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Linköpings Universitet
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Abstract

Thorough testing of software is necessary to assure the quality of a product before it is released. The
testing process requires substantial resources in software development. Model-based software develop-
ment provides new possibilities to automate parts of the testing process. By automating tests, valuable
time can be saved. This thesis focuses on different ways to utilize models for automatic generation of test
vectors and how test coverage analysis can be used to assure the quality of a test suite or to find ”dead
code” in a model. Different test-automation techniques have been investigated and applied to a model of
an adaptive cruise control system (ACC) used at Scania. Source code has been generated automatically
from the model, model coverage and code coverage has therefore been compared. The work with this
thesis resulted in a new method to create test vectors for models based on a combinatorial test technique.

Keywords: Test vector generation, Test automation, Test coverage analysis, Model-based development
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Chapter 1

Introduction

1.1 Background

A traditional cruise control is designed to keep the vehicle at the same speed. On heavy traffic roads a
normal cruise control will be useless.

The adaptive cruise control maintains the distance to the vehicle ahead. It detects the presence of a
preceding vehicle and measures the distance as well as relative speed using a forward-looking sensor such
as a radar, and automatically adjusts the vehicle speed to keep a proper distance to the forward vehicle
and to avoid a collision, see figure1.1.
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Figure 1.1: The adaptive cruise control uses a sensor to measure distance and relative speed to a preceding
vehicle

At Scania, a model has been developed for an adaptive cruise control system in the model-based en-
vironments SimulinkR©/StateflowR©. The use of model-based software development offers some benefits:

• A focus on requirements lets engineers focus less on raw programming.

• Improved testability at an earlier stage in the development process.

Because of the improved testability, many software developers have started to employ automatically
generated tests. With automatic test vector generation, it is possible to run more tests more often and
earlier in the development process which probably results in improved quality of the software. This thesis
will focus on how automatic test vector generation combined with test coverage analysis can be used to
improve the quality of the software and save valuable time.
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2 Chapter 1. Introduction

From the Simulink model, C-code can be generated using Mathworks’ Real-Rime WorkshopR©(See
figure1.2). This code is then compiled and run on the target system.

Figure 1.2: C-code is generated from the model and compiled to the target system

Since the automatically generated code is run on the target system, it is also interesting to see if the
quality that is assured in the model by analyzing model coverage also guarantees good quality of the code.

1.2 Objectives

The goal of this thesis is to:

• Investigate different methods to automate testing of software implemented in MatlabR©/Simulink R©.

• Implement a method to generate test vectors and compare the results with existing test-vector
generating tools.

• Examine model coverage and code coverage on automatically generated code from a model.



Chapter 2

Testing theory

Testing is a systematic way to check the correctness of a system by means of experimenting with it [13].
Tests are applied to a system in a controlled environment, and a verdict about the correctness of the system
is given, based on the observation during the execution of the test [7]. Testing is an important and time-
consuming part of a software developer’s daily work. Thorough testing is necessary to be confident that
the system works as it was intended to in its intended environment. When testing software, there are often
a massive amount of possible test-cases even in quite simple systems. Running all the possible test-cases
is almost never an option, so designing test-cases becomes an important part of the testing process.

2.1 Types of tests

Tests are normally performed in several different stages in the software development. The V-model in
figure 2.1 on the next page illustrates that each implementation activity in the software development
process has a corresponding testing activity. The acceptance tests are usually written first but run last
and the unit tests are usually written last but run first. The V-model also illustrates the breaking down
of the requirements into more detailed requirements and then the integration of the system into a ready
product. The definitions of unit-, integration-, system- and acceptance testing in section2.1.1-2.1.4are
those defined by Fewster & Graham [7]. These definitions are generally different depending on what type
of product that is being developed.

2.1.1 Unit testing

A unit test is a test performed on a single component in the system, or in the case of software a single
program or function. In the unit tests it is interesting to look at different coverage criteria to verify that
most of the system has been covered by the test.

2.1.2 Integration testing

In the integration test, several units that are supposed to interact in the system are integrated and tested to
verify the correctness of and to debug the system.

3



4 Chapter 2. Testing theory

Figure 2.1: The V-model: Each stage in the software development process corresponds to a testing activity
[7].

2.1.3 System testing

System testing is sometimes divided into functional system testing and non-functional system testing. In
the functional system tests it is possible to test the whole system against the specification. The require-
ments can then be verified and the functionality of the system can be evaluated. Non-functional system
testing is a way to test properties such as performance, economy, flexibility, etc.

2.1.4 Acceptance testing

Acceptance testing is the last level of the validation process. It should be performed in as realistic envi-
ronment as possible. The acceptance test is often done by or with the customer. In this test the focus is
on getting a confidence for the system, not to try and find defects.

2.2 Test techniques

There are mainly two types of test techniques; static and dynamic testing.

2.2.1 Static testing

Static software testing means analyzing programs without running them. The purpose of static testing
is to find potential bugs or deficiencies in the program or to check the program against some coding
standard, analogous to using a spelling checker. Static testing can be done manually by analyzing the
code or it can be done automatically by a compiler or by a separate program. One of the tools used for
static testing of C source code isLint but static testing is usually done with the help of a compiler.
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2.2.2 Dynamic testing

Dynamic software testing means running programs and analyzing the outputs. The dynamic testing can
be divided intoblack-box, white-boxandgrey-boxtesting.

Black-box test design treats the system so that it does not explicitly use knowledge of the internal struc-
ture of the system. The tests could be based on requirements and specifications or on possible use
of the system. Random testing is also a black-box technique.

White-box techniques are based on having full knowledge of the system. With this technique it is poss-
ible to test every branch and decision in the program. When the internal structure is known it is
interesting to look at different coverage criteria such asdecision coverage. The test is accurate only
if the tester knows what the program is supposed to do. The tester can then see if the program
diverges from its intended goal.

Grey-box techniques: In between the black-box and the white box-testing there are also many degrees
of grey-box testing, e.g. when the module structure of a system is known but not each module
specifically.

Manual testing can be classified as any of the above techniques depending on how the testing is done.
For example structured manual testing would be classified as white-box testing while ”ad hoc testing”
would be classified as black-box.

2.3 Test coverage

Test coverage is a way to determine the quality of a test. Historically, when test coverage was first applied
it meant a significant change for many testers in their approaches to testing. With test coverage, it was
possible to combine black-box testing with measuring coverage instead of designing manual white-box
tests which could take very long time [2].

To measure coverage is to quantify in some way how much of a certain program that has been ex-
ercised during an execution [14]. It is also important to mention that coverage analysis is only used to
assure the quality of a test, not the quality of the actual product [4].

Test coverage can be divided intocode coverageandmodel coverage. Code coverage is based on
code, for example C-code or Java and model coverage is based on graphical models such as Simulink-
models or UML1- models.

In some cases, it may be impossible to cover certain parts of the system. For example, a program may
contain code to detect and handle error conditions that are very hard to simulate in a test.

Decision coverage, condition coverage and modified condition/decision coverage (MC/DC) are some
of the most common coverage criteria in modeling environments. All these metrics originate from their
original definitions for code coverage.

2.3.1 Decisions and conditions

The definitions of decisions and conditions below are general in testing terminology but the formulations
of the definitions are those by Chilenski and Miller 1994 [2].

1Unified Modeling Language
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Decisions

A decision is treated as a single node in a program’s structure, regardless of the complexity of boolean
structures constituting the decision. Consider the program as a flow chart, a decision is then a point where
the flow can be divided into two or more branches. See figure2.2

Figure 2.2: A decision is a point in the program’s flow chart where the flow can be divided into one or
several branches

Conditions

A condition is a boolean valued expression that cannot be broken down into simpler boolean expressions
[2]. A decision is often composed of several boolean conditions. Consider the logical tree in figure2.3,
whereA,B and Care conditions that together constitute a decision.

or
�� @@

and
�� @@

A B

C

Figure 2.3: This logical tree represents a decision, the ”leaves” of the tree are called conditions

2.3.2 Notation, boolean expressions

In this report, boolean variables will be used to represent the actual conditions. For example, the ex-
pressionIsValidTarget and (DistanceToTarget < 200) can be written asA and B for
simplicity. Theand-operator will sometimes be written& and theor-operator will be sometimes be writ-
ten|. Shortcircuited operators (explained in section6.1.1) will be written&& and||. Boolean values will
be written astrue andfalseor T andF. The evaluation order of boolean expressions will always be from
left to right.



2.3. Test coverage 7

2.3.3 Decision coverage

For each decision, decision coverage measures the percentage of the total number of paths traversed
through the decision point in the test. If each possible path has been traversed in a decision point, it
achieves full coverage. See figure2.4.

(a) In Simulink, a switch block corresponds to a decision point,
where the output can be either input 1 or input 2

if (Switch control signal >= 0.0) {
Switch output = Switch input 1;

} else {
Switch output = Switch input 2;

}
(b) The corresponding decision in C-code

Figure 2.4: Decision coverage

2.3.4 Condition coverage

Condition coverage in Simulink examines blocks that output the logical combination of their inputs
( AND, OR, . . . ) and state transitions. A single condition achieves full coverage if it has been
evaluated both true and false at least once. See figure2.5.

(a) Condition: The inputs to the logical operator block (here AND)
correspond to conditions that can either be true or false.

ANDoutput =
(AND input 1 && ANDinput 2);

(b) Corresponding conditions in C-code

Figure 2.5: Condition: The inputs to the logical operator block (here AND) correspond to conditions that
can either be true or false.

2.3.5 Modified condition/decision coverage (MC/DC)

This measure requires enough test cases to verify that every condition alone can affect the result of its
comprehending decision [2]. A condition is shown to independently affect the decision’s outcome by
varying just that condition while holding all other possible conditions fixed [2].
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Example: For a condition to have full MC/DC, there has to be a pair of test cases where a change in
the condition alone (all other conditions are fixed) changes the output. Consider the decisiond = a&b.
The possible combinations of conditions are shown in table2.1.

test case ab d a b
1 TT T 3 2
2 TF F 1
3 FT F 1
4 FF F

Table 2.1: All combinations of conditions for the decisiond = a&b. Test case1 can be combined with
test case3 for conditiona to satisfy MC/DC and test case1 can be combined with test case2 for b to
satisfy MC/DC. Source [2]

In the two rightmost columns of table2.1, test case combinations that make the condition satisfy
MC/DC is presented. Conditiona needs test case1 and test case3 to satisfy MC/DC and conditionb
needs test case1 and test case2 to satisfy MC/DC. Hence, the test cases1, 2 and3 are needed to achieve
full MC/DC for the decision.

In Simulink, MC/DC can be measured on blocks that output the logical combination of their inputs
or on state transitions in Stateflow that contains several conditions. The modified condition/decision
coverage criterion was designed for programming languages that do not use shortcircuited evaluation of
logical expressions. In section6.1.1a ”redefinition” of MC/DC is introduced for programming languages
that use shortcircuited evaluation of expressions, examples of such programming languages areAdaand
C.

MC/DC is a good compromise between decision/condition coverage and testingall combinations
of condition outcomes, which is required by themulticondition coveragecriterion explained in section
2.3.6. Instead of requiring2N test cases (whereN is the number of conditions) which is required for
multicondition coverage, a minimum ofN + 1 test cases is required for MC/DC [2].

2.3.6 Other coverage metrics

Model coverage:

Lookup table coverage examines lookup tables in Simulink. A lookup table achieves full coverage if
all interpolation intervals have been executed at least once.

Signal range coveragereports the ranges of each input or signal.

Code coverage:

Line coverage examines how many lines of code that has been executed.

Condition/decision coverageis a hybrid measure composed by the union of condition coverage and
decision coverage. Condition/decision coverage requires all decisions and their comprehending
conditions to have been both true and false [4].

Function coverage reports whether each function or procedure has been invoked.

Table coverage indicates whether each entry in a particular array has been referenced.
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Relational operator coverage reports whether boundary situations occur with relational operators (<,
≤, >, ≥). Relational operator coverage reports whether the situationa = b occurs. Consider
(a < b). If a = b occurs and the program behaves correctly, you can assume the expression is not
supposed to be (a ≤ b) [4].

Multicondition coverage: Instead of just requiring the whole decision to be true or false, the ”multicon-
dition coverage” criterion requiresall combinations of conditions in a decision to be tested [8].

Statement coveragereports whether terminal statements such as”BREAK”, ”RETURN”, ”GOTO”, . . .
has been executed during the test.

2.4 Coverage goals

Having 100% coverage is of course desirable, but not always practically possible. Every test should
have a coverage goal before release depending on testing resources and the importance to prevent post-
release failures [9]. Safety critical systems such as aviation software or software in medical equipment
should naturally have a high coverage goal. For example, the RTCA/DO-178B is a standard that provides
guidelines for the production of airborne systems equipment software. In DO-178B, software is classified
based on how safety critical the system is. The different classes and their requirements are shown in
table2.2.

Criticality level Consequence Coverage requirements

Level A Catastrophic MC/DC, Decision coverage and Statement coverage required
Level B Hazardous / severe Decision coverage and Statement coverage required
Level C Major Statement coverage required
Level D Minor None required
Level E None None required

Table 2.2: Coverage goals for aviation software using the DO-178B standard

Generally, when considering condition and decision coverage it is desirable to attain at least 80-90%
coverage or more. When using the MC/DC criterion, it is often harder to attain higher levels coverage
than when just using condition and decision coverage. This is understandable, because both the decision
and all belonging conditions are covered if full MC/DC is achieved in a specific decision. This relation
is easily derived directly from the definitions of MC/DC, condition coverage and decision coverage (see
section2.3).

Note: All decisions doesn’t have two or more conditions, hence MC/DC is not measured in all decisions.
This means that full MC/DC in a model doesNOT imply full decision coverage for the same model.

In figure2.6on the next page the relative time/effort to achieve different levels of coverage with MC/DC,
decision and condition coverage is shown. The time scale in figure2.6refers to the relative time to create
tests with sufficient levels of coverage with the SBCT-method described in chapter4. The graph is based
on experience during this project only, the relation may very well be dependent on the structure of the
system.
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2.5 Automating tests

Test Automation can enable testing to be performed more efficiently than it can ever be done by testing
manually. Some of the benefits of test automation are:

• Each time a system is updated, the new changes has to be tested in a regression test (a test that
is run every time the system is updated to check that functionality that was not supposed to be
changed works as it was intended). These tests are time-consuming and sometimes tiresome for
the tester. If the tests can be automated, it should only take a few minutes to initiate the execution
of the regression test.

• Ability to run more tests in less time and therefore it is possible to run tests more often. This will
probably lead to better confidence in the system.

• Better use of resources. Many forms of manual tests are fairly menial, such as repeatedly entering
the same test-inputs. If these tests can be automated, it gives better accuracy as well as more time
for the testers design better test-cases.

• More thorough testing can be achieved with less effort than manual testing which probably gives
a boost in both quality and productivity. It is also possible to run tests at an earlier stage of the
software development process, thereby reducing the costs of removing defects.
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2.6 Different approaches to automating testing

There are many approaches to automate testing. Some of these approaches that were considered particu-
lary important for this thesis are presented in sections2.6.1to 2.6.4

2.6.1 Capture& replay

Capture& replay is simply a method to record the inputs to a system when a tester sits down to test, and
replay the same test scenario later. This is the simplest form of test automation.

2.6.2 Random test generation

Random test generation is a black-box method. The basic idea is that the user specifies the data-types
and data-range of the inputs and the test-program generates random inputs within the limits of the user’s
specification. Random tests must often be extremely large to achieve good coverage on complex systems.

2.6.3 Combinatorial test generation

Combinatorial test design is a way to keep the size of the test-vectors down to a reasonable level compared
to random test-vectors. There are many systems where troublesome errors occur because of the interaction
of a few inputs [3]. Another motivation is that the minimum number of tests required to cover all pairwise
or n-way input combinations grows logarithmically in the number of inputs and linear in the number of
possible values for each input , instead of exponential growth when testing all input combinations [3]. By
combining the pairwise or n-way combinations it is possible to reduce the size of the tests significantly
and still get better coverage than when using random testing.

2.6.4 Model-based test generation

The model-based approach is an advanced method to generate tests without manual effort. This method
is employed by several modern test-tools. These test tools can convert models into a form where it is
possible to generate test vectors [1]. The algorithms that are used to create test vectors from a model
strive to increase model-coverage dynamically during the test generation process. These algorithms are
test-tool specific and often quite sophisticated, hence they are not published officially.

2.6.5 Limitations of automating testing

There will always be some testing that is much easier to do manually than automatically, or it is not
economic to automate. Manual testing requires all test cases to be written manually, which requires lots
of time and effort but in some cases it is more economic than to automate a testing process. For example,
tests that involve lots of physical interaction, such as turning power on and off or disconnecting some
equipment will probably be easier done manually. Another example is that tests that are run very seldom
would probably not be worth automating.
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Chapter 3

Test tools

Test tools are programs that can assist the tester to generate test suites, create test harnesses, measure test
coverage, validate outputs etc.

3.1 Commercial model testing tools

There are a few tools available for testing models made in Simulink/Stateflow on the commercial market.

3.1.1 Simulink Verification and Validation (V&V)

One of the products, Simulink Verification and Validation (V&V), is a toolbox for MatlabR©/Simulink R©.
It is not capable of generating test-vectors directly from a model, but it is excellent to use together with
manual scripts or home-made automated tests to measure the model coverage and verify requirements.
The main features are that the model coverage information is displayed directly in the model and that
requirements can be associated directly with the model. Another benefit is that the test environment is the
same as the development environment.

3.1.2 ReactisR©

Reactis is one of the leading tools for model-based test generation and validation of SimulinkR©/ State-
flow R©models. Reactis automatically generates test suites directly from models. The tests are generated to
achieve good model coverage which is measured dynamically during the test generation process. Reactis
is a separate program, where Simulink models can be loaded and simulated with the automatically created
test inputs. In Reactis it is possible to usetargetsandassertionsfor verification.

A target is defined by a separate Simulink model. Reactis will then try to cover the target as well as
the model under test. Targets are customized test scenarios and are useful when it is interesting to check
model behavior in certain circumstances. For example, a target can specify a variable that is held constant
for a certain period of time. Reactis then tries to cover the target model, thereby testing the model under
test at least once in the specified scenario.

Assertionsare also defined by a separate Simulink model. Assertions specify properties that should
always be true for a model and can be used for model verification [11].

The test-generation component of Reactis relies on model coverage criteria to construct tests. The tool
tracks several coverage criteria as it computes test data, and it uses uncovered elements of these criteria
to influence subsequent tests that it creates. Reactis uses information about uncovered parts of the model
to select input data that will advance coverage of the model [11].

13
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3.1.3 Other model-based testing tools

T-VEC R© The T-VEC Tester uses advanced algorithms to analyze the model and select test cases that
most effectively reveal errors. T-VEC also measures all the common coverage criteria. Just as
Reactis the T-VEC tester can create tests directly from models which is useful for verifying that a
system behaves correctly [12].

BEACON is a tool for generation of code from Simulink models and automatic generation of test vectors.
The Automatic Unit Test Tool (AUTT)-part of BEACON creates test vectors. These test vectors
target several coverage criteria and other common error sources such as numerical overflows. [6].

3.2 Building own test tools

When attempting to build an own test tool, there are some things that should be considered [7]:

+ The tool may be able to use knowledge of the system under test, thereby reducing the work necessary
to implement automatic tests

+ It will be most suitable for the specific needs

– The user interface may leave something to be desired (the ease of use will probably be considered
unimportant)

– It will probably be cheaper to achieve a given level of features and quality to buy a commercial test
tool
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Implementation of a combinatorial test

An existing algorithm for generating tests based on a combinatorial technique was modified and applied
to the ACC-model. This process is described in the following sections.

4.1 Advanced Effective Test Generation (AETG)

The algorithm that was used is calledAdvanced Effective Test Generationand is described in a paper by
David M. Cohen [3].

4.1.1 The AETG system

In many applications, a significant number of faults are caused by parameter interactions that occur in
atypical, yet realistic situations [3]. The AETG (Advanced Effective Test Generation) system uses an
algorithm to cover all pairwise or n-way combinations of input values.

The idea behind AETG is that each input is treated as aparameter, with different valuesfor each
parameter. For example, a system has 20 parameters (inputs) with 3 possible values for each parameter.
The design will ensure that every value of every parameter is tested at least once together with every other
value of every other parameter, which ensurespairwise coverage. Pairwise coverage provides a significant
reduction in the number of test cases when compared to testingall combinations[5]. If the example with
20 parameters with 3 values each would be tested with all combinations covered,320; more than 3 billion
test cases would be required. With combinatorial testing, the number of test cases were reduced to 44
with full pairwise coverage, using amodifiedAETG algorithm that was implemented during the work
with this thesis, this modified algorithm is described in section4.2.2. The AETG algorithm does not
guarantee that the minimal amount of test cases required for pairwise coverage is used, but experience
during this project has shown that the algorithm is quite effective.

4.1.2 The original AETG-algorithm

This is the original AETG algorithm published in a technical paper by David M. Cohen [3]:
Assume that we have a system withk test parameters and that thei:th parameter hasli different

values. Assume that we have already selectedr test cases. We select ther + 1 by first generatingM
different candidate test cases and then choosing one that covers the most new pairs. Each candidate test
case is selected by the following greedy algorithm:

15
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1. Choose a parameterf and a valuel for f such that that parameter value appears in the greatest
number of uncovered pairs.

2. Let f1 = f . Then choose a random order for the remaining parameters. Then, we have an order
for all k parametersf1, . . . , fk.

3. Assume that values have been selected for parametersf1, . . . , fj . For 1 ≤ i ≤ j, let the selected
value forfi be calledvi. Then, choose a valuevj+1 for fj+1 as follows. For each possible value
v for fj , find the number of new pairs in the set of pairs{fj+1 = v andfi = vi for 1 ≤ i ≤ j}.
Then, letvj+1 be one of the values that appeared in the greatest number of new pairs. Note that,
in this step, each parameter value is considered only once for inclusion in a candidate test case.
Also, that when choosing a value for parameterfj+1, the possible values are compared with only
thej values already chosen for parametersf1,, fj .

4.1.3 Limitations

Applying the AETG system in its original version is only practical when testing systems with few values
in each test parameter. When the number of possible values for each input grows large, the number of
possible pairs grows as the square of the number of possible values for each input. This will cause an
increase in the number of test-cases required to cover all pairs; Cohen et al. proves that the number of test
cases grows linearly in number of possible values [3]. Altogether this will make AETG unsuitable to use
on systems with inputs that have floating-point data types or other data types with many possible values.
Systems with many test-parameters do not restrain effective test generation with the AETG system as
long as there are not too many values in each parameter.

4.2 Implementation

With the help of a slightly modified AETG-algorithm, a new method was developed to create tests for the
ACC-model. This method will be calledSequence based combinatorial testing(SBCT) in the rest of this
report.

4.2.1 The model under test

The model that was used as a reference model is a Simulink / Stateflow model of an adaptive cruise
control system (ACC). This model has 33 inputs and more than 30 outputs. Out of the 33 used inputs, 9
had floating-point values. The remaining inputs were integers or boolean.

4.2.2 Application of a modified AETG-algorithm

The AETG-algorithm was slightly modified before it was applied to generating tests for the ACC-model.
Firstly, only pairwise coverage was considered. Secondly, the idea with candidate tests was discarded be-
cause it takes much less time to create just one test. Experience during this project showed that creating
several candidate tests were not equivalent to shorter or better tests so instead of creating candidate tests,
it was made possible to run several tests, covering each pair at least once. In this project the number of
test cases was not a priority to keep down, just to keep the number of test cases on a controlled level. The
feature of running several tests was implemented because there was a level of uncertainty that was caused
by randomized values (explained in the following sections). Therefore, ten tests would most probably
give better results than just one. A good result in this case means high model coverage.
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An overview of the modified algorithm is shown in figure4.1

Figure 4.1: Overview of the modified AETG algorithm.
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Floating-point inputs

It would have been impossible to test all the possible values in an input of a floating-point data type.
Therefore, the inputs with floating-point values had to be replaced using one of the following solutions:

1. A fixed number of different constant values. For example, a floating-point value between 0 and 100
would be represented by the set[0, 12, 19, 39, 52, 78, 99, 100]. The value set has to be carefully
selected with respect to the model properties to be able to function well.

2. A number of intervals can be selected and in each interval, the values can be randomized. For
example, a floating-point value between -1 and 1 where the negative and positive values mean
significant differences can be divided into two intervals.[−1, 0] and [0, 1]. In each interval, the
values can be random between[−1, 0] and[0, 1] respectively. See figure4.2a on the next page. The
indexes to each interval can be combined with the modified AETG-algorithm.

3. In some systems it is also important if the input is increasing or decreasing. It is then possible to
randomize an initial value and increase or decrease the value with a small random number each
sample. For example, consider a floating point value input between 0 and 100. Every 40 samples,
randomize a new initial value and increase or decrease the value with a random value between 0
and 0.5 each sample.

4. Sometimes it is also interesting when an input crosses a fixed value. By combining increas-
ing/decreasing inputs and a sort of ”logic” that makes sure that the input crosses the fixed value
as many times as possible but still in a random way. See figure4.2b on the facing page.

Some of the methods above can of course be modified to better fit the demands. For example, a
modification of alternative 2 can have different probabilities to end up in the different intervals, or the
intervals can overlap each other. Alternatives 2, 3 and 4 or modifications of them were finally used as
solutions for the floating-point inputs in the test for the ACC-model. Each method had some parameters
(e.g. increase/decrease) that were combined using the modified AETG-algorithm.

Reset signals

Another problem is signals that reset the system or a part of the system. If these signals reset the system
too often, there will not be much space for thorough testing because the system will reset all the time.
The solution to that problem will be to let the signals that reset the system be in the passive mode (not
resetting) most of the time, easier said than done perhaps, but the problem will be better explained in the
next section concerning sequences.
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(a) Random between intervals

(b) Crossing a fixed value (here 200m)

Figure 4.2: Floating-point handling

Computing the maximum number of pairs in a system

All pairwise combinations of a set of test-parameters can easily be calculated with some matrix opera-
tions. Consider a system withn parameters withvi, i = 1, ..., n values in each parameteri.

Let

V =

 v1

...
vn

 ⇒ V V T =

 v1v1 · · · vnv1

...
...

...
v1vn . . . vnvn

 (4.1)

The maximum number of pairs is then the sum of all elements in the lower triangular part of the matrix
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V V T .
For example, consider a system with four parameters, withv1 = 1, v2 = 2, v3 = 3, v4 = 4 . Hence

V V T =


1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

 (4.2)

The lower triangular part (all the elements below the main diagonal) ofV V T is then:

LTP (V V T ) =


0 0 0 0
2 0 0 0
3 6 0 0
4 8 12 0

 (4.3)

The maximum number of pairs is then the sum of all elements inLTP (V V T ) : 2+3+4+6+8+12 =
35 pairs.

4.3 Sequences

To solve some problems of directly applying combinatorial tests on a complex model, a new method was
developed to be able to design tests that are better suited to achieve good model coverage on a model with
several state-machines and complex logical expressions. Generally, complex state-machines can be very
hard to cover independently of what test method that is being used.

4.3.1 Problems with using standard combinatorial testing

Some of the disadvantages of directly applying combinatorial testing on a complex Simulink / Stateflow
model are:

– To be able to avoid the resetting of parts of the system caused by different inputs when directly applying
test vectors from the AETG algorithm, many unnecessary values of those signals must be defined.
For example, consider a reset signal that can be 0 or 1. If the signal is 1, the entire system is
reset. The most obvious solution to that problem would be to extend with more values for that
parameter. More zeros than ones, as for example[0, 0, 0, 0, 0, 0, 0, 0, 0, 1], which means that it is
only approximately 10% chance to reset the system each sample. This method is very ineffective
and it contributes to large test cases.

– State-machines that are used in the model under test sometimes require that several signals are constant
over a longer period of time. The only effective solution to the problem would be to have a much
longer sample time for the inputs than the sample time of the system itself. This can be a problem if
some part of the system requires fast changes of some signal, and at the same time constant values
of another signal. It also contributes to long test times or simulation times.

4.3.2 Problems with different send period

The inputs to the ACC-software during execution in the target system are received from the vehicle’s
CAN1-bus. The inputs arrive with different messages that are normally being sent with a specific interval.
These intervals normally vary between 20ms and 100ms. To be able to compare the target system’s

1Controller Area Network
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outputs with the ones from the model, these update-intervals for the inputs must be resembled when
the tests are created. The CAN-messages that contain the inputs to the ACC-software are being sent
periodically over the CAN-bus with a period of 20, 40, 50 or 100ms.

4.3.3 Solutions

To solve the problems, the 33 inputs were divided into several ”classes”. Because the binary and integer
inputs to the system used only 50 or 100 milliseconds update interval, only sequences with 50 and 100
milliseconds update interval was needed.

Binary 50ms Update-interval 50ms. The input is 0 or 1 with 50% chance of having the value 1, see
table4.1on the next page.

Binary 50ms- mostly false Update-interval 50ms. The input is 0 or 1 with approximately 6% chance of
having the value 1, see table4.2on the following page.

Binary 50ms- mostly true Update-interval 50ms. The input is 0 or 1 with approximately 94% chance
of having the value 1, see table4.3on the next page.

Ternary 50ms Update-interval 50ms. The input is 0, 1 or 2, with approximately 5% chance of having the
value 1 and 5% chance of having the value 2. This class is mostly used for error code simulation,
thereby the low probability of having a different value than zero. See table4.4 on the following
page.

Binary 100ms Update-interval 100ms. The input is 0 or 1 with 50% chance of having the value 1, see
table4.5on the next page.

Binary 100ms- mostly falseUpdate-interval 100ms. The input is 0 or 1 with approximately 6% chance
of having the value 1, see table4.6on the following page.

Binary 100ms- mostly true Update-interval 100ms. The input is 0 or 1 with approximately 94% chance
of having the value 1, see table4.7on page23.

Ternary 100ms Update-interval 100ms. The input is 0, 1 or 2, with approximately 5% chance of having
the value 1 and 5% chance of having the value 2. This class is mostly used for error code simulation,
thereby the low probability of having a different value than zero. See table4.8on page23.

Floating-point values These values are treated separately because every signal has different properties.

Some of the inputs had values that differed from the classes but were still very much alike. It was then
possible to use one of the classes and apply some aftertreatment afterwards. For example, a signal that
can be either 0 or 100. This signal can then be treated as a binary signal and then multiplied with a
constant value (100).

For each of the classes, a set of sequences were created. The sequences have proven to be a good
complement to combinatorial test generation because they provide some random behavior and at the
same time it is possible to have sequences that are almost constant at some times. The different sequences
are selected through indexes that are thevaluesfrom the combinatorial test-generating algorithm. That
way, the sequences are combined which hopefully improves the effectiveness of the tests. When creating
several tests that are executed in a row, it is also possible to have different input sample time for the inputs.

The sequences are randomly generated but are constant through each test. Each sequence is 40 sam-
ples long and each sample is defined by the design parameterinput sample time. Consequently, the length
of each sequence can be a factor of 400 milliseconds.
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Index 0 1 50ms 100ms 150ms Example

1 30% 70% HHHHH|LLLLL|LLLLL|HHHHH|HHHHH|HHHHH|HHHHH|LLLLL

2 70% 30% HHHHH|LLLLL|HHHHH|HHHHH|HHHHH|HHHHH|LLLLL|LLLLL

3 20% 80% HHHHH|HHHHH|HHHHH|HHHHH|HHHHH|LLLLL|HHHHH|HHHHH

4 80% 20% LLLLL|LLLLL|LLLLL|LLLLL|LLLLL|HHHHH|LLLLL|HHHHH

Table 4.1: Binary 50ms sequence

Index 0 1 50ms 100ms 150ms Example

1 98% 2% LLLLL|LLLLL|LLLLL|LLLLL|LLLLL|LLLLL|LLLLL|LLLLL

2 90% 10% LLLLL|LLLLL|HHHHH|LLLLL|LLLLL|HHHHH|LLLLL|LLLLL

Table 4.2: Mostly false 50ms sequence

Index 0 1 50ms 100ms 150ms Example

1 2% 98% HHHHH|HHHHH|HHHHH|HHHHH|HHHHH|HHHHH|HHHHH|HHHHH

2 10% 90% LLLLL|HHHHH|HHHHH|LLLLL|HHHHH|HHHHH|HHHHH|HHHHH

Table 4.3: Mostly true 50ms sequence

Index 0 1 2 50ms 100ms 150ms Example

1 98% 1% 1% 00000-00000-00000-00000-00000-00000-00000-00000

2 85% 10.5% 4.5 00000-00000-00000-00000-00000-11111-00000-00000

3 85% 4.5% 10.5% 00000-22222-11111-00000-00000-00000-00000-00000

Table 4.4: Ternary 50ms sequence

Index 0 1 100ms Example 300ms

1 30% 70% LLLLLLLLLL|HHHHHHHHHH|HHHHHHHHHH|HHHHHHHHHH

2 70% 30% LLLLLLLLLL|LLLLLLLLLL|HHHHHHHHHH|LLLLLLLLLL

3 80% 20% LLLLLLLLLL|LLLLLLLLLL|LLLLLLLLLL|HHHHHHHHHH

4 20% 80% HHHHHHHHHH|HHHHHHHHHH|HHHHHHHHHH|HHHHHHHHHH

Table 4.5: Binary 100ms sequence

Index 0 1 100ms Example 300ms

1 98% 2% LLLLLLLLLL|LLLLLLLLLL|LLLLLLLLLL|LLLLLLLLLL

2 90% 10% LLLLLLLLLL|HHHHHHHHHH|LLLLLLLLLL|LLLLLLLLLL

Table 4.6: Mostly false 100ms sequence
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Index 0 1 100ms Example 300ms

1 2% 98% HHHHHHHHHH|HHHHHHHHHH|HHHHHHHHHH|HHHHHHHHHH

2 10% 90% LLLLLLLLLL|HHHHHHHHHH|HHHHHHHHHH|HHHHHHHHHH

Table 4.7: Mostly true 100ms sequence

Index 0 1 2 100ms Example 300ms

1 98% 1% 1% 0000000000-0000000000-0000000000-0000000000

2 85% 10.5% 4.5 0000000000-0000000000-1111111111-0000000000

3 85% 4.5% 10.5% 0000000000-2222222222-0000000000-0000000000

Table 4.8: Ternary 100ms sequence

4.3.4 Using manual tests to complement the automatically generated tests

Sometimes it is better to complement the automatically generated tests with some manual test cases
instead of attempting to automate all testing. Some parts of the ACC-model are extremely hard to cover
with automated tests. These parts are theoretically possible to cover using combinatorial testing, but
attempting to do so would require very long tests because of the low probability of covering these parts.
It is therefore more effective to design manual test cases to cover such parts.

The manual tests are preferably run before the automated tests since it is easier to design a manual
test that starts when the system is in its initial condition. Having manual tests run before the automated
tests guarantees that thehard-to-coverparts of the systems are exercised.

An example of ahard-to-covercondition is a state transition in the ACC-model that can only be active
when the state-machine has been in the same state for more thanthirty seconds. To be able to test this
transition automatically, a very long input sample time would be needed. Since this is very ineffective it is
better to create a manual test case that is executed before the automated tests. Finding thesehard-to-cover
parts is quite easy when performing a coverage analysis with Simulink Verification and Validation.

A method to develop and run manual tests before the automatically generated tests was implemented
together with the test generation program.

4.3.5 Ways to improve model coverage

There are some simple ways to improve the condition coverage (see2.3.4) and the MC/DC (see2.3.5and
6.1.1) without having to run more test cases. The reason is that transitions in Stateflow use shortcircuited
evaluation of decisions. Shortcircuited evaluation of decisions means that when a decision consists of
several conditions and the decision can be computed by just evaluating some of the conditions, the rest
of the conditions are never evaluated. For example, consider a decisiond, consisting of two conditions,
a andb asd = a&&b. Let a = ”false” andb = ”true” , sincea is evaluated”false” the decision is
automatically”false” independently of whatb is. Henceb is never evaluated.
The idea is to increase the chance that conditions that are rarely true or rarely false get full condition
coverage and MC/DC by letting Stateflow first evaluate the condition that has the greatest possibility to
be evaluated”true” if the decision is anand-operator between two or several conditions. If the decision
is anor-operator between two or several conditions, the condition with the least chance of being true
should be evaluated first for maximum testability. This method naturally requires good knowledge of the
model. A disadvantage is that the execution time might increase. The increased execution time may lead
to a processor load that comes closer to the worst execution time of the software. This may be negative
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in some aspects but when the processor load increases it is easier to estimate the worst execution time,
thereby increasing the reliability of the system.

The most intuitive way to write decisions is probably to write conditions in an order that leads to
a minimal evaluation of conditions, thereby also minimal coverage. The programmer should then re-
consider the evaluation order of the conditions if software testability is of higher priority than execution
time.

and-operators

Example: Consider a decisiond = a&&b wherea andb are boolean. Let the decision be evaluated with
a first and thenb. With shortcircuited evaluation, the decisionb is only evaluated ifa is true. Ifp(a) = 0.1
andp(b) = 0.4 the probabilities of getting the different condition combinations are shown in table4.9.

a b probability
1 F - (1− p(a)) = 0.9
2 T F p(a)(1− p(b)) = 0.06
3 T T p(a)p(b) = 0.04

b a probability
1 F - (1− p(b)) = 0.6
2 T F p(b)(1− p(a)) = 0.36
3 T T p(b)p(a) = 0.04

Table 4.9: Probabilities of different results ofa&&b andb&&a

For condition coverage, all the test cases in table4.9 must have been run. Hence, the probability of
getting full condition coverage for botha andb with just3 test cases is:
6 ∗ 0.9 ∗ 0.06 ∗ 0.04 = 0.01296

If the decision is evaluated asd = b&&a (b is evaluated first) the probability of getting full condition
coverage with just3 test cases is:
6 ∗ 0.6 ∗ 0.36 ∗ 0.04 = 0.05184

With this manoeuvre, we have improved the chance of getting full coverage by a factor of0.05184
0.01296 = 4

compared to the previous method. This does not improve the decision coverage, since the outcome
of the decision is independent of the order of evaluation. It is important to mention that applying this
method may increase the processor load during execution of the software. Hence it should only be applied
on systems where testability is of higher importance than execution time, because the shortcircuited
evaluation normally saves computation time.

or-operators

Example: Consider a decisiond = a||b (|| is shortcircuited logicalor) wherea andb are boolean. Leta
be evaluated first and thenb with shortcircuited evaluation. Ifp(a) = 0.9 andp(b) = 0.3 the probabilities
of getting the different condition combinations are shown in table4.10

a b probability
1 F F (1− p(a))(1− p(b)) = 0.07
2 F T (1− p(a))p(b) = 0.03
3 T - p(a) = 0.9

b a probability
1 F F (1− p(b))(1− p(a)) = 0.07
2 F T (1− p(b))p(a) = 0.63
3 T - p(b) = 0.3

Table 4.10: Probabilities of having different condition combination ofa||b andb||a
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The probability of getting full condition coverage with just3 test cases is:
6 ∗ 0.07 ∗ 0.03 ∗ 0.9 = 0.01134

If the decision is evaluated in the opposite order (d = b||a) the probability of getting full condition
coverage with3 test cases is:
6 ∗ 0.07 ∗ 0.63 ∗ 0.3 = 0.07938

This means an increase in the probability by a factor0.07938
0.01134 = 7. This method can mean a significant

chance of increasing coverage especially for decisions with many conditions.

4.4 Test design

It is still a skill to design a good test with the program that usessequence based combinatorial testing.
Without proper specifications the program will not be able to create a test with acceptable coverage.
There are some design parameters that must be specified before the program is set to generate a test.
These design parameters are:

• Test sequences

• Ways to handle floating-point inputs

• Choice of data ranges and classification of inputs

• Precisionandinput sample timesin each test as well as the number of tests (with precision means
how many of the pairs that at least must be covered in each test)

A tester that is familiar with the model under test probably has some knowledge about data ranges
of the signals. He also probably knows in which intervals an input is particulary interesting and which
inputs that reset the system with certain values.
With this knowledge it is possible to create a good test with SBCT with much less effort than manual
testing. With the help of a model-coverage tool such as Simulink Verification and Validation it is possible
to run tests and analyze the coverage results to see what can be done to improve the coverage.

4.4.1 The test generation process

The test suites are created in a Matlab script from where the modified AETG-algorithm is called. The
sequences and methods for floating-point handling are then applied to the vectors of indexes that are
generated by the AETG-algorithm. An overview of the test generation process can be seen in figure4.3
on the following page

4.4.2 Choice of test sequences

Sequences are suitable for binary or integer inputs. If many tests are executed in a row it is a good idea to
generate random sequences in each test. This will ensure that many different variations of the inputs are
combined. Yet, the distributions of the test sequences have to be carefully selected.

4.4.3 Choice of data ranges

The binary or integer inputs must be classified for a certain sequence type. There are often several inputs
that have similar properties and they can therefore use the same sequences.
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Figure 4.3: Overview of the test generation process with SBCT-method

4.4.4 Precision and input sample time

Precision

Precision is a design parameter that specifies how thorough a test is. Precision = 1 means that all pairs
must be covered before a test is complete. Creating tests with full precision tend to demand much more
test cases than a test with a precision just below 1. For example, see table4.11on the next page.
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Precision n.o. sequences

1 81
0.99 49
0.95 27
0.90 20
0.5 5

Table 4.11: An example of the number of sequences needed for the ACC model with 33 inputs. Consider
that each sequence consists of 40 test cases, thus each sequence is at least 40 simulation steps.

Input sample time

Input sample time is the least time that each input is held constant. When creating several tests that are
executed in a row, it is possible to vary the input sample time in each test. Using long and short input
sample times have their advantages:

• When parts of the system requires that some inputs are constant a certain period of time it is
favorable to use a longer input sample time for the inputs.

• Short input sample times result in shorter simulation time. When creating many tests, it is important
to keep the simulation time down to a reasonable level.

To combine the advantages it is possible to create a few tests with long input sample times and the
rest of the tests with a short input sample time. This will keep the simulation time down and at the same
time exercise as many parts of the model as possible.

4.4.5 Modification of the model

To be able to run the tests on the model, all top level inputs and outputs were connected to from/to
workspace blocks. There were also some parts of the model that was ”dead”; states that are not reachable
independently of the inputs. These parts were removed. In chapter7, a case study is presented where
more information about dead code that was discovered is listed.

4.4.6 User interface

In the Matlab script that calls the modified AETG-algorithm, two design parameters need to be specified
to create a test suite. Those variables areprecisionandinput sample time. They are specified as vectors,
and the length of those vectors also specifies how many tests that are to be created. In figure4.4 a
screenshot from the simple user interface in the Matlab script is presented.

%Design parameters

precision = [0.75 0.90 0.90 0.90 0.95 0.95 0.90 0.99 0.99 1.00];
t_sample = [0.01 0.01 0.01 0.10 0.01 0.04 0.04 0.15 0.01 0.02];

Figure 4.4: The user specifies the precision and input sample time for each test and thereby also the
number of tests



28 Chapter 4. Implementation of a combinatorial test

4.4.7 Overview

Figure4.5shows the sequence of work to create a test with the SBCT-method.

Figure 4.5: The steps to create a test suite with the SBCT-method



Chapter 5

Comparison between different test
generating methods

For the comparison between the different methods, the ACC-model that was described in section4.2.1
was used as a reference model.

5.1 Manual testing

Manual unit tests have been created and run on the adaptive cruise control system to verify the functional-
ity of the system. These manual tests were not run on the model, only the target system was tested against
its requirements. The test cases has been developed in close relation with the hardware, using a program
that has a CAN1-interface to the target system. These tests are partlyevent-triggered, meaning that the
response from the system affects the inputs.

A method for parsing log-files and decoding CAN-message data was developed during the work of
the thesis. This method was implemented as a matlab function. With this method, it was possible to run
the manual unit tests on the model. Thereby it was possible to see what levels of model coverage that is
achieved with the manual tests. The cumulative coverage after running the manual unit tests is found in
table5.1

Decision coverage 85.4%
Condition coverage 73.8%

MC/DC 53.9%

Table 5.1: Model coverage for the cumulative results of the manual unit tests

From the coverage of the manual tests, we can see that most of the decisions have been covered. This
means that most of the basic functionality probably have been tested. It can be seen that MC/DC is low
in these tests and this could possibly be explained by the fact that no effort has been put to explicitly test
all combinations of conditions. The typical relation between decision coverage, MC/DC and condition
coverage appears, compare the results with the graph in figure2.6on page10.

With the newly introduced help of coverage analysis the manual tests can be improved in the future.

1Controller Area Network
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5.2 Random testing

A simple random test generation program was created. The program requires input specifications (data
types and data ranges). The tester then specifies the number of test cases and the input sample time of the
inputs. The program then generates a test with randomly generated inputs, given the input specifications.
Random testing is a black-box test technique, so no knowledge about the system has been used. This
means the values of the inputs are distributed evenly. For example a binary signal has the same probabil-
ity of having either1 or 0 and floating point signals are evenly distributed within the specified interval.
This causes a problem when signals that resets the system or a part of the system is generated (see section
4.3.1).

Another problem with random testing is that the tests tend to become very large in order to achieve
acceptable levels of coverage. One of the few advantages is that the time and effort to generate the tests
is close to none. No real effort is required to generate random tests, though on more complex systems
random testing is ineffective and insufficient to exercise the system enough.

When the ACC-model was tested with the random testing method using as much asone millionsteps
and an input sample time of10msthe coverage shown in table5.2was achieved.

Decision coverage 35.7% (137/384 decisions)
Condition coverage 51.9% (178/343 conditions)

MC/DC 40.9% (61/149)

Table 5.2: Model coverage for random testing with1 million test steps and10msinput sample time

The same model was then tested with another random test, using10 000steps and an input sample
time of200ms. The coverage results is presented in table5.3.

Decision coverage 70.8% (272/384 decisions)
Condition coverage 70.6% (242/343 conditions)

MC/DC 53.7% (80/149)

Table 5.3: Coverage for random testing with10 000test steps and200msinput sample time

Apparently the coverage is much better in the test with longer sample-time. This depends on the
fact that several parts of the model requires signals to be constant a while for validation. However, the
coverage results are not yet satisfactory.

It is particulary interesting to see that the test with short sample time gives better condition coverage
and MC/DC percentage than its decision coverage percentage. Compare this relation to the graph of
typical relation between the coverage metrics in figure2.6on page10. An explanation to this may be that
many state-machines in the model requires validation times for a state-transition to be active. With the
short sample time, the signals change so fast that it does not allow these validation counters to be true.
Therefore, transitions with validation counters never become evaluatedtrue but many combinations of
the other conditions in the transition are combined because so many test steps were used.
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5.3 Model based testing in Reactis

ReactisR©(see3.1.2on page13) is a tool that is not integrated with Simulink/Stateflow as Simulink Veri-
fication and Validation is. The model is loaded directly in Reactis where test suites can be generated and
run to check predefined requirements. Using a separate testing tool such as Reactis has its benefits but
also it has disadvantages.

Some of the positive aspects with Reactis are:

+ Assuming that the effort of modifying the model is minimal, it is really fast to create a test with good
and not rarely full coverage. This can be done without any knowledge at all about the internal
structure of the model. The only design parameters in the tests are the data ranges of the inputs.

+ The target and assertion features of Reactis are really handy when evaluating model requirements. It
is clever that the test generation algorithms are trying to cover the assertions, meaning that Reactis
is trying to produce a ”failure” if possible.

+ Reactis is excellent when it is important to keep the simulation time down and still get acceptable
coverage. Reactis removes all test cases that are redundant which results in very short and efficient
tests.

+ Reactis is an excellent tool for easily creating tests for a model that is changed frequently. Again
assuming that not much effort is required to modify the model.

+ Reactis identifies unreachable states in the model, this is a good way to identify dead code.

There are also some negative aspects with Reactis, some of them are:

– One of the main disadvantages is that Reactis does not support the entire Simulink library. It also
has different modeling rules than Simulink. Together this means that the model must be developed
from the beginning together with Reactis to be able to run properly in Reactis. It also implies some
limitations. In control systems, for example it is practical to use integrators, derivatives and state-
space representation of models. However, using these Simulink blocks are prohibited by Reactis. It
is also prohibited to use embedded Matlab functions. In many situations it is possible to go around
the limitations but building the model after Reactis’ rules requires additional time and effort and
could lead to ineffective solutions. Even when the model is developed from the beginning using
Reactis, it is annoying not to be able to use the most obvious or effective solution to a problem just
because the test-tool prohibits the usage of certain blocks.

– A disadvantage of having a test tool that is separate from the modeling tool is that, when the modeling
tool is updated, it is not possible to use new features in the modeling tool until the test tool has been
updated to support the new features.

– An experience from trying to test the ACC-model in Reactis is that the interaction between Matlab and
Reactis seems to be quite unstable.

Overall, Reactis is great when it is important to create tests on a model that is changed often. Though it
is strongly recommended that the model is developed together with Reactis from the beginning. The ideal
test tool would be integrated with the modeling environment and still capable of generating automated
tests of good quality such as Reactis. The test generation process in Reactis is divided into two phases.
The first phase, the random phase, generates inputs at random and keeps only those that are relevant. The
second phase, the targeted phase, consists of the sophisticated algorithms that attempt to exercise all parts
of the system.
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For some types of models, Reactis is a superb test-generating tool but the ACC-model described in
section4.2.1was not possible to simulate or create a test for in Reactis because of the strict rules.

A part of the model was extracted and tested in Reactis. The subsystem was a quite large state-
machine with 15 inputs. After a thorough test-generation a test suite with a total of 13 557 test cases was
created. Reactis required ten minutes to create a test suite that fully covered the subsystem. The results
were excellent, see table5.4.

Decision coverage 100% (46/46 decisions)
Condition coverage 100% (94/94 conditions)

MC/DC 100% (47/47)

Table 5.4: Coverage for an automatic test created by Reactis on a part of the ACC-model

5.4 Sequence based combinatorial testing (SBCT)

The sequence based combinatorial testing-method that was described in chapter4 was applied to the
ACC-model. With the help of Simulink Verification and Validation it was possible to design a test with
good coverage. A few parts of the model required that a small manual test was executed before the auto-
matically created test to achieve full coverage. These parts are possible to cover even with the automated
tests but the probability of getting these covered are so small that the tests must be huge to have a reason-
able chance of covering them. Therefore it is more effective to have a simple manual test run before the
automated tests (see4.3.4for more details).

After the modification of the model, the manual and automatic tests consisting of totally30 000test
cases and a total simulation time of18minutes were able to cover the model completely, when considering
decision, condition and modified condition/decision coverage, see table5.5. The test took14 minutes to
create.

Decision coverage 100% (384/384 decisions)
Condition coverage 100% (343/343 conditions)

MC/DC 100% (149/149)

Table 5.5: Coverage for an automatic test created by the SBCT-method on the full ACC-model

The combinatorial approach has proven itself to consequently achieve full coverage when creating a
thorough test. The algorithm requires between 10 and 20 minutes to create a test for the ACC-model with
full coverage which is considered acceptable. The simulation time is also acceptable (15-25 minutes will
mostly be enough for the ACC model), which makes it possible to run the tests on the target systems in
realtime.

Using the SBCT-method to test complex systems has its advantages.

+ It is possible to use knowledge of the system to design effective tests that exercise as many parts of
the system as possible.

+ Sequences can be specified to resemble actual system inputs.

+ The tests can be run in the modeling environment, meaning that no problems with interaction between
different environments occur.

+ The size of the tests are kept down to a reasonable level compared to random testing.
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+ It produces excellent results!

There are also drawbacks of using the modified AETG algorithm.

– To be able to develop a good test, it is necessary to have a tool that can measure the coverage of the
system. These tools will most likely cost money fully comparable to the cost of buying a model-
based testing tool such as Reactis.

– The test design is more time consuming than when using a commercial test tool or applying a random
test. Especially when the automated tests are complemented by manual tests.

– The test design requires that the tester has a little more knowledge than data types and data ranges. It
is therefore recommended that the tester is somehow involved in the development.

– If the model is drastically changed, it is possible that the test design also must be changed to meet the
new model requirements. That is to say, the tests must be maintained to keep up with a changing
model.
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Chapter 6

Analyzing automatically generated
code

6.1 The relation between code coverage and model coverage
- a theoretical approach

In an environment where code is automatically generated from the model, it is particulary important to
compare the differences between model coverage and code coverage.

6.1.1 MC/DC on shortcircuited evaluation of logical expressions

Shortcircuit logical operators only evaluate conditions when their result can affect the encompassing de-
cision [4]. The MC/DC criterion needs to be redefined for programming languages that use shortcircuited
logic since the condition outcomes are never measured for conditions that are not evaluated. It is therefore
necessary to leave the requirement thatall other conditions should be held fixed[2].

In table6.1 on the following page the possible test cases of a non-shortcircuited evaluation of the
expressiond = (a or b) and c is compared to the possible test cases in shortcircuited evaluation of the
same expression. The combinations of test cases needed for a condition to satisfy MC/DC are grouped
together with the possible test cases.

6.1.2 Extensions on MC/DC for coupled conditions

Conditions that cannot be varied independently are said to becoupled[2].

Weakly coupled conditions

Two or more conditions are weakly coupled if varying one conditionsometimesvaries the others. For
example, the two conditionsa = (x > 10) and b = (x < 12) are weakly coupled because when
x changes from 9 to 14, both conditions change. Weakly coupled conditions normally do not mean a
problem when measuring MC/DC. It is still possible to achieve MC/DC in a decision with two or more
weakly coupled conditions.

35
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Non-shortcircuited versus shortcircuited evaluation

Non-shortcircuited:d = (a|b)&c Shortcircuited:d = (a||b)&&c

test case abc d a b c test case abc d a b c

1n TTT T 3 ⇒ 1s T-T T 5 2
2n TFT T 7 4
3n TTF F 1 ⇒ 2s T-F F 1
4n TFF F 2
5n FTT T 7 6 ⇒ 3s FTT T 5 4
6n FTF F 5 ⇒ 4s FTF F 3
7n FFT F 2 5 ⇒ 5s FF- F 1 3
8n FFF F

Table 6.1: With shortcircuited evaluation of logical expressions, the test cases1n and2n can be grouped
together as1s. Similarly test cases3n and4n can be grouped together as2s and test cases7n and8n can
be grouped together as5s.

Strongly coupled conditions

Two or more conditions are strongly coupled if varying one conditionalwaysvaries the others. For
example, the conditionsa anda are strongly coupled as they can never be true or false at the same time
(a is equivalent toNOT (a)). With strongly coupled conditions it is not possible to vary one condition
while holding all others fixed. The independence of single conditions that are required by the general
definition of MC/DC are then impossible to prove. Therefore, the original definition of MC/DC needs to
be modified for strongly coupled conditions if full coverage should be reachable. In [2], Chilenski and
Miller suggest two alternatives,weakandstrongMC/DC.

Weakmodified condition/decision coverage

In this alternative, the strongly coupled conditions are treated as a single condition. For example, the
decisiond = (a&b)|(a&c) contains two strongly coupled conditions (a anda). Instead of requiring all of
a, b, a andc to independently affect the decision outcome, onlya, b andc must have shown independence
to affect the decision outcome. Unfortunately, weak MC/DC does not guarantee decision coverage [2].

Strongmodified condition/decision coverage

In strong MC/DC each instance of a coupled condition is viewed as a separate entity. Each instance
of that variable must satisfy the general definition of MC/DC while the effects of all other instances of
that variable ismasked. An instance of a variable ismaskedif it cannot affect the overall outcome. For
example, consider the decisiond = (a&b)|(a&c). The first instance ofa is maskedif b = false and the
second instance ofa is maskedif c = false.

Finding coupled conditions

Measuring weak or strong MC/DC requires that the coverage tool can identify coupled conditions which
can be far from trivial in some cases, sometimes it may be nearly impossible. Having decisions with
strongly coupled conditions in a model or program may sometimes be unnecessary. If they can be
changed, it will probably lead to a simpler logical expression. A way to find such decisions is to use
the standard definition of MC/DC, run a thorough test and find that the coupled conditions can never
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test case abc d a1 b a2 c
1 FFF F masked masked 2
2 FFT T masked 4 6 1
3 FTF F 7 masked 4
4 FTT T 2 3
5 TFF F masked 7 masked

6 TFT F masked 8 2
7 TTF T 3 5 masked

8 TTT T 6

Table 6.2:StrongMC/DC

satisfy MC/DC. Hopefully the decisions can then be rewritten so that no coupled conditions are used.
For example,(a&b)|(a&c) can be rewritten asa&(b|c). Simulink V&V and ReactisR©do not use weak
or strong MC/DC for coupled conditions. It is therefore impossible to achieve full MC/DC on decisions
with coupled conditions in Simulink Verification and Validation or in ReactisR©.

6.1.3 Differences between model- and code coverage of a logical expression?

Model representation of a logical expression is usually done in Simulink with logical operator blocks. If
these blocks are connected together, they represent a more complex logical expression. Coverage tools
like Simulink V&V or ReactisR©treat each logical block separate when they compute the model coverage.
The same logical expression represented in code and analyzed by a code coverage tool would in some
cases not be covered with the exact same test cases as in the Simulink model, assuming that the expression
is written as justoneexpression and not divided into several steps. For example: Consider the expression
(a&b)|(a&c) that includes the coupled conditionsa anda. This expression represented in a Simulink
model would include four logical blocks; twoAND, oneNOT and oneOR. See figure6.1

Figure 6.1: The logical expression(a&b)|(a&c) represented in a Simulink model

A model coverage tool would treat each logical block separate. Decision coverage and condition
coverage are basically equivalent in model and code coverage. For example, full decision or condition
coverage in one environment would imply full decision or condition coverage in the other environment
with the same test cases. Only where full decision- or condition coverage is not achieved, model coverage
will provide more information about which part of the expression that is uncovered.
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The real difference is when measuring MC/DC. Here, an expression can be covered in model envi-
ronment but not in the equivalent code expression. For example, consider expression(a&b)|(a&c), that
is represented as a model in figure6.1 on the preceding page. Full model MC/DC for all blocks in the
expression can be achieved with the test cases in table6.3 while full code MC/DC on the expression is
impossible.

a b c out
F F T T
F T F F
T F T F
T T F T

Table 6.3: Four test cases provide full MC/DC for all blocks in the model representation of(a&b)|(a&c)
seen in figure6.1on the previous page

If an expression is divided into several steps, the same effect as when measuring model coverage can
be obtained. Doing this will reduce the effectiveness of both MC/DC and similar coverage metrics such
as multicondition coverage. For example, the expressionz = (a&b)|(a&c) can be divided into three
simpler expressions:

x = (a&b)
y = (a&c)
z = x|y

When the expression is written like this, the full complexity of the expression can not be investi-
gated by measuring MC/DC or multicondition coverage. The fact that the expression contains coupled
conditions will also never be discovered.

6.1.4 Multicondition coverage

In section2.3.6on page8, a brief summary of multicondition coverage is introduced. Multicondition
coverage does not explicitly require all conditions to decide the outcome of its decision but since all
possible combinations of condition outcomes are required it can be said that:If MC/DC can be achieved
for an expression, multicondition coverage guarantees MC/DC. This would mean that multicondition
coverage is a stronger metric than MC/DC but in many cases, multicondition coverage is unsuitable as it
requires at least2n test cases for a decision withn conditions.

6.1.5 Coverage criteria

Different test tools have their own definitions of coverage criteria. When it comes to code coverage,
the definitions are generally a little different than in model coverage. Although, it is interesting to draw
some parallels between model coverage and code coverage, especially when the code is automatically
generated from a model.

6.1.6 Code coverage tools

There are many code coverage tools available for analyzing coverage on C/C++ code, but most of these
are not made to be able to use on automatically generated code from Matlab. To be able to measure the
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code coverage on the automatically generated code, a tool that is either built for use on this type of code
or something very adaptable is needed.

The choice of coverage tool for this project was Testwell’s CTC++. This is a coverage tool that
is run from the command prompt and generates HTML-coverage reports. An advantage of CTC++’s
command prompt user interface is that it is very adaptable. By editing some configuration files in the
Matlab directory and adding a few lines in the automatically generated makefile and main C-file, the
automatically generated code could be instrumented and coverage reports could be generated.

6.2 Comparing model coverage and code coverage
- an experimental approach

This section is a case study where the tests have been applied to a model in the model environment and
the model coverage has been compared to the code coverage that is achieved when running the same tests
on the the automatically generated code.

6.2.1 Method

For comparison between model coverage and code coverage, fifteen test suites were created with the
SBCT-method described in section4.2.2. These test suites had different levels of model coverage. By
applying these test suites on the model and also on the automatically generated code, a relation between
model coverage and code coverage was investigated.

6.2.2 Problems with comparing code and model coverage

One problem with directly comparing model coverage and code coverage is that Real-Time Workshop
creates lots of code that is just there to prevent unexpected errors that never occur during normal execution
of the program. Real-Time Workshop also creates functions that are run just once per simulation or
execution. This code can not be covered by using better tests, hence the code coverage is generally much
lower than the model coverage.

Another problem is that the code coverage tool, CTC++ does not measure MC/DC as Simulink Veri-
fication and Validation does. Instead of MC/DC, CTC++ measures multicondition coverage. The multi-
condition coverage is quite similar to MC/DC, but generally harder to satisfy (see section6.1).

A good example of how many measure points that can be independent of the inputs is this simple
Simulink block representing an ”absolute value” function.

Figure 6.2: Absolute value block

In Simulink Verification and Validation, this block corresponds to one decision. The input to the block
must be both≥ 0 and< 0 for the block to achieve full decision coverage. When generating an s-function
from this block, the following code represents the function of the block:
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((real_T * )ssGetOutputPortSignal(S, 0))[0] = (fabs(( * (((const
real_T ** )ssGetInputPortSignalPtrs(S, 0))[0]))));

The CTC++ coverage reports contained a total of 423 decision points but the piece of code that really
represents the ”absolute value” was not seen as a decision point. So, apparently we have 423 decisions
that can not be affected by changing the input values. This might be the worst case scenario but it is also
illustrative and suggests thatModel coverage; Code coverage

To make the code coverage percentage come closer to the model coverage, some functions could be
decided to not be instrumented by CTC++. By choosing not to instrument functions that do not represent
any model functionality, the code coverage was drastically improved.

In figure6.3the relation between the code coverage and the model coverage is shown.
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6.2.3 Linear approximation

It is clear that, at least in the figure6.3a and6.3b the relation is linear. Approximate linear relations was
computed using the least squares method. (See figure6.4)

40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

Model coverage (decision coverage)

C
od

e 
co

ve
ra

ge
 (

de
ci

si
on

 c
ov

er
ag

e)

Model decision coverage vs Code decision coverage

Unnecessary code not instrumented

All code instrumented

(a) Model decision coverage vs Code decision coverage

40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

Model coverage (condition coverage)

C
od

e 
co

ve
ra

ge
 (

co
nd

iti
on

 c
ov

er
ag

e)

Model condition coverage vs Code condition coverage

Unnecessary code not instrumented

All code instrumented

(b) Model condition coverage vs Code condition coverage

20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

Model coverage (MC/DC)

C
od

e 
co

ve
ra

ge
 (

m
ul

tic
on

di
tio

n 
co

ve
ra

ge
)

Model MC/DC vs Code multicondition coverage

Unnecessary code not instrumented

All code instrumented

(c) Model MC/DC vs Code multicondition coverage, linear
approximations

Figure 6.4: Model coverage vs Code coverage, linear approximations using least squares method

The deviation from the linear model seems to be relative, increased deviation with increased model
coverage. To be able to compute the standard deviation from the linear approximation, the code coverage
percentage was weighted with the approximate value for the model coverage. Letci, i = 1, . . . , n be the
code coverage percentage;mi, i = 1, . . . , n the model coverage percentage andcapprox(mi) the linear
approximation of the code coverage. The weighted coverage,wi is then

wi =
ci

capprox(mi)
(6.1)
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An approximation of the standard deviationσ can then be computed as

σ =

√√√√ 1
n− 1

n∑
i=1

(wi − ŵ)2 (6.2)

wheren = 15 andŵ = 1.
The computed approximation of the standard deviation is shown in the diagram in figure6.5.
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Figure 6.5: Standard deviationσ from linear approximation for weighted code coverage

From the diagram in figure6.5 it appears that when some code was left uninstrumented by CTC++,
the standard deviation of the weighted code coverage is significantly higher than when all code is instru-
mented. One possible explanation to this, might be that only around 40% of all decisions was instru-
mented, whereof about 90% of the decisions varied between different tests. Decisions that are unaffected
by the test inputs correspond to the constant value in the linear approximation.

The overview in figure6.6 shows how much of the code that is possible to cover by using different
test inputs. Since the range of code coverage that can be affected by test inputs is smaller when all code

All code included

35% varies
between tests

65% same
through
all tests

Some code excluded

90% varies
between tests

10% same through
all tests

Figure 6.6: Percentage of decisions where the coverage varies between tests

is instrumented, the deviation from the linear model will be smaller. It is worth noticing that the number
of measure points that can be affected by test inputs are the same in the case of instrumenting all code
and the case of excluding certain parts of the code from instrumentation. See the sketches in figure6.7.
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6.2.4 Verifying normal distribution

To verify that a normal distribution of the weighted coverage could be used, the matlab function
normplot was used. This function makes a normal probability plot. The purpose of a normal proba-
bility plot is to graphically assess whether the data could come from a normal distribution. If the data is
normally distributed, the plot will be linear. Other distribution types will introduce curvature in the plot
[10]. The normal probability plots are shown in figure6.9on page45.

6.2.5 Verifying linear model

The normal probability plots in figure6.9 on page45 show that the weighted code coverage could be
normally distributed. With this information it is possible to create confidence intervals. The purpose
of the confidence intervals is to show that the relations really are linear. If a 99% confidence interval
leaves no space for another relation than a linear, the relation is most probably linear. In figure6.8on the
following page the relations are shown with 99% confidence intervals, with these confidence intervals it
is reasonable to assume a linear relation.

6.2.6 Generalization

The results of the previous section, that the relation between code coverage and model coverage is linear
is based on tests on the ACC-model only. There may very well be models where a linear relation does
not exist, for example a model full of absolute value blocks (see section6.2.2). Normally, large models
contain many types of blocks and state-machines. It is then likely that the relation between code and
model coverage is relatively linear as in the case of the ACC-model.
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coverage. All code instrumented
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(e) Normal probability plot, weighted condition code cover-
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Figure 6.9: Normal probability plots for weighted code coverage
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6.2.7 Classification of uncovered code

When full model coverage is achieved, the 5% code coverage that remain uncovered in the case where
irrelevant code was excluded is particulary interesting, especially to see if there are any special structures
of code that are never covered. The diagram in figure6.10classifies all uncovered decisions encountered
in the code generated from the ACC-model. The 5% uncovered decisions correspond to the total of 25
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Figure 6.10: Uncovered decisions measured on code generated from the ACC-model and from a test with
100% model coverage

decisions above. A description of the classes of code follows:

Max/min in stateflow: Coverage for Max- and min-functions written in theentry:, during: or exit:-
phase in a stateflow state is not measured by Simulink Verification and Validation. The fact that
these max- and min-functions are uncovered is very interesting, since it is possible that the code is
dead.

ssIsSampleHit is a function that:

• is run as:if ssIsSampleHit(...) { ... }
to ensure that the following lines of code is supposed to be executed at the current simulation
step.

• returnstrue, if the local sample time matches the current simulation time.

• When a part of the system has the same sample time as the global sample time, the expression
above will never be evaluatedfalse

Overflow-protection In the code generated from somedata type conversion-blocks, code to protect from
data type overflow is included. If an overflow does not occur, a decision is left uncovered.

Lookup-tables The code generated from a lookup-table contains a decision for each interpolation or
extrapolation interval. Although Lookup-table coverage is possible to measure in Simulink Verifi-
cation and Validation, the tests were not designed to achieve full Lookup-table coverage. Only the
MC/DC, decision- and condition coverage were considered.



Chapter 7

Case study: results of coverage analysis

Automated test-vector generation and coverage analysis of model-based software provide excellent pos-
sibilities to find programming bugs and dead code at an early stage in the development process. This
chapter is a case study of what the results of automatic test-vector generation and coverage analysis could
lead to.

7.1 Finding bugs

Even though the focus of the work during this thesis was to just develop a method to generate tests, several
program deficiencies were quickly found as a result of a fairly simple verification process. Not much
effort has yet been put to verifying the correctness of the ACC-model, but probably the automated tests
will continue to find program deficiencies once a more extensive method for verification is implemented.

7.2 Identifying dead code

During the calibration of the test, some situations where full coverage is not possible was discovered in
the reference model.

Once a good test-suite has been run on a model, coverage analysis is perfect to identify dead code.
The method to identify dead code during this project was:

• When a part of the model consequently does not achieve coverage, that part was reviewed.

• During the review, dead code was discovered.

• The model was changed to get rid of dead code but still keep the same functionality.

As a result of dead code the following amount of measure points was left uncovered:

• 10 Decisions

• 6 Conditions

• 4 MC/DC

The classes of dead code discovered in the ACC-model are listed in figure7.1on the following page
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Different classes of dead code in the ACC-model
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Figure 7.1: Different classes of dead code in the ACC-model

7.2.1 Unreachable states

In one of the state-machines of the model, one of the states was separated from the others and therefore
unreachable. This resulted in that transitions from the state was never evaluated and that the state was
never active when its superstate was exited, which is required by Simulink V&V.

Solution: The unreachable state and all transitions from it can be removed without having a guilty con-
science.

7.2.2 Guard for division with zero

The model contained a guard to prevent division with zero. The guard was a maximum function between
the divisor and a constant value. Because of other functions in the model, the divisor would never be less
than the constant value. Therefore, the maximum function was always left uncovered.

Solution: A division with zero can lead to serious problems during execution of software. If there is
complete confidence that the divisor is never less than a certain value, perhaps themax-function
can be removed. Another alternative is to remove thefirst safety check and let the guard at the
divisor remain.

7.2.3 Unreachable saturation limit

Two cases of unreachable saturation limits was discovered in the model. In one case, the upper limit of the
saturation block wasinfinity. In the other case, the upper limit was unreachable depending on preceding
actions in the model. In both these cases, the saturation block is uncovered.

Solution: Replace withmax- or min-function
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7.2.4 Condition redundancy

The most common situation that led to dead code in the model was when there was (at least) two tran-
sitions from a state and one of the conditions are redundant (i.e. always true or always false), see figure
7.2. Such situations makes it impossible to achieve full model coverage and it is therefore recommended
to change the model so that full model coveragecanbe achieved.

Figure 7.2: Condition redundancy: The decision [a < 0] will never be evaluated false because it is
evaluated last (The numbers on the state transitions indicate the evaluation order).

Solution: The solution to the example in figure7.2 is to simply remove the condition [a < 0]. If the
evaluation order is correct, the second transition will be true when [a ≥ 0] is false which obviously
means thata < 0. That way, the functionality is the same and the redundancy is removed.

7.2.5 AND with constant

In one logical operator block, one of the inputs was a constant value. This of course led to uncovered
conditions and MC/DC.

Solution: Just remove theAND-block, perhaps replace with adata type conversion-block so that the
output becomes boolean.

7.2.6 Substate never active at superstate exit

Another situation where full coverage can not be achieved is when a substate can never be active while
its superstate is exited, which makes full decision coverage impossible. This is illustrated in figure7.3on
the following page.

Solution: Remove the superstate and if the superstate has its own functionality, include this in the sub-
states.
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Figure 7.3: In order for a superstate to get full decision coverage, the superstate must have been exited at
a time when each of the substates have been active. In this case, it is easy to see thatsubstate2can not be
active when the superstate is exited.



Chapter 8

Results

8.1 Conclusions

Model-based development and coverage analysis open new doors to automate testing. In this thesis,
automated testing of software developed in a model-based environment such as Simulink has proven to
be both more time-efficient and more accurate than previously used manual tests. The use of a model-
coverage tool such as Simulink Verification & Validation provides possibilities to verify the accuracy of
manual tests as well as new possibilities to automate a substantial part of the testing process.

8.1.1 Testing approaches

Different approaches to automate the generation of test vectors have been applied to a model of an adap-
tive cruise control system (ACC):

Random test generation is a very simple way to automate testing and may sometimes be enough for
small models. Unfortunately it leads to very large tests and insufficient coverage on relatively
complex models.

Model-based test generationwith the test-tool ReactisR©is a very fast way to generate test vectors for a
model. Reactis has shown to be able to handle relatively complex models and to provide tests with
good model-coverage. Unfortunately, there are some limitations to the models that Reactis can use
to generate tests from. This made it impossible to generate tests for the full ACC-model.

Sequence based combinatorial testing (SBCT)is a method developed during the work of this thesis.
The SBCT-method is a hybrid between combinatorial testing, random testing and manual testing
and is mainly designed for systems where many binary or integer inputs exist. The tester must
specify sequences where the probability of full coverage is maximized. This requires some knowl-
edge about the model structure but this is generally not a problem when testing is performed by the
same people that develops the software. Other limitations of the method is that maintenance of the
test-script may take some time when the model is updated. It also takes some time to design a test
for a new model.

Manual testing may sometimes be the most effective way to test certain functionality. Automated tests
of different kinds are ineffective when it comes to testing certain parts of the ACC-model. There-
fore, manual tests will not be totally replaced be automatic tests.
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8.1.2 Coverage analysis

The structure of the model determines the maximum coverage that can be achieved. Modifying the model
by removing dead code or by rearranging the evaluation order of conditions may improve the coverage
without having to run more or longer tests. In chapter7 a case study where the results of coverage analysis
of the ACC-model is presented.

8.1.3 Code coverage vs. Model coverage

In chapter6, code- and model coverage has been compared with both experimental and theoretical ap-
proaches.

The results of the experimental approach suggest that code coverage measured on automatically gen-
erated code follows a linear relation with the model coverage, although the automatically generated code
normally contains many decisions and conditions that have no model counterparts.

The theoretical approach showed that logical expressions represented as several logical blocks con-
nected together in Simulink do not have the same prerequisites for achieving MC/DC as a code represen-
tation of the same expression would have.

8.2 Future work

The SBCT-method could be even more automated and provided with a graphical user interface that would
facilitate the generation of test vectors, the design of sequences and the handling of floating-point inputs.
One idea of further automation is that user still classifies the binary or integer inputs with the probability
of the input being true and the program automatically generates the structure of the sequences. The
floating-point inputs could be classified as one of many different types and for each type (e.g. cross a
fixed value), a number of parameters is specified. The parameters could be data type, signal range, the
speed of increasing the value, conditions for continuing from last sequence etc. The SBCT-method is
now optimized for the ACC-model. In order for the method to be more generalized, more methods for
floating-point handling could be added and more options of sequences (e.g. integer sequences with an
optional amount of possible values) could be added.

The method could also be complemented with a verification tool integrated with the test generating
program where the model can be tested against its requirements.
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Notation

Symbols used in the report.

Variables and parameters

σ Standard deviation
T boolean valueTRUE
F boolean valueFALSE
- boolean valuedon’t care

operators

| logicalOR-operator
& logicalAND-operator
|| shortcircuitedOR-operator

&& shortcircuitedAND-operator
a logicalNOT-operator (a = NOT (a))

p(a) probability ofa being true
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