexity that follows with analytical functions. It is therefore an
efficient tool in for example a model building process where it can be
used to, only by regarding the structure, determine if some parts of the
model need to be modelled further. It does not however exclude the
model building itself, it only gives guidelines on what you can expect
from the system.

The applications of structural analysis can for example be in the process
industry where the systems are complex and it is not affordable to make
detailed models of the whole processes. With structural analysis you
can start with an existing analytical model, extract the structure of the
model, perform a fault isolation analysis and get information if there
are specific parts that need to be modelled further to obtain the desired
fault isolability. Another application is reconfiguration of system. A
good example of this is the control of a satellite, where it is impossible to
repair any hardware faults. In this case a reconfigurability algorithm
can find a new optimal way to control the satellite if for example a
sensor fails.

5



6 Chapter 2. Introduction to structural analysis for fault isolation

The purpose of this chapter is to give an introduction to model based
fault diagnosis and to describe the main steps performed in a structural
analysis. Since the main purpose of this thesis is to investigate two
algorithms for fault isolability analysis, it is also explained the main
ideas how to perform such an analysis.

2.1 Model Based Diagnosis

When diagnosing a system, an expected value is compared with an ob-
served. If they do not correspond, an alarm is raised. The expected
values are derived from a model of the system, and by adding infor-
mation of how faults affect the system, it is possible to increase the
precision of the diagnostic statement.

Diagnostic SystemSystem
Diagnostic Statement =

= {Possible explanations}

Observations

Diagnostic Model Knowledge of expected behaviors

Figure 2.1: A diagnosis system and how it interacts with the real sys-
tem.

In Figure 2.1, the system is described with a diagnostic model where the
faults are modelled. However, when the expected behavior is calculated,
it is based on a model where the faults are said to be zero. This to
describe the system in a functioning mode. If the expected behavior
does not match with the observations in the diagnostic system, some of
the diagnostic tests in Figure 2.2 are going to raise an alarm. By using
logics on which tests that have reacted and knowledge of which faults
that may influence which tests, a diagnostic statement can be made.

...

Fault Isolation

Diagnostic Test 1

Diagnostic System

Diagnostic Test 2

Diagnostic Test n

Diagnostic

Statement

Observations

Figure 2.2: Architecture of a diagnosis system.
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The choice of diagnostic tests are several, in this thesis each test consists
of an Analytical Redundancy Relation, ARR (also called consistency
relation or parity relation). An ARR is an equation based on only
known signals such as actuator or sensor signals and it always equals
zero when no faults are present and nonzero when a certain set of
faults occur. The resulting signal from the ARR is called a residual.
In Figure 2.3 a residual is shown. As can be seen it ”equals” zero until
t=5 which means that no fault is detected. At t=5 it reacts due to a
fault.

By creating a number of such residuals, all sensitive to different sets of
faults, a diagnostic statement can be made by using logics. An example
of this is shown in the following example.

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2.3: Example of two residuals, at t=5 one of the residuals re-
spond to a fault.

Example 2.1
A diagnosis system is based on three residuals. Each residual is sensitive
to the faults according to the table below:

f1 f2 f3

r1 1 0 0
r2 1 1 0
r3 0 1 1

From the plots in Figure 2.4, the result can be drawn that it is fault
f2 that has occurred. The result is derived as follows: For residual
r2, f3 cannot have caused the reaction since r2 is not sensitive to f3

according to the given fault sensitivity table. In the last plot f1 cannot
have caused the response in r3. It leaves that the fault has to be f2.
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0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) Residual, r1, sensi-
tive to f1.

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) Residual, r2, sensi-
tive to f1 and f2.

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(c) Residual, r3, sensitive
to f2 and f3.

Figure 2.4: Residuals.

ARR:s are discussed further in Section 2.7 and more information on
model based diagnosis can be found in [? ].

In the following part of this chapter, the general ideas and steps in a
structural analysis algorithm are presented. The goal is here to ana-
lyze the fault isolability. First a structural model is needed, then the
relevant data is extracted from that model in order to find a way to
create ARR:s. When found, it is discussed how the ARR:s can be used
together to make a fault isolation analysis. All these necessary steps
are going to be explained in the remaining part of this chapter.

2.2 Structural models

In this section a structural model is going to be defined based upon an
analytical model. Two ways of representing the structural system are
also presented.

A system can mathematically be described by a set of equations, which
in their turn consist of variables, parameters and analytical functions.
The set of equations (also called constraints) are denoted C and the
set of variables Z. The variables can be divided in two parts, known
and unknown. Examples of known variables are actuator and sensor
signals. Unknown ones are internal states, noise and faults. Henceforth
the known signals are denoted Y. The unknown variables are divided
into state variables, X and faults F. In Example 2 a small system is
used to show how the equations and the variables are parted in the
different sets.
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Example 2.2
Consider a small system with two states, x1, x2 , two sensor signals

y1, y2, an actuator signal u and a fault f :

c1 : x1 = x2 + u

c2 : y2 = x2 + f

c3 : y1 = x1

With the introduced notation the different sets would contain the ele-
ments as follows:

C = {c1, c2, c3}
Z = X ∪ Y ∪ F

X = {x1, x2}, Y = {u, y1, y2}, F = {fy2}

As said in the introduction, it is the relations between equations in C
and variables in Z that are of interest. To represent these connections
a matrix called the incidence matrix can be used. In the matrix the
rows correspond to the equations and the columns to the variables. In
Figure 2.5 the incidence matrix for the small system in the previous
example is shown.

x1 x2 u y1 y2 fy2

c1 1 1 1 0 0 0
c2 0 1 0 0 1 1
c3 1 0 0 1 0 0

Figure 2.5: Incidence matrix for the small example.

The advantage of this representation is that it is easy to base the al-
gorithms (that are going to be presented later) on an input on this
matrix form. However there are more ways to represent the structural
system that are equivalent to the incidence matrix. One is by a bi-
partite graph. (Further described in [? ] and [? ]) The definition of a
bi-partite graph reads:
Definition 1 (Bi-partite graph). A graph that consists of two dis-
joint sets of vertices such that every edge has one of its vertices in one
set and its other in the other set, is called a bi-partite graph.

The two disjoint vertices in our case are equations and variables. The
edges between them represent the connections. In Figure 2.6 the bi-
partite graph of the system in Example 2 is shown.
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constraints

variables

connections

c3 c1 c2

y1 x1 u x2 y2 fy2

vertex

vertex

edge

Figure 2.6: The bi-partite graph of the small example.

The advantage of using bi-partite graphs is that results from graph
theory can be used. A structural model can be defined as follows using
graph theory.
Definition 2 (Structural model). The structural model of the sys-
tem consisting of the set of equations C and the set of variables Z is a
bi-partite graph (C,Z, E) where E ⊂ C × Z is the set of edges defined
by:

(ci, zj) ∈ E if the variable zj appears in the constraint ci.

Note that the two representations are equivalent and the choice of which
one to use depends on the application. Henceforth both of the repre-
sentations are used to show different structural phenomena. In some
cases both are used together to point out that they are equivalent. The
structural model is what the following calculations are based upon.

2.3 Considering derivatives

So far, the structural model has been based on a static system, but
many real systems are dynamic. Therefore it is necessary to find a way
to handle derivatives.

To visualize the need of knowledge of how to handle derivatives the
following example is used.

c1 ẋ1 = x2 + u (2.1)
c2 y = x1 (2.2)

Using the same straightforward technique as before its bi-partite graph
is as follows. Here the known signals are represented with dashed lines
to separate them from the unknown signals.

x2u x1

c1 c2

yẋ1
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As can be seen in the figure, in the first part there are two unknown
variables, x2 and ẋi and only one known, u. They cannot both be
calculated by only one known variable. In the second part there is
one known variable, y and one unknown, x1 which can be calculated.
By adding information that ẋ is a derivative of x these parts can be
combined and both of the unknown variables in the first part can be
calculated. However, this can be done in different ways. The purpose
of this section is to clarify that the choices of how to handle dynamic
models are several and what the main differences are. Here three ways
of handel dynamics are discussed:

1. The variable and its derivative are considered to be two differ-
ent variables connected via differential constraint. The model is
extended with differential equations like ẋ = dx

dt for each differ-
entiated variable.[? ]

2. The variable x and its derivative ẋ are considered to be two differ-
ent variables and they are combined via structural differentiation.
[? ]

3. The variable x and its derivative ẋ are considered to be struc-
turally the same. [? ]

When introducing the algorithms to perform a structural analysis in
Chapter 4, two different representations are for example used. Below,
the three representations are discussed and it is shown how the dynam-
ics are included in the analytical model and in the bi-partite graph.

2.3.1 Connection by differential constraint

This way to handle the derivatives always add extra differential con-
straints to the original model. The extended model in this case is:

ẋ1 = x2 + u

y = x1

ẋ1 =
dx1

dt

And its corresponding bi-partite graph is:

u x2 x1 y

c1 c3 c2

ẋ1
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Note that all variables can be calculated. By the second constraint
x1 can be calculated, which in its turn is used to calculate ẋ1. The
remaining unknown variable is x2 which now can be solved by the first
constraint.

2.3.2 Structural differentiation

This approach depends on a method called structural differentiation.
It connects a variable and its derivative by deriving an equation where
the undifferentiated version of the variable appears in. Since structural
differentiation can be made arbitrarily many times, a stop condition is
introduced. This condition can be created in many ways and one of
them is to limit the number of derivatives of the known signals. When
the limit is reached, the structural differentiation algorithm ends.

In the example here the second equation can be derived if it is assumed
that y is differentiable once. Then the system becomes:

c1 ẋ1 = x2 + u

c2 y = x1

ċ2 ẏ = ẋ1

And the bipartite graph is:

x1u x2

c1 c2 ċ2

ẋ1 y ẏ

Note that the structural differentiation added a constraint that con-
nected ẋ1 to a known variable, ẏ and that x1 is linear in c2 and ẋ1 in
ċ2. To show the difference between linear and nonlinear appearances
lets modify Equation (2.1) to:

c1 ẋ1 = x2 + u

c2 y = x1x2

When deriving c2, ċ2 will become:

ċ2 ẏ = ẋ1x2 + x1ẋ2

Here, x1 and x2 are nonlinear in c2 and in ċ2 the variables x1, x2, ẋ1

and ẋ2 are nonlinear. This can be concluded as:

• If x is linearly contained in c then ẋ is linearly contained in ċ.

• If x is nonlinearly contained in c then both x and ẋ are nonlinearly
contained in ċ.
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2.3.3 Dynamic variables treated as static

The third way to model derivatives, is to handle x and ẋ as structurally
the same variable. An interpretation of this is that the values of the
derivatives of x in the model can be calculated from x.

x1 = x2 + u

y = x1

The bipartite graph is:

u x2 x1
y

c1 c2

Note that both of the unknown variables can be calculated.

In the rest of this chapter, only static systems are used. For the purpose
of describing the new concepts this is no limitation.

2.4 Redundancy and structure

In Section 2.1, it was said that ARR:s were used to generate residuals.
The creation of ARR:s is dependent on a concept named redundancy
which is going to be described in this section. It is also discussed how
the structure of the incidence matrix is connected with this concept.

Redundancy can be described as extra information in a system and is
used to verify previous results. It occurs when the number of equa-
tions are larger than the number of unknown variables, that is when
the system is overdetermined. When equally many equations as the
unknown variables has been used to calculate the unknown variables,
it still remains equations to verify the results. To clarify this a small
example is used.

Example 2.3
Consider again the small system:

c1 : x1 = x2 + u

c2 : y2 = x2 + fy2

c3 : y1 = x1
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Since the ARR:s are used to predict the system’s behavior when no
fault is present, the term fy2 is considered to be zero. The system
is left with two unknown variables, x1 and x2 and three equations.
Now, two of the equations are needed to calculate x1 and x2 and the
redundancy is present with the third equation. For example, x1 can be
calculated by c3 and x2 by c2. Inserted in c1 the ARR becomes

y1 − y2 − u = 0

Note that only known signals are used and that it should equal zero if
no fault is present.

In terms of the incidence matrix, redundancy exists only in an overde-
termined system when only regarding the unknown variables and the
equations. The already known variables do not need to be considered.
As said before, the faults are not regarded since the use of the redun-
dancy is creating ARR:s which in turn are used to predict the behavior
of the fault free system.

2.5 Extracting the overdetermined part of
a system

It was described in the previous section why redundancy is of impor-
tance in diagnosis. But, when having a structural model, is it obvious
that there always exist redundancy for the whole system? The answer
is no. In this section it is shown how to investigate if there is redun-
dancy in the system and if so, how to extract that part from the rest
of the system.

There are tools to extract the part of a system that contains redun-
dancy. A method called canonical decomposition uses only row and
column permutations on the incidence matrix to divide the system into
three parts, where one of them contains redundancy. The three parts
are:

• the underdetermined part, denoted S−, contains more variables
than equation and therefore an unambiguous do not exist. There
are infinitely many solutions.

• the justdetermined part, S0, contains as many variables as equa-
tions. All variables can be calculated unambiguously.

• the overdetermined part, S+, contains more equations than vari-
ables. The variables can be calculated and verified.
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Figure 2.7: Canonical decomposition of an arbitrary system. It consists
of three parts; the overdetermined S+, the just determined S0 and the
under determined S−

If there exists redundancy, this means that S+ is nonzero. A schematic
figure of a decomposed incidence matrix is shown in Figure 2.7. The
three parts S−, S0 and S+ are shown. The bold line represents that
the variables can be calculated by the equations. The underdetermined
part contains more variables then equations and therefore not all of the
variables can be calculated unambiguously. There exist many solutions.
The justdetermined part allows each variable to be calculated and so
does also the overdetermined part but it has also additional equations
to verify the results. Outside of the blocks there are two areas. The
lower one consists only of zeros and the upper of either ”0” or ”1”:s.

Practically the decomposition can be made in matlab by the com-
mand dmperm, named by the developers behind these permutations,
Duhlmage and Mendelsson. Since the under- and justdetermined parts
contain no redundancy and therefore are of no interest for our pur-
pose, it is only the overdetermined part of the system that need to be
considered henceforth. The goal to extract the overdetermined part is
achieved! To show how a decomposition can be made, the following
example is introduced.

Example 2.4
In this example a system is decomposed. In Figure 2.8(a) it is shown

the initial structure of an incidence matrix. It consists of nine equations
and eight unknown variables. It is hard from this representation to de-
termine if there exists redundancy. After using the dmperm command
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the matrix is decomposed and the new structure is shown in Figure
2.8(b). The overdetermined subsystem consists of three unknown vari-
ables and five equations, {3, 4, 6, 8, 9}. Note the resemblance with the
structure in figure 2.7. It is shown that there is an overdetermined part
that can be used for further analysis.

1 2 3 4 5 6 7 8

 1 

2 

3 

4 

5 

6 

7 

8 

9 

(a) Initial system.

8 3 5 1 6 4 7 2

7

2

1

5

8

9

3

6

4

(b) Decomposed system.

Figure 2.8: Initial and decomposed system. The lower block is the
overdetermined part which can be used for diagnosis.

2.6 Matchings, the first step in finding ARR:s

Now, when we possess a system with guaranteed redundancy, we can
start the actual calculations to find ARR:s. The goal of this section is
to find a way such that ARR:s can be created.

Lets return to the schematic figure of the overdetermined part of the
decomposed system in Figure 2.7. The overdetermined part can itself
be divided in two parts, a just determined part where the unknown
variables can be calculated and a redundant part where the result can
be tested in the redundant equations. Are the order of these equations
always the same? Is it always the same equations that are used to
calculate the variables and the same equations in the redundant part?
The answer is no and this implies that the redundancy can be created
in many different ways.

This is illustrated in Figure 2.9 where the overdetermined part of the
system in Example 4 is used. In the middle it is shown two possibilities
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(there are altogether 17 different ways) to place the bold line which
represents that the variables can be solved using the corresponding
equation. This connection between all the variables and equations is
called a matching. In both cases, it leaves two redundant equations.
Note that the redundant equations are not the same and by using only
row permutations the ”original” look is obtained. The conclusion is
that a system with redundancy can alter where the redundancy lies.
For each one of these redundant equations, it can be shown that an
ARR can be created. The number of possible ARR:s is therefore here
the number of different matchings (”ways to place out the bold line”)
times the number of redundant equations.

Figure 2.9: Overdetermined part from Example 4. The redundant
equations can be chosen in several ways.

Lets return to the concept of a matching. What does it mean and what
does it imply? In Section 2.4 it was said that in order to calculate the
unknown variables, the number of equations has to equal the number of
unknown variables. A matching is used to represent this calculability
by assigning an equation to a variable. In other words, the assigned
equation is used to solve the variable. It implies that in a matching
the equation and the variable can only be matched once. In this thesis,
complete matchings with regard of the variables are used, which means
that all the variables have to be matched. A definition based on graph
theory reads:
Definition 3 (Matching). A matching in the bi-partite graph is a
subset of edges such that they have no common node. If all of the
vertices corresponding to the variables have edges in the matching it is
said to be complete with regard to the variables.

For the incidence matrix a matching can be characterized by circled en-
tries. A complete matching correspond to that all variables must have
one and only one circled element in each column. Regarding the equa-
tions, each row can have at most one circled entry. In the following
example two different matchings are described with both representa-
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tions.

Example 2.5
Consider again Example 2. One possible matching is shown in Figure
2.10(a). In the graph, the solid circles are the unknown variables and
the dashed are known ones. In the incidence matrix the matching is
represented by the bold elements. The redundancy in this case lies in
c3 where the calculated value of x1 can be compared to the one given by
the sensor signal y1. Another possible matching is given by the graph
in Figure 2.10(c). Note that the known variables do not need to be
matched, their purpose here is only to make it easier to recognize the
system’s structure.

x2x1y1 y2u

c3 c1 c2

(a) The first matching.

x1 x2 u y1 y2 fy2

c1 1© 1 1 0 0 0
c2 0 1© 0 0 1 1
c3 1 0 0 1 0 0

(b) Incidence matrix for the first match-
ing.

x2x1y1 y2u

c3 c1 c2

(c) The second matching

x1 x2 u y1 y2 fy2

c1 1 1 1 0 0 0
c2 0 1© 0 0 1 1
c3 1© 0 0 1 0 0

(d) Incidence matrix for the second match-
ing.

Figure 2.10: Two matching represented by bi-partite graphs and cor-
responding incidence matrices.

To represent the fact that in a matched equation all the variables except
the matched one has to be known, directed edges are introduced. If
an edge points at a variable it means that the variable is given by
this constraint. If an edge points at a constraint it represents that
the variable is needed in that constraint in order to calculate another
variable. In other words, for a matching to be complete with respect
to the variables, all unknown variables have one and only one edge
pointing at them.

In Figure 2.11 the two previous graphs are represented as directed bi-
partite graphs. The graphs have also been given another layout to make



2.7. Analytical redundancy relations and MSS sets 19

them easier to follow.

y1 u

y2

x1

zero

c1

c2

c3

x2

(a) Directed graph to the first match-
ing.

y1 u

y2

x1

zero

c1

c2

c3

x2

(b) Directed graph to the second
matching.

Figure 2.11: Directed graphs.

With these directed edges, an order of calculation is introduced. It
always starts with the known variables and works its way to the redun-
dant equation. In Figure 2.11 (a) the calculations start with y1, u and
y2 and following the directions of the edges the calculation stops at the
redundant equation, here c3, which is later used to create an ARR. The
”zero-argument” represents that in the fault free case, the ARR based
on that redundant equation should equal zero. In b) all the variables
are known in constraint c1 and therefore it is used when creating an
ARR.

2.7 Analytical redundancy relations and MSS
sets

So far in this chapter, ARR:s have been mentioned a numerous number
of times. The previous steps have all been focused on the process of
finding ARR:s. In this section, the focus will be on the ARR rather
then the process of finding it. A new concept related to the ARR:s is
also introduced. To start with, an ARR is defined as follows.
Definition 4 (Analytical Redundancy Relation). If a system C
contains the variables X and Y, and is in a non fault state, a consis-
tency relation, c, is a scalar equation such that c(y) = 0

One might ask oneself how the ARR:s are used. An ARR is a re-
lation describing how to combine known signals in a way such that
they always equals zero in the fault free case and non zero when a
certain set of faults occur. This is shown in the following example.



20 Chapter 2. Introduction to structural analysis for fault isolation

Example 2.6
Once again the system in Example 2 is used.

c1 : x1 = x2 + u (2.3)
c2 : y2 = x2 + fy2 (2.4)
c3 : y1 = x1 (2.5)

Assume that x1 and x2 are matched with c3 and c2 respectively. This
gives that the first equation is redundant and can be used to create
an ARR. The directed graph is shown in Figure 2.10(c). The ARR is
constructed by replacing x1 and x2 in c1 with the sensor signals in c2

and c3.
x1 = y1 (c3)
x2 = y2 (c2)

}
⇒

in equation c1

y1 = y2 + u ⇐⇒ 0 = y2 − y1 + u

There exists a correspondence to ARR:s which only regards the set of
equations that are needed to make an ARR. They are called Minimal
Structurally Singular sets or shorter MSS sets. These sets state which
equations that are needed in order to create an ARR but contain no
information about how the equations should be used. From these sets it
can also be derived which faults they are sensitive to. These definitions
are taken from [? ].
Definition 5 (Structurally Singular, SS). A finite set of equations
C is structurally singular with respect to the set of variables X if |C| >
|varX (C)|, where |C| is the number of elements in C and |varX (C)| is
the number of unknown variables in the set C.
Definition 6 (Minimal Structurally Singular, MSS). A struc-
turally singular set is a minimal structurally singular (MSS) set if none
of its proper subsets are structurally singular.

What Definition 5 says is that if a set is SS, the number of variables
appearing in that set are fewer than the number of equations in that
set. This implies that it is an overdetermined system. The MSS is
minimal in in the sense that it is an overdetermined system with only
one redundant equation. From a set that is SS it can be possible to
find many different MSS:s.
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For our purpose, which one of ARR:s or MSS:s that is used is of no
importance. For fault isolation analysis both can be used. The choice
of using ARR:s or MSS:s is a question of design of the diagnosis sys-
tem and which applications that are wanted to be performed after the
structural analysis. In Chapter 4 it is shown that ARR:s are a base for
fault isolation for the algorithm developed in Lille, and MSS:es for the
one developed in Linköping.

Example 2.7
In Figure 2.9 it was shown how matchings can be made in many ways
in an overdetermined system. In this example, one of the matchings
is going to be used to derive ARR;s which can be used in a diagnostic
system such as the one introduced in 2.1, and to exemplify the two
defined sets above. First, assume that the system in Figure 2.9 was
derived from the following equations.

x3 = y3 + fy3 (2.6a)
x1 = 2x2 + u + fu (2.6b)

x1 + x2 = y2 (2.6c)
x2 = x3 − x1 (2.6d)

x2 + x3 = y1 (2.6e)

The system consists of three unknown variables, an actuator signal
(with a possible fault) and three sensor signals, where y3 can have
an additive fault. The system is an SS system since the number of
constraints (5) is larger then the number of unknown variables (3). It
is not an MSS however, since it is going to be shown that there are
subsystems that are structurally singular as well.

When creating the ARR:s the faults are excluded from the equations
(said to be zero). However, it is kept in mind that there are two faults
and in which equations they appear in, why is going to be explained
later.

Consider the matching in Figure 2.9 that corresponds to the lower case.
The matching is:

c1 − x3

c3 − x1

c5 − x2



22 Chapter 2. Introduction to structural analysis for fault isolation

Using these equations to express the unknown variables with only
known ones, gives the equations below. On the right it is shown which
equations that have been used in the calculations for each variable.

x3 = y3 {1}
x2 = y1 − y3 {1, 5}
x1 = y2 − y1 + y3 {1, 3, 5}

The redundant equations, (2.6b) and (2.6d) can now be used to create
ARR:s. Once again the equations that have been used in any form to
create the relations are shown to the right.

Using Equation (2.6b), the following ARR is obtained:

y2 − y1 + y3 = 2y1 − 2y3 + u ⇐⇒
0 = 3y1 − 3y3 − y2 + u {1, 2, 3, 5}

Using Equation (2.6d), the following ARR is obtained:

y1 − y3 = y3 − y2 − y1 + y3 ⇐⇒
0 = 2y1 + y2 − 3y3 {1, 3, 4, 5}

The ARR:s are found, but it still remains to say which fault sensitivity
they have before they can be used in a diagnosis system. For a fault
to be able to make an ARR to react, it has to be included in one or
more of the equations that have been used to create that ARR. In this
case there are two faults, in Equation (2.6a) and in Equation (2.6b),
respectively. As can be seen in the first ARR, both of these equations
have been used and therefore the ARR can react on both of the faults.
The second ARR can only react on fy3 since Equation (2.6b) is not
included in the set.

Lets consider the sets of equations needed to create the ARR:s. In both
cases the sets consist of four equations used to solve three unknown
variables and to create an ARR. They are both SS, but also MSS sets
since no subset of these sets are SS.
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2.8 Fault isolation analysis

Structural analysis can be used in different applications. This report
is focused on structural analysis used to design diagnosis systems to
isolate faults. In this section it is going to be described how the ARR:s
can be used to analyze fault isolability possibilities in a system.

When an ARR is constructed, it is assumed that the system is in a
fault free state. But what happens if a fault occurs? Previous sections
have shown that an ARR is constructed from a redundant equation, and
equations used to solve the unknown variables. Each of these equations
can be sensitive to a number of faults, according to the structure of the
model. Together they make a set of faults that the ARR is sensitive
to. When any of the faults in the set occur, the ARR can, but will not
necessarily have to react. One reason why a fault does not make the
ARR react can be that the fault is so small that it is covered by noise.
On the other hand, it is for certain that the ARR cannot react on those
faults not included in the fault sensitivity set.

To represent the fault sensitivity for each ARR, a sensitivity matrix
is introduced. The rows represents the ARR:s and the columns all
possible faults. A ”0” represents that the ARR is unsensitive to that
fault and a ”1” that the ARR can detect that fault.

The isolation analysis is made possible when the knowledge of fault
sensitivities are put together from many ARR:s. Since the ARR:s can
be sensitive to different faults, combinations of ARR:s can give infor-
mation on the isolability. This is done by analyzing which faults that
can be explained by other faults in the fault sensitivity matrix. It is
illustrated by an example.

f1 f2 f3

ARR 1 0 1 0
ARR 2 0 1 1
ARR 3 1 0 1
ARR 4 1 1 1

Table 2.1: Fault sensitivity matrix.

Consider the fault sensitivity matrix in Table 2.1. There are four ARR:s
and three possible faults. In this example three cases are going to be
studied, corresponding to each of the faults occurrences. Lets start
with fault f1, then ARR:s 3 and 4 can react. ARR:s 3 and 4 can also
be caused by fault f3. Therefore, if fault f1 is present, it cannot be
distinguished from f3. Remember that a ”1” in the matrix does not
have to imply that the fault always will make the ARR react. This
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f1 f2 f3

f1 1 0 1
f2 0 1 0
f3 0 0 1

Table 2.2: Fault matrix.

is why the ”1” for ARR 2 and f3 does not matter. Fault 2 on the
other hand has a ”0” for ARR 3 and cannot explain the reaction of
that ARR. The result is presented in a fault incidence matrix that is
a square matrix with the same dimension as the number of possible
faults. A row correspond to a present fault and the columns which
other faults that possibly can explain the present fault.

If fault f2 is present, ARR:s 1, 2 and 4 can react. Since ARR 1 only
is sensitive to fault f2 a possible reaction cannot be due to any of the
other faults and therefore it is possible to isolate fault number two.

The same goes for fault f3 which can be isolated since ARR 2 and ARR
3 cannot be explained by f1 and f2, respectively. The resulting fault
incidence matrix is presented in Table 2.8.

The results of the algorithms are going to be presented in this form, as
fault incidence matrices. Note that the same method goes for MSS:es.
The only difference is that the fault sensitivities are based on the faults
occurring in the equations in an MSS set.



Chapter 3

Desirable goals for a
structural analysis
algorithm

To make it easier to compare and discuss the two structural analy-
sis algorithms presented in Chapter 4, four points which are desirable
for such algorithms are going to be presented in this chapter. The
points are modified from the general properties for diagnostic systems
described in [? ] to fit structural analysis in particular.

3.1 Realizable solutions

The first point concerns wether the found ARR:s/MSS:es are realizable
or not. With realizable it is meant that given a set of equations needed
to create an ARR or an MSS, the resulting analytical expression should
be solvable. This is not evident since first of all the structural model is
a simplification of the analytical model itself. Secondly, some problems
occur due to the fact that numerical calculations disturbed by noise
and integrations are hard to perform accurately.

Another example that can cause problems is differential constraint such
as ẋ = dx

dt where ẋ can be calculated from x, but not the other way
around. To perform the integration the initial value has to be known,
and this is not always the case. The same type of problem also oc-
curs with injective functions, which can be considered as ”one-way-
relations” as well. An example of an injective function is the square

25
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function:

x2 = u

y = x

To verify the sensor signal y, x has to be matched by the first equation
which gives:

x = ±√u

Since x can be either positive or negative it cannot be matched here.
If the situation is the opposite; that the second equation should be
used to match x, no problem occurs since x = y gives an unambiguous
answer. In order to realize the ARR:s the injectivity therefore should
be handled.

3.2 Ability to handle different type of sys-
tems

Even though it is often assumed that systems are linear to simplify
calculations, this is not always suitable. The method should be com-
patible for nonlinear systems in order to be applicable to a larger set
of systems.

Two different types of systems are static and dynamic ones. Static sys-
tems are much simpler to handle since it does not contain any deriva-
tives. However, in real applications systems are generally dynamic, in
other word the equations describing the system contain differentiated
variables. There are different ways to handle the dynamic aspects of
the system, three ways to model it was described in Section 2.3 and
their influence on the algorithms will be presented in Section 6.1.1.
Generally it is important that the dynamics are handled in a correct
manner.

3.3 Time complexity

This is a constraint which deals with the implementation of the algo-
rithm. However this is not the most important criterium since this
step is only made once in the beginning of the modelling and not on-
line. Normally, the analysis is made in advance in order to determine
the isolability. But nevertheless, if the models are extensive, the search
operations through the large matrices take a considerably amount of
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time. Cut down on operations and try to eliminate unnecessary infor-
mation is therefore of importance.

3.4 Completeness

This is one of the most important points. If many different ARR:s/MSS:s
are found, it is more likely that they all together contain more infor-
mation that can be used for the fault analysis. For the fault isolability
application this mean that there exist more sets that are sensitive to
different sets of faults. What decides how many MSS:s the algorithms
find is how they handle the information in the system. The main goal
should be to use the initial systems information efficiently and to find
all possible ARR:s/MSS:s.





Chapter 4

Two structural analysis
algorithms for fault
isolation

In this chapter, two structural analysis methods are going to be de-
scribed based on the theory presented in Chapter 2. The algorithms
are developed at Department of Vehicular systems at Linköping Uni-
versity, Sweden and at Laboratoire d’Automatique et d’Informatique
Industrielle de Lille, France. To get an overview of what steps they
consist of, a block diagram is presented in Figure 4.1. As can be seen
some of the steps are in common, while others differ.

Please note the similarity between the block diagram and what was
presented in Chapter 2.

4.1 The Lille algorithm

In this section the different steps of the Lille algorithm are described.
One of the purposes of the algorithm is of course to analyze the fault
detection/isolation properties of a system by creating realizable ARR:s,
but also reconfigurability properties have been studied. For a more
detailed description of the algorithm see [? ].
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Canonical decomposition

Differentiate model

complete matchings
Search for

Incidence matrix

fault sensitivity
Analyze

Structural model

Add differential constraints

Search for

Analytical model

MSS:es

1

4

6

Fault incidence matrix

5 a) 5 b)

2 b)2 a)

3

0

7

Figure 4.1: Schematic overview of the two methods. The path to the
left corresponds to the Lille algorithm and the right to the one devel-
oped in Linköping.

4.1.1 Structural model

The structural model which is used here, is derived from an analytical
model in the same way as described in Section 2.2. Using the incidence
matrix approach, all of the equations get its own row where the corre-
sponding variables presences are marked. A differentiated variable and
its original variable are considered to be two separate variables.

4.1.2 Addition of differential constraints

The first visible difference between the methods is how they consider
the relationship between a variable and its derivative. The Lille method
consider that they are two separate variables connected via a differential
constraint as described in Point 1 in Section 2.3. Therefore, an extra
constraint for each derived variable is added to show that there is a
connection between the variable and its derivative.

In this step, there is a difference between the theoretical algorithm
and the implemented version which is going to be used in Chapter 5
on a small tank example. The difference lies in how the differential
constraint is represented in the incidence matrix. Consider the two
incidence matrices in Figure 4.2.
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x1 ẋ1 x2 ẋ2 . . .
c1 . . .
...

...
. . .

cn

1 1 0 0
0 0 1 1

(a) Implemented version of incidence
matrix.

x1 ẋ1 x2 ẋ2 . . .
c1 . . .
...

...
. . .

cn

∆ 1 0 0
0 0 ∆ 1

(b) Theoretical version of the inci-
dence matrix.

Figure 4.2: Two incidence matrices with differential constraints. The
entry ∆ represents that the variable cannot be matched by that con-
straint.

In the theoretical version, x is prevented of being calculated from ẋ,
which is represented by the ∆ entries. The motivation behind this is
that if x is matched with ẋ, when calculating the ARR, an integration
has to be made. Since the initial value is not known, the answer would
be incomplete. It is therefore avoided in an early stage to make such
assumptions.

4.1.3 Decomposition of the incidence matrix

As described in Section 2.5, Step 4 in the algorithm decomposes the
system. The input is the incidence matrix from the extended system
(with differential constraints) and the outcome is the overdetermined
subsystem.

4.1.4 Search for complete matchings

The Lille method uses matchings as a base to derive ARR:s. A recursive
matching algorithm is used in order to find all possible matchings. In
the implemented version, all variables can be matched as described in
Section 2.6. In the theoretical algorithm the matchings are limited
because of the ∆ entries in the incidence matrix.

The result is a matrix where each row is a matching and the columns
are the different variables. The values in the matrix correspond to
which equation each variable is matched with. Since the matchings are
complete with respect to the variables, all of the entries are nonzero in
the matrix.
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4.1.5 Find possible ARR:s and faults affecting them

When all of the variables have been matched, the next step is to analyze
how to use the redundant information in the system. Although the
algorithm itself does not create ARR:s it gives information about how
to create them, or more precisely which equations that are needed to
do so.

For each matching, each redundant equation (those not included in
the matching), can be used to create an ARR. It is made by, for each
redundant equation, substituting the variables in that expression by an
expression from where the variable have been matched. The result is
a set of equations that are needed to create an ARR. To this matrix
belongs a fault sensitivity matrix. It states which faults each ARR set
of equations is sensitive to.

4.1.6 Create the fault incidence matrix

The last part of the algorithm is to calculate which faults that are
detectable and isolable from each other. This is done as described in
Section 2.8.

4.2 The Linköping Algorithm

This algorithm is developed in Linköping and its purpose is to analyze
isolability via residuals. The main idea is to find all possible MSS:s and
then find a small set of the MSS:s with the same isolability properties
as all of them. Then the MSS:es are used to create residuals. The last
step concerning the residual generation is not discussed further in this
report. The details of the algorithm can be found in [? ].

4.2.1 Structural model

The input to the algorithm is a structural model. In the model the
variables are stored with what kind of appearance they have (linear
or nonlinear) in the equations. It is also specified that if a variable is
known, how many of its derivatives it is possible to derive from this
variable. This knowledge is used in the structural differentiation step
later. The result can be considered as an incidence matrix with extra
information about the variables.
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4.2.2 Structural differentiation

Structural differentiation is made on the system until all the vari-
ables and their derivatives have been ”connected” as described in Sec-
tion 4.2.2.

It is important to note, that the additional information which is needed
for the structural differentiation does not exclude the possibility to use
the algorithm in a manner that handles dynamics differently. The algo-
rithm permits all three approaches described in Section 2.3. Structural
differentiation is however the one that is unique for this algorithm.

4.2.3 Simplification

Altogether two simplifications can be made. First, the variables that
are impossible to eliminate and find redundancy for are excluded via
canonical decomposition. This is the case for variables that appears in
the under and just determined part of the system.

The next simplification is to merge equations that have to be used
together to eliminate a variable. In an MSS set these two equations
will always appear together. The simplest form of merging appears
when a unknown variable exists in exactly two equations. After the
merge a search is performed once again, but this time with the set of
equations as a unit. It is possible that another equation is merged into
the first set. The importance of this step is to reduce the complexity
when searching for MSS sets later. This simplification has not been
implemented in the version of the implemented algorithm that has been
used.

4.2.4 Search for MSS sets

The MSS algorithm searches through the incidence matrix. It selects
an equation, and then tries to find a matching which makes the se-
lected equation a base for an ARR. After each new variable have been
matched, a condition clause verifies if the set of equations is a one-
overdetermined system, MSS, due to the variables or not. The result
is a list with MSS:es and a fault sensitivity matrix

4.2.5 Create the fault incidence matrix

The incidence matrix is created according to what was described in
Section 2.8 and is based on the fault sensitivity matrix.





Chapter 5

The algorithms
presented with a small
tank example

In this chapter the two methods are demonstrated with a small tank
example. First, the tank example will be described and then the al-
gorithms are used to perform a fault isolability analysis upon it. The
purpose of this chapter is to show practically how the algorithms work.

5.1 Description of the tank example

To be able to calculate by hand how the algorithms work, this example
is small to keep the complexity down. The example originates from
[? ] with the modification that an extra sensor has been added. The
system consists of a tank, two sensors, an actuator and a control system
as shown in Figure 5.1

Before the analytical relations for this tank model are shown, lets reason
about what the structure of this system looks like. In the tank, there are
three interesting things that happen. First water flows into the tank,
which implies that there has to be a relation between the inflow qi and
the actuator signal u. Secondly, the hight of the water level changes.
The variables that can affect the hight of the water are the inflow and
the outflow. Thirdly, there is an outflow of the tank that should be
affected by the hight of the water level. According to the figure there
are also two sensor signals connected to h and qi respectively. The
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Figure 5.1: The small tank example.

incidence matrix from this reasoning is:

u(t) yh(t) yi(t) h(t) ḣ(t) qi(t) qo

c1 0 0 0 0 1 1 1
c2 1 0 0 0 0 1 0
c3 0 0 0 1 0 0 1
c4 0 1 0 1 0 0 0
c5 0 0 1 0 0 1 0

An incidence matrix has now been derived without involving any ana-
lytical expressions. To show that the result above are the same as those
derived from the analytical model, the systems equations are shown in
Equations 5.1.

c1 : ḣ(t) = qi(t)− qo(t) (5.1a)
c2 : qi(t) = αu(t) (5.1b)

c3 : qo(t) = k
√

h(t) (5.1c)
c4 : yh(t) = h(t) (5.1d)
c5 : yqi(t) = qi(t) (5.1e)

The faults we would like to detect and isolate are an additive fault in
the actuator, fu, and two multiplicative faults in the level sensor and
in the output pipe, fyh

and fqo respectively. The faults are added to
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the model.

c1 : ḣ(t) = qi(t)− qo(t)fqo(t) (5.2a)
c2 : qi(t) = α(u(t) + fu) (5.2b)

c3 : qo(t)fqo(t) = k
√

h(t) (5.2c)
c4 : yh(t) = h(t) + fyh

(t) (5.2d)
c5 : yqi

(t) = qi(t) (5.2e)

As said before, for structural analysis purpose the importance is not
the analytical relations, but only structural information. The rela-
tions between the known and unknown variables and the constraints
are concluded in the bi-partite graph in Figure 5.2. This representation
is useful to visualize the structure.

u

qi
yi

ḣ h

yh

c2

c5

c1 c3

c4

qo

Figure 5.2: Bi-partite graph of the small tank system.

When implemented in an algorithm it is however more appropriate to
use the incidence matrix representation. The graph and the incidence
matrix are equivalent and how you like to represent the system is a
question of application. The incidence matrix with the faults included
is shown below. It is this matrix that serves as input to the algorithms.

5.2 The Lille algorithm

In this section the different steps of the Lille algorithm are described.
Please compare the steps here with the description of the algorithm in
Chapter 4 and the theory presented in Chapter 2.
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u(t) yh(t) yi(t) h(t) ḣ(t) qi(t) qo fu fy fqo

c1 0 0 0 0 1 1 1 0 0 1
c2 1 0 0 0 0 1 0 1 0 0
c3 0 0 0 1 0 0 1 0 0 1
c4 0 1 0 1 0 0 0 0 1 0
c5 0 0 1 0 0 1 0 0 0 0

Table 5.1: Incidence matrix over the known input and outputs, the
unknown internal states and the faults. A ’1‘ in a position means that
the variable in that column appears in the corresponding constraint.

5.2.1 Structural model

The structural model of the tank for the Lille algorithm is made by
adding a sixth constraint to the ones in Table 5.1 which represents
the connection between h and ḣ. The expanded matrix is shown in
Table 5.2.

u(t) yh(t) yi(t) h(t) ḣ(t) qi(t) qo fu fy fqo

c1 0 0 0 0 1 1 1 0 0 1
c2 1 0 0 0 0 1 0 1 0 0
c3 0 0 0 1 0 0 1 0 0 1
c4 0 1 0 1 0 0 0 0 1 0
c5 0 0 1 0 0 1 0 0 0 0
c6 0 0 0 1 1 0 0 0 0 0

Table 5.2: Incidence matrix over the tank example. Included is also
the sixth differential constraint.

Theoretically, the sixth constraint should consist of a ∆ value for h and
therefore it would not be matchable in that constraint.

5.2.2 Decomposition of the tank example

As described in Section 2.5, the first step in the algorithm is to try to
decompose the system further. In the following section the tank data
(including the sixth constraint) is fed to a decomposition routine.

In our tank example the initial system is already overdetermined. This
can be verified with Dulmage-Mendelson - permutations. In Matlab
this is done by the dmperm command. The output is the matrix
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Figure 5.3: Bi-partite graph of the tank example including the differ-
ential constraint.

below. Note that the rows and columns in the matrix have been per-
mutated.

h qo qi ḣ
c3 1 1 0 0
c4 1 0 0 0
c1 0 1 1 1
c2 0 0 1 0
c5 0 0 1 0
c6 1 0 0 1

Table 5.3: Permutated matrix of the internal states. The matrix is
overdetermined because there are more equations than variables.

The permutated matrix in Table 5.3 serves as input to the matching
algorithm.

5.2.3 Find all matchings

The Lille matching algorithm is a recursive algorithm which searches
the incidence matrix systematically for all possible matchings. As said
before, a matching is a ’connection’ between all variables and some
or all of the equations, such that the matched variable is the only
unknown variable in that equation. Each variable and equation can
only be matched once in every turn. Below the match algorithm is
applied to the tank example.
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• Consider the first internal state, h, in the permutated matrix in
Table 5.3. The first equation it appears in, is in c3. Lets assume
that h is matched with c3. Since h and c3 now are matched,
the corresponding column and row in the matrix are temporarily
neglected in the rest of the matching process.

• Consider now the second state, qo, the first equation it appears
in (since c3 has already been matched) is in c1 and hence they
are matched.

• Using the same technique, qi and ḣ are matched with c2 and c6

respectively. The match is shown in Figure 5.4. The match is
represented with the bold edges.

h qo qi ḣ

c3 1© 1 0 0
c4 1 0 0 0
c1 0 1© 1 1
c2 0 0 1© 0
c5 0 0 1 0
c6 1 0 0 1©

Table 5.4: Permutated matrix of the internal states. The circled entries
show the matching.

u
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ḣ h

yh

c2

c5

c1 c3
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c6

Figure 5.4: The first complete matching. The bold edges correspond
to the matching.

The matching above is not the only one. For example h, qo and ḣ can
be matched the same way, but qi is matched with c5 instead of c2. In
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total there exist 11 different possible matchings in this example.

The output from the matching algorithm is a matrix where the rows
correspond to the matchings, the columns correspond to the variables
and the values in the matrix tell with which equation the variable has
been matched.

5.2.4 Find possible ARR:s and faults affecting them

When all of the variables have been matched, the next step is to analyze
how to use the redundant information in the system. In our tank
example there are six equations and four variables. This permits that
for every matching two ARR:s can be found based on the redundant
equations.

Although the algorithm itself does not create ARR:s it gives informa-
tion about how to create them, or more precisely which equations that
are involved in creating it. The next example will try to clarify how the
ARR sets are derived and how they are used together to isolate faults.

Consider the matching

c1 − qo

c3 − h

c5 − qi

c6 − ḣ

The redundant equations are c2 and c4.

First, lets see which equations that are needed to create an ARR based
on constraint c2. The set of equations needed is denoted

{c2}
In c2 an unknown variable, qi, is introduced. From this we get that we
need to include at least the equation that matches qi in the set as well.
From the given information we see that qi is matched by c5. The set is
now

{c2, c5}
On the other hand, c5 does not introduce any other new variable and
therefore we have found the first set of equations to create an ARR,
{c2, c5}. The fault sensitivity to this set is {fu} since fu appears in c2.

For c4 the corresponding set is derived as follows.

{c4}
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In c4, the variable h occurs and has to be matched by c3. The set is
now:

{c4, c3}
In c3, the variable qo occurs and therefor c1 has to be included as well.

{c4, c3, c1}

In c1, both qi and ḣ are new included variables. To be able to calculate
these the equations c5 and c6 has to be included as well. Note that
none of the constraints introduce any new variables, since h already
has been matched. The resulting set of equations to create an ARR
from c4 is therefore:

{c4, c3, c1, c5, c6}
The fault sensitivity of this set is {fqo , fy}.
Even though many ARR:s can be found, some of them are made of the
same set of equations. If so, the fault sensitivity are the same and it
does not contribute to the fault isolability. Therefore, unique sets are
wanted. In this case, there exists another unique set which can be used
for an ARR. It is {c1, c2, c3, c4, c6}, which origins for example from the
matching

c1 − qo

c2 − qi

c3 − h

c6 − ḣ

and its fault sensitivity is {fqo , fu, fy}
The ARR:s are shown in Figures 5.5(a) and 5.5(b) with the graph
representation. When a matching has been made it implicates that an
order of calculation is set as can be seen by the directed edges in the
figure.

The fault sensitivity for the graph derived ARR:s are made in the same
way as before, by seeing which faults that occur in the equations in
each path.

5.2.5 Create the fault incidence matrix

The last part of the algorithm is to calculate which faults that are
detectable and isolable from each other. This is done by comparing the
fault sensitivities of the ARR:s.
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(b) Second directed graph.

Figure 5.5: Two directed graphs. Within the dotted lines one path
each can be found which correspond to an ARR.

From above three unique sets have been obtained, {c2, c5}, {c1, c3, c4, c5, c6}
and {c1, c2, c3, c4, c6}. The first set is sensitive to fu, the second to fh

and fqo and the third to fu, fh and fqo , as described in Table 5.5. By
combining them the isolability possibilities can be investigated.

ARR fu fy fqo

1 1 0 0
2 0 1 1
3 1 1 1

Table 5.5: Fault signature for the first four matchings in the tank
example.

By using the technique described in Section 2.8, the fault incidence is
calculated. It is shown in Table 5.6.

What the matrix says, is that if there is an actuator fault, it can be
detected and isolated. If some of the other faults occur (sensor fault or
clog in the output pipe), they can be detected, but not isolated from
each other.
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fu fy fqo

fu 1 0 0
fy 0 1 1
fqo 0 1 1

Table 5.6: Fault incidence matrix for the tank system.

5.3 The Linköping algorithm

In this section the different steps of the Linköping algorithm are de-
scribed. Once again, use the previous chapters to recognize the different
steps and their importance in the analysis.

5.3.1 Structural model

The input is a structural model with extra knowledge about if the
variables are linear or not. In the structural model ḣ is modelled by h
with the extra knowledge of that it is derived.

h ḣ qi q0

c1 0 1 1 1
c2 0 0 1 0
c3 1 0 0 1
c4 1 0 0 0
c5 0 0 1 0

Table 5.7: Input to the Linköping algorithm for the tank algorithm.
The matrix comes from Table 5.1 with the modification that the infor-
mation of ḣ is stored in h.

5.3.2 Differentiation

In order to create or expand the redundancy in the system it can be
motivated to differentiate some equations. This can for example be the
case if a derived variable appears in only one equation in the original
model.

The result of this first differential step is an extended model consisting
of the original model and the new derived equations and variables.
When the known variables are permitted to be derived once each, the
extended model gets four extra constraints, and if they are permitted
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to be derived twice, the extended model consists of 13 equations. Since
it is too hard to verify the results by hand with this complexity, it
is here instead demonstrated third approach discussed in Section 2.3.
The incidence matrix with this method is:

h qi q0

c1 1 1 1
c2 0 1 0
c3 1 0 1
c4 1 0 0
c5 0 1 0

5.3.3 Simplification

The simplification implemented is to extract the overdetermined part
of the system. In this case the system is already overdetermined. The
other simplification step merges equations that need to be used to-
gether. Even though it is not implemented it here could be shown that
c1, c3, c4 would create such a group. This since c1 is dependent on c4

and c3 and the other way around to solve h and qi respectively.

5.3.4 Search for MSS sets

What is done now is very similar to the matching described for the
Lille algorithm. The difference is that after each step when a match
has been done, the algorithm check if the equations in the matching so
far is an MSS set or not.

The MSS:s obtained are {c1, c2, c3, c4}, {c1, c3, c4, c5} and {c2, c5}. The
calculations contain many details and is summarized in a table along
with the MSS algorithm itself in Appendix A. The sets are sensitive
to {fu, fy, fq0}, {fy, fq0} and {fy, fq0} respectively. Using the same
technique as described in Section 2.8, we see that the results are the
same and the fault incidence matrix is shown in table 5.8.

fu fy fqo

fu 1 0 0
fy 0 1 1
fqo 0 1 1

Table 5.8: Fault incidence matrix for the tank system.
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5.4 Results

In this case the results are the same. The found MSS are also the same
as shown in Sections 5.2.4 and 5.3.4 with the addition in the later case
that also the differential constraint is a part of the MSS. This does not
effect the fault incidence matrix though since no other fault is included
by that equation.

Regarding the time aspects the differences are not that different in this
small example. For both of the algorithms the system is solved in a
couple of tenths of a second.



Chapter 6

Discussion concerning
the algorithms

In this chapter the two algorithms are discussed from different point of
views. It starts with a section concerning the main differences between
the methods where the advantages and disadvantages are clarified. The
next section contains a discussion of the algorithm properties regarding
the four points given in Chapter 3. The last section is a discussion of
how to improve the isolability properties for both of the algorithms.

6.1 Main Differences

In Chapter 5 the two methods were explained and illustrated with a
small tank example. Already in that chapter some of the differences
were obvious. In this section the most important differences are dis-
cussed further.

6.1.1 Handling of dynamic models

Both of the algorithms are considered as dynamic since both of them
can analyze dynamic models. However, as mentioned in the previous
chapters, the way of creating and handling dynamic relations differ.

47
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Addition of differential constraints

In the Lille algorithm differential constraints are added between the
differentiated and undifferentiated variable. This approach is straight-
forward and is easily implemented. In theory the fact that variables
can not be matched with its derivatives is handled, but not in in the
implemented versions.

However the new differential constraint introduces a problem which
has not yet been discussed; differential cycles. A differential cycle oc-
curs when a set of variables are calculated in a ”loop” and one of the
variables is differentiated.

Example 6.1
This example will show the difference between an algebraic cycle and

a differential one. Consider the following system:

ẋ1 = x1 − x2

x2 = y

ẋ1 =
dx1

dt

The system has three unknown variables and three equations. Its bi-
partite graph with one matching represented by the directed edges is:

ẋ1

x1x2y

The cycle consists of x1 and ẋ1. Starting to solve for x1 gives the
following equation:

x1 = ẋ1 + y ⇒

x1 =
dx1

dt
+ y ⇒

0 =
dx1

dt
− x1 + y

The solution is x1 = y + Cet. The constant, C, is not known and
therefore x1 cannot be calculated unambiguously.
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Consider now the system:

x1 = x2 + u

x2 = 2x1 − y

The system consists of two unknown variables and two equations. Its
bi-partite graph (with a matching) is:

x2 y

u x1

There exists a cycle in this graph too, but see what happens when x1

is solved.

x1 = 2x1 − y + u ⇒
x1 = y − u ⇒ x2 = 2y − 2u− y = y − 2u

Both of the variables can be determined unambiguously.

From Example 1 the following conclusion can be drawn: The difference
between an algebraic cycle, that an algebraic just determined system
can be represented by, and a differential cycle is that in the second
case the initial value has to be known in order to find an unambiguous
solution. This extra knowledge is in most cases not provided for in a
real application.

Differentiating algorithm

In the Linköping approach the dynamics can be modelled according to
all of the three points described in Section 2.3. What is specific for this
algorithm however is the structural differentiation. The theory behind
this is presented in [? ].

The structural differentiation expand the system by adding differenti-
ated versions of the equations to the model. The goal is to be able
to solve the unknown variables. To achieve this, the known variables
have to have calculable derivatives and it has to be known how many.
To show the importance of knowing the known variables derivatives
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consider the following system:

ẍ1 = x2

x2 = u

x1 = y

The incidence matrix is:

x1 ẋ1 ẍ1 x2 u y ẏ ÿ
e1 1 1
e2 1 1
e3 1 1

It consists of three unknown variables and three equations. Assume
that y can be derived once, which implies that equation e3 can be
structurally differentiated. The new incidence matrix is:

x1 ẋ1 ẍ1 x2 u y ẏ ÿ
e1 1 1
e2 1 1
e3 1 1
ė3 1 1

Now, the system consists of four equations and four unknown variables.
Lets assume that the second derivative of y can be calculated. The new
incidence matrix is:

x1 ẋ1 ẍ1 x2 u y ẏ ÿ
e1 1 1
e2 1 1
e3 1 1
ė3 1 1
ë3 1 1

Here, there are five constraints and still four unknown variables. The
system has redundant information and can be used to create an MSS.
The more information that can be extracted from the known variables
derivatives, the more possibilities to expand the system. It is not how-
ever easy to know how many derivatives that can be calculated due to
noise and other factors.

6.1.2 Find equation sets for the fault isolation anal-
ysis

In this section it is important to emphasize that there are differences
between the theoretic algorithms and the implemented ones. For ex-
ample the constraint which state that some variables are not matchable
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due to differential constraints or non invertible functions exist only in
theory. No implementations have been done so far even though both
methods could be adapted to it.

Matching algorithm

Concerning the matchings in the Lille method, it is simple to implement
how to deal with the one-way directed equations. Normally it is only
to indicate in the matching step that a variable is not matchable. This
could for example be done by changing a ”1” into a ”0” in the incidence
matrix.

A consequence of forbidding some matching directions is that a system
can lose unnecessary much information. If for example the system
equations are:

x2 = u

y = x4

The incidence matrix would be:

x u y
c1 ∆ 1 0
c2 ∆ 0 1

In this case it is not possible to match x, but there exists an ARR

r : 0 = y − u2

where r stands for the residual. The reason why this ARR can be
created is that it is not based on the knowledge of the value x as is
the case normally, but x2. The conclusion of this is that forbidding
certain senses for a matching can in some cases cut information that
could have been useful.

MSS algorithm

The objectives of the Linköping algorithm is to find all MSS:s and
then only use those which contributes to the isolability. Since the MSS
algorithm has a lot in common with the matching algorithm in the
Lille approach, it is also here easy to adjust the implemented version
to handle one-way functions.

An advantage for the MSS algorithm is that is is time efficient. From the
incidence matrix to the MSS sets the matrix only needs to be searched



52 Chapter 6. Discussion concerning the algorithms

once in comparison to twice in the Lille matching algorithm. What
makes this efficiency possible is that when a new variable has been
matched, the matched variables and equations are tested if they con-
stitute an MSS or not.

6.2 Concerning the desirable properties

In Chapter 3, four desirable properties were discussed. They will now
be used to evaluate the algorithms.

6.2.1 Realizable solutions

When a fault isolation analysis has been made, it may be of interest
to construct a diagnosis system based on the results. As described
in Section 2.1, diagnosis systems can be based on residuals. In Sec-
tion 3.1 two obstacles in creating residuals were discussed, noninjective
functions and differential constraints.

The Lille method uses matching based ARR:s to create their residuals.
This is a straightforward technique and it is easy to see how the ARR:s
are constructed. With a small change in the implementation, differen-
tial constraints and injective functions are handled to prevent a match
in the ”wrong sense” between variables. The problem however is to
prevent differential cycles. There is not yet a way to avoid differential
cycles in the matchings.

The Linköping method does not specify how to create the residuals.
One possible way is to use the same approach as in the Lille algorithm
to make a matching based ARR. This works if the system does not
contain any injective functions. If so is case, the following example
illustrates why it is not suitable.

Example 6.2
Consider the functions

f = x2 and g = y3.

Their derivatives are

ḟ = 2xẋ and ġ = 3y2ẏ

respectively. In the first example f is matchable while x is not. When
derived however both ḟ , x and ẋ are matchable. For the second example
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g is matchable at first and only ġ and ẏ after the derivation but y is
still not matchable. The consequence it gives is that some matchings
may be too optimistic and perhaps not realizable.

There are other ways too to create ARR:S, one is shown in Section
6.1.2.

6.2.2 Ability to handle different types of systems

In Section 3.2 two sorts of different systems was discussed, linear/nonlinear
and static/dynamic.

Concerning linear/nonlinear systems, both of the algorithms can handle
both types of systems. In the Lille case, no notion is taken on this
difference since the algorithm does not need it, while in the Linköping
case, the nonlinearity is stored in the structural model to be used in
the structural differentiation.

Static systems are relatively simple to make a structural analysis upon.
It is when dynamics are allowed it can be uncertain how the deriva-
tives should be modelled and how the dynamics should be handled in
the analysis. In the two algorithms studied in this report the dynam-
ics have been modelled by assuming that x and ẋ are two different
variables connected by differential constraints and by structural differ-
entiation. The difficulties consists once again of differential cycles and
how injectivity can be inherited in a structural differentiation.

6.2.3 Time complexity

The largest factor for how time consuming the algorithms are, is the size
of the incidence matrix when it is searched for matchings and MSS:es
and how many of the entries in the matrix that consist of ”1:es”. The
advantages for the Lille algorithm is that the system is rather small in
comparison to a differentiated system however, in that case the ARR
creation is done in two steps. First the matching is made and then
another search through the matrix is done in order to extract which
equations that are needed in order to create the ARR.

When the system has been differentiated the complexity increases, but
in the same time many of the variables can be reduced afterwards with
the canonical decomposition simplification that is made.
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6.2.4 Completeness

In the static case, both of the algorithms give the same results. This
due to the fact that the main difference which affects the number of
MSS:s lies within the handling of derivatives. When the dynamics
are added, the number of MSS:s starts to differ. The addition of the
derived equations, allows more MSS:es to be found. However, it is not
for certain that all newfound MSS:es contribute to the fault isolability.
Consider for example the system:

y1 = x + f1 (6.1a)
y2 = x + f2 (6.1b)

Lets assume that the sensor signals y and the faults f can be derived
at least once each. Differentiation of the equations gives the following
system:

y1 = x + f1

y2 = x + f2

ẏ1 = ẋ + ḟ1

ẏ2 = ẋ + ḟ2

Its incidence matrix is:

x ẋ y1 y2 ẏ1 ẏ2 f1 f2 ḟ1 ḟ2

e1 1 1 1
e2 1 1 1
ė1 1 1 1
ë2 1 1 1

Here, two MSS:es can be found:

{e1, e2} → {f1, f2}
{ė1, ė2} → {ḟ1, ḟ2}

In this case the two MSS:es hold separate information. If for example
one or both of the faults are constant. ḟ1 and ḟ2 are zero. On the
other hand, if the faults in Equations 6.1 were nonlinear, the structural
differentiation would give the following incidence matrix:

x ẋ y1 y2 ẏ1 ẏ2 f1 f2 ḟ1 ḟ2

e1 1 1 1
e2 1 1 1
ė1 1 1 1 1
ë2 1 1 1 1



6.3. Improving isolability 55

The new MSS:es are:

{e1, e2} → {f1, f2}
{ė1, ė2} → {f1, ḟ1, f2, ḟ2}

Here the second fault sensitivity does not contribute to the fault isola-
bility since the same information is obtained in the first set.

6.3 Improving isolability

When the fault incidence matrix from the algorithms are given, it may
consist of ”blocks” of faults which cannot be distinguished from one
another. To improve the isolability, different actions can be taken.
Three of them are discussed and exemplified in this section.

Improvements:

No

Structural model

Done

Satisfied
Add sensors

Decouple faults

Algorithm

Fault incidence 
matrix

Yes

Further modelling

Figure 6.1: Improving the isolability.

6.3.1 Decoupling

Decoupling is a way to make the MSS:s unsensitive to a certain fault.
This is done by adding the fault to the X set of the unknown variables,
in other words say that the fault should be calculated as one of the
wanted internal states. The fault can no longer make an ARR react,
since an ARR does not consist of any calculated variables. The resulting
ARR:s are therefore unsensitive to the decoupled fault.
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To exemplify a situation where decoupling improve the isolability, con-
sider the system:

y1 = x + f1 + f2

y2 = x + f1

y3 = x + f2

The incidence matrix is:

x y1 y2 y3 f1 f2

e1 1 1 1 1
e2 1 1 1
e3 1 1 1

Here, an MSS can be derived. The MSS and its fault sensitivity is:

{e1, e2} → {f1, f2}
{e1, e3} → {f1, f2}
{e2, e3} → {f1, f2}

Since the sets are sensitive to both of the faults, none of the faults
are isolable. Lets now consider f1 as an unknown variable. The new
incidence matrix is:

x f1 y1 y2 y3 f2

e1 1 1 1 1
e2 1 1 1
e3 1 1 1

Now there is one possible MSS:

{e1, e2, e3} → {f2}
In the same way, f2 can be decoupled which leads to an MSS set sensi-
tive to f1. With this extra piece of information added to the sets above
the fault sensitivity matrix is:

f1 f2

f1 1 0
f2 0 1

With the decoupling both of the faults are now isolable.

Logically this works better in a system with many relations in com-
parison to the number of variables. The reason is that one degree of
liberty is taken away from the system for each decoupling. If an extra
variable is added, and no new constraints are introduced, one of the re-
dundant equations is needed in order to match the decoupled variable.
The redundant relation is then ”consumed”.
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6.3.2 Add sensors

If a fault is not isolable it can be interesting to add sensors. The
advantage of adding sensors is that those relations are simple, often
just between the state variable and the sensor itself. The disadvantage
is that it can be expensive to find appropriate sensors and to maintain
them. Here an example is shown how adding sensors can improve the
fault isolability.

Consider the system which correspond to the following incidence ma-
trix:

x x2 u y1 y2 f1 f2

e1 1 1 1 1 1
e2 1 1 1
e3 1 1

One MSS can be found consisting of all three equations which is sensi-
tive to both faults. Since one MSS never is enough to isolate two faults,
extra knowledge about the system is required. Assume that x2 can be
measured by a sensor. Adding this to the model, the new incidence
matrix becomes:

x1 x2 u y1 y2 f1 f2

e1 1 1 1 1 1
e2 1 1 1
e3 1 1
e4 1 1

Now, two additional MSS:es can be created:

{e1, e3, e4} → {f1, f2}
{e2, e3, e4} → {f1}

The new fault incidence matrix becomes:

f1 f2

f1 1 0
f2 1 1

6.3.3 Further modelling

One of the main ideas of structural analysis is that it can use a rela-
tively simple model to estimate the system’s fault isolability properties.
Nevertheless, if the results do not correspond to what is wanted, it can
be necessary to add information about the model and the faults. One
simple way of doing this can for example be if a fault is slowly chang-
ing, for example a clog fault, fclogg. Then the extra information can be
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provided by adding the constraint ḟclogg = 0. This approach is used in
[? ]. Here an example is shown how extra modelling of one of the state
variables can improve the isolability.

Consider the system which incidence matrix is:

x1 x2 u y1 f1 f2

e1 1 1 1 1 1
e2 1 1
e3 1 1 1

An MSS can be derived consisting of all three equations and it is sen-
sitive to both of the faults. Adding the information that x2 is slowly
varying the new incidence matrix becomes:

x1 x2 u y1 f1 f2

e1 1 1 1 1 1
e2 1 1
e3 1 1 1
e4 1

This gives the two extra MSS:es:

{e1, e3, e4} → {f1, f2}
{e2, e3, e4} → {f1}

Now, f1 can be isolated.



Chapter 7

DAMADICS Example

DAMADICS stands for Development and Application of Methods for
Actuator Diagnosis in Industrial Control Systems and is a research
training network founded by the European Commission. Eleven part-
ners from six countries participate in the project which goal is to de-
velop online diagnostic tools for applications in power, food processing
and chemical industries. The application is a valve in a sugar factory
in Lublin, Poland.

My part in this project was to compare/evaluate the two ways of isola-
bility calculations which have been presented in this report.

In this chapter the modelled valve is described followed by the isolability
results from the algorithms. The focus is on the results and not the
model itself. A similar study has been made before, see [? ] where
the Linköping algorithm is used to perform isolability calculations. To
complement it, different cases have been studied regarding of how to
model the derivatives. The goal is to see what effects different input
models have on the number of MSS:s/ARR:s found.

7.1 Description of the Lublin sugar plant
valve

In the sugar plant a specific part has been modelled consisting of a
valve. A schematic figure of the valve is shown in Figure 7.1. The
circles represent those variables which are measured. They are the
valve plug position x, the fluid flow Q, fluid temperature T1, up- and
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downstream pressure P1 and P2, and the transducer chamber pressure
Ps.

ControllerE/P

P2 Q

Ps

P1T1

x

Figure 7.1: The DAMADICS valve.

The valve consists of three parts, the pneumatic servo-motor, the con-
trol valve and the bypass valve. To summarize, the model consists of
19 equations, 15 unknown variables, 14 faults and 9 known signals. Of
the 9 known signals are 6 sensor signals and the others are the valve
plug position controller reference value and output, and the position of
the bypass valve. Its incidence matrix is shown in Figure 7.2.

In Appendix B all the variables are found with descriptions along with
the model equations.

7.2 Test runs

In this section four different test runs are made of the DAMADICS
valve, two with each method. The difference between the four cases
are mainly on how to handle dynamic models. Note that it is the
implemented versions of the algorithms that are used here. For ex-
ample, in the Lille method the block that does not allow differential
constraints to be matched in both directions is not implemented and
one of the simplification steps in the Linköping neither.

The interesting parameters from the test runs are of course the fault
incidence matrices, the number of MSS:es/ARR:s found and how much
time it took to complete the computations.

For the Linköping algorithm it is interesting to see how the structural
differentiation algorithm affects the result. Therefore the algorithm is
used in two ways. First it is allowed to derive the variables structurally
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Figure 7.2: The DAMADICS valve incidence matrix. The order of the
unknown variables are: x, ẋ, ẍ, xh, ẋh, Ps, Ṗs, P1, P2, Pz, Pv, ∆P ,
∆P−a, Q, Qv, Qv3, Qc, T1, Fvc . The last four equations are added as a
possible connection between the derivatives and the original variables.

one time as described in Section 2.3.2. Secondly the derivatives are
assumed to be calculable if the original variable is known according
to what was described in Section 2.3.3. The Lille algorithm is tested
with a model where x and ẋ are considered as two different variables
connected with differential constraints, described in Section 2.3.1 and
on the static system. An overview of the different approaches is given
in the following list.

1. Variables and derivatives are connected by structural differentia-
tion. It is the algorithm that differentiates the variable and the
equations. (Linköping)

2. The variables ẋ and x are both given in the input model and they
are considered as two different variables connected via differen-
tial constraints. The differential constraints are given explicitly.
(Lille)

3. The derivative ẋ is switched to x. All necessary derivatives are
assumed to calculable if x is known. (Linköping)

4. Let the system be static, all derivatives are set to zero. (Lille)
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7.2.1 Case 1

In this case the dynamics are modelled by saying that ẋ is obtained by
deriving the variable x. Effectively this is done by deleting the columns
corresponding to the derived variables and add extra information in the
non differentiated variables instead. In this run the variables are al-
lowed to be differentiated ones. The isolability properties are predicted
to be low, since there are second order derivatives in the model, but it
will only be permitted one order derivatives in the residuals. Why this
restriction is made here, is to show that the algorithm can be adjusted
to conditions such as limitations in the sensor signals. If, for example
the sensor signals can not be differentiated twice, a too optimistic fault
incidence matrix would have been obtained if the differentiation limit
would have been set higher. In Figure 7.3 the structure of the input
model is shown. Note that the differential constraints not are used
here.
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Figure 7.3: The DAMADICS valve’s incidence matrix for the Linköping
algorithm. The unknown variables are: x, xh, Ps, P1, P2, Pz, Pv, ∆P ,
∆P−a, Q, Qv, Qv3, Qc, T14, Fvc
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The result from the Linköping algorithm is the fault incidence matrix:



. f16 f14 f11 f10 f9 f8 f4 f19 f18 f13 f5 f1 f7 f12

f16 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f14 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f10 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f9 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f8 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f19 0 0 0 0 0 0 0 1 1 1 1 1 0 0
f18 0 0 0 0 0 0 0 1 1 1 1 1 0 0
f13 0 0 0 0 0 0 0 1 1 1 1 1 0 0
f5 0 0 0 0 0 0 0 1 1 1 1 1 0 0
f1 0 0 0 0 0 0 0 1 1 1 1 1 0 0
f7 0 0 0 0 0 0 0 0 0 0 0 0 1 0
f12 0 0 0 0 0 0 0 0 0 0 0 0 0 1




The matrix is generated from 50 MSS:s and took approximately 6
and a half minutes to perform without any of the simplifications. The
original system of 19 equations was expanded to 38 equations and 33
unknown variables after the differentiation step. When the canonical
decomposition simplification is used, the results are of course the same,
but the elapsed time is reduced to approximately 5 seconds.

The isolation capabilities in this case is quite low. For the upper seven
faults, nothing can be said. Only the last two faults f7 and f12 can
be isolated. One of the reasons behind this is that the system consists
partly of variables with a second derivative. When creating the MSS:s
the equations were only permitted to be derived ones and therefore
those equations consisting of second derivatives cannot be used.
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7.2.2 Case 2

The input in this case is the same as given in Figure 7.2. Here x and
ẋ are considered as different variables and they are connected by four
differential constraints which can be seen in the bottom of Figure 7.2.
The result is shown below:




. f16 f9 f19 f18 f5 f1 f14 f11 f10 f8 f4 f7 f12 f13

f16 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f9 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f19 0 0 1 1 1 1 0 0 0 0 0 0 0 0
f18 0 0 1 1 1 1 0 0 0 0 0 0 0 0
f5 0 0 1 1 1 1 0 0 0 0 0 0 0 0
f1 0 0 1 1 1 1 0 0 0 0 0 0 0 0
f14 0 0 0 0 0 0 1 1 1 1 1 0 0 0
f11 0 0 0 0 0 0 1 1 1 1 1 0 0 0
f10 0 0 0 0 0 0 1 1 1 1 1 0 0 0
f8 0 0 0 0 0 0 1 1 1 1 1 0 0 0
f4 0 0 0 0 0 0 1 1 1 1 1 0 0 0
f7 0 0 0 0 0 0 0 0 0 0 0 1 0 0
f12 0 0 0 0 0 0 0 0 0 0 0 0 1 0
f13 0 0 0 0 0 0 0 0 0 0 0 0 0 1




This matrix is generated by 15 MSS:s and the time it took was about
25 seconds. The equivalent run with Linköping algorithm is about
5 sec. The isolation properties have improved, but still f16 and f9

cannot be detected. A fault in one of the two blocks consisting of
{f19, f18, f5, f1}and {f14, f11, f10, f8, f4 } respectively, are de-
tectable, but cannot be isolated from the faults in the same group.
Only the three last faults can be isolated.

7.2.3 Case 3

In this case it is assumed that all derivatives can be calculated if the
original variable is known. The consequence of this assumption is that
all occurrences of derived variables are exchanged into nonderived ones.
It is sufficient to know the variables value in order to find all of its
derivatives values.

The input to the algorithm is as shown in Figure 7.3 and the result is
the fault incidence matrix:
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. f16 f9 f19 f18 f5 f1 f14 f11 f10 f8 f4 f7 f12 f13

f16 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f9 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f19 0 0 1 1 1 1 0 0 0 0 0 0 0 0
f18 0 0 1 1 1 1 0 0 0 0 0 0 0 0
f5 0 0 1 1 1 1 0 0 0 0 0 0 0 0
f1 0 0 1 1 1 1 0 0 0 0 0 0 0 0
f14 0 0 0 0 0 0 1 1 1 1 1 0 0 0
f11 0 0 0 0 0 0 1 1 1 1 1 0 0 0
f10 0 0 0 0 0 0 1 1 1 1 1 0 0 0
f8 0 0 0 0 0 0 1 1 1 1 1 0 0 0
f4 0 0 0 0 0 0 1 1 1 1 1 0 0 0
f7 0 0 0 0 0 0 0 0 0 0 0 1 0 0
f12 0 0 0 0 0 0 0 0 0 0 0 0 1 0
f13 0 0 0 0 0 0 0 0 0 0 0 0 0 1




This incidence matrix was generated from 15 MSS:s and that the gen-
eration took about 5 seconds. It has the same structure as in the
previous run and it may be explained by the similarities in the input
models. In Case 2 the differentiated variable can always be matched
by the differential constraints 20 to 23. In Case 3 it was assumed that
all derivatives could be calculated once the original variable has been
matched. Both methods ”guarantees” that once the unknown variable
has been matched, its derivatives can be matched/calculed as well.

7.2.4 Case 4

In this case all derivatives are set to zero. The input model is as in
Figure 7.3. The result is the same as in Case 2 and Case 3. The result
can at first seem to be surprising, since no dynamic and maximum
number of derivatives in the algorithms gives the same result, but when
only one derivative is allowed, the isolability is worse as in Case 1.
One explaining reason behind this can be that in Case 1, some of the
equations could not be in an MSS, the information in those equations
are ”lost”. In the static case, all equations are used and even if no
derivatives are present, some information could be extracted.

7.3 Discussion

The best results concerning the isolability properties are obtained in
Case 2, 3 and 4. However, in Case 4 the analysis was based on a
static system, and therefore not as interesting. The reason why Case 1
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shows less isolability can be explained by the fact that all the variables
were only permitted to be derived once but in the equations there were
second order of derivatives. These could not be used in the MSS:es. If
the variables would have been permitted to be differentiated twice, the
results would have been the same as in the other cases. The limit for
differentiation of the variables is used to be able to control the maximal
complexity of the ARR:s.

Concerning the time complexity, its importance is shown the best in
Case 1. There, the same run with and without the canonical decom-
position simplification shows a relatively large difference in time con-
sumption. The DAMADICS valve is a relatively small example and in
larger applications the difference can be expected to be even larger. It
should also be added that this simplification could be more important
for the Linköping algorithm then the Lille one. When structural dif-
ferentiation is made the number of equations and variables increases
rapidly. A consequence the Lille method does not have to take under
consideration as much.

There is also a difference between the methods regarding the time com-
plexity. In Case 2 it took approximately 25 seconds to perform the cal-
culations with the Lille method and approximately five seconds for the
Linköping algorithm. The difference lies in how the implementations
have been made. For both methods the most time consuming part is
when the incidence matrix is searched recursively. In the Lille case this
is made two times, first when the matchings are made and once more
when the equations for the ARR:s are found. The corresponding is
made in one search in the Linköping implementation when the MSS:es
are found.

In these tests, non of the proposed improvements from Section 6.3 have
been made here. However, in [? ] decoupling is used to try and isolate
more faults. However it did not provide any extra information and
extra modelling was tried instead. The faults were said to be slow
varying and that information was added. With this extra knowledge
the block of five ones in Section 7.2.2 got isolable.
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Programming
contributions

Two sorts of programming contributions were made. First a graph-
ical user interface was implemented, and then a routine to handling
decoupling. Both were made using Matlab.

8.1 Graphical user interface

To simplify the handling of the Lille algorithm, a small GUI was de-
signed. With the GUI, it is easy to decouple faults and to get informa-
tion about the different steps in the algorithm, for example to see the
overdetermined system and which equations that are needed in order
to isolate the different faults.

In the sections below, the menus and functions are described. A schematic
description of the interface is presented in Figure 8.1.

8.1.1 Starting the program

Before any calculations can be done, a structural model needs to be
loaded. This is done in the first menu. The user is asked to type the
input file name in the Matlab window. The file should contain the three
matrices x, y and f which correspond to the incidence matrix divided
in an unknown, a known and a fault part.
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main menu

start menu

solve problem

solve 
problem

decouple menu

information
show various

faults
decouple 

load
variables

load new
variables

information
menu

Figure 8.1: An overview of the graphical user interface.

8.1.2 The main menu

The options in the main menu are to solve the problem without de-
coupling, decouple one or several faults, to show information about the
calculations or to load new variables. If ”solve without decoupling”
is chosen, the resulting incidence matrix is shown in the Matlab com-
mand window. If decoupling is wanted, a new menu administrates
which faults that should be decoupled. After solving the decoupled
system the result is shown in the Matlab command window and the
main menu is reactivated.

Figure 8.2: The main menu of the GUI.
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8.1.3 The information menu

The information menu permits to view mid-way results in the Matlab
command window. Such information can be the fault sensitivity matrix
and the matrix stating which equations the ARR:s consist of.

Figure 8.3: The Information menu of the GUI.

8.2 Decoupling algorithm

The main idea with decoupling faults is to think of the faults as some-
thing unknown, but possible to calculate. This implies that when the
matchings are made, the decoupled fault needs to be matched as well
as the unknown variables x. Mathematically, this means that when the
possible matchings are made, the corresponding ARR:s are constructed
in a way that the decoupled fault is always eliminated and hence will
not change the value of the residual. If there exist an ARR, it can not
be sensitive to the decoupled fault, and thereby the other faults can be
isolated from the decoupled one.

Figure 8.4: The decoupling menu of the GUI.





Chapter 9

Concluding remarks

In this chapter my contributions and conclusions are listed with some
ideas of future work. The main contribution of this thesis is the dis-
cussion concerning the two structural methods for fault analysis. On
the way of making this discussion, structural analysis was explained in
a way to suite the two algorithms, another contribution. In Chapter 3,
four desirable properties were listed. They were derived from general
desirable properties for diagnosis systems. In the following sections the
points are summarized with the algorithms.

9.1 Summary

9.1.1 Differences

Two main differences were discussed, the handling of dynamic models
and how the ARR/MSS algorithm work. The addition of differential
constraints as in the Lille case is straightforward, but there is a risk of
differential cycles. The ARR algorithm can take under consideration
that differential constraint only are matchable in one sense, but on the
other hand this restriction can lead to that not all ARR:s are found.

With structural differentiation redundancy can in some cases be ob-
tained. The restriction of the number of known derivatives, increases
the possibility to realize residuals from the obtained MSS:es. This be-
cause it is known on beforehand that all components are known in the
set.
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9.1.2 The four desirable points

Realizable solutions

Two obstacles for realizable solutions were discussed, differential con-
straints and non injective functions. For the Lille approach the greatest
obstacle of creating ARR:s are differential cycles, a consequence of how
the differential model is constructed and the matching based creation of
ARR:s. When using structural differentiation all of the equations are
algebraic, which implies that differential cycles cannot appear. High
order of derivatives of the known variables in the ARR:s can make the
ARR:s impossible to realize due to numerical problems in the differ-
entiation. The Linköping method can control the maximum order of
derivatives allowed in the MSS:es and therefor avoids ARR:s with non
computable derivatives.

Handling different types of systems

Both methods can handle both linear and nonlinear systems. The
Lille method does not separate linear and nonlinear functions while
the Linköping method can, but do not necessarily have to, use the ex-
tra knowledge if an appearance is linear in the structural differentiation
algorithm.

Time complexity

The time complexity depends on the size of the incidence matrix and
the degree of completion. Amongst the algorithms the Linköping one is
faster but it should also be stated that in that case the result is a set of
equations that can be used to create a residual, while the Lille algorithm
also gives knowledge of how to create the ARR. The time consuming
part is when the incidence matrices are searched. Such a search is pre-
formed twice in the Lille algorithm and once in the Linköping method.

Completeness

The Lille method finds all ARR:s which are based on matchings, but
can miss ARR:s which are created in other ways. The Linköping algo-
rithm gives information on which equations it is possible to combine to
create redundancy, but does not say anything about how they should
be realized. By this reasoning it should imply that the Linköping al-
gorithm can find all MSS:es corresponding to the ARR:s in the Lille
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case, but not the other way around. It is not however for certain that
all MSS:es contribute information.

9.1.3 The DAMADICS example

The two methods were used on a valve in a sugar plant in Poland. The
test runs show similar results. There were some differences in number
of ARR:s and MSS:es found. In case 1, 50 MSS:es were found and in
case 2 and 3 there were 15. The difference depends on the structural
differentiation which adds more constraints which permits more MSS:es
to be found. In this case the higher number of MSS:es did not imply
higher isolability however since the run was restricted to only permit
first order derivatives and the system was a second order system.

9.1.4 The Graphical user interface

A graphical user interface was implemented for the Lille method which
simplifies the fault analysis and to extract information from the calcu-
lations.

9.2 Further work

• Avoid matches which involve integration (In theory already done,
but needs to be implemented)

• Investigate the meaning of differential cycles, how they can be
avoided and managed?

• To implement a graphical user interface that operates with both
of the algorithms.

• Investigate how multiple faults can be handled.

• Improve the search algorithms in the incidence matrices.





Appendix A

Matching algorithm for
the Linköping method

Algorithm description taken from [? ]

This section explains how the MSS sets are found for the example
given in section 5.3.4. The task is to find all MSS sets in the model
Msimpwithequations {e1, . . . , en}. Let Mk = {ek, . . . , en} be the last
n − k + 1 equations. Let E be the current set of equations that is
examined. The set of MSS sets found is denoted ω. Then the following
algorithm Finds all MSS sets in Msimp.

Algorithm : Input: The model Msimp

1. Set k = 1 and ω = ∅
2. Choose equation ek. Let E = {ek} and X = ∅
3. Find all MSS sets that are subsets of Mk and include equation ek

a) Let X̃ = varXu(E) \X be the unmatched variables.

b) If X̃ = ∅, then E is an MSS set. Insert E into ω.

c) Else take a remaining variable x̃ ∈ X̃ and let X = X ∪ {x̃}.
Let Ẽ = equMk\E(x̃) be the remaining equations. For all
equations e in Ẽ let E = E ∪ {e} and goto step a).

4. If k ¡ n set k = k + 1 and goto step number 2. Output: The set
of MSS sets found, i.e. ω.
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Finding MSS:s for the small tank example

round step action
1 1 k = 1 ω = ∅
1 2 E = {e1} X = ∅
1 3a) X̃ = varXu (E) \X = {qi qo h}
1 3b) X̃ 6= ∅
1 3c) x̃ = qi X̃ = {qi},

Ẽ = equMk\E(X̃) = {e2 e5}
X = {qi}
Continue with e2

1.1 3a) e = e2, E = {e1 e2}
X̃ = varXu (E) \X = {qi qo h} \ {qi} = {qo, h}

1.1 3b) X̃ 6= ∅
1.1 3c) x̃ = qo X̃ = {qi qo},

Ẽ = equMk\E(X̃) = {e3}
X = {qi qo}

1.1.1 3a) e = e3, E = {e1 e2 e3}
X̃ = varXu (E) \X = {qi qo h} \ {qi qo} = h

1.1.1 3b) X̃ 6= ∅
1.1.1 3c) x̃ = h X̃ = {qi qo h},

Ẽ = equMk\E(X̃) = {e4}
X = {qi qo h}

1.1.1.1 3a) e = e4, E = {e1 e2 e3 e4}
X̃ = varXu (E) \X = {qi qo h} \ {qi qo h} = ∅

1.1.1.1 3b) X̃ = ∅! =⇒ ω = {e1 e2 e3 e4}
Continue with e5

1.2 3a) e = e5, E = {e1 e5}
X̃ = varXu (E) \X = {qi qo h} \ {qi} = {qo h}

1.2 3b) X̃ 6= ∅
1.2 3c) x̃ = qo X̃ = {qi qo},

Ẽ = equMk\E(X̃) = {e3}
X = {qi qo}

1.2.1 3a) e = e3, E = {e1 e3 e5}
X̃ = varXu (E) \X = {qi qo h} \ {qi qo} = h

1.2.1 3b) X̃ 6= ∅
1.2.1 3c) x̃ = h X̃ = {qi qo h},

Ẽ = equMk\E(X̃) = {e4}
X = {qi qo h}

1.2.2 3a) e = e4, E = {e1 e3 e4 e5}
X̃ = varXu (E) \X = {qi qo h} \ {qi qo h} = ∅

1.2.2 3b) X̃ = ∅! =⇒ ω = {e1 e3 e4 e5}
Start new round

2 1 k = 2 ω = ∅
2 2 E = {e2} X = ∅
2 3a) X̃ = varXu (E) \X = {qi}
2 3b) X̃ 6= ∅
2 3c) x̃ = qi X̃ = {qi qo h},

Ẽ = equMk\E(X̃) = {e5}
X = {qi}

2.1 3a) e = e5, E = {e2 e5}
X̃ = varXu (E) \X = {qi} \ {qi} = ∅

2.1 3b) X̃ = ∅! =⇒ ω = {e2 e5}



Appendix B

The DAMADICS model

B.1 Variables in the model

variable Description
unknown variables

x Valve-rod displacement
xh hysteresis of x
Ps Pneumatic servo-motor chamber pressure
P1 valve upstream pressure
P2 valve downstream pressure
Pv

∆P Difference between P1 and P2

∆P−a Allowed difference between P1 and Pv

T1 valve upstream temperature
Qv Flow past control valve
Qv3 Flow past bypass valve
Q Total flow
Qc net mass flow into the chamber
Pz Supply pressure for electro-pneumatic trancducer

known variables
? One missing
Cv Commanded displacement
CV I Displacement controller output
yPs server-motor chamber pressure
yx Measured rod position
yQ Total flow measurement
yP1 Valve upstream pressure measurement
yP2 valve downstream pressure measurement
yT Valve upstream temperature measurement
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B.2 Possible faults

Fault Description
Control valve faults

f1 valve clogging
f2 valve or valve-seat sedimentation
f3 valve or valve-seat erosion
f4 increase of valve or bushing friction
f5 external leakage (bushing, covers, terminals)
f6 internal leakage (valve tightness)
f7 medium evaporation or critical flow

Pneumatic servo-motor faults
f8 twisted servo-motor piston rod
f9 servo-motor housing or terminals tightness
f10 servo-motor diaphragm perforation
f11 servo-motor spring fault

Positioner faults
f12 electro-pneumatic transducer fault
f13 rod displacement sensor fault
f14 pressure sensor fault
f15 positioner feedback fault
f16 positioner supply pressure drop

General/external faults
f17 Unexpressed pressure change across the valve
f18 fully or partly opened bypass valve
f19 flow rate sensor fault
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B.3 Model equations

PsAe(1− f10) = mẍ + kv(1 + f4)ẋ + (ks(1 + f11) + kd)x + (B.1)

+Fvc + (ks(1 + f11) + kd)x0 −mg

xh = hyst(x)[f8 = 0] + hyst(x; f8)[f8 6= 0] (B.2)

Qv = 100(1− f5)(1 + f1)Kv(xh)

√
∆p

ρ
(B.3)

∆p−allow = Km(xh)(P1 − rc(P1)Pv) (B.4)

log(pv) = − a

T1
+ b (B.5)

∆p = (P1 − P2)[P1 − P2 < ∆p−allow] + (B.6)

+∆p−allow[P1 − P2 > ∆p−allow]

Fvc = πr2P1
−∆p

Km(xh))
[P1 − P2 < ∆p−allow] + (B.7)

+πr2 1

Km(xh))
[P1 − P2 > ∆p−allow]

Qv3 = Kv3(x3(1− f18))

√
P1 − P2

ρ
(B.8)

QcKc = ṖsV (xh) + Ps
dV (xh)

dx
ẋh (B.9)

Qc = (1− f92 · 10−6
√

Ps)(1− f102 · 10−6
√

Ps)|CV I|(B.10)

Kc1(Pz(1− f16)− Ps)[CV I ≥ 0]−
−|CV I|Kc2Ps[CV I < 0]

Q = Qv + Qv3 (B.11)

yx = xh(1 + 1.25f13) (B.12)

yQ = Q(1 + f19) (B.13)

yP1 = P1 (B.14)

yP2 = P2 (B.15)

yT = T1 (B.16)

yPs = max(0, min(1, (1 + f14)Ps)) (B.17)

T1 = T10[f7 = 0] + (T10 + 200 + 100f7)[f7 6= 0] (B.18)

CV I = (1− f12)Kp(Cv − f(yx)) (B.19)


