Distributed Fault Diagnosis for Networked
Embedded Systems
Master’s thesis
performed invVehicular Systems

by
Dan Hallgren
Héakan Skog
Reg nr: LITH-ISY-EX-3820-2005

December 21, 2005






Distributed Fault Diagnosis for Networked
Embedded Systems

Master’s thesis

performed inVehicular Systems
Dept. of Electrical Engineering
atLink 0pings universitet

by

Dan Hallgren
Hakan Skog

Reg nr: LITH-ISY-EX-3820-2005

SupervisorMathias Jensen
Scania CV AB
Jonas Biteus
Linkdpings Universitet

Examiner: Assistant Professor Erik Frisk
Linkdpings Universitet

Linkdping, December 21, 2005






GS UNy
AR %
& 6'?@,

Y
xR

o Ll/\/&

>

Avdelning, Institution
Division, Department

Vehicular Systems,

Dept. of Electrical Engineering

Datum
Date

December 21, 2005

A, & 581 83 Linkoping
Ska 1ocs®

Sprak Rapporttyp ISBN

Language Report category —

[0 Svenska/Swedish [ Licentiatavhandling ISRN

Engelska/English Examensarbete LITH-ISY-EX-3820-2005
[ C-uppsats — -

Serietitel och serienummer ISSN

[J D-uppsats

O

0 Ovrig rapport
O

URL for elektronisk version

http://www.vehicular.isy.liu.se
http://www.ep.liu.se/exjobb/isy/2005/3820/

Title of series, numbering —_

Titel Distribuerad feldiagnos for natverksbaserade inbyggadaem

Title Distributed Fault Diagnosis for Networked Embedded System

Forfattare
Author

Dan Hallgren och Hakan Skog

Sammanfattning
Abstract

In a system like a Scania heavy duty truck, faultcodesog) are generated
and stored locally in thecus when components, e.g. sensors or actuators, mal-
function. Tests are run periodically to detect failure ie $ystem. The test
results are processed by the diagnostic system that trisolate the faulty
components and set local faultcodes.

Currently, in a Scania truck, local diagnoses are only basddcal diagnos-
tic information, which thepTcs are based upon. The diagnosis statement can,
however, be more complete if diagnoses from otheus are considered. Thus
a system that extends the local diagnoses by exchangingatiig information
between theecus is desired. The diagnostic information to share and how it
should be done is elaborated in this thesis. Further, a nuddis$tributed diag-
nosis is given and a few distributed diagnostic algorithorstfansmitting and
receiving diagnostic information are presented.

A basic idea that has influenced the project is to make thendgtr system
scalable with respect to hardware and thereby making itteesgd and remove
eEcus. When implementing a distributed diagnostic system iwagted real-
time embedded systems, technical problems arise such asmérandling,
process synchronization and transmission of diagnosti alad these will be
discussed in detail. Implementation of a distributed daesgic system is further
complicated due to the fact that the isolation process isredeberministic job
and requires a non deterministic amount of memory.

Nyckelord
Keywords

Distributed diagnosispsb, Fault isolation, Embedded systerng,c







Abstract

In a system like a Scania heavy duty truck, faultcodescE) are generated
and stored locally in thecus when components, e.g. sensors or actuators,
malfunction. Tests are run periodically to detect failurahie system. The
test results are processed by the diagnostic system tkatttriisolate the
faulty components and set local faultcodes.

Currently, in a Scania truck, local diagnoses are only basddcal diag-
nostic information, which theTcs are based upon. The diagnosis statement
can, however, be more complete if diagnoses from atless are considered.
Thus a system that extends the local diagnoses by exchadigigigostic in-
formation between thecus is desired. The diagnostic information to share
and how it should be done is elaborated in this thesis. Fuyréhenodel of
distributed diagnosis is given and a few distributed diagicalgorithms for
transmitting and receiving diagnostic information arespreed.

A basic idea that has influenced the project is to make thendstir sys-
tem scalable with respect to hardware and thereby makiresit ® add and
removeecus. When implementing a distributed diagnostic system in net
worked real-time embedded systems, technical problerss atich as mem-
ory handling, process synchronization and transmissiodiagnostic data
and these will be discussed in detail. Implementation ofs&ributed diag-
nostic system is further complicated due to the fact thatdbkation process
is a non deterministic job and requires a non deterministicunt of memory.

Keywords: Distributed diagnosisysb, Faultisolation, Embedded systems,
DTC



Preface

This master’s thesis was performed at Scania CV AB in SéfertSweden.
Scania is a worldwide manufacturer of heavy duty vehicleseb and en-
gines for marine and industrial use. The work was carriecabvtieEngine
Software and OB@roup at thePowertrain Control System Developmelet
partment.

Thesis outline

Chapter 1 Introduction to the thesis.

Chapter 2 Theory of model based diagnosis.

Chapter 3 Theory of distributed systems.

Chapter 4 Theory of distributed diagnosis.

Chapter 5 Proposed algorithms for distributed diagnosis.

Chapter 6 Issues with implementation in an embedded system envirohme

Chapter 7 Conclusions of the thesis.

Chapter 8 Future work.

Acknowledgment

We would like to thank our supervisor at Linkdpings Univess Jonas Bi-
teus for always taking time to answer our questions and guidthuough
the project. We would also like to tharddl people at Scania Powertrain
Control System Developmewho supported us with guidance and special
knowledge. Special thanks goes to our supervistathias Jensenfor all
those fruitful discussions regardimgmA and diagnosis in genera{ristian
Krigsmanfor his helpfulness and always putting up with our questigas
garding implementation)If (CANKing) Carlssorand finallyMattias Nyberg
for sharing his advice on both fault diagnosis and the pt@s@ whole.

Dan Hallgren  Hakan Skog

Sodetalje, December 2005

Vi



Contents

[abstraci v
[Preface and Acknowledgment Vi
[ introductionl 1
1 _Backgroudd . . . . o 1
L2 _Objective . .. ......... 2
L3 Approadh . ... ... ... 2
L4 Contributich. .. ............. ... ... ... . 3
[L.L5 Delimitations and ASSumptidns . . . . . . . ... ...... 3
h..a_ta:gm_emdpk ......................... 3
L7 RelatedWolk ... ...................... 3
[2__Model Based Diagnosis 5
2.1__Introduction to Model Based Diagndsis . . . . . . . . . . . 5
2.2__Artificial Intelligence and Fault Diagnasis . . . . . . . . . . 6
2.1 BehavioralModbs . ... .............. 7
22 Diagnoses. ... ......... ... ....... 7
P23 Conflicks . ...................... 9
[2.2.4 _Relations between Diagnoses and Corflicts . . . . . 9
225 DiagnosticTedts . .. ... ... .......... 10
B3 localAlgorithods . . . . . . ... ... ... 11
P31 _ReitersAlgonthin . . . . .. ... 11
[2.3.2__Isolation with Generalized Fault Mobes . . . . . . . 13
.33 VirtualComponedts . . . ... ........... 14
B__Distributed Systembs 19
B.1 Properties of Distributed Systéms . . . . . ... .. .. .. 19
B11 Transparency . . . . ... .............. 19
B12 Openness . . ... ...... ... .. ... ... 20
B13 Scalgbilily . . . ..o 21
B2 Hardware Concepts . . . . . ... .............. 21
B21 TheCANBUls..................... 22



[4_D151Li_b,u1e_d_|2i,a,gnostic Systends 25

K1 _The Network Architecture . . . . . . ... ... ...... 25

I6__Implementation in an Embedded Systein 59
6.1 HardwareSethp . . . ... ... ... ... ... ...... 59
6.2 Software Descriptibn . . . .. ... ... ... 59

viii



71

73

75

77






Chapter 1

Introduction

The field ofdistributed diagnosiss an active topic in the world of fault di-
agnosis. At Scania, the subject needs to be elaborated ahi tthe main

underlying cause for this master’s thesis. In this chapteineoduction to

the master’s thesis is given.

1.1 Background

In modern automotive vehicles, sevectronic Control Unit§ecus) com-
municate over a local network. Ea€lecu is connected to a number of com-
ponents, e.g. sensors and actuators that are monitorediagreodtic system
to make sure that the components are operating correctéydieignostic sys-
tem usually consists of a number of precompiled tests, graptomplex, to
perform the monitoring.

When a component becomes faulty, all tests involving thati$ie com-
ponent should become invalidated and the diagnostic systemld assign
a Diagnostic Trouble CodépTC) to each component that could possibly be
faulty.

Tests in a specifiecu can involve components connected to otheus
based on information shared over the network, see Figute Bachecu
generates a set of local diagnoses. The tests are theredngésd but no di-
agnostic information is shared over the network. Thus thatedtlocal sets of
diagnoses are incomplete and in order to have a completealégstatement,
diagnostic information has to be transmitted over the ngtwo

Due to continuous development of new environmental law§aBoard
Diagnosis(0BD) system is needed to detect and isolate faulty components
that affect the pollution of the vehicle. In the future, tlagvs will demand
certain actions to be taken, e.g. torque restriction, ihsai€ault is detected.
It is thereby very important that all decisions made by theteay are based
on correct information, thus a sophisticated diagnostitesy is necessary to



2 Chapter 1. Introduction

meet the laws of tomorrow.

The possible designs of such a diagnostic system are manjharsdlu-
tion is not obvious. Different methods need to be invesidaind main issues
have to be discussed.

CAN

Figure 1.1: A typical layout oEcus, components and test sensitivity.

1.2 Objective

The objective of this thesis is to present one or several ousto increase
the performance of the local diagnostic systems by lettiegCus exchange
information enabling local diagnoses, consistent withdlubal diagnoses,
to be calculated. Also the objective is to implement a distied diagnostic
system and to examine the problems that arise and if theAfilipdesirable
characteristics can be fulfilled:

e The algorithms should be fast and effective since both m%ing power
and memory are limited in eactcu.

e The diagnostic information shared over the network shoel#dpt at
a minimum, because the bandwidth of the network is limitedi ased
for many other applications.

e The system should work independently of the system configura
e.g. one should be able to connect, remove or exchangeoneiith-
out affecting the diagnostic system of the othelus.

1.3 Approach

The main approach in this master’s thesis was to first exgloeefield of

relevant articles and literature to do some research onqugwork. Special
focus was on distributed systems and multi agent diagnsgsitems. Later,
based on the literature and previous work at Scania, algosifor distributed



1.4. Contribution 3

diagnosis were designed. The early algorithms only sergeal faamework
for further development and did not have full functionality

In the second phase of the project a hardware rig was cotetraad the
ideas were implemented to test and investigate the maiasssia distributed
diagnostic system. The methods were extended to fully seiexisting local
system where general behavioral modes are used.

The work was documented usimJgX during the whole proceeding of
the project. The implementation was done in the C progrargmainguage.

1.4 Contribution

The main contribution of this thesis are the proposed metifimddistributed
diagnosis, described in chapter 5, and the implementafiardestributed di-
agnostic system, found in chapter 6. All methods that arsguied comply
with the objective. One of the methods focus on minimizing diagnostic
data transmitted over the network. In chapter 6 issuesarédithe implemen-
tation such as memory conflicts and synchronization areidisd in detail.

1.5 Delimitations and Assumptions

The focus of this master’s thesis is to perform the best ptesisiolation based
on the test results. No attention is thus given to how thes tsirk or how
they are implemented.

It is assumed that a component is restricted to only one hetzvnode
at one pointin time.

No effort is spent on optimizing the implementation w.r.emmory con-
sumption or execution time. The implementation should mdEywe as a
framework for further development and to test ideas.

1.6 Target Group

This thesis is written for engineers and students with basievledge in ve-
hicular systems, fault diagnosis and distributed systems.

1.7 Related Work

The main preceding work at Scania CV AB in the field distriludéagnosis
is Mathias Jensen’s master’s themnw]. The thedisdes detailed in-
formation about local diagnosis algorithms and some infdiom about how
local diagnoses could be used to form globally consisteagrbses. Re-
search in distributed diagnosis for embedded system, wigdddsfor systems



4 Chapter 1. Introduction

like those in a Scania truck, can be found in Jonas Biteushtiate the-
sis m]. The foundation of the methods presented is thesis is ob-
tained from Biteus.

How diagnosis can be performed in large active distributesiesns is
discussed in Baroni et 98]. The approach in thiskeris to perform
diagnosis by a modular automata technique. The main gohlfltagnostic
technique is the reconstruction of the behavior of the addiystem starting
from a set of observable events. Another interesting papéames Kurien
et al. [JKZ0P], where an algorithm for distributed diagrsosi networked
embedded systems is presented.

Multi agent diagnosis, both with semantically and spatialistributed
knowledge, is explained by Nico Roos et al.lin [NRWO03a] anR¥WD3b].

There are many more interesting articles in the field of itiisted di-

agnosis. A few more worth mentioning ate [JBNOS], [NRWOMNKMOZ]
and [Pro0?].




Chapter 2

Model Based Diagnosis

This chapter is intended to give a short introduction to nhdidesed diag-
nosis. The framework of this chapter is in particular takeonf I@]
and [Bit05h]. For more information about model based diaig)dhe reader

is referred to@S].

2.1 Introduction to Model Based Diagnosis

The main goal of fault diagnosis is to, based on observatmhkaowledge,
generate aiagnosisD, i.e. to decide whether there is a fault or not and when
there is, identify the fault. The objects for diagnosis iis tihesis are in par-
ticular sensors, actuators, pipes etc. The diagnosis ipated by observing
inconsistencies between observed variables and what sEd=yed normal
behavior. When the diagnosis is based on an explicit forn@dehof the
system, the terrmodel based diagnosis used. Diagnosis can be performed
both on-line and off-line.

The major purpose of this thesis is aimed for emission cbimtrautomo-
tive vehicles but the use of diagnosis in technical processenuch wider.
Some examples of what have been discussed in the literatarauzlear
plants, chemical plants, gas turbines, industrial robotsraost subsystems
of aircrafts. The use of a diagnostic system and some of tsores why they
are incorporated are:

e Safety
e Environment Protection

Machine Protection

Availability

Repairability



6 Chapter 2. Model Based Diagnosis

e Flexible Maintenance

Simple and early methods for diagnosis have been perfornagdyrby
limit checking, e.g. sensor values are checked againsstibtés. Different
thresholds could be used depending on the current opegatingof the sys-
tem.

Another traditional approach is hardware duplication dare redun-
dancy), i.e. use two or more sensors to measure the sameahgsantity.
This is a highly reliable method for detecting faults andenfused where
safety and security is a critical issue e.g. aircrafts whepde redundancy
often is used. Hardware redundancy could have some drawtibokigh.
Hardware could be expensive, it requires extra space andéight of the
system is increased. Finally, the complexity of the systeimdreased when
extra components are introduced.

Model based diagnosis has shown to be useful either as a eorapt
to the methods mentioned above or by its own. The models usethe for
example logic based or differential equations that desdtib process. Some
of the advantages of model based diagnosis are:

1. Higher diagnosis performance can be reached.
2. The possibility of isolation increases.
3. Disturbances can be taken care of.

4. Model based diagnosis is applicable to more kinds of corapts, i.e.
where components cannot be duplicated.

When models are used to compare measured values the erpiaasalyt-
ical redundancys used. Many questions arise when engineering a diagnostic
system with analytical redundancy and the problems coubbed in many
different ways. The different methods will not be discusaey further in this
thesis apart from the approach described in the next section

2.2 Artificial Intelligence and Fault Diagnosis

A large amount of diagnosis methodology has been develofikohwhe field

of Artificial Intelligence(Al). Most of the methods belongs to a part called
consistency based diagnasighe objective with consistency based diagnosis
is to derive a set of assignments to the components in the lirsmdthat the
model, the observations and the assignments are consigteréach other
i.e. an object oriented approach with behavioral modesdche&omponent

in the system rather than a global behavioral mode for thelevhgstem.
Consistency based diagnosis is beneficially used in cotipmwith model
based diagnosis.



2.2. Artificial Intelligence and Fault Diagnosis 7

2.2.1 Behavioral Modes

Each componentis assumed to be in slgavioral modge.g. normal mode
(OK), the abnormal modeA B) or some specific fault mode, e.@} ), (Fz)
or unknown fault(U F), etc.

Itis sometimes preferable to only consider th8 and the-AB mode to
reduce complexity of the diagnostic system. When only tihvwsdoehavioral
modes are considered and there is no model forAlemode, theminimal
diagnosis hypothesigvubH) is said to hold (see Definition2.3). Minimal
diagnosis is defined in Definitidn2.2.

The form when only two behavioral modes are used does noecaus
problems since other fault modes could be replaced wiittual compo-
nents see section2.3.3. The advantages are many. One is thaagreodtic
system could be represented witfaalt mode lattice, see Figur&2]1. When
a component from a set of components in the system C, is for example
in the abnormal mode, the notation

mode(AB, c) & AB(c)

will be used.

Set Notation

When representing faulty components in consistency baseghdsis and
when only thed B and the-AB mode is considered, tiget notatioris often
used. This notation replaces logical expressions with Jéte sets are used
when representing both diagnoses and conflicts. The faligwkample will
illustrate the notation.

[
Example 2.1
If two componentsA and B are faulty, the diagnosis expressed in logic form
will be:
AB(A) N AB(B)

which can be represented by
{A, B}

in the set notation.
L

2.2.2 Diagnoses

The goal with diagnosis is to find a mode assignment, or catelidhat is
consistent with thesystem descriptioS D) and theobservationgO BS).
The SD is a set of logical rules or a model, describing the behavidhe



8 Chapter 2. Model Based Diagnosis

system. The& BS is a set of observations, e.g. sensor and actuator values. In
consistency based diagnosis, the following definition afdiosis is used:

Definition 2.1 (Diagnosis). A diagnosis is a set of componeits. C so that

SDUOBSU{ /\ AB(¢c) A\ —AB(c)} (2.1)

ceD ceC\D
is consistent.
<&

To further reduce the complexity, only those diagnoses whie so called
minimal diagnosesare the ones with the greatest weight and thereby those
which are most considered. These diagnoses are, in printieaones with

no “simpler” diagnoses. The definition of minimal diagnasads:

Definition 2.2 (Minimal Diagnosis). A diagnosi® is minimal if for all
proper subset®’ C D, whereD’ is not a diagnosis.

<

The interest in minimal diagnosis mainly comes from reasgtike: “If one
faulty component can explain the observations, there iasan to believe
that additional components also might be faulty.” Anotheaason why min-
imal diagnoses are of interest is the fact that they somstene a powerful
characterization (representation) of all diagnoses. iBrgtated in theaDH.

Definition 2.3 (Minimal Diagnosis HypothesisjpH). TheMinimal Diagno-
sis HypothesisvDH, is said to hold if all supersets of each minimal diagnosis
are also diagnoses.

<

MDH does not always hold and it is not easy to formulate an ex#etion
when it does. One sulfficient criterion is however enactedemind Z1L.

Lemma 2.1. A sufficient condition fomDH is that only thed B and the-AB
mode is considered and that t&3 mode has no model. Further, the two
assumptions also imply that conflicts (see Definifiah 2.8)ardly contain the
—-AB mode.

Minimal Cardinality Diagnosis

Cardinality denotes the size of a diagnaBisi.e. how many components that
are included inside the bracketsinh The basic view-point is that the most
probable diagnosis is the one including the least amourdgmiponents since
it is much more probable that a component is not faulty thaityfa

-AB >> AB



2.2. Artificial Intelligence and Fault Diagnosis 9

Thus, the diagnosis with the least amount of componentsnioraal mode
is the most probable one, i.e. it is the minimal cardinaliggtosis.

Definition 2.4 (Minimal cardinality diagnosis). LeD be a set of diagnoses,
then the set of minimal cardinality diagnoses is

D™ ={D||D| = min |D|, D € D}
S

Where|D| is the number of components included/in

2.2.3 Conflicts

Diagnoses are generally not generated directly from theeinaadd the ob-
servations. More commonlgonflictsare generated from tests. Compare to
structured hypothesis testing WOS]. A conflict is anuasption that is
not consistent with the observation. It will be shown latewtdiagnoses can
be derived from conflicts. Conflicts are generally dendiezhd defined as:

Definition 2.5 (Conflict). A conflict is a set of componentsC C so that

SDUOBS U{ \ =AB(c)} (2.2)

cEeT

is inconsistent.

Similar to case of diagnosasjnimal conflictscan be defined as:

Definition 2.6 (Minimal Conflict). A conflictz’ is a minimal conflict if there
is no proper subset

o d

wherer is a conflict.
<&

The set of minimal conflicts completely characterizes afigiole conflicts.

2.2.4 Relations between Diagnoses and Conflicts

There is a strong connection between diagnoses and confictiagnosis
state a set of components that are faulty while a conflice statet with com-
ponents that might not have proper functionality. Diagsoszn be seen as
logical implications of the set of conflicts and a useful tiela between the
two of them is given in Theorem32.1.



10 Chapter 2. Model Based Diagnosis

Theorem 2.1(Conflicts to Diagnoses)Suppose thaf—my, s, ...} is the
set ofall conflicts Then the mode assignmdntis a diagnosis iff

{—|7T17—‘7T2, .. } UD
is satisfiable.

When the set notation is used, it is sometimes useful to septehe di-
agnoses with a lattice. In sectibnZ]3.1 an algorithm forifigdhe minimal
diagnoses from forthcoming conflicts will be shown. The gahare is easily
illustrated in such a lattice.

2.2.5 Diagnostic Tests

To detect abnormalities within the system, diagnosticstase performed to
evaluate the functionality of the system’s components.$cania truck there
exist two different kinds of test€lectrical testsandplausibility tests. The
former test single components against the valid range sactimponent that
is being tested. For example, assume that a temperaturerssnanged
between 0.4 Volt and 4.7 Volt but the reading is outside tingea If multiple
fault modes are used the test result, or sub-diagnosisy d@ukither “out of
range high” or “out of range low”.

Plausibility tests use models for the functionality of tlystem to detect
faults. If values from sensors or actuators do not coincide thie model, a
fault is present and if many tests of this kind are invalidede isolation of
the plausible faults (sub-diagnoses) will be performed.

Conflicts and Sub-diagnoses

It is not always obviously how a test result should be intetga. When only
two behavioral modes are used, i43 and—AB, the result of the test could
easily be interpreted as a conflict (which only states coraptmin the-AB
mode) which easily gives the diagnosis statement. But wlesreigl fault
modes are used, it is not equally easy to calculate a set ghdses from a
set of conflicts. The conflicts still only state componentthie—AB mode,
(N F). The negated conflict should state a set of diagnoses, @ataicing
the remaining possible behavioral modes. It could theesli@ more conve-
nient to interpret the test result asab-diagnosisstatement, explaining some
of the possible behavioral modes of the component if theisdsialidated.
There is no more information however in a sub-diagnosigstant than in a
conflict statement. The one is just the compliment to therptlee the negated
conflict should be the sub-diagnosis statement.

Decision structure

To get an overview how the faults in the different componeifect the tests,
a decision structure is useful to setup. A decision strecisira table con-



2.3. Local Algorithms 11

taining zeros, X:es and ones describing which test is seasd which fault.
Here, the subject will be discussed briefly, for a more detiaéxplanation of
decision structures, sde [NFO05].

| Fi(C) Fa(C) Fi(Cy) Fa(Ch)

Ty 0 0 X X
T 0 X X 1
T3 1 0 0 0
Ty 0 X X 0

Table 2.1: Example of a decision structure for a system stingi of two
components with two behavioral modes each and four tests.

A 0in the table means that the test will not be affected by a caraptin
that specific behavioral mode, i&; will exactly equal zero. AnX means the
test will sometimes be affected. A one means the test wilhgdbe affected,
i.e. T; will be nonzero.

In a typical system, test results are regularly checked,exgry 20 ms,
and if a test is invalidated the correspondiKiges andl:s are to become in-
puts to the local algorithm, generating diagnoses. In theréghm described
in the following section, no difference is made betwéémrs andl:s. To use
the extra information ofl:s, a different algorithm needs to be chosen. For
example, consider a system with an influence structure ag [Pab, if a di-
agnosis has been stated includifig C; ) even thougi¥ is not invalidated,
F1(C1) can be removed since it cannot be broken urilgss invalidated.

2.3 Local Algorithms

To create a global diagnoses, local diagnoses have to bedriesacltecu.
The input to the local diagnostic system is a set of test t&sgknerated
by the tests belonging to the specific agent. Other inputiddoel conflicts

or diagnoses read from th@aN bus to be merged with the own generated
conflicts or diagnoses. In sectibn2]3.1 however, it is ohtywen how minimal
diagnoses are calculated from a set of test results unper The following
section is a slightly edited excerpt from%]

2.3.1 Reiter's Algorithm

This algorithm’s task is to, given a set of conflicts (or suagmoses), com-
pute the corresponding diagnosesbDH is assumed to hold. These com-
putations can be done in a batch process where the diagnesesmputed
when all conflicts have been found, or incrementally wheeestt of minimal
diagnoses are incrementally refined each time a new corsfloztected.

The diagnosis computation problem is most easily illusttaising a subset-
superset lattice. FiguEe2.1 shows such a lattice with fivegmmnents) /1, M2,



12 Chapter 2. Model Based Diagnosis

M3, A1 and A2. Each node in the lattice represents a diagnosis candidate,
[M1, M2] meansAB(M1) A AB(M2) and will be written as M1, M2}.
The edges in the figure represent subset/superset relafidrestween candi-
dates. The set of minimal diagnoses is incrementally coatpas follows.
Whenever a new conflict is detected, any previous minimajrtbais that
does not explain the new conflict is replaced by one or morersep diag-
noses, which are minimal, based on this new information.s Thiaccom-
plished by replacing any invalidated minimal diagnosis Isgtof new candi-
dates, each of which contains the old minimal diagnosis ar@dassumption
from the new conflict. Note that these new candidates arendisas by con-
struction. However, the new diagnoses need not be minintarefore, any
of the new diagnoses which is a superset of any other minimaghasis, or
is duplicated by another, is eliminated. The remaining éesgs are minimal
and are added to the set of minimal diagnoses. This procélitren iterated
for any conflict not processed. Note that the lattice in Feffid is only used
to illustrate the procedure, the algorithm do not need toesgnt the whole
lattice. This is fortunate since the lattice grows expoiadigtin size with
number of components.

[M1,M2,M3,A1,A2]

[M1,M2,M3,A1] [M1,M2,M3,A2] [M1,M2,A1,A2] [M1,M3,A1,A2] [M2,M3,A1,A2]
S =2

M1] M2] M3] [A1] [A2]

Figure 2.1: A subset/superset fault lattice with five congas.

The algorithm can be summarized by the following steps:

1. Initialize the set of minimal diagnoses to hold only thepéyrset, i.e.

{1}

2. Given a (new) conflict, find out if any minimal diagnosisnsalidated,
i.e. has an empty intersection with the conflict.

3. Extend any invalidated diagnosis to a set of new diagnosesisting



2.3. Local Algorithms 13

of the invalidated diagnosis and an element from the new iconfl

4. Remove any new diagnosis that are not minimal, i.e. arersefs of
any other minimal diagnosis.

5. Iterate from 2 for all new conflicts.

In an ideal case where all conflicts are found and procesksedsét of min-
imal diagnoses obtained from the algorithm equals the tetefminimal
diagnoses. In reality, the set of detected conflicts is isuatomplete. This
is due to the fact that when complicated structures with dmated compo-
nents are considered, it is difficult to perform the localgagation in such a
way that all conflicts are detected. The consequence ofrth@mpleteness
is that fewer diagnoses are invalidated than in the idea.cdisis impor-
tant to note that no diagnosis will mistakenly be invalida#ad eliminated
which means that no erroneous diagnosis will be producedd Jess specific
diagnoses than in an ideal case.

2.3.2 Isolation with Generalized Fault Modes

Most Al approaches for fault isolation handle only the bébeal modes
—-AB and AB. Since the components in a Scania heavy duty truck (or what-
ever the system is) generally can fail in more than one wagdfapproaches
are inadequate. To isolate faults in components with géhehavioral modes,
a framework and an algorithm is needed. Such a framework itam
is presented in, among othemnOZ]. The method prebém ]
handles multiple faults and multiple fault modes.

Before the ideas behind an isolation process with genentilifaodes are
presented a more general definition of a diagnosis is given.

Definition 2.7 (Diagnosis, general). Aiagnosisfor the system description
SD and the observation@B.S is a mode assignmem?, for all components
¢ € C, such that

sp| JoBs| JD (2.3)

is satisfiable.
<&

The above definition of a diagnosis does not restrict itgetfrtly contain
the—~AB and AB mode. In a similar way a conflict could be defined as:

Definition 2.8 (Conflict, general). A mode assignmentfor some subset of
components, is eonflictif

SD| JoBS| (2.4)

is not satisfiable.



14 Chapter 2. Model Based Diagnosis

Assumption Based Diagnostics

The idea behind the method presentedmnOZ] is to haverdewuof
sub-models, each with a corresponding assumption. Thenggguins are
logical expressions that state something about the befsvitodes of the
components in the system that is being diagnosed. From thensdlels,
test quantities can be derived to test whether the assunspkiold or not.
If the test is in the rejection region, the assumption isateig, i.e. the null
hypothesisH, is rejected and the sub-model is invalidated.

assM - M - TeR® & TeR—-~M— —assM

Since a submodel may produce reasonable values even ifdhimpton does
not hold, no conclusions can be drawitf is not rejected.

T € R - assM

The assumption that is rejected constitutes a confliatss M. To calcu-
late the diagnoses, or candidates, the conflict is negatbehatuated. More
details about the evaluation could be foun@nOZ}.

Since some of the sub-models often are fault models, Lefh& 2ot
fulfilled. ThusmbH does not necessarily holds. If the diagnosis statement
should becompletea larger representation of the statement may be needed
than if only the minimal diagnoses were considered umnd=s. This is fur-
ther exploited in[[JAKR92].

2.3.3 Virtual Components

Reiter’s algorithm described in sectign 213.1 is valid fomponents with
only two operating modes, i.ed B and—AB mode. This algorithm could be
extended to work with generalized fault modes by introdgeiintual com-
ponents Itis shown in M3] that there is a significant gain in parfance
using virtual components compared to the method presemteetiiol2Z.312.
The first step is to map all fault modes of all components inttual
components. Tab[ed.2 shows an example of such a mapping.

Component Virtual
behavioral mode component
Fi(Ch) — Vi
Fi(Cy) — Va
F>(Cy) — Vs
UF(Cy) — Vo AN V3

Table 2.2: The mapping between component operating modkviemnal
components.



2.3. Local Algorithms 15

This conversion could be done in advance so that no procggsiwer
is taken from theecu. When the test results have been converted to a set
of virtual components the algorithm describedind.3.1 ikzed. Since it is
difficult to interpret the diagnoses when it is represent@dgivirtual compo-
nents there must also be a conversion back to real compaaahtsehavioral
mode assignments.

[

Example 2.2

A system consisting of two components with behavioral madegped to
virtual components according to TaBbI€l2.2. The systemvesehe following
test result, i.e. sub-diagnosis.

< [ (Ch) >

To work with Reiter’s algorithm the test result is convertedirtual compo-
nents. The corresponding test result is

< Fi(Ch) >=<W >

{VV,V3l
V.V,} V V,} V,V.}
{

Figure 2.2: Lattice for a system with three virtual compasen

Reiter’s algorithm can now be used to process the test rgsoiducing
the diagnosis
{vi}



16 Chapter 2. Model Based Diagnosis

Corresponding to the behavioral mode

{F1(C1)}

This is represented by line 1 in Figurel2.3. All nodes aboeditie are valid
diagnoses sincabH holds, but{1; } is the minimal diagnoses. Now assume
the following test result arrives

< F1(Cy) >
This test result is converted to the corresponding virtoahgonent.
< Fi(C) >=< Vo >

Inserting this into Reiter’s algorithm generates line 2 iguFe[ZB. The min-
imal diagnosis is now:
{1, Va}

Corresponding to the behavioral mode diagnosis
{£1(Ch), F1(C2)}

This is the correct diagnosis of the system. Note that a nod&aming two
behavioral modes of the same component is translated tosioealamode
U I for that component.

L




2.3. Local Algorithms 17

VVaVg

{}

Figure 2.3: Lattice for three components with line 1 coroegting to test
result< F;(C}) > and line 2 corresponding to test resultr; (Cz) >.



18



Chapter 3

Distributed Systems

This chapter is intended as a brief introduction to distedusystems. The
network in a Scania truck, see Figlirel4.1, consisting of nutfifgrentecus,
falls inside the definition of a distributed system. So to gdtetter under-
standing of the network from a distributed system point @withe basic
terminology is here presented and discussed. Most of the fmesented be-
low are taken fron@ﬂ.

3.1 Properties of Distributed Systems

Within the field of distributed systems there are a few imaotrtgoals that
should be met when designing a system. These are transpaopenness
and scalability, which are further explained below.

3.1.1 Transparency

A distributed system that is able to present itself to usetsapplications as
if it were only a single computer system is said totbensparent. There
exists different kinds of transparency, and the concepiofsparency can be
applied to several aspects of a distributed system, as simovable[31.

For the distributed system considered in this report, thleré&atrans-
parency is the one of most interest since the whole purposeafiagnostic
system is to detect faults among the components being dsagnaaking it
not failure transparent. On the other hand, ifezpu fails, the system should
function as good as possible anyway, deleting the fagxdty from the diag-
nostic system. Thus, it is important to be able to distiniglistween failure
transparency concerning the components and failure tasespy concerning
theecus.

Also, there is a trade-off between a high degree of transgpgrand the
performance of a system. For example, if one ofgles are trying repeat-

19



20 Chapter 3. Distributed Systems

Transparency | Description

Access Hide differences in data representation and how a
resource is accessed

Location Hide where a resource is located

Migration Hide that a resource might move to another loca-
tion

Relocation Hide that a resource might be moved while in use

Replication Hide that a resource is replicated
Concurrency | Hide that a resource might be shared by several
competitive users

Failure Hide the failure and recovery of a resource
Persistence Hide whether a (software) resource is in memaory
or on disk

Table 3.1: Different forms of transparency for distribusgdtems.

edly to transmit information to othezcus, to hide an error in aacu, but
fails, it could have been more efficient to give up earlier.

3.1.2 Openness

An open distributed system offers services according t@gerules in syntax
and semantics of those services. It is important to have hdeéhed inter-
face with a specification of which names are available witlicvitypes of
parameters, return values and so on. Proper specificatieroeplete and
neutral. Complete means that everything that is necesesaigohnecting to
the interface has indeed been specified. Neutral meansablaiodject to be
connected to the distributed system can be implementedyinvay as long
as it complies with rules for that specific interface.

If a system can function and communicate, inside the spatiic of the
interface, even though parts have been supplied from diftananufacturers
it is said to have a high degree mteroperability . A second definition is
portability which characterizes a system that runs applications ontaigtd
system A, without modification, considering that they wesvaloped for
system B, assuming system B use the same interface as system A

If a system is both interoperable and portable it is said tdlddble,
meaning that it is easy to add new components or replacerexishes with-
out affecting those components that stay in place.

It is preferable if the distributed system in a Scania trisctéxible mak-
ing it easy to add, remove or changeus in future models.



3.2. Hardware Concepts 21

3.1.3 Scalability

In a scalable system the size can be changed without makjnigigiehanges
in hardware and software. Considering the fast developwieteichnology,
it is easy to understand that it is critical in the design ofsributed system
to make it scalable. For example, it is highly reasonablessume that the
network ofEcus in today’s Scania trucks will develop further, adding more
and more processing units to the network, and thereforeiriegut to be
scalable.

A traditional centralized system, where the processingsuransmit re-
qguests of communication with the central unit, is much lessdable than
a distributed system where the different processing uhsesthe load. The
former creates an information bottleneck that prohibit#fer growth. There-
fore, only distributed algorithms should be used. Thesegly have the fol-
lowing characteristics, which distinguish them from calized algorithms:

No machine has complete information about the systera.stat
Machines make decisions based only on local information.

Failure of one machine does not ruin the algorithm.

A

There is no implicit assumption that a global clock exists

When implementing a distributed diagnostic system, sdilabecomes
a central issue since storing diagnostic information,ivecEfrom otheecus,
require memory and as moeeus are added to the system, more memory
needs to be allocated in eaelcu. This scalability issue will be discussed
further in chaptefl6.

3.2 Hardware Concepts

There exist different models on how the hardware in a disteith system
can be configured. The multiplrocessing Element®Es) can either be
connected via bus or switch. If it is bus-based, there is glsibackbone
with the different elements connected to it. In a switchdubsystem there are
individual wires from machine to machine where the messagage along
with an explicit switching decision made at each step toedhe message
along one of the outgoing wires.

How the memory is connected can also be classified into twopgrolt
can either be shared, which is usually denatedtiprocessors(Figure[31),
or private, denotechulticomputer (Figure[32), for eachE.

A benefit of having a multiprocessor network is the smooth effidient
handling of memory. For example, the scenario of eedaving plenty of
memory available while otheres having none cannot arise. The downside of
the multiprocessor system is all the traffic on the wiresiklien theres want



22 Chapter 3. Distributed Systems

M M M

Data-bus

= = =

Figure 3.1: A bus-based multiprocessor system, P for psocesnd M for
memory.

to collect information from the memory units. Further, atidistion can be
made between multicomputer systenimogeneousand heterogeneous
Homogeneous is, as the name reveals, a serof with the same kind of
technology that usually have access to same amount of meandrherefore
making them easy to interconnect. Heterogeneous, on tle bdnd, is a
multicomputer system consisting of different, indeperid@emputers, which
in turn are connected through different networks. Follayfiom earlier def-
initions: a homogeneous network is not as flexible as a hgégr@ous system
where one can connect a machine that is different in teclgydiat can still
be part of the distributed system, if it uses the same interfsee above.

M M M

| | |
P P =

Data-bus

Figure 3.2: A bus-based multicomputer system, P for prasemsd M for
memory.

The setup of hardware in today’s Scania trucks is a typicattimsed
heterogeneous multicomputer system, see Figule 4.1 aaitls of different
speed and memory size.

3.2.1 The CAN Bus

The network implemented in the distributed system in tosi@cania trucks
is aController Area NetworKCcAN). It was originally designed for the auto-
motive industry but is today used in a wide field of applicaiacAN enables



3.2. Hardware Concepts 23

Identifier Data bytes
11 bit 8 byte

Figure 3.3: ACAN package. The shaded areas represent checksums and other
control bits.

a huge reduction in wiring complexity compared to dedicditeds for con-
nection between the differeatus.

One feature ofcAN that suits distributed diagnosis particularly well is
the option of multicast or peer-to-peer communication. takt means that
information can be sent to a subset of receivers and pegedois communi-
cation one to one. The local diagnoses calculated bycanprobably needs
to be shared with one or many othetus, requiring peer-to-peer and multi-
cast. When data is transmitted on the bus, no parti@adars addressed. The
message is sent with an identifier, leaving it up to the rexsito accept the
message or not. This concept has become known in the netvgorlarld as
the producer/consumer mechanism, whereby one node predatz on the
bus for the other nodes to conswmQQ]. Apart from daththe identi-
fier, the message also contains various control bits andsbets, baked into
onecAN package, see Figukte3.3,

The data transmitted is 8 byte, which is not always enougHiaynostic
messages meaning that more than one package may need td.be sen



24



Chapter 4

Distributed Diagnostic
Systems

In chapteER, model based diagnosis was discussed and itedBafistributed
systems in general were discussed. In this chapter the teas are linked
together to build a theory on distributed diagnosis for edadeel systems.

4.1 The Network Architecture

Ecus are typically connected via@an bus, see sectidni-3.2.1. Figurel4.1
shows such a network used in current Scania heavy duty eshitlincludes
three separateAN buses: red, yellow and green. The buses are connected
by the Coordinator (Co0). The coo acts like a router, making sure that
no messages are exchanged between the buses unless itdsangc& here
are between 20 and 38cus in a typical Scania system, depending on the
truck’s type and outfit. Between 4 and 110 components areauiad to each
ECU. TheEcus’ cpus have typically a clocking speed of 8 to 64 MHz and a
memory capacity of 4 to 150k 5].

There are several reasons why theus need to exchange information
between each other over a network. Some of these are:

e A component can be used by multieus.

e A componentdoes not necessarily have to be connected Ecththat
is controlling it.

e Diagnosis is performed on components by multiptaus.

Since multipleecus can use and perform diagnosis on the same component
it is also important that they can inform each other whetherdomponent is
working or not. A method for sharing this type of informatisrpresented in

this thesis.

25



N

6

Chapter 4. Distributed Diagnostic Systems

gzx> o0 Zr>
250 g0 sC
EERel z0 °G
: g g
5 b 3
8 k-
@ g

E

WTA
|Auiiary heater
[system water-to-air

ATA
|Auxiliary heater
jsystem air-to-air

(Clock and timer
Jsyst

2]
294
R

L

RTG
Road transport
informatics gateway

Green bus

(
\

Diagnostic bus

—

Red bus

coo?
(Coordinator system

|

2

GMS ACS
(Gearbox managemellt
lsystem

|Articulation control I

EMS*
Engine managemen
system

SMS

Brake management
lsystem

Suspension
[management

SMD
Suspension
management dolly

S
825
EER

g

s

g

E

(Al wheel drive

LR B
11018

Instrument cluster

Tachograph system

Visibilty system

|Air prosessing systel

Body work system

Yellow bus

Body chassis syster

EEC
Exhaust Emission
Control

1S011992/3

Body Builder
Truck

Body Builder
Bus

ISMS
[Susper

1S011992/2

15-pole

Trailer

Imanagement syste

ISMS
ISuspensi

Imanagemen syste

Figure 4.1: The network anglcu topology in a Scania heavy duty truck.

4.2 Current Diagnostic System

Eachecu performs on-line diagnosis. The current diagnostic system
sists of tests which compares one or several componentssa@aihreshold
value. The current Scania diagnostic system includes leet&@ and 1000
diagnostic tests in eaabcu. If a test result is outside the boundary set by
the threshold, the test assumption is invalidated. Aftedaawhen the tests
are either validated or invalidated, tib@agnostic Managel(DIMA), calcu-
lates theminimal diagnosefrom the generated sub-diagnoses. An isolation
process follows were the minimal cardinality diagnoses, BefinitionZH,
are selected and every component that is represented i@ thi@gnoses is
assigned atdl. Al components represented in the minimal cardinality di-
agnoses are presented to the technician at the workshsaspsctedy the
DTC. If a component is included in all minimal cardinality diagges, then

it is presented asonfirmed by thepTC. The process to deriveTcs is il-
lustrated in figur&412. ©cs are only presented by thoseus that owns the
specific component (see Definitign}¥4.1), i.e. @OU cannot present aTc
belonging to anothexcu.

1Al components in the diagnoses are either inh@ or —A B mode, i.e. virtual components
are used for those with several behavioral modes.



4.2. Current Diagnostic System 27

test o minimal
results m|n|mal cardinality
etc. dlagnoses[ diagnoses: DTC l[:
4 4 4
s s 7
-~ ~ ~

Figure 4.2: A simplified flowchart of the diagnosis procedufée dashed
arrows indicate where distributed diagnostic informaticight come in.

4.2.1 The Goal with the Distributed Diagnostic System

In this section the objective of this thesis, explained ictise[1.2, is applied
to the system of a Scania truck. Since titecs are the final result of the di-
agnostic system, the objective should conagras. Therefore, the objective
in sectior_L.P applied to the diagnostic system in a Scanékfis:

A DTC assigned to each component that does not contradict with
theDpTcC assigned w.r.t. the global minimal cardinality diagnoses.

If the DTC is the same as the one generated from the global minimal car-
dinality diagnoses, theTc is said to be globally consistent.

What this means in practice is that when all the necessagndgtic in-
formation is processed and distributed, the resultimgs should be the same
as those generated at the end of the flowchart in Figule 4n2 ifetst results
from all agents were put in at the beginning of the chartthebTcs should
be globally consistent.

Note that the global diagnoses does not necessarily setenaorponents
in a confirmed mode than the local diagnoses. It could justelsdegrade
components that are confirmed locally to be suspected dgjob@lonsider
ExampldZPR where agent; should present atc for the componentl as
confirmed but the globally, and thus the correatc for componentd should
only be suspected.

One question that now arises is if it is globally correct tb &a&ompo-
nent in the suspected mode, even though it globally shouleitber in the
confirmed mode or perhaps not have®c at all? That depends on how one
defines the ternglobally correctDTC. If it means that the result should be
globally consistent, then it is not correct to suspect a comept that should
not be suspected, but if a globally correatc means that no contradictions
exist with the global diagnoses, then it could be OK to setramanent in the
suspected mode if reasonable motives exists. This makesdehto know
which component or components that are the true faulty dngsn the other
hand it could decrease the work for the local diagnosticesygb calculate
the diagnoses.



28 Chapter 4. Distributed Diagnostic Systems

4.3 Components, Signals and Objects

A diagnostic system involves a set of agends,connected by theAN bus.
An agent is a piece of software in eaebu that handles the calculation and
communication of diagnoses. An output signal in an agernmket to input
signals in one or several agents. Further, the diagnossieisyconsists of
a set of objects, see Definitign¥.5, which is a subset of tted lumber of
components for the global system. The objects for a cergaentd < A are
diagnosed for abnormal behavior.

Each agent includes a number of tests. The objectghich are analyzed
for abnormal behavior by the tests, can have differentiosighd have differ-
ent properties. It will be shown later that it becomes imatto distinguish
these types of different objects, hereafter referred tagrsats and compo-
nents. One could classify two different types of componants$ two types
of signals to be analyzed by a certain agent. Componentsiginals will be
diagnosed in the same way in theu. Here an explanation of each type of
component and signal will be introduced.

A component is either private or common.

Definition 4.1 (Private Component). A private component is a component
that is physically connected to an agent. It is clear whiclnaghat owns
and controls the private component. A private componengi®tedp € P,
whereP is all private components in the system.

<

Definition 4.2 (Common Component). A common component, G, is a com-
ponent that is physically connected to several agents ongonent that is
not connected directly to any agent and who’s owner is uate#g.g. pipes,
links or other mechanical devices.

<

The common component is a special type of component thagmilyrcannot
be found in the Scania diagnostic system. It will be assurhatiwhenever
this type of component is added to the diagnostic systemijlibe&assigned
an owner and treated agpavate componentby the owning agent. A com-
mon componentis denotgds G, whereG is all common components in the
system.

Definition 4.3 (Input signal). An input signaly, is received fronCAN. Sev-
eral agents can read the same signal as long as it is digtlibatthe network.
An input signal is denoted € I', wherel is all input signal in the system.

<

This type of signal is similar to the output signal definedolel An input
signal is read frontAN and diagnosed in the same way as components by



4.3. Components, Signals and Objects 29

the diagnostic system. The signal value could be dependeoibe or more
components, e.g. a sensor or an actuator, but it could alao estimated or
calculated value. It will be discussed later if it is necegsar the diagnostic
system to know all information about the origin from the ihpu

Definition 4.4 (Output Component). This type of signals are the values dis-
tributed on thecAN bus. The signal can be derived from one or several physi-
cal components. It could also be estimated from some other &6 data. An
output signal is denoted € ¥, whereX are all output signals in the system.

<

As for the input signal, the output signal value could be deleat on one or
more components, e.g. a Sensor or an actuator, but it cabelso estimated
or calculated value.

Note that a signal can be of numerous types at the same timador
whole system, e.g. a sensor connected to two agents whe treeagents
distributes its value on theaN bus, the component would be a type as those
defined in definitionEZ124.3 afid¥.4 at the same time frons&sypoint of
view.

When different types of components and signals have bedniegq, it
is possible to define objects, which are the signals and caes included
in its local diagnostic system, for an agent.

Definition 4.5 (Objects). The set of objects for an agefi,s
o=prPlurtucgituxs

whereP4 is a set of private componenis? is a set of input signalg;4 is

a set of common components ahd is a set of output signals. The output
signals are special cases since they are based on the degagfdbe private
components.

<

The objects are different for each agent. Exaniplé 4.1 expledmpo-
nents, signals and objects further.

[
Example 4.1

Consider FigurE4]3 where a system consisting of three ageillustrated.
Each agent have a set of tests and the objects for agega®, = {F, Sy, Sa},
the objects for agentl; is ©; = {A, B, E,G, H, S3} and the objects for
agentA; is ©3 = {C, D, S1}. The classification of components and signals
are as follows.

Agent 1 Component” is a private componens§; andS, are input signals.



30 Chapter 4. Distributed Diagnostic Systems

Agent 2 Componentd, B, F, G andH are private componentS; is an out-
put signal andd, is an input signal.

Agent 3 Component” and D are private componentsj; is an input signal
andsS; is an output signal.

¢ v S,(AB) }I v |S/{CD)

Agent Agent 3
Iﬂm

[TEST
Figure 4.3: Agents with componentsto G and signalS;, depending on
componentd and B, and signalS, depending on componeatandD.

;i

4.4 Signals - Inputs and Outputs

Some reasoning about signals, i.e. inputs and outputs,haiidcharacteris-
tics will here be presented. The discussion will be concerr few basic
guestions:

1. Isitnecessary for a receiving agent to know about theroafjan input
signal?

2. Should a transmitting agent treat the output signal ageiapcompo-
nentin its own diagnostic system?

3. How is the cardinality of a diagnosis affected when sigaa¢ included
in the diagnosis?

The transmitting agent is the agent distributing valuesercaN bus and
the receiving agent is the one reading the value.



4.5. Local and Global Diagnosis 31

Let us start with the first question. Assume that an agenutskes an
output based on the functionality of three private compésebsingCAN,
there is no way for the receiving agent to know which compatstre signal
depends on, unless anitialization process is performed. In the initialization
process each signal and which components it depends on Wweuldclared,
enabling the agents to transform signals to correspondingponent repre-
sentation. Is this necessary though?

The receiving agent cannot sgtcs on components owned by the trans-
mitting agent, so it is enough to diagnose with a signal regmeation and
then share the information of the diagnoses stated. Wheagést, where
the signal originated from, receives the diagnoses it reizeg the signal as
one of its outputs and transforms it to a component repratentsinceDTCs
are not set on signals but on components. Therefore, withounitializa-
tion phase, the agents still have enough information tolséidly consistent
DTCS. For the receiving agent, the cardinality of the objectalso always
be one, because it cannot distinguish which of the threeipddyomponents
that caused the problem. And by this the third question i atswered.

Regarding the second question, there is no reason for tipaitosignal
to be diagnosed as a signal in the transmitting agent ingiédéhgnosing
the private components and from this determine which ousmrals that
are diagnosed. In the case where one would like to shareniafiton about
diagnoses that affect output signals, there is always a avdgtive that kind
of information regardless if the signal is part of the diagfimsystem or not,
since eachecu knows which components its output is dependent on. Also, if
the output signals would be included as components in tlgnaditic system,
one would have to compensate for the cardinality in the diaga where the
signal is present.

The conclusion of the reasoning above is that no initialireprocess is
needed in order to exchange information regarding therigi input signals
and that the cardinality of the resulting diagnoses is rfetédd. It could also
be concluded that the output signal should not be a part dbtad diagnostic
system.

4.5 Local and Global Diagnosis

Considering the network ofcus in today’s Scania trucks, shown in Fig-
ure[Z£1, and how the components are linked to the diffeeensts, see Fig-
ure[I, it is possible to define two different types of fauétghosis for the
system. First local diagnosis, where each agent state & disigmoses about
its objects, without sharing any information with other atge Since no di-
agnostic information is shared the local diagnoses can d@niplete. The
second type is global diagnosis where all the test resuttssodystem is con-
sidered when generating the diagnoses.
As mentioned before, theTcs in the system should be set based on glob-



32 Chapter 4. Distributed Diagnostic Systems

ally consistent diagnoses. Hence, #®us need to exchange diagnostic in-
formation to form the globally consistent diagnoses. Ingtaxess of sharing
information the merge operator is used, the definition fedo

Definition 4.6 (Merge). LetD! andD? be two sets of diagnoses, then a merge
of these diagnoses is the set of minimal sets

D' D? = min,(D' U D? | D! € D', D? € D?)
<&

From the definition of merge follows that the global diagreoisea merge
of the local diagnosis from each agent.

Theorem 4.1(From local diagnoses to global diagno@OSﬂ)r each
A € A, letD” be a set of local diagnoses consistent with the conflicts
then the minimal global diagnoses is

D= |x| DA
Ae A

In short, if the local diagnoses for each agent is known theregge of
these generates the global diagnoses.

[
Example 4.2
Consider two agents holding the set of conflicts

I = {{AaB}a{Avc}} 42 = {{BvD}}
With the corresponding diagnoses
DM = {{4},{B,C}} D" ={{B},{D}}

To create the global diagnosis, the two local diagnoses argexd, resulting
in the set

DAy D4 = {{AvB}v {AvD}v {Bv C}}

Note, the non-minimal diagnos{s3, C, D} is not included in the global di-
agnosis. Notice also that each diagnosis is consistenewity conflict, thus,
every merged diagnosis is a global diagnosis.

|




4.5. Local and Global Diagnosis 33

4.5.1 Two Ways of Calculating the Global Diagnosis

One can distinguish between two different ways of calcntathe global di-

agnoses. The conflicts generated from the different testaah agent can
either be transformed into local diagnoses and then meayfedrh the global

diagnoses, Figulle-4.4, or by first merging all the local cotsfland then gen-
erating the global diagnosis from the set of all conflictgure[4b. These
different approaches are the basics of the first two methedsribed in the
next chapter.

Conflicts in Agent 1 — . Diagnoses in Agent 1
. ] \
. . .
. . Global Diagnoses
L] L] /

Conflicts in Agent N —® Diagnoses in Agent N

Figure 4.4: Generating global diagnoses from local cosfliotlocal diag-
noses to global diagnosis.

Conflicts in Agent 1
(] \
: All Conflicts —_m  Global Diagnoses

Conflicts in Agent N

Figure 4.5: Generating global diagnosis from local cordltotall conflicts to
global diagnosis.

45.2 The Combinatorial Problem

A problem that arises in distributed diagnosis is the sizéhefglobal diag-
noses that are generated by the merge of the local diagnbsesiumber of
global diagnoses grows exponentially with both the numinerthe size of
the local diagnoses. This leads to a combinatorial exptogimany faults,
generating many and large diagnoses, occur. A solutionsé&is reason-
able is to only merge the diagnoses that are most probabte iexclude the
diagnoses in each agent that are least probable.

One way of calculating the probability of a specific diagsasito assign
a probability to each fault mode. Normally, the no-fault raaslassigned the
highest probability, i.e. it is more probable that a compurig functioning



34 Chapter 4. Distributed Diagnostic Systems

correctly than incorrectly. The various fault modes havedoprobability.
P(NF) >> P(F1),P(F2),...,P(Fn)

The problem is to assign probabilities to the different fambdes. For ex-
ample, in the case of a Scania truck certain probabilities fafult when the
truck is just produced will certainly change over time whiea truck is used.
Therefore, a simpler approach is desirable. The differauit modes can be
assumed to have the same probability, enabling the use ahalinardinality.

P(NF) >> P(F1) = P(F2) = ... = P(Fn)

The set of minimal cardinality diagnoses is usually smalemn the set of
minimal diagnoses. Thus, the minimal cardinality diagsosan be used to
reduce the combinatorial explosion that occurs when skdégnoses are
merged together.

Other approaches of probabilistic reasoning in fault isotebesides min-
imal cardinality reasoning exist. One could be foundm]’@/here the
utilization of bayesian networks in fault isolation is esxpd.

Note, for components with more than two behavioral modesimal
cardinality diagnosis only holds if the fault modes have gnat probability.
ExampldZB will highlight the implications of this.

[

Example 4.3

Consider a system with three components, all with two befraVimodes
AB or —AB. The probability ofAB is 0.01 for all three components. If all
faults are assumed to occur independently the minimal caliti diagnosis
is the most probable. For example:

P({C1}) = 0.01
P({Cy,C3}) = 0.0001

If componentC; has four fault modest, Fy, F3, UF they are assumed to
all have the same probability in order for minimal cardityad be applicable.
The probability ofU F' when all fault modes have probability 0.01 is (again,
all faults occur independently):

P(UF) = P(Fy, Fy) + P(F1, Fs) + P(Fs, F3) + P(Fy, Fo, F3)  (4.1)
= 0.0001 + 0.0001 4 0.0001 + 0.000001 = 0.000301

This probability is much lower than the probability of thénet fault modes
and therefore either the faults are dependent, for example

P(Fl,FQ) = P(Fl) X P(F2|F1) where P(F2|F1) > P(FQ)



4.5. Local and Global Diagnosis 35

making the sum of probabilitieE{4.1) bigger or there aresjlmlities of faults
not modeled Punknown that need to be considered, i.e.

P(UF):P(FlvFQ)+P(F1aF3)+P(F27F3)+P(F15F25F3)+Punknown

It could also be a combination of dependency between befavimdes and
unmodeled faults.
|

4.5.3 Merging Minimal Cardinality Diagnoses

Earlier it was shown how the global diagnoses could be géedfeom the
merge of all local diagnoses, TheorEml4.1. Is this also toueninimal car-
dinality diagnoses? Unfortunately not. Sets of local migicardinality di-
agnoses cannot be merged together to form the global mirgardinality
diagnoses, i.e.
pme 7& M DZM
AcA

Here is an example to prove it. Note, in the following exarapte make
it understandable, a complete component representatissisned, meaning
all Ecus know about all components of the system.

[

Example 4.4

Consider Examplg4.2 with the minimal cardinality diagrei8g¢ = {{A}}
andD?¢ = {{B},{D}}. Then the merge results in

mew DYC = {{A, B}, {A, D}}
While
D™ = {{A,B},{A,D},{B,C}}

The global minimal cardinality diagnosisB, C'} was not included in the
merge of minimal cardinality local diagnoses.
|

The reason is that not all agents are independent of each dtheny
agents run tests including some other agent’s component#has the agent’s
local diagnoses might include signals that depends on sdhes agent’s
component. A solution, presented m\IOS], is to first groloe agents
into modules, where each module of agents is independeratodf @her, as
shown in the following example.

[
Example 4.5
If D1 = {{A, B}}, Dy = {{B,C}}, andDs = {{E}}, then for the modules



36 Chapter 4. Distributed Diagnostic Systems

Ay = {Ay, A} and A, = {A3)}, it follows thatDod = {{A, B,C}} and
Dyt = {{E}}
L

A module of agents with diagnoses independent of each o#drefarm
aModule Minimal Cardinality Diagnosi$mMmMcD) denotedDz’v”"d””c for the
i:th module. If all thesaamcDs are merged, it can be prove@bSa}) that

me __ mod,mc
D o,

Hence, grouping the agents into modules, merging the digmoside
the modules and finding the minimal cardinality diagnosiefach module to
reduce the combinatorial problem, and last, mergingMRecDs, generates
the minimal cardinality global diagnosis.

4.6 Centralized or Distributed Diagnosis

In general, there are three different ways to organize andistic system
working over a network. In a Scania truck teeus can either transmit all
their data to a central unit, here called diagnostic agéat, performs tests
and states the diagnoses. This setup is denoted centrdiaggubstic system.

A different approach is to let the agents in theus state their own lo-
cal object diagnoses and then transmit their results to saleed diagnostic
agent who would merge the different local diagnoses. Thamidge of this
approach, denoted decentralized diagnosis, is the distiibof work creat-
ing the diagnosis in each agent instead of in a central utilt, &decentral-
ized solution is in need of a central unit for the merge of treal diagnosis.

A preferable method would be to make the diagnostic systéiyn dis-
tributed with no need of any central unit. The agents woudshthave to state
their own local diagnosis and then transmit diagnosticrimi@tion between
each other to generate a globally consistent diagnosiouitthe need of a
central unit.

4.6.1 Centralized Diagnosis and Decentralized Diagnosis

An advantage of a centralized diagnostic system is the gitypbf it. No
calculation needs to be done at local level and since theagldlagnoses
stated by the diagnostic agent is based on all the diagniostionation of
the system, global consistency is always achieved. The aorimation on
the caN bus will be directed in only one way, from thecus to the central
unit. A basic diagram of a centralized system is shown in FeLB.

A disadvantage of centralized diagnosis is the scalabilitydiagnostic
system using one central diagnostic unit has a limit on howyngcus that
can be connected since it has a finite amount of processingrgavd mem-
ory. Thus, it would need changes in the hardware if the systepanded



4.6. Centralized or Distributed Diagnosis

37

Diagnostic
Agent

CAN-Bus

Sensor and
Actuator
Values

Sensor and
Actuator
Values

Sensor and
Actuator
Values

Agent

Agent

Agent

Figure 4.6: A centralized diagnostic system.

outside of the central unit’s limits, e.g. faster process@peed up the calcu-
lation of diagnoses from the increasing amount of inforprati

Diagnostic
Agent
CAN-Bus
%] %] %]
58 52 52
S5 = =
- & - & - &
[a) [a) [a)
Agent Agent Agent

Figure 4.7: A decentralized diagnostic system.

A decentralized diagnostic system is in many ways similaa tentral-
ized system. It is diagnoses that are transmitted from tb&l lagents to the
diagnostic agent, instead of sensor and actuator valuessigardZl. The
system cannot be considered scalable though, becausélitdsise compu-
tationally intensive to merge the local diagnoses sentécctntral unit. To
increase the scalability, the merge could be processeciadknts with the
central unit as coordinator agent instructing the agentstbanerge their lo-



38 Chapter 4. Distributed Diagnostic Systems

cal diagnoses in between each other. Such a solution wogldreeca more
advanced algorithm, sm%]. Another flaw of the ceizgdland decen-
tralized method is the failure transparency from a distedisystems point of
view. If the central unit fails, it is difficult, or impossig} for the otheecus
to hide that failure.

4.6.2 Distributed Diagnosis

In a distributed diagnostic system, see Fiduré 4.8, shalismgnoses between
Ecus without the use of a central unit is both scalable and failtansparent.
For example, if on&cu stops working then the other agents will form the
diagnosis for the rest of the system. The computations aaeedibetween
the agents, so for evemcu that is added not just the amount of diagnoses
increases but also the computational power. The commumidatdistributed

in the network ofecus, so adding mor&cus adds traffic, but not in any
specific part of thecAN bus.

Diagnostic Information

/N

AN
4 CAN-Bus

Local
Diagnoses
Local
Diagnoses
Local
Diagnoses

Agent Agent Agent

Figure 4.8: A distributed diagnostic system.

The drawback of this method is the complexity of the impletagaon. In
centralized and decentralized diagnosis the agents tiedsagnostic infor-
mation only to the diagnostic agent, but in this approach aenaglvanced
method of communication is required because the agentaegehinforma-
tion between each other. Chadiér 5 presents a few methagtgesiing how
to implement distributed diagnosis.

4.7 Sharing Diagnostic Information

As discussed earlier, the differentus are dependent on each other. Agent
A needs to know if a component, that it controls, but conneilttédjentA,,
is broken. It is possible that the diagnostic testglindoes not respond to an



4.7. Sharing Diagnostic Information 39

error on a certain component that it is depending on, butesis inA, does

or that A; cannot isolate which component is broken on its own but it can
with the help of the tests id,. This strongly motivates a diagnostic system
that shares information. Every agent wants the best pesdibgnoses it
can have of both its own, its shared and its common componkglatgbe the
calculation of the best possible diagnoses are not feasdiieg in to account
all the information that needs to be shared and the size dbtia diagnoses
generated. There is a trade-off between hardware usagecanddod the
generated diagnoses will be. Less information is tranenhitb the price of
worse diagnoses. Still though, the diagnoses need to balbl@onsistent to
accomplish the goal, see section4.2.1. The question istelsaiare and how
to doitin order to generate feasible and good enough diagtbat complies
with the goal.

4.7.1 Sharing Conflicts

The diagnostic tests performed in each agent can generateod nflicts.
These conflicts can be sent to other agents that are intdiiedtee condition
of the components included in these sets. The receivingtagerthen insert
this conflict into its algorithm to generate diagnoses, ltggyin a more com-
plete set than its local diagnoses including only diageastormation from
its own tests. Example4.6 gives an example of two agentsngheonflicts;

7wt denotes transmitted conflicts” denotes received conflicts and’ is
the minimal diagnosis operator.

[
Example 4.6
Two agents in a system has found the following conflicts

4 ={A,B,C} 1" ={i,F}
With the corresponding diagnoses:
DY = {{A}, {B},{C}} D% ={{i},{F}}

Component3 make up the input signalin agentAs. Thus,A, transmits its
conflict including signak on caN as#'® = {i, F'}. AgentA; receives this
and translates signalo its dependency, componelif 7> = {B, F'}. The
received conflict results in extended diagnosesAor

D4 = {{A, B} {A, F},{B},{B,F},{B,C},{C, F}}
"~ {{A.F}, (B} {C, F}}

Note, Agent4; has new and more complete, globally consistent diagnoses.
Hence, the diagnoses have been improved by sharing conflicts



40 Chapter 4. Distributed Diagnostic Systems

The final diagnoses that are generated when sharing corfiethe cor-
rect global diagnoses. The conflicts hold direct informatout the result
of the diagnostic tests performed in the agent and, thusingheonflicts is
equivalent to adding the tests in the transmitting agenhéotésts already
present in the receiving agent. This is the same thing asrigakpon the
system as a centralized diagnostic system, see sécfloant@herefore the
result is globally consistent.

4.7.2 Sharing Diagnoses

A similar approach as used above for sharing conflicts carseé also when
sharing diagnoses. Diagnostic information is in both cases and received
between agents and, hence, more complete local objectafiagrcan be
formed. The local diagnoses must be available in the diffezeus. In the

receiving agent a merge would be performed between theveztdiagnoses
with the one already stated locally. It was in Theofenm 4.shthat the re-

sult will be globally consistent. Examdle.7 gives an exkngh two agents
sharing diagnose&?* denotes a set of transmitted diagnog¥s, denotes a

set of received diagnoses and' is the minimal diagnosis operator.

[
Example 4.7
Consider the local diagnoses in Exanipld 4.6

DA = {4} {B}.{C}} D42 = Hinh {1

A sharing of diagnoses from, results inD** = {{i}, {F'}} which will be
received byA; and translated t®"™* = {{B},{F}} and merged with its
own diagnoses to form

DA = {{A, B} {A, F},{B},{B,F},{B,C}.{C, F}}
= ({AF}{B}.{C,F}}

This, naturally, is the same result as in Exanfiplé 4.6.
|

Does all the diagnostic information in the agents have toHzeexl or
could it be enough to transmit only certain diagnoses or misfnd in that
way reduce theAN traffic and calculation time for thecus? Maybe not all
information is of interest for the receiving agent. In thetgm below, this
matter will be discussed more thoroughly.



4.7. Sharing Diagnostic Information 41

4.7.3 The Information to Share

A receiving agentd, is only interested in diagnoses or conflicts available on
thecAN bus that does not have an empty intersection with its owroctdjee.
04N D" £ (), since the other diagnoses does not affect the receiving’age
functionality. Thus, it may be unnecessary for an agent &veskbonflicts or
diagnoses consisting of only private components.

The method gives different results when sharing conflictsharing di-
agnoses. Conflicts are, as discussed above, directly deddram tests and
sharing them is like adding, in the receiving agent, thestistit generated the
shared conflicts, making the diagnoses stated in the regeadent globally
consistent. Tests in the transmitting agent including @niyate components,
not included in any output signal, do not add any informatiotie receiving
agent. When sharing diagnoses, on the other hand, corsidbecomes a
problem if not all diagnoses are shared. This differenceréen conflicts and
diagnoses can be seen in Exampleb 4.dadd 4.9.

[
Example 4.8
Consider the conflicts in the following agents:

= (A} I =)

i is an input signal. Agentl; shares the conflict’® = {{A,:}} and agent
A, receivest’ = {{A, C}}, since the input signal, is connected to an
output signal inA, which depends only on componefit This gives the

diagnoses
D42 = {{4},{C}}

TheDTCs are set as suspected, thus globally consistent.
L

[
Example 4.9
Same scenario as in previous example, but this time shai@ggadsis

D = {{A}{i}} D% ={{}}
Agent A; shares only the input diagnosis sindes a private component not
included in any output signaD’* = {i} and agent, receivesD"* = {C'},
which gives

D = {{A}.{i}} D" ={{C}}

Since{{C}} is the only diagnosis present i, the DTC confirmed will be
set, which is not globally consistent.
|




42 Chapter 4. Distributed Diagnostic Systems

A significant problem with the method above is that dependinghe
cardinality of the diagnoses including only private comg@uots, i.e. those not
shared, is that in some scenarios could the receiving ageffitim a compo-
nent, which it owns, broken that is not, see Exaniplé 4.9. Thaking it
globally inconsistent and not complying with the goal.

The inconsistency is generated when the cardinality of tieshared di-
agnoses present iA; are disregarded. Information about cardinality needs
to be present since it is upon information about cardin#iff thedTc is set.

4.7.4 Focusing on Probable Diagnosis

Instead of selecting which diagnostic information to shaased on type of
components or signals it could be based upon probabilitye foflowing
example uses such an approach.

[
Example 4.10
Agent A, has stated the following local diagnoses

DA = {{ilviQa A}v {B}v {C’ il}v {Aa C, D}}

Using cardinality diagnoses, see Definitibnl2.4, assumirag it is much
higher probability that a componestis in ~AB(X) mode than iMdB(X),
one can easily conclude that the most probable diagno$iB }s Knowing
that, is it then necessary to share the other diagnoseglinglinputs and/or
outputs? That, again, depends how one chooses to traderdifi&ige usage
to diagnostic quality.

L

As seen in Example4.4, merging diagnoses based on praigalsli car-
dinality, can generate a statement that is inconsistetht thi¢ global diag-
noses. To meet the goals of this project, see pabe 27, alidlgeases with
cardinality lower or equal to the minimal cardinality of theerged product
need to be shared. If the cardinality is higher than this nemitbwill not be
represented in the minimal cardinality diagnoses, becautagnosis with a
specific cardinality cannot by merging generate diagnostgslower cardi-
nality. Thus these diagnoses do not need to be shared. Adtties ones, i.e.
the diagnoses with cardinality lower or equal to the caditinaf the mini-
mal cardinality diagnoses of the merged product need to &eedho ensure
global consistency.

Unfortunately, knowing the minimal cardinality of the metgproduct is
not a simple task. It could be done by first performing a pregaef the
diagnoses to be merged, and then calculate the minimalnzditgti of the
result. This approach would take away the whole purposeighosince a
pre-merge, in fact, demands the same workload as a normajlenueriess



4.7. Sharing Diagnostic Information 43

only some diagnoses are pre-merged, but then, which onekidb®merged.
A different approach could be to sum all minimal cardinaltand use this as
an upper limit on the global minimal cardinality.

Module Diagnosis

If it is decided that all different component types shouldshared, then all
agents in a module would calculate the same diagnosis, tlaellediagno-
sis. Instead of calculating this in every agent it can be doeaemore efficient
way, presented irLLl_BNbS], where the authors present amitilgodealing
with this. The basic idea is to first divide the agents intoejpehdent mod-
ules and then merge the local diagnoses in these agents irdanwhere
the complexity is minimized. The module diagnoses build ngponf agent to
agent and the last one to have its diagnosis merged will &3se the module
diagnosis. If the global minimal cardinality diagnoses @guested, then a
merge can be performed between the module minimal cargirtAéignoses,
see pagEZ36.

4.7.5 Problems with Component Representation

The diagnoses or conflicts that an agent receives oftendactomponents
belonging to another agent and therefore unknown to thaviageagent.

How is the agent supposed handle these components? Eitleey, agent
knows about every component in the whole system (at leasbatponents
in its module) or the unknown components included in theivecediagnoses
can be added dynamically. Still, an agent cannot changeiigmalstic sta-
tus i.e. none, suspected or confirmed on other agent’'s coemi®and extra
components mean extra memory and processor usage. Tletembest so-
lution would be if agents only stored information about caments that are
its own.



44



Chapter 5

Proposed Methods for
Distributed Diagnosis

On basis of the discussions in the previous chapter, a meonealanodel

was created. Based on this model, methods for sharing dséignoforma-

tion were constructed and are here presented. Algorithmprasented for
both the transmitting agent who transmits the diagnostarmation and the
receiving agent who receives it.

5.1 Model for Distributed Diagnosis

The objects that could be assigned witb&c is always components, never
signals. Signals can however be part of a diagnosis.
Components

There are a few different types of components. There are afgmivate
components P4 C C, with the following property:

Vi£j: PAnpPh=90 (5.1)
There are a set @ommon componentsG C C, with the following property:
VA: GNPA=9 (5.2)

Signals

In the set of output signals, which are all signals on thean bus, an output
signal is denoted € X. The set of input signals iE. An input signal is
denotedy € I'. The set of signals are disjoint from the set of componerds an
an output signal’'s dependency is a subset of private compsraand input

45



46 Chapter 5. Proposed Methods for Distributed Diagnosis

signals. An output signal is in other words created from thlees of private
components and input signals. The creation results in a hgyeho € 3.

SNC=0 (5.3)

dep(o) € PAUTA (5.4)

An output signalg, from an agent can be connected to several input sig-
nals. An input signal can however never be connected to akwetput sig-
nals. Further, the functioton(x) is theconnection functioextracting which
input an output is connected to and vice versa.

con(o) CT (5.5)
con(y) € ¥ (5.6)
Vi#j: con(o;)Ncon(oj) =10 (5.7)

The set of input signals is disjoint from the set of composentd the
dependency of an input is the dependency from its origin.

rnc=>0 (5.8)

dep(y) = dep(con(v)) (5.9)

Limitations and Assumptions

The methods presented below are all developed under som@pissns, or
limitations. They are all correct under these circumstarizé the intention
is to remove the need for these assumptions in the futureadsth

The assumptions are:

Vo e x4 dep(o) C PA (5.10)

Vo0, €4 i# 5 dep(o;) Ndep(a;) =0 (5.11)

An output signal from an agent can only depend on the agent’s private
components, compare with equati@n]5.4), and two or morpubigignals
can never depend on the same private components. Thesatilim# will be
discussed further in secti@nb.3.

If one takes a closer look at equati@n{5.4) one notes thatrarmm com-
ponent,g € G, cannot be a part of any signal. This assumption is due to
logical and physical reasons and has no need to be removatlire fmeth-
ods.



5.2. Algorithms for Distributed Diagnosis 47

5.2 Algorithms for Distributed Diagnosis

Based on the modelin sectibnkb.1, a number of different nuksthar distribut-
ing diagnostic information were developed and some of thespeesented
here.

The first method is based on the sharing of conflicts and thenskeoethod
is based on the sharing of diagnoses. The methods are mueheaalil both
demand that the agents can handle component informationdpaly to other
agents. The third method is a more advanced extension oétloend method
where the problem with component representation in othentsgs solved.
The diagnostic information transmitted owaN is also reduced. This method
is the main contributing method for distributed diagnosissgnted in this
thesis.

As said above, not all ideas that came up during the projegbasented
here. Some of the ideas were to have approximate methodt setbTcs
that are correct but perhaps not consistent wits based on a set of globally
consistent diagnoses. The conclusions were however thi ikyno need for
approximate approaches. Another approach was to have lasimgthod to
the one presented im%] but the conclusion was that #téod was too
complicated and not really suitable to be implemented in anfscnetwork
system.

When calculating diagnoses, the need for a function sirtoléne depen-
dency function arose. This function of a sigra¢ X, called thedependent
diagnoses functignlpd(s), returns a set of sets. Each set represent a diagno-
sis consisting of one or several components from the depeyad the signal
S.

dpd;(s) € dpd(s)

| dpdi(s) = dep(s) (5.12)

ExampldR1l will clarify the use of the dependent diagnosastion.

[

Example 5.1

Consider Figur€hl1 wher6; and.S; represent two output signals in the
system. Assume that Agedt has two conflicts saying that none of its inputs
can be in the-AB mode. Agentd; s set of diagnoses is therefore:

DA = {{51, S2}}

where
{S1,8,} c

Assume that the diagnosis is transmitted to agéntand A;. Agent Ao
receives the diagnosis and detects:

S NxAz £



48 Chapter 5. Proposed Methods for Distributed Diagnosis

Sy NTA2 £ ()
The diagnoses to be merged with the original diagnoses iis thus:
Dy rge = {{dpd(S1)}, {S2}} = {{A},{B}, {S2}}
Agent A3 receives the same diagnosis and detects:
Sy NTAs £
So NXAs £ ()

The diagnoses to be merged with the original diagnoses iare thus:

Dptrge = {{S1}, {dpd(S2)}} = {{S1}.{C}. {D}}

5.2.1 Method 1: Sharing Conflicts

As previously seen under sectibn 417.1, globally consistamnoses can be
generated by sharing conflicts and from these globally stersipTCs can
be assigned.

Goal: By sharing conflicts, generate a set of diagnoses in eaatt tupt
globally consistenbTcs can be assigned based upon.

Algorithm for the Transmitting Agent

Algorithm 1 Method 1 - Transmitting agent

Require: Minimal local conflictsI1# in each agent A
Ensure: Conflicts to transmit[I**, including all information needed for the
receiving agent to set globally consisterntcs
1 I = ()
2: forall = € II* do

3 forall 0 € ¥4 do

4: if dep(o) N # () then
5: m:=0U(m\ dep(o))
6: end if

7. end for

8 II*:.=M*"unr

9: end for

10: TransmitIT** on thecAN bus.

Line 1 Initiate the conflicts to be transmitted as an empty set.



5.2. Algorithms for Distributed Diagnosis 49

Line 2-7 Substitute the components that the output signals are depéan,
for output components, representing the output signalsl, Ad itera-
tion, the conflicts to be transmitted to the Et.

Comment The components in the transmitting agent that make up an

output signal is represented in the receiving agent as art sgmpo-
nent. Thus, if any of these components are diagnosed indherrit-
ting agent, it is the same thing as the input signal for theivéng agent
is diagnosed.

Line 8 Add, by iteration, the conflicts to be transmitted to thel$&t

Line 9 TransmitII** on thecAN bus.

Algorithm for the Receiving Agent

Algorithm 2 Method 1 - Receiving agent

Require: II**

Ensure: Globally consistenbTcs on its own components
1 I =
2: forall = € I1** do

3 outputdep := 0

4. forall ¢ € wdo

5: if cn P4 = () then

6: set flag forc that nobTC should be set
7: end if

8: end for

9: forall s e wdo

10: if s € ¥4 then

11: outputdep := outputdep¥ dpd(s))
12: =7\ s

13: end if

14:  end for

15 II"* :=11"" U (outputdep U )

16: end for

17: call the algorithm for generating diagnoses Wikl as input

Line 1 Initiate the conflicts to be transmitted as an empty set.

Line 4-8 Mark which components that should not be assigneda
Comment An agent can only seiTcs for its own components.

Line 9-13 For all received conflicts: merge all output component depen
cies iteratively and add with the conflict minus the receivgulit com-
ponent.



50 Chapter 5. Proposed Methods for Distributed Diagnosis

Comment A received input component that is included in the receiv-
ing agent’s set of output components can depend on many quenfm

A conflict including this type of component generates newflieis in

the receiving agent diagnoses need to be merged to form tinecto
diagnoses for the receiving agent.

Line 15 Add, iteratively, the conflicts received to the $Et .

Line 17 Insert the received conflicts in the local algorithm for gatieg
diagnoses.

Result A set of diagnoses for each agent, consistent with the ¢jioba
imal cardinality diagnosesD™¢. Based upon this set, globally consistent
DTCS can be assigned. It has previously in this thesis been showrshar-
ing of all conflicts, on componentlevel, generates the dldiz@noses, there-
fore thepTCs assigned will be globally consistent. A component, inetlioh
the transmitted conflicts, that is private to the transmittagent needs to be
marked by the receiving agent, sinceomc should be set for this component
by the receiving agent.

5.2.2 Method 2: Sharing Diagnoses

Similarly to sharing conflicts it was in the previous chapdescussed how
exchanging diagnoses could generate globally consisteghdses and from
this globally consisterbTCs can be assigned.

Goal: To generate a set of diagnoses that globally consistea$ can be
assigned based upon.

Algorithm for the Transmitting Agent

Algorithm 3 Method 2 - Transmitting agent

Require: Minimal local diagnose®*
Ensure: Diagnoses to transmif)*, including all information needed for the
receiving to set globally consistentrcs
1: D .= ()
2: forall D € D* do

3 forall 0 € ¥4 do

4: if dep(o) N D # ( then
5: D =0cU(D\dep(0))
6: end if

7. end for

8 D¥.=D*uUD

9: end for

10: TransmitD!* on thecAN bus.




5.2. Algorithms for Distributed Diagnosis 51

Line 1 Initiate the diagnoses to be transmitted as an empty set.

Line 2-7 Substitute the components that the output signals are depéon
for output components, representing the output signals.
Comment The components in the transmitting agent that make up an
output signal is represented in the receiving agent as arn sgmpo-
nent. Thus, if any of these components are diagnosed indhertrit-
ting agent, it is the same thing as the input signal for theiwétg agent
is diagnosed.

Line 8 Add, iteratively, the conflicts to be transmitted to thelSét.

Line 10 TransmitD!* on thecAN bus.

Algorithm for the Receiving Agent

Algorithm 4 Method 2 - Receiving agent

Require: D*

Ensure: Globally consistenbTcs on its own components
1 D=0
2: forall D € D™ do

3. outputdep :=

4. forall ce Ddo

5: if cn P4 = () then

6: set flag forc that nobTc should be set
7: end if

8: end for

9: forall s€ Ddo
10: if s € ¥4 then
11: outputdep := outputdepW dpd(s))
12: D:=D\s
13: end if
14:  end for
15: D™ := D" U (outputdep U D)
16: end for

17: D4 :=DAw D"

Line 1 Initiate the diagnoses to be received as an empty set.

Line 4-8 Mark which components that should not be assigned@a
Comment An agent can only saiTcs for its own components.

Line 9-13 For all received diagnoses: merge all output componentrdepe
dencies iteratively and add with the diagnoses minus thesved input



52 Chapter 5. Proposed Methods for Distributed Diagnosis

component.

Comment A received input component that is included in the receiv-
ing agent’s set of output components can depend on many atenfs

A diagnosis including this type of component generate negmbdses

in the receiving agent diagnoses need to be merged to forgotinect
diagnoses for the receiving agent.

Line 15 Add, iteratively, the diagnoses received to the3&t.

Line 17 Merge the local diagnoses with the received one to form tlve ne
enhanced local diagnoses.

Result A set of diagnoses for each agent, consistent with the gioba
imal cardinality diagnoses)™<. Based upon this set, globally consistent
DTCs can be assigned. It has previously in this thesis been showisharing
of all diagnoses generate the global diagnoses, therdiemeTcs assigned
will be globally consistent. A component, included in thansmitted diag-
noses, that is private to the transmitting agent needs todrked by the re-
ceiving agent, since noTcC should be set for this component by the receiving
agent.

5.2.3 Method 3: Sharing Diagnoses Extended

Not all components need to be shared, as in Method 2, it is ginauth

selected information about cardinality for the diagnosethe transmitting
agent. The receiving agent can with the help of this inforomatiraw cor-
rect conclusions of which components that are confirmed spexted. For
a mathematical proof of the method, see Appeifidix A. An exanoplthe
method is shown in Example’.2.



5.2. Algorithms for Distributed Diagnosis 53

Goal: To generate a set of diagnoses for each agent that glolmalbis
tentbTCs can be assigned based upon.

Algorithm for the Transmitting Agent

Algorithm 5 Method 3 - Transmitting agent

Require: Minimal local diagnose®*
Ensure: Diagnoses to transmif)’®, including all information needed for the
receiving agent to set globally consistentcs
1. D" =)
2: forall D € D4 do

3 forall 0 € ¥4 do

4: if dep(c) N D # O then

5: D=ocUD

6: end if

7:  end for

8 X =|DnPA—|Dnx4

90 D=D\(PAND)

100 D* =D U {D, X}

11: end for

12: Y = min(|Dy|,...,|D,,|) forall D; € (D4 \ D)

13: D = {D**, Y’}

Line 1 Initiate the diagnoses to be transmitted as an empty set.

Line 2-7 Substitute the components that the output signals are depeon
for output components, representing the output signals.
Comment The components in the transmitting agent that make up an
output signal is represented in the receiving agent as art sgmpo-
nent. Thus, if any of these components are diagnosed indherrit-
ting agent, it is the same thing as the input signal for theiwétg agent
is diagnosed.

Line 8,9 Set a cardinality variabl&; which equals the cardinality for the
diagnosis pruned of all signals minus the cardinality of dgputs.
Delete all private components from the diagnosis.

Comment In the merge in the receiving agent the resulting cardinal-
ity will be depending on the cardinality of the transmittddghoses.
Since the private components will not be sent, informatiboua the
cardinality needs to be present.

Line 11 Store the minimal cardinality of the diagnoses consistihgrdy
private components as.



54 Chapter 5. Proposed Methods for Distributed Diagnosis

Comment In the merge of diagnoses consisting of only private compo-
nents the cardinality of the product will be the sum of thedozalities

of the diagnoses to be merged. Since the decision of whiclpoaants
that are suspected or confirmed broken is based on minindihedity,

the minimal cardinality needs to be sent too.

Line 12 Transmit the diagnoses including inputs or outputs pruneclb
private components but with the corresponding andY.
Comment This package could, for example, look like
]D)mC = {{’%Xl = 3}7 {'y,U, X2 = 4}7Y = 2}

Algorithm for the Receiving Agent

Algorithm 6 Method 3 - Receiving agent

Require: D*

Ensure: Globally consistenbTcs on its own components
1. D" =)
2: forall D € D™ do

3. outputdep = )

4. forall s € Ddo

5: if sN(I'*ux4) =0 then
6: X=X+1

7: D=D\s

8: else ifs N X4 # () then

9: outputdep = outputdepW dpd(s)
10: D=D\s
11: end if
12:  end for
13: D™ =D"" U (outputdep® D)
14: end for

15: DA =DAW D™ = {{DAUD™ X} : DA € DA, {D™, X} e D"™*} U
{{D*,Y}: D* € D4}

Line 1,3 Initiate the diagnoses to be received and the output depepak-
agnoses as empty sets.

Line 4-13 For all received signals in the diagnosis: check if the diggyan
output or input in the receiving agent. If it is neither, adtedo X
for that diagnosis and delete the signal from the diagnd§is.is an
output, then merge all output component dependenciesivtelsaand
add with the diagnoses minus the received input comporieibislan
input, nothing needs to be done.
Comment An agent does not diagnose components or signals that it



5.2. Algorithms for Distributed Diagnosis 55

does not know. If a signal that it does not know is includedmdiag-
noses it should be deleted but also the cardinality needs tmimpen-
sated for. A signal that is included in the receiving agesdisof output
components can depend on many components. A diagnosislinglu
this type of component generates new diagnoses in the negeigent
and these need to be merged to form the correct diagnosdssfoet
ceiving agent.

Line 18 MergeD“ andD"* to generate the diagnoses from where the glob-
ally consistenbTcCs can be set.
Comment In the mergeX; andY need to be compensated for. The
X;s are added to the cardinality of the merges betweénand D’*
and united withD* whereY is added to the cardinality dp*

Result Set of diagnoses for each agent, that globally consisteas can be
assigned based upon. It has earlier in this thesis been sthawva merge of
all diagnoses generates the global diagnosis. Ohes are to be set based
on the global minimal cardinality diagnoses. In this methotlall diagnoses
are merged, but since cardinality information about thguises that could
affect the generated minimal cardinality diagnoses isesharonsisterTcs
can be set anyway.

[

Example 5.2

Consider Figur€Xhl1 again. Here signals are denoted withicuarsymbol
S; which is equivalent witho; for the transmitting agent ang for the re-
ceiving agent. Assume that each agent has its corresposélimg diagnoses
according to:

Dy = {{F, 52}, {51, 52}}
Dy = {{A7 E}v {SQv E}7 {‘927 B}7 {‘927Av G}v {H}}

D3 = {{}}

A, andA; have both diagnosed signals (outputs or inputs) and thrertfese
agents transmit their diagnoses on ¢ bus.

Di*: {F, Sy} consists of one private component and one signal which
translates intd{S2}, 1}. {S1, S2} consists of two signals and translates into
{{S1,52},0}. There is no diagnoses consisting of only private companent
therefore Y=0. This results in:

D? = {{{SQ}v 1}7 {{Slv SQ}v 0}70}

DL*: {A, E} consists of one output component in sig§aland one pri-
vate component, which translates intpS:},1}. {S2, E} consists of one
signal and one private component which translates {fit$, },1}. {S2, B}



56 Chapter 5. Proposed Methods for Distributed Diagnosis

v i s[4 Vs

1 2 3

b Gecen oo

Figure 5.1: Three agents. Signals are dendéted

consists of one signal and one output componentin signalhich translates
into {{S1,52},0}. {S2, 4, G} consists of one signal, one output component
and one private component which translates {{t6:, Sz}, 1}. There is only
one diagnosis consisting of only private components anchitdinality is 1,
thereforeY” = 1. This results in:

D5" = {{{S1}, 1}, {{S2}, 1}, {{S1, S2}, 0}, {{S1, S=}, 1}, 1}
A receives diagnoses frod,. A; has no output s@’{” = D&

D?%Q = {{{Sl}v 1}7 {{52}7 l}v {{517 SQ}v 0}7 {{Slv SQ}v 1}7 1}
Dy W D7™? = {{Ss, F}, 1}, {{S1, S=},0}

Ay has no own components among its minimal cardinality diagsasus no
DTCs will be set.

A, receives diagnoses from;. S; is an output signal fromis so the
signal will be transformed into its dependency components.

Dy™! = {{{S2}, 1}, {4, S2},0}, {{B, 52}, 0}, 0}
Do ng’l = {{‘927Av E}7 O}v {{527 B}7 O}v {{SQv E}7 l}v
{{‘927Av G}v 0}7 {{‘92’ H}7 1}

Bis among the components in the minimal cardinality diagapbeisB will
be confirmed broken.

Aj receives diagnoses fromy, and A,. S, is an output signal fronds



5.3. Discussion Concerning the Limitations and Assumpstion 57

so the signal will be transformed into its dependency corepts

Dy = {{C}, 1}, {{D}, 1}, {51, C},0}, {{S1, D}, 0}
D™ = {{S1}, 1}, {{C}, 1}, {{D}, 1}, {{51,C},0}, {{51, D}, 0},
{51, €} 1}, {51, D}, 1}, 1}
Dy D™ w D™ = {{{C},2}, {{D}, 2}, {{C, D}, 2}, {{51,C},0},
{{5., D},0}}

C andD are represented in one minimal cardinality diagnoses ¢laghk both
will be suspected.

The global merge of the local diagnoses gives in rising oofleardinal-
ity:

D=D,8Dy = {{B,C},{B,D},{F,C,H},{F,D,H} ...}
B is confirmed broken an@' and D are suspected which consistent with the

result above in each agent.
|

5.3 Discussion Concerning the Limitations and
Assumptions

In section[&1l a few limitations and assumptions were intoedl. Two of
these will here be discussed more thoroughly, namely emqug&.ID) and
equation[[5111). They are both quite strong assumptionsafate imple-
menting the methods in a real system it would be preferafifeelf could be
erased. The reason for their being is, however, a problersmeasy to solve.

We have in all models assumed that no initializing phase éled, so that
when anecu receives a signal it does not know the component dependency
of it, just the value. A component could be included in theatefency of two
different signals that an agent diagnose and cause prolléersdetermining

the cardinality. Examplgd.3 will clarify the problem.

[

Example 5.3

Consider the system of Figufeh.2. The output signals froentag, S,
and.S,, are both dependent on componéht Agent 2 states the following
diagnoses:

DA = {{S1, 82}, {C}}



58 Chapter 5. Proposed Methods for Distributed Diagnosis

SO [s® _§ 4
Agent 1 Agent 2

d 6 ©

Figure 5.2: An example setup where one component is repezsém two
signals.

Agent 2 would then set theTc confirmed on componeidt which is not the
correct diagnosis sincgSy, S} really has cardinality equal to one. Com-
ponentC' should be suspected, not confirmed. Note, the given exaraple i
simplified to highlight the problem with signals. In realitywould be un-
likely for two signals to depend on only one, and the same jpmrant.

|

This problem can be found not only in the setup of Exarhplki®3when
a componentis included in two output signals. Also when tipeii from one
Ecuis included in the output of another. Both the input signal #re output
signal could be inputs to a thirdcu and the same component would then
be included in two different causing, again, a problem wahdinality. It is
in both cases the same cause of the problem: a componendéacia two
different signal’s dependencies. The receiving agent cardetect this and
therefore the cardinality may be calculated to equal anriecovalue.

To solve the problem, thecus need to have information about the signals
and their dependencies. One way could be to either have t@alization
phase where, at start-up, &tus exchange information about each others
signals and which components they depend on. When diagnassignal,
anecu could then determine which components it is dependent orirand
this information conclude the correct cardinality of itaglihoses.

A second solution would be to have a pre-map of all the sigaradstheir
component dependencies before connecting them to thensySthe result
would be the same as above but no initialization would be e@aihce the
ECUs at start-up already would have the correct informatioruatiee signals
and their dependencies. This would make the system lesdxdealnd flexible
since when arecu is added to the system, all the other ones need to be re-
programmed.



Chapter 6

Implementation in an
Embedded System

To evaluate the ideas behind the methods presented in cBhatel also to
examine the possibilities of the desired characteristi@amplementation

of a distributed diagnostic system, defined in sedfioh 1t2sharrangement
consisting of twoecus was constructed. Some of the key issues that were
dealt with in the implementation are presented in the falhgichapter.

6.1 Hardware Setup

The test arrangement consists of two Scania engine carsabnnected via

a 250kbit/scAN bus. Faults can be hardware simulated and the resulting
fault codes can be read with the help of standard Scania. tédgart from

the twoEcCus, the setup consists of a power supply and a specially dasign
control box. The outputs of thecus are connected to optical indicators,
which is of no importance to the diagnostic system, but usediébugging.
The inputs of thescus are connected to switches on the control box and these
represent components that can be either broken or not. Tdwgmming
was performed on PCs and transferred toebes via an interface. On this
system a framework for distributed diagnosis was succkgsfoplemented

and evaluated.

6.2 Software Description

The method implemented and examined in this thesis was lmastte sec-
ond method in chaptdll 5. The difference between Method 2 hedhe
implemented is that the implementation has a pre-mappéel tdlall signal
dependencies. Thus no replacement of the dependency aftaigpals for

59



60 Chapter 6. Implementation in an Embedded System

output signals in the transmitting agent is needed. Sinedrtimsmitted set
of diagnoses does not include any signals, there is no needfputdep in
the receiving agent and the merge could be done directly.

Various test and component setups were evaluated and incagehthe
resultingdDTcs were correct, i.e. globally consistent. Due to lack of timae
of the methods in chaptél 5 were fully implemented. The imm@etation
was however enough in order to analyze the desirable cleaistats that are
presented in the objective of sectionl1.2.

6.3 Processes in Embedded Systems

First, a shortintroduction in a typical real-time embedsdgstem is given. An
embedded system (in this case theu) needs to perform a couple of tasks.
The number of tasks that needs to be performed varies inziecdepending
on what it controls. Each task needs to be performed in @iffeirequencies
depending on how important they are and how much computdtjgower
they require. One can therefore make a couple of procesaearih cyclic
executed and all tasks within that process are executedpiéalysystem can
consist of for example two cyclic processes, e.g. a 10 mses¢100 Hz)
and a 50 ms process (20Hz). The tasks that not require a spleetuency
are located in the backgrodhirocess.

Each process needs to be finished in less time than the pitiroesand a
priority rating system is needed for the processes, e.dpabkground process
has the lowest priority and can be interrupted by the 50 msga® The 50 ms
process can in turn be interrupted by the 10 ms loop. All thilustrated in
Figure[G.

There are also some processes that are frequently recbrrentt trig-
gered by internal interrupts. These processes, triggereatiernal interrupts,
are often kept at a minimum in processing time, almost négégn com-
parison to let say a 10 ms process. External interrupts caax@mple be
incomingCAN messages (where the interrupt routine only handles stafage
the data, not any processing)cMDE dependent interrupts (engieeu).

A worst case scenario in computational time are often easaltulate
in frequently recurrent tasks, such as fuel injection dalion, but almost
impossible in dynamic processes, such as fault isolatibe.iJolation proce-
dure is thus most suitable placed in the background proCzggeal isolation
tasks, e.g. electrical faults on breaks etc., can howevetdsed in a faster
loop.

1The background process can actually also be a cyclic loop/itlitvariable cycle time.
2Crank Angle Degree



6.4. Data Transferring on@AaN Bus 61

Low Priority

Background

50 ms

High Priority

10 ms

Figure 6.1: The priority order between the 10ms, 50ms andé#v&ground
process.

6.4 Data Transferring on acAN Bus

As said in sectiofi 321, eactaN message is sent with an identifier which
describes the type of message and where it came from. Oneageesan
carry up to eight bytes. When two or more messages are seieosaime
time thecAN controller checks the priority of the messages by checkieg t
identifier of the message. A zero in the identifier has highrity than a
one so the controller holds the message if it detects thahanmessage with
higher priority is trying to be sent. Each message sent orcthebus must
therefore be unique.

When a message is received, an interrupt is triggered andateeis
copied to a buffer. The buffer is evaluated typically evedynis. In the eval-
uation the data is unpacked and scaled so that the signalsrsére network
get the right units.

In order to have a scalable system (see sefionl3.1.3) allages that
might come into use for the system has to be predefined. Sotiveémterrupt
for incoming message is triggered, or the evaluation fumas executed, the
system has to know what to do with the data belonging to a rgesséh
a certain identifier. This causes problems when a fully ftalaystem is
designed. All thinkable identifiers have to be implementeddvance, i.e.
the number of possiblecus with distributed diagnosis has to be decided in
advance. Another issue that causes problems becausetations inCAN is
how data larger then eight bytes should be sent. This cowlebher easily be
solved by introducing a simple protocol for handling lardergnostic data.



62 Chapter 6. Implementation in an Embedded System

6.4.1 Protocol Design

The necessary diagnostic information does mostly not fit amteCAN mes-
sage. One solution could be to divide the large data amouotsimaller
fragments or packets, i.&€AN messages, and add a header with all the nec-
essary information. The design possibilities are almdstite. A suggestion

is to divide the diagnoses into sub-diagnoses and transrmaisab-diagnosis
per packet.

Header Data (subdiag. 1) Data (subdiag. 2) Data (subdiag. N)

E Header
]

Data

Components
Behavioral modes
etc.

| Diagnosis

| Number of subdiags

{ Total number of diagnoses
=i

Figure 6.2: A diagnosis statement sent with a header and &pdekets.

How often aCAN message can be sent is often limited byelo® and that
is the biggest bottleneck when it comes to transfer a didgistetement over
the bus. The number of messages should thus be minimizee girccor-
rectbTcs could not be calculated until all diagnostic informatismeceived.
The preallocated memory (see secfiod 6.5) used for storathe geceived
diagnosis statement is then mostly occupied of the reagdigorithms.

6.4.2 Transparency

A basic idea throughout the implementation was to make thesytranspar-
ent from theecus point of view, meaning that amcu treat the otheecus
as a system, not as individual units. An agent does not knom fivhere it
receives its messages or to who it transmits its messagesedtkiving unit
decides what to receive. A different setup, with less transpcy, where the
communication is addressed could be a different approablis Would re-
quire each agent to know which other agents that would beeisited in the
stated set of diagnoses and select where to transmit iteialitig informa-
tion. A transparent system is simplifies the communicatiod anables a
higher degree of scalability and thus it seems as the pilaéeapproach.

6.5 Memory Structure

Since the length of the stated diagnoses is dependent on lamy compo-
nents anecu is diagnosing and the design of the tests, it is impossible to



6.6. Time Handling 63

determine how much data memory is needed to store the diegnibsvould

be preferable to use dynamic memory allocation and stordiiggoses in a
so callecheap. New memory is allocated whenever it is needed and returned
when it is not needed anymore. There are some problems howéthedy-
namic memory allocation as, for example, memory fragmertatnemory
leakage etc. Semg]. On acu as simple as the present one in a Scania
truck, dynamic memory is very difficult to implement. Thusstead a static
memory allocation is used where a worst-case size of memeeged for
generated diagnoses is pre-allocated. Scania’s own menamgiers could
be used. Pre-allocation is, however, potentially very efattecause of all
the memory that could be left unused by the isolation.

6.5.1 Memory Conflicts

When several processes use the same memory, area conflicisaa. The
conflicts can for example occur when the diagnosis isolgpimtess reads
the received diagnosis statements from the other agentsuatttenly a new
statement is sent over the network. An interrupt is thergigd and starts
a function that wants to write in the memory area where thiatgm was
reading. Some kind of memory handling is needed if not mixagmbsis data
is to be processed by the system causing strange behavities igblation.

A simple solution would be to use a semaphore system wheteprae
cess that wants to access the memory first checks if it issdtaiand if so, set
the semaphore indicating that other processes have to\Wh#n the access-
ing process is finished it releases the lock to the memory.ifhportant that
the system does not lose data coming from external inteiifigt memory
lock is set. This is solved as a special case in the interoygirre. For simple
and fast reading procedures it could be solved by just hglttie interrupt
until the reading procedure is done. For larger and slowergsses a rolling
buffer or several buffers could be used.

6.6 Time Handling

As discussed earlier, the processes indhe are run in either different time
intervals or in the background. The diagnostic procedubes suited to be
executed in the background process, but could also be atéclin a timed
loop. Below, both methods are discussed in detalil.

6.6.1 Diagnosis Executed in a Fixed Timed Loop

If the diagnosis executed in a cyclic loop, new diagnosekshgiready at the
end of every loop sequence, unless, the fixed time is too &rdfte isolation
to be finished. If, for example, it takes 8 ms for the isolatocess to be
executed and it is placed in the 10 ms loop, then there willlligaoe time



64 Chapter 6. Implementation in an Embedded System

for anything else to be executed in tbeu. The isolation process should
therefore, in this case, be placed in a slower time interval.

The obvious problem with diagnosis though, is the difficudfyknow-
ing how long it takes to execute. It is a dynamic process akektdifferent
amount of time depending on the design of the tests and thsilts. Natu-
rally, large diagnoses take longer to process than smaiks.dorhus, if placed
in a fixed time sequence a worst-case time length needs tdtdatad and
based on that a suitable time loop can be chosen. A worsi{tasever, can
be very long and the difference between the average time arstwase time
is often quite large resulting in a slow diagnostic system.

6.6.2 Diagnosis Executed in the Background Process

As opposed to performing the diagnostics in a fixed time vateit can be

handled in the background process. This suit well with tleétfeat the diag-
noses take different amount of time to generate, becausesibackground
the generation of new diagnoses process for as long as aegessl present
the result whenever ready. Here, no worst-case scenarieeden and the
calculations of new diagnoses start as soon as the old onsiskdd. The

diagnostic system should be faster in comparison to a fixee fbop in most
cases but there is no guarantee when the background preeesiuted.

6.6.3 Synchronization

In either case, fixed timed loop or background process, spnitation of
processes is a big issue. The biggest problems occur in te@/ieg agent.
It cannot know if, or when, a diagnosis statement is cominigaay many. It
could be good to have a standard message telling that eiryythOK (also
suitable for self-healing etc.). The receiving agent cantknow from how
many other agents it should expect a diagnosis statement.

Two (perhaps more) choices exist when it comes to synchatioiz. The
receiving agent could either wait until all diagnoses arkected from the
other agents, or it could just go on with the isolation amt generation
without considering the other diagnoses. In the latterédtive, the receiv-
ing agent could generatetarc that not is based on all information, i.e. the
agent would know it was doing something that is wrong, anddgeit! One
could therefore think that the smarter alternative woultbbeait for all other
agents. Problems can however occur even in this case.

Assume that an agentis in the process of receiving diagnosdrmation
from another agent and a third agent starts transmittingjéignoses. By the
time the first transmitting agent is finished sending its desgs, the receiv-
ing agent will be waiting for the third agent to finish the tsanitting of its
diagnoses. Assume further that the isolation in the firsisinatting agent is
pretty fast (remember that the biggest bottleneck was tteetcensmitting on
CAN) and starts transmitting again, the same or new, diagndses.eceiving



6.7. Using Reiter’'s Algorithm in Distributed Diagnosis 65

agent then has to wait for the first one again and so forth. Whisld com-
pletely lock up the isolation process of the receiving agkmiould be solved
by keeping track of from which agents it has received diagapBut then it
would have done the same fault as when it just continued witbonsidering
the newest information.

ECU1 ECU 2 ECU 3
New
) i [} )
£ diagnoses £ £
= generated = =
New
— —_ diagnoses
generated

Transfer time
ECU1

Transfertime
ECU3

A v v

Figure 6.3: Synchronization problem with sevezalus.

6.7 Using Reiter's Algorithm in Distributed Di-
agnosis

When using Reiter’s algorithm to generate a diagnosisrseté conflicts
or sub-diagnoses are inputs and the minimal diagnoses areutiputs. If
the algorithm is used in a reversed manner where the outpditignoses are
fed as an input to the algorithm, the minimal conflicts or slidggnoses are
generated. This trick can be useful when dealing with disted diagnosis.

In Method 2 and 3, see previous chapter, local diagnosesaergted in
eachecu, transmitted orcAN and received as diagnoses, requiring a merge
between the received diagnoses and the local ones to gettezafiobal diag-
noses. Reiter’s algorithm is well suited for performinglsacmerge. This is
done by running the algorithm twice. The first time to gerethe minimal



66 Chapter 6. Implementation in an Embedded System

sub-diagnoses of the received diagnoses, and the secoaddimerge the
just calculated sub-diagnoses with the local set of diaggos
The received diagnoses can be fed into an empty Reiter'sitdgoto

change their representation from a set diagnoses to a sebeliagnoses.
Empty means from step one in the algorithm, see jlape 11. Wsinglgo-
rithm this way has the reverse effect, which is transforndragnoses into
sub-diagnoses as opposed to the original purpose of thatalgosee Exam-
ple[G1.

[

Example 6.1

Consider an agent with the following conflicts (sub-diaggsoaorks in the
same way since the corresponding set of sub-diagnoseslesclihe same
components):

m = {C1,C5,Cy} 73 = {C1,Cs, C3,C5} w3 = {C1,Ca}

Not all conflicts are minimal, thus redundant informationsex From the
conflicts, Reiter’s algorithm produces the following setiEgnoses:

D = {{C1},{C3,C3},{Cs, Cu}}

The resulting diagnoses are all minimal. If the diagnositeshent is fed into
Reiter’s algorithm again it gives back the conflicts:

m ={C1,C} w5 ={C1,C5,C4}

which both are minimal conflicts.
L

After the received diagnoses have been transformed intalggmoses
they are merged with the existing diagnoses of the receagremt. The merge
is performed by running Reiter’'s algorithm from step 2, wille existing
diagnoses as base and the sub-diagnoses as input. A coeeye between
the received and local diagnoses was thereby performedwithe need of
an explicit merge algorithm. The transformations betwdmnttansmitting
agent’s diagnoses and a global diagnosis statement in ¢tke/eel agent are
shown in Figur€tl4.

A legitimate question to ask is why the sub-diagnoses géeeiia the
transmitting agent are not sent as sub-diagnoses dirésitlyilar to Method
1) so that less changes back and forth between represestatiould be
needed. Well, it is a trade-off between processing more idatiae receiv-
ing agent (an additional execution of Reiter’s algorithmjl @ending more
information oncAN. The diagnoses generated by Reiter’s algorithm in the
transmitting agent are minimal and consist of no redunddatiation, while
the sub-diagnoses generated from the tests is represgntealdh more data.
The cAN communication is the biggest bottleneck for distributeaigdiosis.
It needs to be minimized and, therefore, it was chosen teinétrdiagnoses.



6.8. Performance of the Implementation 67

Sub-Diagnoses —>Diagnoses —> Transmitted & —>Sub-Diagnoses —>Global Diagnoses

- Generated from - Generated Received on - Generated by - Generated by
local tests by Reiter's CAN Reiter's Algorithm Reiter’s Algorithm
Algorithm (empty) (with existing

diagnoses as a
base)

Transmitting Agent Receiving Agent

Figure 6.4: A merge between two local diagnoses using Red&gorithm.

6.8 Performance of the Implementation

Each of the desired characteristics, described in seiciiyrof an implemen-
tation of a distributed diagnostic system is discussedvhelthe discussion
is based on the implementation that was done in this project.

Time and Memory Consumption

The synchronization problem was solved by simply holdiregigiolation pro-
cess until all data was received from tbeN bus. Since the transferring of
data is by far the biggest time consumer of a distributedrdiats system, the
isolation process became significantly slower than themaldocal isolation
procedure. The transmitting process was placed in a 50 nps egulting
in one diagnostic message every 50ms from each agent. Assdid in
sectior 661, this increase in time consumption could deaed by just con-
sidering the last received information, instead of holdimg process while
waiting for a new message. This would imply that inconsistéagnoses are
calculated under some time.

Cpu time is spent on handling the diagnostic information from ¢ither
agents. The extra calculation power that is needed, in alaiggd system, is
dependent on the complexity of the local and the receiveghdises. Reiter’'s
algorithm have to be run two extra times per received setagfrises accord-
ing to sectiorfB8J7. This results in a total of three times feystem of two
agents, five times for a system of three agents etc., whiclc@aiderable
increase.

Since a pre-map of the signal dependencies was utilizedeirintiple-
mentation, the amount of allocated memory in the receivignéhas to be
enough to process a worst case set of diagnoses receivethiedransmitting
agent. Considering this implementation, the allocated orgrim eachecu
is twice as big compared to the original local diagnostideys If Method
2 or Method 3 were fully implemented the extra amount of mgnmaeded
would be significantly reduced.



68 Chapter 6. Implementation in an Embedded System

Bus Analysis

As previously mentioned, a protocol is needed for sendirgeleamounts of
data than eight bytes. In the project implementation thégoa suggested in
sectio 6411 was used. If nothing is diagnosed a messagedioating that
no faults exist, or that the system is healed, is sent everys0

A CAN message every 50 ms on a 250 kbit/s bus was measured to cor-
respond to approximately 1% bus load per agent. The bus luaddses
linearly with the frequency of the transmitted messages,&message sent
every 10 ms would approximately correspond to a 5% bus load.

Scalability

Since this implementation includes a pre-mapping of sigleglendencies it
is not very scalable. For every new agent that is added, a regwiras to be
constructed and new memory has to be allocated and so fdngmBapping
problem disappears if a full implementation of Method 2 oitivel 3 is made.
Although, for every kind of implementation, allAN message identifiers has
to be defined in advance. This is discussed more deeply iiDsfEH.



Chapter 7

Conclusions

A few methods for distributed diagnosis are proposed. Adirrethods gen-
erate diagnoses in each agent from which globally congisteas can be
assigned. A method based on Method 2 in chdgter 5 was imptechefhe
resulting distributed diagnostic system assigns globadlysistenbTcs and
thereby complies with the goal.

The main conclusions drawn from designing a distributedmiiestic sys-
tem are the following:

e The information necessary to share is the diagnostic indtion of the
components that are shared over the network, plus cartginafor-
mation of the remaining private components, in order toudate the
globally consistent diagnoses.

e It is sufficient to share the behavioral mode of the signat tin@ com-
ponents it originates from, under some assumptions andalions.
Without the assumptions and limitations a component coaldelpre-
sented in several signals and could thus cause incongjsieardi-
nality. To prevent this, an initialization process or praeprof signals
would be needed.

e There are some problems, mainly because of signal repegsenon
theCAN bus, one has to deal with if a fully scalable and flexible syste
is desired. In today’s design, all messages need to be pnedéfi each
ECU that take use of a particular message. Further, if the degyeayd
components are to be represented in the signals that isaiagnthese
would have to be predefined if no initialization process iplemented.

e When implementing a distributed diagnostic system, problevith
memory handling and process synchronization arises. SHigriher
complicated due to that the isolation process is a non détestiac job
and requires non deterministic amount of memory.

69



70



Chapter 8

Future Work

The algorithms could be developed further so that the asgsangpin sec-
tion[&] are removed. That a component cannot be part of aewetput
signals, or that an output signal cannot depend on inputalgare quite
strong restrictions and not desirable in an implementatidew problems
arise when trying to solve this, which also needs a solutaog, how multi-
ple representations of components should be handled. Theefalgorithms
should have a proof stating that they produce consistebgdjiocorrectbTcs
without the limitations of this report.

The algorithms could be more optimized to better suite agfadteffective
implementation. A better and optimized protocol for tramshg diagnosis
messages could also be designed.

71



72



References

[APO5] B. Wahlberg A. Pernestal, M. Nyberg. A bayesian apgjeh to
fault isolation - structure estimation and inference. 2005

[Bit0O5a] Jonas Biteus. Distributed diagnosis and simatatiased residual
generators. Technical report, Dept. of Electrical Engimeg
2005. LiU-TEK-LIC-2005:31, Thesis No. 1176.

[BitO5b] Jonas Biteus. Personal correspondance, Depattofi&lectrical
Engineering, Linkdpings Universitet, November 2005.

[JBNO5] M. Jensen J. Biteus and M. Nyberg. Distributed dagsfor em-
bedded systems in automotive vehicléBAC World Congress
2005.

[JdKR92] Alan K. Mackworth Johan de Kleer and Raymond Rei@rar-
acterizing diagnoses and systems. 1992.

[Jen03] M. Jensen. Distributed fault diagnosis for netwedrkmbedded
systems. Master’s thesis MMK 2003:63 MDA 231, KTH Ma-
chine Design, The Royal Institute of Technology, KTH Maahin
Design, SE-100 44 Stockholm, Sweden, December 2003.

[JKZ02] X. Koutsoukos J. Kurien and F. Zhao. Diagnosis ofjaac-
tive systemsProceedings of the 13th International Workshop on
Principles of DiagnosisMay 2002.

[KR89] Brian W. Kernighan and Dennis M. Ritchi€he C Programming
Language Number ISBN 91-970296-45. Prentice Hall Interna-
tional, Hemel Hempstead, England, 1989.

[MFB99] K. Ratcliff M. Farsi and M. Barbosa. An overview of awoller

area networkComputing and Control Engineering Journdline
1999.

[NFO5] Mattias Nyberg and Erik FriskModel Based Diagnosis of Tech-
nical Processes2005.

73



74

References

[NKMO2] John P. Hayes Nagarajan Kandasamy and Brian T. Muiliiane-
constrained failure diagnosis in distributed embeddetesys.
2002.

[NRWO03a] A. ten Teije N. Roos and C. Witteveen. Multi-ageigghosis
with semantically distributed knowledge. 2003.

[NRWO3b] A. ten Teije N. Roos and C. Witteveen. Multi-agemghosis
with spatially distributed knowledge. 2003.
[NRWO4] A. ten Teije N. Roos and C. Witteveen.

Reaching dasgic
agreement in multi-agent diagnosis. 2004.

[PBZ98] P. Pogliano P. Baroni, G. Lamperti and M. Zanellaadbiosis of
large active systemglsevier Sciengeluly 1998.

[Pro02] Gregory Provan. A model-based diagnosis frameviorldis-
tributed systems. 2002.

[Sun02] Dan Sune. Isolation of multiple-faults with genied fault-

modes. Master’s thesis, Linkdpings Universitet, SE-58&1 8
Linkoping, 2002.

[TvS02] Andrew S. Tanenbaum and Maarten van Stéxstributed Sys-
tems Prentice Hall, international edition, 2002.



Notation

Symbols used in the report.

Operators

Union

Intersection
Belongs to
Subset

Strict subset
Logicaland
Logicalor

Logical not
Domain difference
Merge

X1 <>NINMDC

Functions
con(.) Connection

dep(.) Dependency
dpd(.) Dependent Diagnoses

Diagnoses

D  Set of global diagnoses
D  Set of local diagnoses
D Diagnosis

75



76

Notation

Abbreviations

CAD
CAN
COO
DIMA
DTC
ECU
MDH
OBD
PE

Crank Angle Degree
Controller Area Network
Coordinator

Diagnostic Manager
Diagnostic Trouble Code
Electronic Control Unit
Minimal Diagnosis Hypothesis
On Board Diagnosis
Processing Elements



Appendix A

Proof of Method 3

it05h]

A union between two local diagnoses;** U D“2, should result in the
same cardinality as a union between a local diagnosis andeivesl diag-
nosis, D41 U D"*, when X is used to represent the private components in
the received diagnoses, i[@41 U D42| = |D41 U D"®| + X, where the
left-hand side cardinality have full component represtmta

Two local diagnoses, in a system consistingvodgents:

The different component types and signals are here assunbeddiagnosed

DA =P UG, UTY, DAt e DA

DA = P, UG, UTy, D42 ¢ DAz

|DA U DA2| = |PLUP, UGy UGy Udpd('; UT,)| = |Gy U Ga|+
|P1LU P Udpd(l'y UT)

because

|G1UGe|N|PLUP,Udpd(T; UT)| =0

Split the sef’”; into two sets:

L 5o r .
I, =0, UT;,where{ _* {v €T |con(y) € X2}
I={yeTly|con(y) € X3 . n}
Iy=T1u PQOUTaWherePQOUT €®d€p(0),a € con(fl)

P2OUT C P2

77



78 Appendix A. Proof of Method 3

Split the sefl’s into two sets:

[y ={yeTly]|con(y) € V3. n}

I'y = [L,UPPYT where
? 2 PPUT Ewdep(a)ﬂ‘or allo € con(I'y) N34

PlOUT cp
One diagnosi® € DA U DAz2:

|D| = |G1 UGs| + |PLUPPYT| 4+ |P, U POUT| 4+ Ty U Ty
Becausédpd(I'y UTs)| = |I'; U |

X represents private components as in Method 3:

DTIZGQUFQUEQZGQUFQUfQUEQ
|IDATUD™| = |PLUGL UG, UT; UT, UT, US| =
= |G1UGs| + [P, UPPUT| + |0y UTy| + Ty U Sy

LetX = |P, U POUT| — Ty U Sy

X = |Po| + [PPVT| = [Py n PYVT| = [Ty | = [ S| + Ty 0 Xa
|IPPUT| —Ty|=0 and |[P,nPOUT|—TiN%yl=0 =
X = [Py| — [Xa]

This implies
|DA U DA = | DA UD™| + X
because

|IDA U D™| 4+ X = |Gy UGs| + |PLUPPYT| + Ty UTy
+ | Pa| + [PPUT| = [P 0 PYUT| — [T — S| + [Ty N 5| =
|G1 U G| + |PLUPPYT| + |P, U PPYT| + T UTy|

Q.E.D.



G008 L,

K
A,
U :
LINKOPING UNIVERSITY N J‘ g
ELECTRONIC PRESS v, <&

Ska pooS*

'ro

4‘@& o LI/\/

Copyright

Svenska

Detta dokument halls tillgangligt pa Internet - ellersdeframtida ersattare - under
en langre tid fran publiceringsdatum under forutsagratt inga extra-ordinara om-
standigheter uppstar.

Tillgang till dokumentet innebar tillstand for var oem att lasa, ladda ner, skriva
ut enstaka kopior for enskilt bruk och att anvanda detéfdrat for ickekommersiell
forskning och for undervisningdverféring av upphovsratten vid en senare tidpunkt
kan inte upphava detta tillstand. All annan anvandniwglakumentet kraver upp-
hovsmannens medgivande. For att garantera ékthetearhsien och tillgangligheten
finns det losningar av teknisk och administrativ art.

Upphovsmannens ideella ratt innefattar ratt att bli ndreom upphovsman i den
omfattning som god sed kraver vid anvandning av dokunea@tevan beskrivna satt
samt skydd mot att dokumentet andras eller presenteragainsform eller i sddant
sammanhang som ar krankande for upphovsmannensitételier konstnarliga anse-
ende eller egenart.

For ytterligare information om Linkdping University Egonic Press se forlagets
hemsidaht t p: // www. ep. | i u. se/

English

The publishers will keep this document online on the Interner its possible re-
placement - for a considerable time from the date of pubbtoabarring exceptional
circumstances.

The online availability of the document implies a permargarmission for any-
one to read, to download, to print out single copies for youn aise and to use it
unchanged for any non-commercial research and educafmmpbse. Subsequent
transfers of copyright cannot revoke this permission. Aflev uses of the document
are conditional on the consent of the copyright owner. Thaiglier has taken tech-
nical and administrative measures to assure authenseityrity and accessibility.

According to intellectual property law the author has thghtito be mentioned
when his/her work is accessed as described above and toteeterbagainst infringe-
ment.

For additional information about the Linkdping UniveysElectronic Press and
its procedures for publication and for assurance of doctimésggrity, please refer to
its WWW home pageht t p: / / www. ep. | i u. se/

©

Dan Hallgren
Hakan Skog
Sodertalje, December 21, 2005



	Firstpage
	Abstract
	Preface and Acknowledgment
	Introduction
	Background
	Objective
	Approach
	Contribution
	Delimitations and Assumptions
	Target Group
	Related Work

	Model Based Diagnosis
	Introduction to Model Based Diagnosis
	Artificial Intelligence and Fault Diagnosis
	Behavioral Modes
	Diagnoses
	Conflicts
	Relations between Diagnoses and Conflicts
	Diagnostic Tests

	Local Algorithms
	Reiter's Algorithm
	Isolation with Generalized Fault Modes
	Virtual Components


	Distributed Systems
	Properties of Distributed Systems
	Transparency
	Openness
	Scalability

	Hardware Concepts
	The CAN Bus


	Distributed Diagnostic Systems
	The Network Architecture
	Current Diagnostic System
	The Goal with the Distributed Diagnostic System

	Components, Signals and Objects
	Signals - Inputs and Outputs
	Local and Global Diagnosis
	Two Ways of Calculating the Global Diagnosis
	The Combinatorial Problem
	Merging Minimal Cardinality Diagnoses

	Centralized or Distributed Diagnosis
	Centralized Diagnosis and Decentralized Diagnosis
	Distributed Diagnosis

	Sharing Diagnostic Information
	Sharing Conflicts
	Sharing Diagnoses
	The Information to Share
	Focusing on Probable Diagnosis
	Problems with Component Representation


	Proposed Methods for Distributed Diagnosis
	Model for Distributed Diagnosis
	Algorithms for Distributed Diagnosis
	Method 1: Sharing Conflicts
	Method 2: Sharing Diagnoses
	Method 3: Sharing Diagnoses Extended

	Discussion Concerning the Limitations and Assumptions

	Implementation in an Embedded System
	Hardware Setup
	Software Description
	Processes in Embedded Systems
	Data Transferring on a can Bus
	Protocol Design
	Transparency

	Memory Structure
	Memory Conflicts

	Time Handling
	Diagnosis Executed in a Fixed Timed Loop
	Diagnosis Executed in the Background Process
	Synchronization

	Using Reiter's Algorithm in Distributed Diagnosis
	Performance of the Implementation

	Conclusions
	Future Work
	References
	Notation
	Proof of Method 3

