

Institutionen för systemteknik
Department of Electrical Engineering

Examensarbete

Decision Support System for Fault Isolation of JAS 39 Gripen
- Development and Implementation

Examensarbete utfört i Fordonssystem
av

Anders Holmberg
Per-Erik Eriksson

Rapport 3839
Linköping 2006

 i

Decision Support System for Fault Isolation of JAS 39

Gripen

- Development and Implementation

Master Thesis
Department of Electrical Engineering

Linköping University

Anders Holmberg
Per-Erik Eriksson

LITH-ISY-EX--YY/3839--SE

Supervisor: Carolina Romare
 Johan Rättvall
 Jonas Biteus
Examiner: Erik Frisk
Linköping, 20 June 2006

 iii

Abstract

This thesis is a result of the increased requirements on availability and costs of the
aircraft Jas 39 Gripen. The work has been to specify demands and to find methods
suitable for development of a decision support system for the fault isolation of the
aircraft. The work has also been to implement the chosen method. Two different
methods are presented and a detailed comparison is performed with the demands as a
starting point. The chosen method handle multiple faults in O(N2)-time where N is the
number of components. The implementation shows how all demands are fulfilled and
how new tests can be added during execution. Since the thesis covers the development
of a prototype no practical evaluation with compare of manually isolation is done.

Acknowledgment

We would like to thank our supervisor Jonas Biteus and examiner Erik Frisk for the
guidance and discussion that led to the results. We like to thank Carolina Romare and
Johan Rättvall for all guidance at Saab, setting up meetings with several people, and
also for the interesting discussions of how Gripen and a large company like Saab
works.

Anders
Finally would I like to send a thought to Gunnar Fogelberg, my former teacher in
Analys A at MAI, Linköping University. He encouraged me and made me realize the
fun and usability of mathematics. I would not be sitting here writing this thesis
without the inspiration I got from you. Rest in peace.

 Anders Holmberg and Per-Erik Eriksson, Linköping, 2006

 v

Contents

Chapter 1 Introduction ..1

1.1 Background...1
1.2 Purpose ...1
1.3 Limitations..1
1.4 Thesis Outline ...1
1.5 Contributions ..2

Chapter 2 Introduction to the Aircraft..3
2.1 Components in the Fuel System ..3

2.1.1 Forward Refueling/Transfer Unit ..3
2.1.2 Afterward Refueling/Transfer Unit ...3
2.1.3 Probes...4
2.1.4 Valve..4
2.1.5 Sensors and Switches..4

2.2 Fuel Tanks ..4
2.3 Fuel Transfer...5

2.3.1 The Order of Fuel Transfer ...6
2.4 Monitoring and Measuring ..6

2.4.1 Function Monitoring...6
2.4.2 Safety Check ..7
2.4.3 Fuel Measure ..7
2.4.4 Probe Failure ..7

2.5 Load Vector ..8
2.6 Fuel Air Pressure...9
2.7 Existing Fault Isolation..10

Chapter 3 Prerequisites and Demands ..11
3.1 Prerequisites..11

3.1.1 Documents ...11
3.1.2 Data..11

3.2 Demands on the System ..12
3.2.1 Deterministic Fault Isolation...12
3.2.2 Usable for a Less Experienced Technician12
3.2.3 Application vs. Information ..13
3.2.4 Configuration Management ..13
3.2.5 Maintenance ...13
3.2.6 Expansion...13
3.2.7 Multiple Faults Isolation ...13
3.2.8 Ranking of Components ...13

Chapter 4 Introduction to FDI, Fault Detection and Isolation15
4.1 Fault Detection..15
4.2 Fault Isolation ...15
4.3 Analytical Redundancy ...15
4.4 Residuals...16
4.5 Structured Hypothesis Tests ..16

Chapter 5 Introduction to Probabilistic Reasoning Systems17
5.1 Uncertainty ...17

5.1.1 False Alarms...18
5.1.2 Missed Alarm ...18

5.2 Strict Logical Reasoning ...18

5.3 Uncertain Reasoning ...19
5.3.1 Belief Network ...19
5.3.2 Other Approaches ...20

Chapter 6 Two Different FDI Methods ...21
6.1 Method 1: Agents..21

6.1.1 Cyclic Calls ..22
6.1.2 The Process of Method 1 ..23
6.1.3 Ranking of Components ...24
6.1.4 Advantages with Method 1 ...25
6.1.5 Disadvantages with Method 1...25

6.2 Method 2: Extended Structured Hypothesis Tests................................26
6.2.1 The Process of Method 2 ..27
6.2.2 Ranking of Components ...29
6.2.3 Consequences of Similar Tests ...32
6.2.4 Time Aspects..32
6.2.5 Advantages with Method 2 ...33
6.2.6 Disadvantages with Method 2...33

6.3 Similarities to Strict Logic and Uncertain Reasoning...........................33
Chapter 7 Method 1 vs. Method 2..35

7.1 Demands on the Approaches ...35
7.1.1 Deterministic Fault Isolation...35
7.1.2 Usable for a Less Experienced Technician35
7.1.3 Application vs. Information ..36
7.1.4 Configuration Management ..36
7.1.5 Maintenance ...36
7.1.6 Expansion...36
7.1.7 Multiple Faults Isolation ...37
7.1.8 Ranking of Components ...37

7.2 Conclusion from Chapter 3-7 ..37
Chapter 8 Implementation ...39

8.1 Implementation of the Framework...39
8.1.1 Step 1 ...40
8.1.2 Step 2 ...40
8.1.3 Step 3. ..41

8.2 Hypothesis Tests ...42
8.3 Variables, Constants and Data Types...44
8.4 Time Aspect ..48
8.5 Thresholds...49
8.6 Application vs. Information...50
8.7 Problems ...51

Chapter 9 Conclusions..53
9.1 Future Work..54

Bibliography ..57
Abbreviations ..59
Appendix A ...61

 1

Chapter 1

Introduction

The Aircraft Service Division is a part of Saab Aerosystems which is a business area
within Saab AB. It runs development, modification and also flight and maintenance
service of civil and military aircrafts. Our work has been carried out at the section of
maintenance and service engineering.

1.1 Background
The requirements of increased availability and reduced costs of the aircraft Jas 39
Gripen are continuously being raised. Both the time and the accuracy to perform fault
isolation have to be improved. A lot of time is consumed since fault isolation is often
made by hand by an experienced technician. To fulfill the increased requirements a
workstation that does the fault isolation automatically is highly desirable.

1.2 Purpose
The purpose of this thesis is to develop a decision support system for fault isolation of
Jas 39 Gripen. This includes the evaluation of possibilities, specifying demands and
building a prototype.

1.3 Limitations
The purpose of this thesis is to develop a prototype of a decision support system.
There are no intentions of building a system for the complete aircraft, and there are no
intentions of collecting the probability of failure for every single component. The
intention is to investigate the possibilities of a decision support system for fault
isolation and how this system can be further developed for the entire aircraft.

1.4 Thesis Outline
The thesis starts with four introductorily chapters: Chapter 2 gives an introduction to
the aircraft, its fuel system and its diagnostic monitoring equipment; Chapter 3
describes the available documentation of Jas 39 Gripen and measuring data collected
during flight. It also contains the demands we have specified for the decision support
system; Chapter 4 explains the field of fault detection and isolation; Chapter 5
explains the field of probabilistic reasoning systems used in decisions support
systems.

2 Chapter 1 Introduction

Our work is mainly described in the following four chapters:
Chapter 6 contains two different methods invented to fit the requirements. In Chapter
7 the methods are examined against the demands and each other. It ends with a
conclusion of which one is the most suitable to the demands. In Chapter 8 method 2
has been implemented. Our work ends with Chapter 9 that contains a conclusion of
the system and its possibilities.

1.5 Contributions
Our contribution to the scientific community with this thesis is:

• Interpreting Saab’s wishes on the development of a decision support system.
Chapter 3.

• Accumulating the demands for a decision support system. Explaining what
abilities and functionality the system must have to fulfill the wishes. Chapter
3.

• Development of two methods suitable for the problem:
Method 1: Agents.
Method 2: Extended Structured Hypothesis tests. Chapter 6.

• Evaluation of the methods and explaining why Method 1 is not enough for the
decision support system. Chapter 7.

• Implementation of Method 2 and the hypothesis tests. Chapter 8.
• Summarizing the work and suggesting how to continue the development of the

system. Chapter 9-10.

 3

Chapter 2

Introduction to the Aircraft

This chapter is an introduction to the aircraft, its fuel system and its diagnostic
monitoring equipment. Its purpose is to give the reader a deeper understanding of the
components and functions of the aircraft. The information may be needed when
reading Chapter 8 and a suggestion is to read this chapter lightly and when reading
Chapter 3 to Chapter 9 take a peek in this chapter to get the deeper understanding.
Since the work has been concentrated to the fuel system, it is only that system that is
described.

2.1 Components in the Fuel System
Before a more comprehensive description of the fuel systems structure and
functionality is made, there is a need to describe some of the components in the
system. Following is a short survey of the most important components in the fuel
system. The fuel system in Gripen consists of many more components than what is
presented in this chapter. The ones described below are the basic components for
understanding this thesis. To have a basic understanding of the fuel system and the
components within it, also helps when trying to understand the different hypothesis
tests that are presented later on in this thesis.

When a component is mentioned in the thesis it means a mechanical unit that
can be of different size and extent. A component is not necessarily the smallest part in
the aircraft and one component can consist of other components. An example of this
the ARTU, that contains valves. Both the ARTU and valves are referred to as
components. The components that were just mentioned are described later in this
chapter.

2.1.1 Forward Refueling/Transfer Unit
The forward refueling/transfer unit, abbreviated FRTU, can in short terms be
described as a unit for transferring fuel between different tanks in the aircraft. The
tanks that are connected to the FRTU are the fuselage tanks. This is illustrated in
Appendix A.

2.1.2 Afterward Refueling/Transfer Unit
Just like the FRTU, the afterward refueling/transfer unit (ARTU) is a unit for
transferring fuel in the aircraft. However it is not as advanced and does not have as
big area of responsibility as the FRTU. The ARTU is located at the rear end of the

4 Chapter 2 Introduction to the Aircraft

fuel system (for more details see Appendix A) and it has two main purposes. The first
one is to supply fuel to the tank T1A (see Appendix A for location), the wing tanks
and the drop tanks during refueling. The second purpose is to control the fuel during
the transfer from the wing tanks and the drop tanks to the FRTU. The ARTU has
seven inlets/outlets and six of these each have a vent valve connected to the
inlet/outlet..

2.1.3 Probes
To be able to measure the amount of fuel that a tank contains there are probes located
in each tank in the aircraft. In some tanks there are two probes, like the wing tanks
and the tank T2A (see Appendix A for location). There are a total of 16 probes in the
aircraft, not counting the drop tanks which have three each.

2.1.4 Valve
Valves are found at different places in the fuel system but foremost they are located in
the refueling/transfer units and in the Controlled Vent Unit. A valves purpose is to
control the flow of the fuel (which means letting through or turning off the flow)
through a pipe.

2.1.5 Sensors and Switches
There are two kinds of sensors in the fuel system, low level sensors (LLS) and high
level sensors (HLS). Sensors and switches are both binary units that has two states. A
low level sensor indicates if a tank is empty and a high level sensor indicates if it is
full. There are three LLS and one HLS distributed among the aircrafts different fuel
tanks. The tanks containing sensors are VT, T1F and the wing tanks. When it comes
to switches there are a few different types in the fuel system, but only one is of any
interest concerning this thesis. The interesting type is the float switch that is located in
the drop tanks. These switches have the functionality as LLS and indicate if a tank is
empty or not.

2.2 Fuel Tanks
The fuel in Gripen is stored in several different tanks that are placed in different parts
of the aircraft body. The fuel tanks placement in Gripen is shown in Figure 2-1. The
fuel system also consists of a cooling system and a pressure system. In Gripen the fuel
is, apart from running the engine and some smaller units, also used to cool different
devices. The purpose of the pressure system is to keep most of the tanks pressurized.
This is to ease the fuel transfer and to avoid cavitations in the pumps. [1]

There are ten different fuel tanks in Gripen, including the drop tanks. Some of
these tanks are divided into two smaller tanks, mostly a front and a rear part. The ten
different tanks are: tank 1 (T1), tank 2 (T2), tank 3 (T3), vent tank (VT), negative-g
tank (NGT), left wing tank, right wing tank and the centre, right and left drop tank. In
accordance with Figure 2-1, T2 is located in the front of the aircraft followed by VT,
T1 and T3 furthest to the rear in the aircraft. The drop tanks are not shown in the
figure but are, if used, hung underneath the fuselage and wings. T1 and T2 are the
tanks divided into a smaller front and rear tank, which are called forward tank and aft
tank (T1 = T1F + T1A and T2 = T2F + T2A). In Gripen version B and D (twin
seaters), the T2F has been removed to make room for the extra seat. The wing tanks
are also divided into two different tanks. They are called tank 4 (T4) and tank 5 (T5).
The collector tank constitutes of tank T1 and the NGT.

2.2 Fuel Tanks 5

For the aircraft to be able to measure the quantity of fuel left, there is a number
of contents probes in each fuel tank. Every tank in the fuselage has one contents
probe, except for tank T2A what has two. There are four probes in each wing and
three in each drop tank.

The fuel system is controlled by the GECU (General systems Electronic Control
Unit), except for some functions that are controlled by the AIU (Aircraft Interface
Unit). For more details about which functions the AIU control, see section 2.4.1. The
GECU is an integrated digital control unit that controls three systems in the aircraft:

• Hydraulic System (HS)
• Environmental Control System (ECS)
• Fuel System (FS)

The GECU is located behind tank T3 and its function is to measure, monitor and
control the three systems it is responsible for. [2]
The GECU communicates with a system computer (SysC) whose main tasks are to
calculate the center of gravity, calculate the load vector and perform part of the Safety
Check. [1]

Figure 2-1. The different fuel tanks in Gripen

1: Vent tank, 2: Wing tanks, 3: Rear tank, 4: Collector tank, 5: Forward tank
The engine in the aircraft is fed with fuel from the boost pump that is located in the
NGT. In addition to supplying the engine with fuel the boost pump also has to supply
the heat exchangers with fuel and the jet pumps with fuel flow. If the boost pump
should malfunction the transfer pump does the feeding of fuel to the engine instead
and if the transfer pump also should break, tank T1 is pressurized and the engine can
suck fuel itself. Even without pressurization the engine can suck fuel itself, as long as
the aircraft is at a low altitude and with limited fuel consumption. [1]

2.3 Fuel Transfer
The fuel used in Gripen is always taken from the collective tank, i.e. the negative-g
tank (NGT) plus tank T1. This conveys that the aircraft have to transfer fuel between
different tanks to make sure that the collective tank never runs out of fuel. [1]

6 Chapter 2 Introduction to the Aircraft

The fuel transfer is mostly done by the transfer pump and the jet pumps. A jet
pump is a device in which a small jet of fluid in rapid motion moves, by its impulse, a
larger quantity of the fluid. In Gripen there are five jet pumps and they are located in
the tanks T1, T2 and NGT. The main purpose of the transfer pump in the fuel system
is to transfer fuel between different tanks in the aircraft. As seen in appendix A, the
transfer pump is located in the Forward Refueling Transfer Unit (FRTU). The GECU
is able to limit the maximum speed of the transfer pump. Such a limit will occur at
high altitudes, high pitch angles and high load factors. It can also occur if the
hydraulic pressure decreases because of a malfunction in the hydraulic system. [1]

When the engine has a large output thrust, the jet pumps in fuel tank T2 and
T3 operate in parallel with the transfer pump. The transfer pump will stop when all
tanks except for T1 are empty. [1]

2.3.1 The Order of Fuel Transfer
Since the engine gets its fuel from the NGT, the aircraft has to make sure that it
always stays full. This is done by transferring fuel between the different tanks in a
specific order. The drop tanks (if any) are emptied first, in the order: the left and right
drop tank first and then the center drop tank. When the drop tanks are empty, fuel is
taken from tank T2 down to 200 kilograms and after that the fuel is taken from the
wing tanks. When the wing tanks have been emptied the fuel is taken from tank 2, 3
and finally also from tank 1. [1]

The load factor of an aircraft is a measure of the aircrafts external load. The
value of the factor is the same as the length of the load vector, which is shown in
Figure 2-3. During flight conditions with a high load factor, the transfer pump cannot
supply sufficient fuel from the drop tanks to T1. Therefore the fuel is moved from the
wing tanks instead of the drop tanks, even though the drop tanks may contain fuel.
The reason for this is that it is easier to transfer fuel from the wings than from the
drop tanks. Another reason is the risk of cavitations of the transfer pump. The
definition of high load factor is when the load factor is more than 3 g or when it is
more than 1.5 g in combination with a greater altitude than 9 km. [3]

2.4 Monitoring and Measuring
One of the objects with the measuring system in Gripen is to control the fuel transfer
and torrent. The fuel quantity is measured with contents probes individually in every
tank. The measured signal is processed in the GECU, where the total remaining fuel
quantity and aircrafts center of gravity is calculated. [1]

A fault that can occur is failure with the cable to the probe. As a result of this
fault an incorrect amount of fuel will be displayed.

2.4.1 Function Monitoring
Function monitoring (FM) is the internal supervision in the fuel system. FM is
automatically conducted continuously and its primary purpose is to monitor the
system during operation and also to warn the pilot of malfunctions. In the fuel system,
FM is mostly performed by the GECU but some parts are done by the AIU. [4]

The AIU has the following functions for the fuel systems:

• Start and stop the boost pump
• Start and stop the RCS (Radar Cooling System) pump
• Function Monitoring of the LP cock operation and the RCS

2.4 Monitoring and Measuring 7

• Control of shut-off valve to EWS and leak monitoring of the cooling circuit
for the FPU

• Fault warnings
Warnings are sent from the GECU to the AIU on the data bus if faults occur during
the FM. [1]

2.4.2 Safety Check
The purpose of the Safety Check (SC) in the fuel system is to check the status of the
fuel system at aircraft startup. The SC is done by the SysC in collaboration with the
GECU. [4]

2.4.3 Fuel Measure
The measurement equipment in the fuel system measures and monitors the following:

• Fuel level
• Fuel temperature
• Air pressure in the fuel tanks
• Pump pressure

 The fuel quantity that is being displayed to the pilot is shown in percent. From the
beginning 100% was equal to full internal tanks. This is still true for the versions B
and D (twin seaters) of the Gripen aircraft. Today, full internal tanks are in total 112%
(for the single seated versions of Gripen). The reason for the extra 12% is the added
tank T2F, located first in the aircraft fuselage. With three extra drop tanks the fuel
quantity can come up to more than 112%. The quantity of 1% of fuel is same for all
versions of aircraft 39. [1]

2.4.4 Probe Failure
 The fuel quantity indication only displays fuel that is available. If the fuel in a tank
isn’t available the GECU consider that tank empty. If a contents probe malfunctions
the fuel quantity will be displayed in accordance to Figure 2-2 below. Because of this,
the data about the remaining fuel quantity can change quickly when there is a probe
failure. [1]
Tank Electrical

Identification
Effects

T2F 1QB If the probe malfunctions, the tank is considered empty.
T2A 2QB While T2F has fuel, T2A is considered full.

In other condition, the quantity in T2A is calculated from 3QB with decreased precision
T2A 3QB While T2F has fuel, T2A is considered full.

In other condition, the quantity in T2A is calculated from 2QB with decreased precision
VT 4QB If the probe malfunctions, the tank is considered empty.
T1F While VT has fuel, TF1 is considered full.

In other conditions, the tank is considered empty.
T1A 6QB If there is fuel in T1F, a value is calculated for T1A (57% of the quantity in T1F)
NGT 7QB While T1A has fuel, NGT is considered full.

In other conditions, the tank is considered empty.
T3 8QB If the probe malfunctions, the tank is considered empty.
T4 11QB, 12QB

13QB, 14QB
If one of the two probes in T4 malfunctions, the quantity is calculated from the
remaining probe with decreased precision.
If both probes malfunction, the tank is considered empty.

T5 21QB, 22QB
23QB, 24QB

If one of the two probes in T5 malfunctions, the quantity is calculated from the
remaining probe with decreased precision.
If both probes malfunction, the tank is considered empty.

Drop
Tank

 If the probe malfunctions, the tank is considered empty.

8 Chapter 2 Introduction to the Aircraft

Figure 2-2 Probe failure effects

2.5 Load Vector
During flight, the different accelerations and gravity forces have an effect on the fuel
system. This causes the fuel surface to tilt and therefore to effect the operation of the
system. The different forces affecting the aircraft are summarized in the load vector,
ñ, which must be considered during fuel transfer and measuring. The load vector, ñ, is
calculated with a coordinate system that originates from the aircraft as reference. The
pitch degree is derived from the angle between the z-axis and the load vector in x-line.
In the same way the roll degree is calculated from angle between the z-axis and load
vector in y-line. This is illustrated in Figure 2-3. In the illustrations the load vector
and the reference coordinate system is shown. It is the SysC that calculates ñ and it
can have three different states.

• ñ is within measurable range.
• ñ is out of measurable range but within transferable range.
• ñ is out of transferable range.

The different states are illustrated in Figure 2-4, where the inner filled box shows the
restrictions for measurable range and the outer box shows the restrictions for
transferable range. It is possible to measure fuel quantity only when ñ is within the
measurable range. The measurable range is specified so that the direction of ñ in
relation to Z5 is not more than:

• - 5 degrees to + 20 degrees in pitch.
• ± 3 degrees in roll.

When ñ is out of the measurable range but within the transferable range the fuel tanks
will still transfer fuel to T1 in the commonly set sequence. When ñ is out of the
transferable range, the transfer pump stops and the larger part of the fuel transfer also
stops. The transferable range is defined as:

• 5 degrees to + 80 degrees in pitch
• ± 10 degrees in roll

[1]

2.5 Load Vector 9

Figure 2-3 The load vector and its reference coordinate system

Figure 2-4 Measurable and transferable range

2.6 Fuel Air Pressure
During flight, most of the fuel tanks are supplied with an overpressure in relation to
the ambient pressure. Tank T1 and the NGT are generally not kept pressurized. The
reason for this is to ease the fuel transfer to tank T1 at lower altitudes. However there
are a few exceptions to this rule. For example when all available fuel has been moved
to fuel tank T1. Then T1 is pressurized to make sure that the supply to the engine
operates as usual. Another exception is at high altitudes where there is a risk of

10 Chapter 2 Introduction to the Aircraft

cavitations in the boost pump and transfer pump. This can also occur at high fuel
temperature. [1]

2.7 Existing Fault Isolation
The existing Fault Isolation system lists components depending on which alarms are
raised. This system is unfortunately not developed for fault isolation but rather fault
detection. This is done in order to inform the pilot whether he/she can fulfill the
mission, abort it or switch to another mission when faults are detected. When the
Functional Monitoring, FM, discovers faults in a subsystem, the subsystem can be
shut down or blocked so that other subsystems can take care of the functionality. This
gives a graceful degradation. A list of possible explanations to the faults is made up
on basis of FM. This list ranks components after mean time between failure (MBTF)
and costs and time for replacing the component. These alarms are based on strict logic
and are handled in section 5.2.

 11

Chapter 3

Prerequisites and Demands

This chapter describes the prerequisites for the work and the demands specified for
the system that will be developed during this thesis.

3.1 Prerequisites

3.1.1 Documents
Besides the publications used in the former chapter, there is a large amount of
documents covering JAS 39 Gripen. We have only used them to increase our own
understanding of the aircraft and its functions. In a further development several
important facts about dependencies between components and possibilities of failure
can be found in FMEA (Failure Mode Effects Analysis), FTA (Fault Tree Analysis)
and SSDD (Subsystem Design Description).

3.1.2 Data
Jas 39 Gripen has an onboard data storage system collecting measurement data for
over 5000 variables. This system is referred to as RUF, Registration Used for
maintenance and Flight security. Included in the RUF-data is a flight report which
contains information about safety checks, function checks, and the risen alarms.
For the purpose of fault isolation using RUF-data a software toolkit called RUF-PD39
exists. This software toolkit is used by technicians to manually detect and isolate
faults. [5]

Data is recorded in two ways: Continuous recording and conditional recording. The
first continuously records some variables such as fuel quantity, altitude and mach. The
latter starts recording when some condition is fulfilled, for example an extra altitude
sensor is recorded during flight on low altitude. In both cases data compression is
used to avoid running out of memory. Every variable that is recorded has a sampling
frequency, often 1 Hz. If two or more following samples give almost the same value
only the first value is recorded. The data compression is exemplified in Figure 3-1. In
the figure, the value of the sensor is shown on the y-axis and the first measurement to
be recorded is A. The following two samples do not vary enough from A and are
therefore not recorded. The fourth sample, B, differs enough from A and is recorded.
From this time on are further samples compared to B instead of A. How much a value
can differ before it is recorded is called a window. [5]

12 Chapter 3 Prerequisites and Demands

Figure 3-1. Measurement values recorded with data compression

Conventional signal processing methods like mean value and filtering is not
applicable on signals stored with data compression. To solve this, a sample and hold-
function has been used with the signals originally frequency to estimate the samples
that have not been recorded. After this the signals can be processed as ordinary signals
without data compression. [6]

3.2 Demands on the System

3.2.1 Deterministic Fault Isolation
When hardware and software in the development of an aircraft has been tested and
considered working, it is packaged to something called an edition. Two aircrafts from
the same edition have to work equally. The same goes for software outside the aircraft
and two fault isolation systems from the same edition fed with the same flight data
have to result in the same output. Therefore it is not an option to have a system that
could be altered after it has been packaged to an edition. This means that the system
has to contain all knowledge from delivery and can not be trained by the end user.
Technicians at Saab can however train the system to a certain level and package it to
an additional edition.

3.2.2 Usable for a Less Experienced Technician
For advanced manual fault isolation in Gripen the experts use RUF-PD39 which is a
software toolkit and there is no need for alternative software for them. The purpose of
this thesis is to deliver a system for technicians less experienced than these experts,
and therefore shall usage of the system require a low level of knowledge about the
aircraft and RUF-PD39.

window

Measurement value recorded
Measurement value not recorded

Time

Measurement size

A

B

C

D

3.2 Demands on the System 13

3.2.3 Application vs. Information
The information containing all knowledge about dependencies and probabilities of
components and tests has to be updated when new information is gathered. A demand
is that no new release of the application has to be installed during the update, but
rather just the replacement of the files containing the information.

3.2.4 Configuration Management
Every aircraft is built up on a set of components. Due to service and modifications no
aircrafts are identical. The decision support system has to be able to manage different
configurations because of this.

3.2.5 Maintenance
The system has to be easy to maintain. It can not be built on ad hoc solutions and
unstructured function calls. The information has to be handled in one place and not be
spread out in several functions. The procedure of adding extra tests shall be equal for
all tests and easy to handle, i.e. the insertion of new tests shall be handled the same
independent of what the tests do.

3.2.6 Expansion
The system must be flexible and have potential for extension. It can not be built on a
dead end that is not improvable.

3.2.7 Multiple Faults Isolation
The system obviously has to handle at least single faults otherwise it would not be a
fault isolation system. A highly desirable feature is the ability to isolate multiple
faults; we therefore consider that the system has to be able to isolate at least double
faults.

3.2.8 Ranking of Components
If several components seem to be broken the system has to produce a list containing a
score or probability for each component. With this score the list can be sorted in order
to decide which component to replace first. This demand is a sub-demand of 3.2.2
since a less experienced technician does not know where to start if a list without
scores is produced.

 15

Chapter 4

Introduction to FDI, Fault Detection and Isolation

FDI is an abbreviation for Fault Detection and Isolation. This chapter is an
introduction to terms used in this field. Most of this chapter is influenced by [7].

4.1 Fault Detection
The first step in a diagnosis and surveillance system is to detect if faults are present in
the system. This can be done by limit checking, i.e. by raising an alarm when a value
reaches a threshold. A common example is the lamp in a car indicating that the fuel
level is low. The electronics does not tell you why the fuel is low, just that this is the
case.

4.2 Fault Isolation
The second step in a diagnosis and surveillance system is to isolate the fault to a
specific component by figuring out what could cause the system to react the way it
does. In the previous example with low fuel level, this can be done by examining data
from several sensors. By using a model of the fuel consumption fed with data of the
engine speed you can calculate the fuel consumption. This way you can figure out if
the fuel level is supposed to be low because of consumption or some other reason. If
the fuel level sinks even when the engine speed is low there probably is some kind of
leakage in the fuel system. One other thing to investigate is if the fuel level suddenly
increases without any good reason. In this case you can suspect that the fuel sensor is
broken and that the fuel level is lower than the one told by the instruments. A
statement like this that can explain the measured sensor data is called a diagnosis. If
several diagnoses are present it is important to have some method to rank them in
order of possible failures.

4.3 Analytical Redundancy
If there are two or more ways of deciding a variable x using only observed variables z,
i.e. x=f1(z) and x=f2(z), where f1(z) and f2(z) are different functions, then there exists
an analytical redundancy.

The example above mentioned a model for fuel consumption. The outcome of
the model was compared to a deduced fuel consumption based on measured fuel
levels over the time. When there is a possibility to calculate the same thing in two
different ways there is analytical redundancy in the system. This is one of the

16 Chapter 4 Introduction to FDI, Fault Detection and Isolation

cornerstones of FDI and when the two ways end up with different values you can
conclude that the system contains a faulty component.

4.4 Residuals
A function constructed the way that it is close to zero when the system is in a fault
free mode, and apart from zero when a fault is present is called a residual. By using
the functions mentioned earlier a residual r can be 21 ffr −= . When r is far from
zero it can be concluded that either f1 or f2 use values inconsistent with the model.

4.5 Structured Hypothesis Tests
By examining several residuals it is possible to decide which component that raised
the residuals. A (binary) Hypothesis test is defined as the problem to choose one of
two unique states. One example is to choose between a hypothesis,

presentfaultnoH =1
0 and another hypothesis, presentfaultH =1

1 . The upper index
indicates the number of the hypothesis test and the lower index separates the two
hypothesis in a hypothesis test. The Hypothesis Test decides which hypothesis is true.
To create a hypothesis test a test quantity is needed. A test quantity is a function that
is close to zero in the fault free case and apart from zero when faults are present. A
residual is a good example of a test quantity. A test quantity, T1, is close to zero when

1
0H is true and non-zero when 1

1H is true.
Since noise and model faults exist it is not feasible to demand the test quantity

to be zero in the fault free case. Instead it is interpreted as zero as long as the value is
below a certain level or threshold. Another test quantity T2, can decide whether the
hypothesis 2

0H = no fault or only fault Fl is present or 2
1H = any of the other faults are

present are true. By using several test quantities, fault detection and isolation can be
performed. One way to do so is to set up a matrix over the available tests and the
components to supervise. Figure 4-1 shows a matrix of dependencies between
components and tests. The matrix is called a decision table, or decision matrix, and a
cell containing ‘X’ indicates that this component can make the test of that row react.
A cell containing ‘0’ indicates the opposite; that the component in no way can make
the test react.

Example:
Test1 is influenced by Comp1, Comp2 and Comp3. Test2 is influenced by Comp2 and
Comp4. Test3 is influenced by Comp3 and Comp4. When Test2 and Test3 have
reacted, and Test1 has not, Comp2-4 can be broken. This is indicated by the circles,
Test1 is grayed out because it has not reacted.

Dependency Comp1 Comp2 Comp3 Comp4 Reacted
Test1 X X X 0 False
Test2 0 X 0 X True
Test3 0 0 X X True

Figure 4-1 Example of decision table showing connection between components and tests

Structural hypothesis tests are used to find single-faults and the only component that
can explain this test result is Comp4 since it affects both Test2 and Test3.

 17

Chapter 5

Introduction to Probabilistic Reasoning Systems

In an ideal world there would be no reason not to trust the test quantities mentioned in
Chapter 4. An absence of false alarms or missed alarms would be a comfortable
environment for fault isolation. This chapter explains uncertainty to highlight the
difficulties that arise when we leave the ideal world. It also covers two systems, one
that handles uncertainty, and one that does not. Section 5.1 deals with uncertainty and
explains the difficulties when signals are not reliable. Section 5.2 deals with theories
not handling uncertainty and section 5.3 deals with theories that does. Most of this
information is influenced by [8] and [9].

5.1 Uncertainty
A test is supposed to decide if some event has occurred, if some signal is within
reasonable levels, if the fuel level drops according to the fuel consumption etcetera.
For all tests a limit has to be set up to separate faulty cases from fault free cases.
Figure 5-1 shows the upper and lower thresholds for a test that reacts if the sensor for
the fuel level claims that there is more fuel left than the tank can contain, or that the
level is lower than zero.

Figure 5-1 Thresholds for some sensor data.

This limit is called threshold. The work of setting the thresholds for tests is a large
theory on its own, that’s for example uses likelihood ratio on statistics and adaptive
thresholds that change the limit depending on the environment. We shall not loose our
self in this more than to establish two certain rules that always holds:

Thresholds

Time

Fuel level

Full

Empty

18 Chapter 5 Introduction to Probabilistic Reasoning Systems

• If the threshold is set too low the test will react on normal behavior in the fault
free case.

• If the threshold is set too high the test will not react even when a fault is
present.

The first leads to False alarms and the latter to Missed alarms and bring uncertainty
to the system.

5.1.1 False Alarms
If a system that trusts its alarms is exposed to false alarms, the wrong diagnosis will
be deduced. When all tests react correct the broken component is isolated. If some
tests react false, i.e. reacts when they should not have reacted, some other, possibly
functioning, component will be isolated.

5.1.2 Missed Alarm
If a system has logical rules based on test results a rule will never be used as long as
the test results do not suite the rule. If a certain test has to be true for a component to
be considered broken by a rule, the component will never be considered broken as
long as this test is false. If this test actually should be true but anyhow returns false a
missed alarm is present.

This uncertainty has to be handled in order to build a good working decision support
system. One possibility that has proven to be useful in [8] is Bayesian models which
is a subset of the bigger theory of Bayesian network, also known as Belief network.
To understand this possibility, the simpler theory of strict logical reasoning has to be
studied first.

5.2 Strict Logical Reasoning
Strict logical reasoning is a propositional logic that never questions earlier decisions
[8]. A set of logical rules are put together to give the output. Figure 5-2 shows an
example of four rules specifying the output. The rule-based logic used in this example
is exclusive or.

Rule nr Test1 Test2 Output
1 True True False
2 True False True
3 False True True
4 False False False

Figure 5-2 Example of rule-based logic

As seen in the figure rule nr 1 specifies that if both test1 and test2 have reacted the
output is false. If one of the tests have reacted the output is true, according to rule nr2
and nr3. Rule nr4 says that if both tests are false, the output is also false.

 Rule-based logic like this will be used in section 6.1 to determine if
components are broken. The drawback is that the logic gets really vulnerable for false
and missed alarms. One can see that if Test1 or Test2 gives the wrong answer, the
output also will be wrong. To handle false alarms as well as missed alarms a theory
called uncertain reasoning can be used.

5.3 Uncertain Reasoning 19

5.3 Uncertain Reasoning
The earliest expert systems developed in diagnosis are based on strict logical
reasoning and did not handle any uncertainty. Rather soon the developers realized that
this was insufficient for large systems. Expert systems presented later on all contain
techniques for handling uncertainty. Belief network is the approach we have chosen to
use. Some other approaches will be mentioned in section 5.3.2.

5.3.1 Belief Network
Belief networks are about specifying how possibilities for query are influenced by
earlier facts, evidence. The notation used is ()evidensqueryP | and P(query). The
latter is used for unconditional, prior probability that the proposition query is true. It is
important to remember that this probability only is applicable when no evidence is
known. As soon as other evidence B are known conditional probability P(A|B) should
be used instead in order to get a more correct calculation. As soon as further evidence
C is known the conditional probability ()CBAP ∧| should be used. The prior
probability can be seen as a special case of conditional probability when no evidences
are known. If C does not affect A when B is known, A and C are said to be
conditional independent and P(A|B) can be used anyway.

A probabilistic inference system is used to calculate the posterior probability
for a set of query variables, given values for the evidence variables. This means that
the system calculates P(query | evidence). A Conditional Probability Table that states
the probability for a special event given the depending evidence can be set up. Figure
5-3 shows the probability that Test reacts given that Component1 or Component2 is
broken or not. The condition nr1 specify that Test will react with a certainty of 95% if
both Component1 and Component2 are broken=true.

Condition nr Component1 Component2 P(Test|Component1,

Component2)
1 True True 0.950
2 True False 0.940
3 False True 0.290
4 False False 0.001

Figure 5-3 Conditional Probability Table

These values and their origins can be drawn in a topology showing how components
and test influence the fault detection and isolation. Figure 5-4 displays the topology of
Fault Detection and Isolation of two components using one test. P(C1) is the
probability that component1 is broken. P(FDI(C1)) is the probability that C1 will be
the considered broken by the Fault Detection and Isolation system. The table of C1,
C2 and P(T) contains conditional probabilities that the test will react given the four
combination of t=true and f=false. The table of T=test and P(FDI(C1)) contains
probabilities that C1 will be considered broken given that the test has reacted=t or
not=f.

20 Chapter 5 Introduction to Probabilistic Reasoning Systems

Figure 5-4 Bayesian network with topology and the conditional probability tables

The science of Bayes rules is large and need to be read in full in for example [9].
Because of that, a further description is left out and the short introduction is only
present to show that we build our discussion of probabilities for false and missed
alarms on solid ground.

5.3.2 Other Approaches
Several theories for handling uncertainty have been introduced in the field of
probabilistic reasoning. For the interested readers are four of them are mentioned
here:

• Default reasoning
• Rule-based method for uncertain reasoning
• Representing ignorance with Dempster-Shafer
• Representing vagueness with Fuzzy Logic

Descriptions can be found in [8] and [9].

Component1 Component2

Test

FDI(C1) FDI(C2)

C1 C2 P(T|C1,C2)
t t 0.95
t f 0.94
f t 0.29
f f 0.001

P(C1)
0.001

P(C2)
0.002

T P(FDI(C1)|T)
t 0.90
f 0.05

T P(FDI(C2)|T)
t 0.70
f 0.01

 21

Chapter 6

Two Different FDI Methods

Two fundamentally different approaches to fault isolation will be discussed in this
chapter. The first approach starts with the list of faulty components generated from
the existing fault isolation. For each component it uses an agent to investigate the
status of the component. The agents’ task is to decide whether the component is
broken or not. The second approach starts by looking at all available tests and tries to
find out what component that can explain most of the test results.

6.1 Method 1: Agents
As described section 2.7, a ranked list of components is generated when faults are
detected by the existing fault isolation system. The accuracy of this list has to be
increased and to do this method 1 is invented.
 The fundamental part of the method is the construction of one diagnostic
system for each component. Each diagnostic system is denoted an agent. For example
do AgentX handle componentX. The objective for the agent is to decide if the
associated component is working or not. The output from an agent is true if the
component is considered working, and false if it is considered to be broken. If the
agent has not been able to decide whether the component is broken or not, output is
unknown.

A problem is that in order to decide if a component Cx is working; some facts
about the surrounding components are needed. If Cx uses output from another
component Cy it is of importance to know that Cy is working. In this case the Agent
for Cx can call the agent for Cy to get the status of Cy. Figure 6-1 shows how the rules
decide the outcome of AgentX depending on the outcome of AgentY and Test1.

Figure 6-1 Decision table of AgentX based on AgentY and Test1

Another example is that Figure 6-1 shows how AgentX decides if Cx is broken by
calling Test1. Test1 uses sensor data from Cy and therefore AgentY has to be called to
verify that Cy is working. One possibility would be that Test1 calls AgentY instead
but this would lead to unmanageable cyclic calls and are therefore not allowed.

AgentX

AgentY Test1

Rule nr AgentY Test1 AgentX
1 True True False
2 True False False
3 False True True
4 False False False

22 Chapter 6 Two Different FDI Methods

6.1.1 Cyclic Calls
With a cyclic call is meant that a function calls another function which in turn calls
back to the first function. This can be done directly or indirectly. When that is done
indirectly there can be several functions that constitute the cycle and a direct cyclic
call is between only two functions. The direct cyclic call is illustrated in Figure 6-2,
where Agent1 calls Agent2 that in turn calls back to Agent1 and thus making an
undesired cycle. Figure 6-3 shows an indirect cyclic call where four agents call each
other in a manor that forms a cycle. In both the figures an arrow indicates a direct call.

Figure 6-2 Direct cyclic call

Figure 6-3 Indirect cyclic call

The direct cyclic calls are for obvious reasons easy to discover and avoid. The indirect
cyclic calls can however cause a problem. It is to avoid these calls that the hierarchy
in method 1 exists. To avoid cyclic calls there is a rule who says that calls can only be
made to functions that are located in a lower level in the hierarchy than the caller.
Despite this, problems can occur in large applications where it can be difficult to
know where in the hierarchy functions are. Sometimes it also demands a certain
amount of redundancy to avoid the cyclic calls. If for example an agent needs to call
another agent at the same level it would not be allowed to do this and the first agent
would instead have to call the second agents tests directly. This would accomplish the
task as a call to the second agent, but with some redundancy necessary. The
redundancy that becomes necessary is that all handling of the results from the tests
that are done in the second agent also has to be done in the first. This example is
shown in Figure 6-4. The figure contains two agents and a set of tests that are being
called by the agents. The two complete arrows indicate the allowed calls and the
dotted arrow represents the illicit call that can not be made.

Figure 6-4 Redundancy in the agents

First Agent Second Agent

Tests

Agent1 Agent2

Agent4

Agent3

Agent2

Agent1

6.1 Method 1: Agents 23

6.1.2 The Process of Method 1
Below follows a description of the process for method 1. This is illustrated in Figure
6-5 where RUF data is input to the process and a list of components is output. The
illustration is divided into three layers where layer 3 is the deepest with all the
different tests. Layer 2 contains all the agents and layer 1 is the comprehensive
process that controls the underlying layers.

In the process picture it is shown that layer 1 consist of a function called FDI()
and it is this one who control which agents that are called. FDI() also handles the
answers from the called agents and uses these answers to come to conclusions that are
needed for a good fault isolation.

All agents exist in layer 2 and they are sorted into a hierarchy. The hierarchy is
divided according to which component an agent is connected to and how the
components relate to each other. Some components can contain other components
which in turn can consist of more components, as is explained in section 2.1. The
hierarchy is important in order to avoid cyclic calls that otherwise would be a
problem. To avoid cyclic calls there is a rule that no agent is allowed to call another
agent what is on the same level in the hierarchy as the caller. Nor is an agent allowed
to call other agents at a higher level in the hierarchy. It is only allowed to call
functions downwards in the hierarchy. For an agent to be able to decide if its
component is faulty it has to call all agents connected to its sub components. A reason
for agents to call each other is if an agent needs to know if the component connected
to another agent is faulty or not in order to self be able to decide if it is faulty.

The agents’ task is to decide if its component is faulty or not and there are
different tests that they use to accomplish this. These tests are all located in layer 3.
When the agents have received answers from the tests, they will make a decision
based on these answers and some rules.

Figure 6-5 The process of method 1

The return values from the
different agents are
information whether the
corresponding component is
broken or not.

FDI()

A line indicates that
information is passed on
in both directions.

RUF-data List of faulty
components

agentARTU()

agentLW() agentRW() agentValve() agentCD()

Different

tests
Different

tests

Other agents

Layer 1

Layer 2

Layer 3

24 Chapter 6 Two Different FDI Methods

The use of agents has a drawback when there are insufficient sensors. For an
agent to be able to decide if the component is broken it must have sensors in the
nearby. If a couple of components are placed between these sensors it is not always
possible to say which component that is broken when a fault is detected. Figure 6-6
shows two components placed between two sensors, and if a fault is detected between
the sensors it is not always possible to isolate the fault to one component.

Figure 6-6 Two agents placed between two sensors

A possible solution is to see Comp1 and Comp2 as one unit. Figure 6-7 shows a large
agent covering both Comp1 and Comp2. When Comp1 or Comp2 is listed for
examination Agent1.2 is called instead of Agent1 or Agent2. If Agent1.2 outputs True
either Comp1 or Comp2 is broken, and it is time for statistics or other suitable method
to decide whether Comp1 or Comp2 shall be replaced first.

Figure 6-7 One agent placed between two sensors

6.1.3 Ranking of Components
The ability of ranking components after probability of failure given test results is one
of the demands specified in section 3.2. If the agents indicate more than one
component as possibly faulty, there is a need to rank these in good way. There is a
variety of different information that can be considered for this ranking. Aspects that
can be worth considering are statistics over earlier faults, mean time between failures,
cost, time to change component and so on. These aspects only use information of how
components usually failure. Doing like this every component gets a value and the
component that has been considered broken is put on top of the list. A better ranking
system would be to also look at how the tests have reacted.
 This rank can be done since RUF-data that agents and tests work with is
denoted with timestamps for every sample. The agents are able to specify at what time
the component is considered broken. Figure 6-8 shows three agents claiming that their
component is broken. A possible rank is to say that the one indicated first is most
probably broken, and that this broken component disturbs the other agents to believe
that their component is broken.

Comp1 Comp2
Sensor A Sensor B

Agent 2 Agent 1

Comp1 Comp2
Sensor A Sensor B

Agent 2 Agent 1

Agent 1.2

6.1 Method 1: Agents 25

The demand of a list of components ranked by probability of failure is hard to fulfill.
In the example above the three agents have answered true at different times. Is it
really sure that the earliest found is broken? How sure is it and when is some other
case more probable? Since no general procedure is available to build in knowledge
about this, the demand is not achieved and instead it is the technician’s job to rank the
components.

Figure 6-8 Agent answers in time

6.1.4 Advantages with Method 1
• It is easy to automatize the manual fault isolation procedure and do the same

tests as a technician does.

6.1.5 Disadvantages with Method 1
• As will be presented under next headline, all test results has to be considered

in order to do a correct isolation. This is not an impossible thing for agents but
it gets rather inefficient since every agent has to contain the rules for all the
other agents in order to determine if some other agent better explains the test
results. This implementation ends up with something similar to ESH but in
every agent, which will be explained in next chapter.

Time line

AgentX=true AgentY=true AgentZ=true

Engine start Engine shut down

26 Chapter 6 Two Different FDI Methods

6.2 Method 2: Extended Structured Hypothesis Tests
The problem with agents is that more than one agent can answer True based on the
same tests. This problem is avoided by using Structured Hypothesis Tests, described
in section 4.5. Structured Hypothesis Tests evaluates all tests and tries to find one
component, or a set of components, that could cause the test results. Practically it tries
to find a component that has an ‘X’ marked for all tests that has reacted. If no
component has ‘X’ marked for all test, there may be more than one faulty component
i.e. some test have reacted because of one component and some test have reacted
because of another, or there may be a test that has reacted wrong, and there are false
alarms in the test results. The handling of multiple faults is done later and for now
more focus is put on handling false alarms. To find a false alarm it is possible to
search for a component that could cause all test results except one test. If a component
can explain 3 of 4 reacted tests and no component can explain all 4, then the one
explaining 3 are considered most probably broken. By doing this, more than one
component may be able to explain 3 of 4 tests, but they explain different tests. Figure
6-9 shows the decision table of three components and four tests that have reacted. All
three components can explain 3 of 4 tests. The question is how to pick the one most
probably broken, out of these three.

Dependency ComponentX ComponentY ComponentZ

Test1 0 X X
Test2 X 0 X
Test3 X X 0
Test4 X X X

Figure 6-9 Decision table of three random components

A solution is to look at the tests that could not be explained by the
components, to see if any of these tests often react when no dependent component is
broken or if any test almost never reacts this way. If for example Test1 often react
without a broken dependent component, and Test2 and Test3 never do, it is probably
ComponentX that is broken since it explains all tests except Test1, and Test1 is not
trustable. To handle this new information we have extended the structured hypothesis
tests with an extra matrix and decided to call the method for Extended Structured
Hypothesis tests, abbreviated ESH. The ESH-matrix is an extra matrix specifying
values for missed and false alarms. This extra matrix is a complement to the ordinary
decision table shown above. For tests marked with ‘0’ in the decision table the
corresponding value in the ESH-matrix specifies the probability of false alarms when
the component is working.

ESH ComponentX ComponentY ComponentZ

Test1 0.9 0.3 0.1
Test2 0.2 0.1 0.23
Test3 0.35 0.4 0.1
Test4 0.4 0.3 0.1

6.2 Method 2: Extended Structured Hypothesis Tests 27

Figure 6-10. ESH-matrix with values for missed and false alarms

False alarms are one part of uncertainty mentioned in section 5.1.2. Missed
alarms are the other part. Figure 6-9 describes the decision table of reacted test, but it
is still interesting to look at tests that have not reacted. Figure 6-11 shows the decision
table for Test5 that did not react. If Test5 is strongly connected to ComponentX and
always reacts when ComponentX is broken, it is not likely that ComponentX is
broken if Test5 has not reacted. This information can be handled by Structured
Hypothesis Tests by putting ‘1’ in the cell corresponding to the component and the
test. A ‘1’ in a cell means that if the test has not reacted the component can not be
broken. This is a very hard statement and it is not applicable especially often.

Dependency ComponentX ComponentY ComponentZ

Test5 X 0 0
Figure 6-11 Continuation of Decision table in figure 6.9

For tests marked with an ‘X’ in the decision table the corresponding value in the ESH-
matrix specifies the probability of missed alarms when the component is broken. This
way the ESH-matrix handles the information about how probable false and missed
alarms are. How to use this information will now be explained.

6.2.1 The Process of Method 2
Below follows a description of the process of method 2. This process is illustrated in
Figure 6-12 and consists of four major steps. The parameters that are sent between
each step are shown in connection with the arrows. The different steps are described
in more detail.

Figure 6-12 The process of method 2

Step 1
In this part of the process the amount of hypothesis tests needed to be performed are
limited. This is to not burden the system unnecessarily much and also to shrink the
time it takes to perform a fault isolation. If time is not a critical aspect or if the tests
are not too resource demanding, there is no need for this limitation.
The limitation is done by checking which hypothesis tests that provides any
information to the diagnosis of the components in the list. Then only those tests are
performed. Tests that provide information are first and foremost those that are directly
affected by the components in the list, but also those that are connected to components
that affect tests that in other ways contribute to the diagnosis. An example, pictured in

Limit
hypothesis tests
in the Decision
matrix

Perform
hypothesis tests

Come to
conclusions
from the test
results

Rank faulty
components

RUF-data

Event list

List Result
matrix

List of
tests

List of
Faulty
components

MTBF, Expert
knowledge, etc

1. 2. 3. 4.

Matrixes

28 Chapter 6 Two Different FDI Methods

Figure 6-13, follows to clarify the limitation procedure. The figure shows the same
decision matrix in two different steps in the limitation procedure. The arrows indicate
which tests that in the end has to be performed.
Say that component c1 is the only one in the list of possibly faulty components. First
and foremost every test that affect c1 must be performed (t1 and t3). Then a check is
made for any further components that affect the so far chosen tests (the only new
component is c4, which comes from t1). All tests that are affected by the new
component are also added to the list of tests that has to be performed (test t2 are
affected by c4). These additional tests contain information that can be used to dismiss
components as faulty. So far the tests that have to be performed are t1, t2 and t3. The
latest added test (t2) is affected by c3 and c4. Component c3 are new and tests that
affect that one must also be added to the list of tests that has to be performed. In this
way the procedure continues until no new tests are found. In this example, c3 does not
result in any new tests and the procedure is finished.

Figure 6-13 An example of how the tests are limited

Step 2
In step 2 the chosen hypothesis tests are performed and information about when and
which tests that reacted are sent to step 3 in the isolation process. This step also
includes some sort of handling of the time aspect. A detailed description about the
time aspect can be found in section 6.2.3. The handling of the time aspect is necessary
so that the next step in the process can make an easy and flawless isolation.
Step 3
In this step of the process, conclusions are made with help from the results from the
hypothesis tests. The result of this step is a ranked list of components with a
corresponding score that states how likely it is that a component is faulty. The list of
components can contain additional information, like for example number of false
alarms and which they are. The number of false alarms for each component can be
calculated by comparing which hypothesis tests that has reacted to which components
they are affected by. If a test has reacted that is not affected by a component, that
component has a false alarm. What is meant here is that if it is this component that is
faulty there has been a false alarm. If there is a component that affects every test that
has reacted, this component has no false alarms. In this way the number of false
alarms for each component can be calculated. Missed alarms can also be calculated in
a similar way. If a component affects a test that has not reacted, that component has a
missed alarm. For every test that has not reacted and affects a component, that
component has a missed alarm.

 c1 c2 c3 c4 c5 c6
t1 X X
t2 X X
t3 X
t4 X X
t5 X

 c1 c2 c3 c4 c5 c6
t1 X X
t2 X X
t3 X
t4 X X
t5 X

6.2 Method 2: Extended Structured Hypothesis Tests 29

The information about missed and false alarms is then used to rank the components in
order of most probable faulty. How the ranking of components is done is presented in
section 6.2.2.
Step 4
Since it can be desirable to have more information than just the score from step 3 in
mind when the components are ranked, step 4 exists to take care of this. Further
information that can be used for this part of the ranking is for example MTBF, expert
knowledge, statistics about earlier maintenance and so on. Here different weights are
added to different information and everything is weighed together to sort the list of
components in the order of which to change or inspect first. This step in the process is
not implemented in our application, but is still included here to show a probable
continuation on the treatment of the data returned from step 3. The reason step 4 is not
implemented is that it has no direct connection to the fault isolation itself or to the
method that is used in this thesis. The fault isolation process has already generated a
list of components with belonging scores and if one chooses to trust it or not is a
different issue. Naturally it can be in Saabs interest to include other aspects when they
decide which component in the aircraft that should be changed, but this is outside the
scope of the fault isolation process.

6.2.2 Ranking of Components
A list of components to change has to be produced and a score shall belong to each
component. The component with the highest score is the one to change first and shall
be put on top of the list. Different ways of giving the components its score are
available, here are two ways mentioned and one of them is used in Method 2. Both of
them use the test results, the dependency matrix mentioned in section 4.5 and the new
ESH-matrix.

How all tests are split up into four subsets is shown in Figure 6-14. This is done for
each component. If a test is dependent on the component it is put in the left half,
otherwise it is put in the right. If the test has reacted it is put in the upper half,
otherwise the lower.

Figure 6-14 Set of tests divided into four subsets

Rewarding scoring
The first of the two scoring system is a rewarding system. It starts with the initial
belief that every component is working, and the value for each component is initially
set to zero. When a test indicates that a component may be is broken the value for that
component is increased. The fault isolation is only used when a fault has been

Independent tests
that have not
reacted

Dependent tests
that have not

reacted

Independent
tests that have
reacted

Dependent tests
that have reacted Tests performed for

the fault isolation

30 Chapter 6 Two Different FDI Methods

detected and the assumption of present faults in the system can be made. When a test
has reacted it is an indication that one of the components depending on the test is
broken. Therefore the values for all depending components are increased. When a test
not has reacted it is an indication that one component that is not depending on the test
is broken, and the values are therefore increased for all components that are not
depending on the test. Figure 6-15 shows the subsets of tests used in rewarding
scoring.

Figure 6-15 Subset used in rewarding score

Punishing scoring
The second of the two scoring system is a punishing scoring. This is the one we have
chosen to use. It starts with the initial belief that every component is broken, and the
value for each component is initially set to one. This is in the range of one to zero.
When a test indicates that a component may be working the value for that component
is decreased. The assumption is done that there are present faults in the system. When
a test has reacted it is an indication that a dependent component is broken and
therefore it is also an indication that an independent component is working and the
value is decreased for all independent components. If a component is broken its
dependent tests would react, therefore it is an indication that a component is working
if its dependent tests have not reacted. Consecutively the value for all dependent
components is decreased. Figure 6-16 shows the subsets of tests used in punishing
scoring.

Figure 6-16 Subsets used in punishing score

Since it is known from Chapter 5 that false and missed alarms are of interest is the
punishing scoring is suitable. Missed alarms are strongly connected to dependent tests
that have not reacted, and false alarms are strongly connected to independent tests
that have reacted.

Independent
test that has not
reacted

Dependent tests
that have not

reacted

Independent
tests that have
reacted

Dependent test
that has reacted

Independent tests
that have not
reacted

Dependent test
that has not

reacted

Independent
test that has
reacted

Dependent tests
that have reacted

6.2 Method 2: Extended Structured Hypothesis Tests 31

To get a scoring system that grade the component from 0 to 100 percent, i.e.
from zero to one, we have choose to multiply the values belonging to the tests in the
two subsets. All values is within the interval [0, 1]. This gives

 (1)
the ‘1’ after the equal sign is the initial value.
Figure 6-17 shows the same subsets as Figure 6-14 but rewritten with a new notation.

Figure 6-17 New notation of subsets

Every part is defined as:
dependT Set of reacted tests depending on Ci.

dependT¬ Set of not reacted tests depending on Ci.

independT Set of reacted tests not depending on Ci.

independT¬ Set of not reacted tests not depending on Ci.
This new notation is used in (1):
 () ()∏∏ ⋅¬⋅= independidependi TCPTCPresultsTestCiValue ||1)|((2)
where P(Ci|¬Tdepend) and P(Ci|Tindepend) will be derived. To do this and to make the
fault isolation system working we need knowledge from the world it is going to work
in. The knowledge has to be specified by experts on the aircraft, experts who created
the tests, and statistics from earlier repairs and flights. To keep it simple they only
need to specify one sort of probability and it is the probability that a certain test reacts
when a certain component is broken:
 () jiCTP ij ,| ∀ (3)
P(Tj|Ci) is the value that shall be stored in the ESH-matrix.
Bayes rule used on (3) gives the following two equations:

 () () ()
)(

|
|

j

iij
ji TP

CPCTP
TCP = (4)

 () () ()
()

()() ()
()j

iij

j

iij
ji TP

CPCTP
TP

CPCTP
TCP

−
−

=
¬

¬
=¬

1
|1|

| (5)

Where only P(Ci) and P(Tj) are unknown. P(Ci) is the probability that a component is
broken and the value can be calculated by statistics. We have chosen to use the value � (alfa) for every component to not favorise or punish any component. This means
that it is equally possible that component-x breaks as if component-y breaks. If this
choice is proven to be bad it can easily be changed later on in the development. To get
P(Tj) the following discussion is used: Assume that tests are rather well designed and
that false and missed alarms are unusual exceptions. If so it is fair to say that the
probability of a test is the same as the probabilities that the components that influence
the test break:

¬Tindepend ¬Tdepend

Tindepend Tdepend

{ } { }
∏ ∏

⊂ ⊂
⋅ ⋅ =

alarms false k
k

alarms missed j
j i Test Test results Test C Value 1) | (

32 Chapter 6 Two Different FDI Methods

() ()() ()() ()() ()()

() () () () () () ()11

...111111

3212121

321

+++++++−=

=−−−−=−−= ∏
CPCPCPCPCPCPCP

CPCPCPCPTP
i

i
 (6)

Since the components are chosen to have a low probability of failure P(Ci) are
assumed to be very small. This assumption gives:

() () () () () () ()

() αnCP

CPCPCPCPCPCPCP
n

i
i ≈≈

≈+++++++−
�

.........11 3212121

 (7)

because all products are neglected.

To summarize (1) is written as

 () ()() () () ()∏∏ −
⋅

−
=

k

iik

j

iij
i n

CPCTP
n

CPCTP
resultsTestCValue

αα 1
||1

| (8)

An analysis shows that if the number of factors in any of the two products is
increased, the total value of Ci is decreased. This is desirable since more terms come
from more missed or false alarms.

6.2.3 Consequences of Similar Tests
If two tests are very similar, uses the same sensors and always react the same, the
same probability is multiplied several times. If the tests reacts as false or missed
alarms they will be multiplied together with the other false or missed alarms and a
square term of the two tests are received. A solution is to change the tests probability
depending on the dependency and the value moves closer to yprobabilit than
probability. When several tests are dependent the probability value can be distributed
among them so the product will be the original value used if the tests were grouped
together as one single test.

6.2.4 Time Aspects
All tests are performed within a given time interval. If a test react during the interval
the answer is true, if it does not the answer is false. Whether or not the test would
react outside the interval is not of interest. If the data used in the test are not available
for some reason, i.e. this kind of data are only recorded during some conditions, the
answer is Unknown. An interesting problem is to choose what time interval to use.
Shall the entire flight be used, just a couple of minutes surrounding the time when a
fault was detected by the aircraft or maybe the ten latest flights for the aircraft. If a too
short interval is used the possibility of missed alarms is increased. If a too long
interval is used the possibility of false alarms is increased. The latter depends on that
during a long interval several different flight conditions do occur and within each one
can different tests react without any faults in the system. The time aspect is therefore
another possible value of adjustment that has to be adjusted when the full scale
implementation is done. It should be mentioned that if short intervals are used another
problem appears. At what time shall we start and stop and shall we look at several
intervals? Figure 6–12 show the time for one flight split into four intervals. Intervals
like these are often called time windows. A fault has been detected by the aircraft in
the second window.

6.3 Similarities to Strict Logic and Uncertain Reasoning 33

Figure 6-18 Problems with time windows

There are no guarantees that the fault actually did happen during the second window.
It could be the case that it just was not able to be detected earlier. In this case several
windows have to be taken in account and every window can produce different
diagnosis based on the reacted tests, and like the agents it is now up to the technician
to decide which component to replace. We choose to recommend one time window
starting when the engine starts and ending when the engine is shut down. This is to
simplify the fault isolation and to avoid getting different diagnosis’s for different part
of a flight.

6.2.5 Advantages with Method 2
• Since all information is gathered in one place, it is practical to make the

decisions in one place.
• It is possible to calculate and prove which components those are able to be

isolated and with this information add extra tests to isolate more components.
The adding of tests can be done both in the aircraft and in the post-process.

6.2.6 Disadvantages with Method 2
• Structured Hypothesis tests are actually not made for components with several

failure modes (when a component can break down in different ways). The
presence of different failure modes force tests for the different failure modes.
When a component is in one failure mode, tests for the other modes will not
react and appear as missed alarms. This will lead to more detailed decision
matrices with the components divided into failure modes, but the theory
should still be working.

6.3 Similarities to Strict Logic and Uncertain Reasoning
It is now time to connect chapter 3 and 4 by explaining the similarities between
Agents and strict logic as well as between ESH and uncertain reasoning.

Regardless of the inner design of agents they act as logic units. They get the
input from surrounding agents and tests in form of true/false/unknown. Figure 6-19
shows a rule-based logic used to decide the agents output depending on the inputs.
Rule nr 1 specifies that if Test1=True and if Test2=True, the agents output is False. If
an agent wrongfully accuses its component to be broken, i.e. wrong rule is used, no
other agent will discover this mistake and instead it will be handled as a fact that the
component is broken.

Rule nr Test1 Test2 Agent output

1 True True False
2 True False True
3 False True True
4 False False False

Time line

Fault detected

Engine start Engine shut down

Time windows

34 Chapter 6 Two Different FDI Methods

Figure 6-19 Rule-based logic for agent

Extended Structural Hypothesis Tests has a matrix with values for all possible

combinations of tests and components with specified values of how probable false and
missed alarms are. Method 2 handles all this information and weighs presence of false
and missed alarms against each other when deciding which component to repair. The
uncertainty is therefore fully handled.

 35

Chapter 7

Method 1 vs. Method 2

To evaluate the two approaches an examination of how they fulfill the demands
specified in section 3.2 is described below. When one method is considered better
than the other, the better one is described first to easily understand the drawback of
the other. M1 is short for Method 1, and M2 is short for Method 2.

7.1 Demands on the Approaches

7.1.1 Deterministic Fault Isolation
Both methods can be handled in editions and fulfill this demand. In Method 1 an
edition will consist of new and updated agents that will be added to the program. An
new edition for Method 2 consists of new hypothesis tests and new updated matrices.
For information about which matrices that is used in Method 2, see section 8.3.
Method 2 has the ability to be trained in field if the demand will be changed.

7.1.2 Usable for a Less Experienced Technician
Method 2: The system does all decisions by it self as long as the time interval is
adjusted correctly. It needs no extra interpretation of a technician. The component
ranked as number one is the one to change.

Method 1: A technician is needed to decide if the first detected component is the one
most proper to repair. This means that the technician must be more experienced to use
M1 than M2, and that M1 does not fulfill this requirement.

Which one of the methods has the best ability to convince the technician that the fault
isolation isolate the correct component?
Method 2: It is possible to show which tests that have reacted and to show which can
be explained by different components. It is also possible to show that a component is
not broken since some tests did not react. To show how many of the reacted tests that
every component can explain is a good measure of how accurate the diagnoses are.

Method 1: Every agent that has reacted explains the reason for this by itself. This
gives good information of each component but very poor information of the
dependency between components. It is hard to choose between two components,
especially if the agents show results from the same tests. It is even hard to show that a

36 Chapter 7 Method 1 vs. Method 2

component is considered working with the only evidence that the agent did not deliver
a true.

7.1.3 Application vs. Information
Method 2: The information is kept in a matrix of crosses and a matrix of
probabilities. If a component is upgraded to a later version some crosses and some
probabilities may have to be changed. All information can be kept in Microsoft Excel
sheets and loaded when the application starts.

Method 1: The information is kept in the agents. Each agent has information about its
component. Since the agents are just rule-based logic, these rules can be kept in a
separate file and loaded to the agents upon start. The upgrade of a component leads to
new rules in this file and would be rather straight forward. In a later development
smart agents with AI can be used and the information is built into each agent and is no
longer separated from the application.

7.1.4 Configuration Management
Method 2: The components in the present examined aircraft control which tests to
run. In the beginning the program has access to all tests but sorts out the tests not
applicable for this aircraft.

Method 1: The components in the present examined aircraft control which agents to
load. This results in some problems in the logic rules. We may need some special
rules for special sets of components. This is easy as long as only one component in
each rule is upgraded but otherwise this could lead to a combinatorial explosion of
rules.

7.1.5 Maintenance
Method 2: Maintenance is to create new tests, update the matrix of crosses when
realized that some additional components are dependent of some test, and update the
matrix of probabilities, the probability table, to tune the accuracy of the system.
The creation of a new test requires knowledge about the aircraft and RUF but not on
the program. The insertion of the new test into the system is done by a beautiful
solution explained in Chapter 8 that makes it possible to insert tests without writing
one single line of code. In fact, as long as the technician can make new tests he can
also add them to the fault isolation.

Method 1: Maintenance is to create new tests, update the rules for the agents, and to
create new agents. The first two is rather simple but to insert a new agent a lot of
knowledge both about aircraft and the FDI is required. A new agent has to be called
by other agents and these agents’ rules must be updated to use the information from
the new agent.

7.1.6 Expansion
Method 2: To gather tests for all subsystems in the aircraft to a large ESH is possible.
It is also possible to split up the tests in an ESH for each subsystem, and for each
subsystem add a dummy component called fault in subsystem-X. If fault in subsystem-
X explains most test results the ESH for subsystem-X is used instead.

7.2 Conclusion from Chapter 3-7 37

Method 1: Building agents for every component is possible. It is also possible that
they call agents in other subsystems. Similar to ESH, agent-Subsystem-Y can be called
by all agents in subsystem-X if they suspect a failure in subsystem-Y.

7.1.7 Multiple Faults Isolation
Method 2: ESH can handle multiple faults but it is not easy to do it in an efficient
way. For each component a check against the other components is done. If tests have
reacted that for component ci is Tindepend, then a component cj that has these tests in
Tdepend can explain these test results. If now cj has some reacted test is Tindepend that is
in Tdepend for ci it is fair to suspect that both components are broken since the set of
Tindepend becomes smaller. The complexity is O(N2) since there are two nested loops
through the components, where N is the number of components. When these two
components have been found, a third loop can be done to find triple faults with
complexity O(N2)+ O(N) � O(N2).

Method 1: The agents react independently so several agents can explain its
component to be broken. This means that the system can handle multiple faults. The
problem is that the system can not tell whether there exist single or double faults so
the technician will probably always believe that only a single fault is present and that
some agents have reacted incorrect.

7.1.8 Ranking of Components
This demand has already been handled by 6.1.3 and 0 and will therefore not be
repeated.

7.2 Conclusion from Chapter 3-7
The agent structure is a reasonable first thought. It resembles the way technicians
manually do fault isolation. Unfortunately this structure has several drawbacks in
many of the demands. Several agents can react upon the same signals and even
present the same facts when they explain their results. No good way has been found to
build in all knowledge in the system so the technician does not need to do half of the
isolation manually. The advantage with agents is that event flow can be followed:
First the tank pressure regulator broke, secondly the valve unit, and third the transfer
pump stopped. The technician has to realize that this event flow depends on that if the
tank pressure regulator breaks, the valve unit can work properly and will not conduct
the fuel the right way and if no fuel arrives to the transfer pump it stops. In some case
the agents can contain this knowledge but the links are not always as simple as this.

Method 2 solves all problems. The tests for the valve unit and the transfer
pump know that they can react if the tank pressure regulator is broken. The test for the
regulator can not react when the valve unit or the pump is broken so the only valid
diagnosis that can explain the test results is the regulator, and the other “faults” will
not even be proposed.

Method 2 solves the problem of what to display for the technician. It will be
the list of components, the probability of each component and a number of false
alarms that has to be present for the component to be a diagnosis. We can present the
tests that have and have not reacted for a component and we can also explain why a
component is not broken.

Finally possibility to detect multiple faults in the ESH and the elegance of
introducing new tests the must be repeated. These are two major advantages with ESH

38 Chapter 7 Method 1 vs. Method 2

that makes the fault isolation much more accurate than even the best technician with
unlimited time can produce.

 39

Chapter 8

Implementation

This chapter contains a closer description about how method 2 was implemented. This
method did not have the drawbacks that method 1 had and that is the reason we chose
to implement method 2. Even though they are two different methods, they would still
have pretty much in common in the implementation. The common parts are those at a
lower level in the implementation hierarchy, i.e. the specific tests that are performed
on the RUF data. The hypothesis tests used in method 2 are described in more detail
in section 8.2.

8.1 Implementation of the Framework
This section contains a description of how method 2 was implemented and each step
in the process is described in more detail. In Figure 8-1, the main functions in the
process are illustrated and also the parameters sent between the functions are shown in
form of arrows. The dotted arrow in the beginning of the process indicates that there
are no variables sent between the first two main functions. But it is still there to
represent the flow in the process. Each main function calls some important
subfunctions and these are shown under respective main function. How the functions
relate to the different steps in the process is also shown in the figure. For more
information about the variables used in the implementation see section 8.3.

Figure 8-1 Implementation of the framework

loader() testPerformer() timeHandler() testHandler() testLimiter()

readFlight()

readMatrixes()

addTest()

funcNameBuilder()

Hypothesis tests

timeDecider()

testList

testReact
testResult
startTime
stopTime

testReact
testResult

Step 1 Step 3 Step 2

missedAlarms()

falseAlarms()

scoreDecider()

40 Chapter 8 Implementation

The RUF data and the Event list are global parameters and are available in all the
steps in the process. However they are only used in step 1 and 2, which will later be
explained in the process pictures of the respective steps.
Just like the RUF data and the Event list, the four different matrices (SHmatrix,
SH2matrix, function2NameMatrix and alarm2CompMatrix) are read into the process
before step 1 and are all global variables. The four matrices are explained in detail in
section 8.3. Reading of all the global variables are handled by the function loader(),
which in turn uses the two functions named readFlight() and readMatrixes() to do the
job. readFlight() reads the RUF data and the Event list, while the matrices are read by
the other function.

8.1.1 Step 1
In this step the alarms that have been triggered are extracted from the Event list,
which in turn are used to make a list of possibly faulty components. This list is in the
application called compList. The mapping between alarms and components are
specified in alarm2CompMatrix. This is a matrix that simply holds information about
which components that can be faulty when specific alarms are raised. A limitation of
the amount of tests that needs to be performed is made with help from the variable
compList. The function addTest() is used to add hypothesis tests to the list of test that
shall be performed. This is done in the way described in section 6.2.1.
In Figure 8-2 a more detailed picture of step 1 in the isolation process is presented.
The dotted arrow has the same meaning as in Figure 8-1. The list of tests that shall be
performed are in this picture called testList and are sent from testLimiter() to
testPerformer().

Figure 8-2 A detailed picture of step 1 in the implementation

8.1.2 Step 2

testList

Decide witch
tests that has to
be performed

Create a
list of tests to be
performed.
addTest()

8.1 Implementation of the Framework 41

In Figure 8-3 below, there is a more detailed illustration of step 2 where test 1, 2 and 3
has been performed. Therefore there are only arrows from the first function to these

three tests. There are two major parts in step 2. The first one is a comprehensive
function that controls which hypothesis tests to call on the basis of the testList. The
second one is a function that handles the time aspect of the results from the tests. The
first part includes two functions, timeDecider() and funcNameBuilder(). timeDecider()
determines a start and a stop time for every test that is to be performed and for more
information about how this is done see the time variables in section 8.3. The other
function builds the function names for the tests and evaluates them in order to execute
the tests. The hypothesis tests have among other things RUF data and a time interval
as input. The output from a test is a timeArray, which indicates if the test has reacted
or not. This variable is further described in section 8.3. After all the tests have been
performed, the results are put together in a variable of type testResult. This variable is
first treated with regard to the time aspect in the function timeHandler(), then it is sent
on to testHandler(). For more details on how the time aspect is handled see section
8.4.

Figure 8-3 A detailed picture of step 2 in the implementation

8.1.3 Step 3.
In the first part of step 3 the number of false alarms and missed alarms for each
component is calculated. Not just only the number of missed and false alarms are
calculated, but also which alarms it is. This information is stored in a temporary
variable and later used to calculate a score for each component.

The variable reactList is used when the false alarms is determined. This is
done in the following way. The content of each row in reactList is compared to the
testReact list. The difference between the row and the list is the false alarms for the
corresponding component. This is true because the row contains every test that has
reacted and also is affected by that component, and the list contains every test that has
reacted. The difference between these two sets is the false alarms. This is the set of
independent alarms that has reacted, as mentioned in section 6.2.2.

reactList is also used when the missed alarms are determined. This is done by
again comparing a row in reactList with the set of all depending tests for a
component. As mentioned, a row in the matrix contains the set of all dependent tests
that has reacted for a component and the set of every dependant test is received from
SHmatrix. Tests that is affected by a component is represented by a value in the
corresponding column in SHmatrix.

In the second part of step 3 a score is calculated for each component and a
ranking of the components are done. This ranking is done with the use of the false and
missed alarms in the way described in section 6.2.2. The ranking and score is then
stored in the variable fdiResult which is presented to the user. A detailed description
about the variable fdiResult is found in the section 8.3

Test 4

timeDecider()
funcNameBuilder()

timeHandler()

testList

Test 1

Test 2

Test 3

RUF-data

testReact
testResult

42 Chapter 8 Implementation

In Figure 8-4 is a detailed illustration of step 3. The figure shows how the
finding of false and missed alarms is done before the score for each component is
calculated. This is necessary because the result from the first part is used in the second
part where the score is decided and the ranking is done.

Figure 8-4 A detailed picture of step 3 in the implementation

8.2 Hypothesis Tests
This section contains a description of the different hypothesis tests that were
implemented. Some of the tests are more complicated than others and a declaration is
therefore required to understand the tests. A hypothesis test always returns a variable
of type timeArray and all tests have the same kind of input parameters. These input
parameters are always received in the same order, which is first data then an Id
variable and finally a startTime followed by a stopTime. A test is structured like this:
timeArray = TestX(data, id, startTime, stopTime). The reason
for the fixed order is to simplify the insertion of new tests and to separate the
application from the information.

checkTankOrder()
This function consists of three tests that checks three different tank empty orders
depending on which tank that was stated in the call. With tank empty order means a
certain order in which the fuel tanks in the aircraft are emptied. The order in which the
fuel tanks in the aircraft should be emptied is gathered from section 2.3.1, and is: LD
+ RD � CD � LW + RW � T2 + T3 � T1. The reason why the tank empty order
are divided into three tests are to avoid one big test that is affected by many
components. Tests that are affected by many components make it harder to isolate the
correct component and preferably avoided. The first test checks if the left and right
drop tank is emptied before the central drop tank starts to defuel and if the drop tanks
are empty before the wing tanks are starting to defuel. The second test checks if the
wing tanks are emptied before T2 and T3 becomes empty. The third test checks if T2
and T3 are empty before T1 is starting to defuel.

findPlateau()
The function findPlateau() checks if there is a plateau in the graph that shows the fuel
quantity for a tank, i.e. if the fuel quantity remains constant over a period of time. A
plateau in a tank does not necessarily need to be due to a faulty probe, it can also
depend on a faulty valve. Because of this, tests are only implemented for the different

Find false
alarms

falseAlarms()

Find missed
alarms

missedAlarms()

testReact
testResult fdiResult

Decide score
and rank each
component
scoreDecider()

8.2 Hypothesis Tests 43

tanks that are connected to a valve in ARTU. It is no problem to extend this for other
tanks that are connected to FRTU.

findJump()
The hypothesis tests for detecting jumps in the graphs that shows fuel quantity are
divided into two categories. These are findJumpUp(), that finds a jump upwards in the
graph, and findJumpDown(), that finds a jump downwards. With a jump up or down is
meant an unnaturally big increase or decrease of fuel (y value) during a shorter period
of time (x-interval). The reason that the tests are divided into up and down is that it is
not the same components that affects the tests. For example a faulty valve conveys
that a tank connected to it becomes immeasurable, which in turn leads that the
remaining amount of fuel in the tank is withdrawn from the displayed fuel quantity
and results in a downward jump in the graph. This is why findJumpDown() is affected
by a faulty valve, while findJumpUp() is not.

checkProbeFW()
This function conveys of different tests that checks if a Failure Word for a probe has
been set. These tests do not exist for the drop tanks because of the simple fact that the
RUF data does not contain any variables that indicate FW for those tanks. There are
however tests for every other fuel tank in the aircraft. A RUF variable that indicates a
FW for a probe is probably set if the probe gives values outside of certain boundaries.
Because of this a probe can be faulty without checkProbeFW() reacting.

checkProbeAndSensor()
The tests that are included in this function checks if the displayed fuel quantity
matches with the indications from the current sensor of a fuel tank. There are two
types of sensors, HLS (High Level Sensor) and LLS (Low Level Sensor), and they
indicate if there is too much fuel in a tank respectively if a tank is almost empty. The
low level indicators in the drop tanks are switches instead of sensors, but their
functionality is the same. It is not every tank in the aircraft that has one of these
sensors and the tests are only implemented for the ones that does. If the sensors’ value
does not match with the fuel quantity the test reacts. The checkProbeAndSensor()
reacts for example if the RUF variable for a HLS is set and the tank is not full or if a
variable connected to LLS indicates that a tank is almost empty but the graph that
shows fuel quantity says it is not.

checkOpenFault()
This function checks a RUF variable that contains a FW for ARTU. This FW
indicates if there is an open fault at any valve in ARTU and are therefore affected by
all its valves. It is uncertain what an open fault exactly indicates and this is discussed
in section 8.7.

checkAccessOK()
The tests in this function checks if the aircraft has access to all fuel tanks that are
connected to ARTU. If a tank is not accessible this can be due to a faulty valve. The
tests only include fuel tanks that are connected to the ARTU, since there only exists
RUF variables for these.

checkMeasurable()
These tests check a RUF variable that indicates if a fuel tank is measurable or not.

44 Chapter 8 Implementation

With measurable means that the amount of fuel in a tank can be measured and if this
is not possible it could be due to a faulty probe. There can be other reasons to why a
tank is not measurable and perhaps they should be prerequisite to this function. This is
an issue that is deeper discussed in section 8.7.

checkOutOfBounds()
This function contains tests for every fuel tank in the aircraft and what is tested is if a
fuel quantity is illicit. An illicit fuel quantity exists if a tank shows to contain more
fuel than it is physically possible or if the fuel quantity is shown to be less than zero.
The tests in checkOutOfBounds() are affected by faulty probes.

checkValveFW()
The tests contained in the function checkValveFW() checks if a FW for a valve in
ARTU has been set. Since this thesis is limited towards the ARTU, no tests for the
other valves in the fuel system have been implemented. It would be possible to extend
the function for every valve since RUF contains variables for them all.

checkIdFW()
These tests check a FW that indicates if any drop tank has an id failure. An id failure
occurs if the aircraft can not identify a drop tank and this can be due to a faulty
connection between the aircraft and the drop tank. There is also a RUF variable that
indicates a general id failure for all the drop tanks.

checkSensorFW()
The tests in this function checks if a FW for any sensor or switch has been set. There
is a high level sensor in the Vent Tank (VT) that is tested and also the low level
switch in the drop tanks is tested. For a location of the VT, see Appendix A. Further
on the low level sensors in the wing tanks and in T1 are tested.

8.3 Variables, Constants and Data Types.
This section contains a description of the variables and constants that are used in the
application. Some of the variables are also own defined data types and has a more
significant role in the program. How the variables and constants are passed and used
in the application is described in section 8.1. The variables that are own defined data
types are timeArray, nrOfZero and the variables that contain the results from the
hypothesis tests.

Data and Event list
Data is a global constant that contains all the RUF data. It can be said that data
contains variables since it contains all the RUF variables. It is the variables in data
that the hypothesis tests examine when they are performed. The constant data is
global for the entire process but are mostly used by the hypothesis tests.

Event list is a constant that is strongly connected to data and it contains
comprehensive information about the flight. This information consists of times when
different events occurred. The events can for example be time for take off, the time
when different alarms happened and time for touch down.

Time variables
There are two variables that states what time during the flight that a hypothesis test

8.3 Variables, Constants and Data Types. 45

should begin and end. In other words which part of the flight that should be tested.
The variables are called startTime and stopTime and are as default set to time for take
off respectively time for touch down. This can however be changed to an arbitrary
value by the user. The variables are input parameters to every hypothesis test and are
set in a function called timeDecider(). The time in the variables are given in
milliseconds.

timeArray
timeArray, also called TA, is a self defined data type that contains the answer from a
hypothesis test. The output from the tests is for that reason always a TA. The variable
includes two fields; one is called time and it contains a time stamp for when a
sequence begins or ends, the other is called status and it indicates if the time stamp is
the beginning or the end of a sequence. With a sequence means a time period when
the test connected to the TA has reacted. For each time stamp in TA there is a
corresponding status variable and if it contains a ‘1’ this indicates the beginning of a
sequence. A ‘0’ in the status variable indicates the end of a sequence. A timeArray is
illustrated in Figure 8-5. The figure contains two different approaches to illustrate a
TA. The first is displayed along a time axis with the sequences represented as blocks.
The second is in matrix form and closer to the implementation. If a TA contains a
sequence it means that the test that returned the variable has reacted during the time of
the sequence.

Figure 8-5 timeArray

Lists
There are a few different lists that are used in the application. One of these lists is
testList which holds the number of every hypothesis test that shall be performed. After
the function testLimiter() has limited the number of tests that shall be performed this
information is stored in the testList and later used when these tests are performed.

Time Status

t1 1

t3 1

t2 0

t6 0

t5 1

t4 0

timeArray

Sequence Sequence Seq.

t1 t2 t3 t4 t5 t6

The test has
reacted (a one-
set period)

The test has
not reacted (a
zero-set
period)

Time stamps:

Start Time Stop Time

The timeArray can be seen as a two
column matrix, where the first
column contains the time stamps
and the second column holds the
status.

46 Chapter 8 Implementation

There is a list that is called compList and it contains the components that are possibly
faulty. This list is determined on the basis of the alarms that is raised and is later used
by testLimiter() when it decides which tests that has to be performed.

testReact is a list that holds which hypothesis tests that has reacted during an isolation
process. This list is among other things used to map a test against a result from the
variable testResult. The first position in testReact contains information about which
hypothesis test that has given the result that is in the first position in testResult.

Matrices
There are four different matrices that are used in the application and they are all
loaded into the program from Microsoft Excel.

SHmatrix
The most important matrix of them all is the decision matrix, which contains
information about probability between depending components and tests. You could
say that the values in the matrix states how probable it is for a component to be faulty
when a depending test has not reacted (a missed alarm), or in other words how good a
test is at detecting a faulty component. This is described in section 6.2.2 in more
detail. SHmatrix also holds information about which components that affect different
tests. If a component affects a test, this is represented with a value at the
corresponding position in the matrix.

SH2marix
Just like the matrix above, this also contains probability values between components
and tests. The difference is that the values in SH2matrix are probabilities for
independent test that has reacted, in other words the probability that a component is
faulty when an independent test has reacted. The subsets represented in both SHmatrix
and SH2matrix are illustrated in Figure 6-16. The solution with SHmatrix and
SH2matrix differs from the theory described earlier using a decision table and an
ESH-matrix. The information in the SH-matrices is the same as in the theory but it is
only represented in another way.

function2NameMatrix
This matrix contains a list of text strings with parts of the function names for the
hypothesis tests. Every row in the matrix holds a part of a function name that
corresponds to a test in any of the SH matrices. This string is used in the application
to build a complete function name and is later evaluated in order to make a function
call to the test that shall be performed.

alarm2CompMatrix
When the application shall limit the number of tests it has to perform, it uses the
alarm2CompMatrix. This matrix holds information about components that possibly
can be faulty when a certain alarm has been raised. This connection is described in the
Aircraft Maintenance Publications (AMP37). Earlier fault isolations have shown that
the connection in AMP37 is not entirely complete. This leads to that the list of
possibly faulty components must be increased with additional components with the
help from people with expert knowledge.

8.3 Variables, Constants and Data Types. 47

Test result
The results from the different hypothesis tests are saved in a variable that is called
testResult. This variable is a vector that contains a timeArray in every position, which
is a natural structure since every position corresponds to the result from a test that has
reacted. It is only the result from reacted tests that are stored. testResult is created in a
function called testPerformer() and are sent to a function called timeHandler() where
it is modified to testResultTH. The difference between the two variables is that the
later is adapted in accordance to how the application handles the time aspect. In other
words the testResultTH is a time handled testResult. The last two letters (TH) in the
variable name stands for Time Handled. This time adaptation is necessary for an easy
interpretation of the test results.

reactList
This variable is a matrix with three dimensions that corresponds to component, tests
that has reacted and are affected by a component and finally time. The number of
columns in the matrix is equal to the number of tests that has reacted, which is the
same as the size of testReact. The size of the dimension for time is equal to the
number of time windows for the flight and the size of the dimension for components
is equal to the number of components in the decision matrix. It would be possible to
make a reduction of the dimension for components since the only ones interesting is
the components that affect any of the tests that has reacted. This would not lead to
any greater benefits, so it has not been done. reactList is as mentioned a matrix and it
contains for every component which tests that has reacted and are influenced by the
component. An example of how reactList can look like is shown in Figure 8-6. For
each test that has reacted but does not affect a component in the matrix there is a zero
in that components row. The matrix is among other used to calculate the number of
false alarms for a component. How this is done is described in section 8.1.

Figure 8-6 reactList

nrOfZeros
This is an own defined data type that in large can be described as a summary of
reactList. The information stored in nrOfZeros is actually the number of zeros that
each component have in its row in reactList. In other words the number of zeros in
each row in reactList is counted and the sum is stored in nrOfZeros. The variable
consists of three different fields and they contain information about how many zeros

3 9 0

3 7 9

7 0 0

3 7 0

9 0 0

Time windows

Components

Tests In this example reactList
contains three tests (3, 7 and
9) and five components. It is
only the second component
that affects all three of the
reacted tests. This is seen by
the fact that it has no zeros in
its row.

C2

C3

C4

C5

C1

48 Chapter 8 Implementation

each component in reactList has. They are also sorted in ascending order with the
lowest number of zeros first. The structure of the variable looks as follows:
nrOfZeros(TW).rank(x).comp / .FA. The foundation of nrOfZeros is a vector where
each position corresponds to a time window and contains another vector that is a
sorted list of the components with least amount of zeros first. Since the application
uses one time window, the first vector (nrOfZeros(TW)) has no real function and
exists only for extension possibilities. The vector rank(x) has two fields. One of them
is called comp and specifies which component the current position in rank(x) holds.
The other one is called FA and contains the number of zeros for the current
component.

fdiResult
The variable fdiResult contains the final result of the fault isolation process and it is
this variables content that is presented to the user of the program. fdiResult is a vector
that contains five fields in each position. Every position in the vector corresponds to a
components and the fields hold information about that component. The five fields are:
score, comp, falseAlarms, missedAlarms and nrOfFalseAlarms. The field comp
indicates which component the position in the vector corresponds to and score holds
the components’ score. The score are the value the components are sorted by. The
fields falseAlarms and missedAlarms contain which alarms that are false respectively
missed. Finally the field nrOfFalseAlarms contains the number of false alarms. The
variable fdiResult is constructed for easy storage and access to the final result of fault
isolation. The structure of the variable looks like this: fdiResult(x).score / .comp /
.falseAlarms(y) / .missedAlarms(z) / .nrOfFalseAlarms.

Id variables
The id variables are a collection of three types of variables, tankId, probeId and
valveId, which identifies different components. It is usually one of these variables that
decide which of the hypothesis tests in a function that should be performed. The id
variables are used as input parameters for the tests. tankId identifies an individual tank
or a collection of tanks, like for example RW for the tanks in the right wing. probeId
indicates a probe in a fuel tank and valveId identifies a valve in the aircraft.
checkValveFW() can be taken as an example. The call to the function looks like
timeArray = checkValveFW(data, valveId, startTime,
stopTime) and as second input parameter the id variable valveId is used. The
function contains several hypothesis tests and valveId determines which one of them
that is performed. If valveId contains the Id for the valve connected to the left wing,
the test checks a FW for that valve.

8.4 Time Aspect
As mentioned in section 6.2.3 the hypothesis tests has a dimension in time what has to
be handled in an appropriate way. This part of the thesis report is about how the time
aspect has been handled in the program. There are several different ways to handle the
aspect, even if they do not differ that much. What needs to be done is to treat the
different sequences, which indicates that a test has reacted, so that they in a good way
can be compared.
 In this thesis the time aspect has been handled in a way that stretches the
sequences in every timeArray both forward and backward in time. In order to make
easy comparisons between all TA and to have fixed start and stop times for the
stretching, one time window (TW) is used for the entire flight. This time windows

8.5 Thresholds 49

constitute of the period in time between start and stop time. Every sequence in the test
results are stretched across the entire time window. To have just one time window
helps simplifying the method without any major drawbacks. A condition for the time
handling is that every test result has the same start and stop time. If this is not the case
different sequences can end and start at different time and the time windows will then
have different length. Then the advantages of the time windows will be lost. The
application has been implemented in a way that sets every start time to the same value
and every stop times to the same value.

The stretch of the test results forward in time can be motivated with the
reasoning that a fault never can heal by itself. If a fault once has occurred it will be in
the system for the rest of the flight even if a test that reacted to the fault stops reacting
before the end of the flight. When the time aspect is handled a stretch backwards in
time is also made. This stretch is made to the beginning of the time window, which
begins at start time. Start time is in the application set to the time for take off. If a
timeArray contain more than one sequence, it would still be stretched as one sequence
during the entire TW. How a test result is handled with regard to the time aspect is
illustrated in Figure 8-7 below. In the figure the sequence in the timeArray is the test
result before it is handled and is shown closest to the axis. The test has reacted from
approximately 2500 sec to little more than 4000 sec. How the test result looks after it
has been handled with regard to the time aspect is shown above the original result. It
has been stretched across the entire time window. The TW goes from start time to
stop time, which as shown in the figure is not from time zero to the end of the flight.
Instead it is from take off to touch down.

Figure 8-7 A test result handled with regard to the time aspect

The function that handles the time aspect is called timeHandler() and the

variable it modifies is testResult, that contains the answers from the hypothesis tests.
The handling that is described above is done once for every test result, i.e. once for
every position in testResult. The modified result is saved in the variable testResultTH.

8.5 Thresholds
Thresholds are a constantly recurring issue in the application and foremost among the
hypothesis tests. Since all data that is being treated in the application has a time
dimension, the thresholds are often over a period in time. However this is not always
the case and the threshold can also be in a value of a variable. An example of where a

timeArray with a
sequence from 2500
sec to 4200 sec.

The axis is graded in even 1000 second intervals.

0

1

Stop time 1 2

3

4

5

6

7

The test result after it
has been modified in
regard to the time
aspect.

One time window

Sequence

Start time

50 Chapter 8 Implementation

threshold in time is used is in the findPlateau(). This function checks if the
represented fuel quantity stays constant during a period of time. The length of this
period is a threshold in time. Thresholding can affect the tests in different ways, like
increase or decrease their sensitivity. There is a risk of false alarms if a test becomes
too sensitive and on the contrary a risk of missed alarms if it becomes too insensitive.
We have not used any method or put any effort in trying to make smart decisions of
the thresholds in this thesis. Thresholding is a big area and it would take to much time
to use smart methods for it. Instead the thresholds have been set to arbitrary values
that seam to work good during the testing of the application. Among the hypothesis
tests described in section 8.2 it is checkTankOrder(), findPlateau(), findJump(),
checkProbeAndSensor() and checkOutOfBounds() that uses any kind of thresholds.

There is also built in thresholds in the RUF variables. An example of this is the
variables for the sensors that indicate if a fuel tank is empty or not. In these variables
there is a threshold for when the sensor considers a tank to be empty. The test C
compares the variable for a low level sensor with a test of the represented fuel
quantity. The test of the represented fuel quantity checks if the tank is empty and has a
threshold for when the tank is considered empty. Both the LLS variable and the fuel
quantity test has thresholds and in order to make the comparison as good as possible
they should be set to the same value.

8.6 Application vs. Information
Below follows a deeper description about which modifications that are needed when
the aircraft configuration is changed. This includes a description about how the
application is separated from the information and how easy it is to adapt the
application to different aircraft configurations.

When maintenance is done to the application there are actually not many
changes that need to be done. As it was explained in section 7.1.5 maintenance is
mainly constituted of two operations; the first is implementing the function that
performs the hypothesis test and the second is modifying the different matrices.

As mentioned in section 7.1.5 knowledge about the aircraft and RUF is needed
to implement a test, but almost no knowledge is needed about the application. The
knowledge needed about the application is limited to a data type and how a function
call for a test should look like. A requirement made by the application is that every
test has the same input and output when it is called. Since the output from a
hypothesis test always consists of the data type timeArray, the maintenance demands
knowledge about how a timeArray is constructed and what information it holds. The
input to a function that performs a hypothesis test is always of the same type and sent
in a specified order. This demands knowledge about the input variables, their order
and their content. The reason for the specified order of the input is that the application
builds the function name based on different variables and the information in a matrix.
The function name is built in a certain order that have to match the order in the
function itself. These function names are later evaluated in the program when a
hypothesis test should be performed.

When it comes to the modification of the matrices the implemented solution
differs some what from the theory presented in section 7.1.3. The theory presented
two matrices that needed change during maintenance, but in the application it is
actually four matrices. First and foremost change is needed in the SHmatrix and the
SH2matrix which contains probabilities and connections between tests and
components that affects them. The required changes are described in section 7.1.3.
Another matrix that needs to be changed if a new test is added is the

8.7 Problems 51

function2NameMatrix. The fourth matrix that could need to be modified is the one
that contains information about which component that are possibly faulty when an
alarm has been raised, i.e. the alarm2CompMatrix.

A detail that has been included in the development phase of the application is
the ability to make all the changes and modifications in the maintenance during run
time of the program. This conveys that no restart or new compilation of the program
is needed when maintenance is done. A great deal of this simplicity comes from the
way that the functions are evaluated and that all information exists in external files
that are separated from the application. A contributing fact is also that the matrices
used in the program are read before an isolation is to be performed and in that way
updated before every fault isolation is performed.

When the program is at the end-user, the maintenance will not be done in run
time and updates of the program will come in packages. A package will include new
versions of the matrices and a complete set of functions for the hypothesis tests. This
package is added to the application and an update has been done.

As seen the required knowledge about the application during maintenance is
keep to a minimum. This is because the application is separated from the information
in a clear and structured way.

8.7 Problems
A problem with the application is that all the information about the RUF variables is
not known. This can for example be how the variables are decided or in some cases
even what they indicate. The information have not emerged from the documents that
where studied during the thesis. Most likely Saab has this information somewhere, but
due to lack of time we have not been able to find it.

There are several problems that come up when complete information about the
variables that the tests are performed on is not available. One of them is that the
prerequisites for the hypothesis tests can be hard to decide and this can lead to
unnecessary double tests. When it comes to the prerequisitions the problem can be
described with the case for the function checkMeasurable(). The tests in the function
checks a variable that indicates if the fuel quantity in a tank is measurable or not. As
described in section 2.5, the quantity of fuel in an aircraft is not measurable during
certain flying conditions. These conditions are determined as restrictions on LV (load
vector). The question is now if the variables that indicate if a tank is measurable is a
test for these restrictions on LV or if that should be a prerequisite for the function
checkMeasurable(). To answer that question deeper knowledge about what the
variables indicate is necessary. A consequence of having a test on LV as a prerequisite
and that it is the same test that the variable itself indicates is an unnecessary
redundancy. The variable indicating measurable does probably not perform a test on
LV since there are several such variables for different fuel tanks. If LV were to
exceed its restrictions, every fuel tank in the aircraft except NGT would become
immeasurable. It is for this reason not necessary with several variables that indicate if
a tank is measurable.

There is another case when it in greater extent has been uncertain what the
variable indicates. This is for the function checkOpenFault() that checks a variable
that indicates an open fault for a valve in ARTU. There has not been any information
available about what a open fault even is. Is it a valve that can not be opened or is it a
valve that are stuck in an open position? This test can however contribute to the fault
isolation without knowing this information. The variable that is checked is a failure
word and if a variable like that reacts, something is faulty. Even if more information

52 Chapter 8 Implementation

would have been better, the little that exists can still bring information to the
diagnosis.

There are some obvious difficulties in deciding how the decision matrix
should look like, that is which crosses a test should have. There are two kinds of
problems when it comes to the decision matrix. Either there can be a component that
affects a test and do not get a cross, or there can be a cross for a component that do
not affect a test. In both cases it adds flaws to the fault isolation and a consequence
can be faulty components that are not isolated. It can also lead to the wrong
component being pointed as faulty. A great deal of the accuracy and reliability of the
isolation lays in minimizing these sorts of errors. In order to accomplish this
exhaustive information about the variables in RUF are required. Since the decision
matrix in this thesis is done without all the necessary information it can contain faults
like the ones mentioned above.

 53

Chapter 9

Conclusions

Method 1 using one agent for each component was at first thought of as a good idea
with the possibility of implementing the most crucial agent first and later finishing
with the less important. This procedure works fine as long as the component does not
interact with each other. The interaction forces an agent to gather information of how
the surrounding components work before it can specify how the agent’s component
works. Rather soon is realized that this method has no way of structuring the
knowledge of how components interacts and how the information may be modified
when needed.

Method 2 is invented from Structured Hypothesis Tests that has a dependency
matrix specifying some if the information of how components interact: It specifies
how a test can be raised from several components even if the test intentionally where
designed for one single component. One demand on the system is to get a ranked list
of components most probable to be broken. To manage this, the theory of probabilistic
reasoning system that handles uncertainty is used. Uncertainty is represented as false
and missed alarms, which can be rather frequent depending on how thresholds for
automatized test are set. This led us to an extension of structured hypothesis tests that
even has the ability of multiple fault detection.

The intention was to implement both of the methods but method 1 was after a
time proven to be full of flaws and all problems were not even possible to solve.
Therefore only a prototype using method 2 implemented fully.

Unfortunate there has not been enough time or data available to conduct a
complete testing of the implementation. A few minor tests have been made and they
show good results, but a more thorough testing has to be performed before any deeper
conclusions can be drawn about the implementation.

Did the prototype fulfill the demands?
As stated in Chapter 6 and Chapter 7, method 2 fulfills all eight demands. So does the
prototype building on method 2. The multiple fault detection has not been
implemented due to time. We believe that the theory works and it would be interesting
to see multiple fault detection in action, since it is not so many systems that do handle
multiple faults.

Automatic vs. manual fault detection
Since we only have developed a prototype and not fed it with knowledge this
comparison is not feasible. Depending on how the knowledge is put into the system it

54 Chapter 9 Conclusion

can produce diagnoses with different accuracy. This will be further explained in 9.1.
One thing that is for certain is that multiple fault detection is almost impossible to do
manually, and if it is proven to work well in our system it will have a great advantage
to manual fault detection.

9.1 Future Work
Theoretical
We have shown how to fuse data from both present and created test to get a list of
components containing a score of how each component may explain the test results.
The next step is to put knowledge into the system. This can be done in two ways:

1. An expert of the aircraft specifies the probability () jiCTP ij ,| ∀ as stated in
section 6.2.2. The accuracy depends on how well the experts know the system
and can specify the probabilities.

2. A learning framework is built outside the decision support system to train the
system to give the components its score. In this case a less experienced expert
can build up the knowledge by feeding the system with flight data and
specifying what components are broken in each flight. This way the learning
framework calculates the probabilities on its own. The accuracy depends on
how many training flights the system is fed with. A fair guess is that at least
one flight for each component, with the component broken in that flight, has to
be used. It is rather hard to tell exactly what was broken during a flight, and
this way the system will probably not get any better than the expert. [9]

These two ways are pretty different; the first one just tells the system how to calculate
the scores and the latter one tells the system how to think. When taking over the
development, the developer has to choose which way to go depending on the experts’
knowledge.
 Further on two interfaces to the user has to be built. One for the insertion of
knowledge, used by experts and programmers, and one for the regular use of the
decision support system. These two has to be tailor made according to other software
used by technicians of the aircraft. This way it will be easy for the technicians to learn
and use the program.

Practical
A good continuation of this thesis would be study the RUF variables in more detail.
Example of questions that should be answered is: What is it a failure word truly
indicated? How is it set? As an example a flight with a faulty probe can be mentioned.
In this example a failure word for a valve reacted but it was actually a probe that was
faulty. In order to understand and handle this, a deeper knowledge about the RUF data
is required. Also the prerequisite for the RUF variables needs to be studied in more
detail. This is directly linked to what the tests that decides the variables actually do.
All this information is important when deciding how the hypothesis tests shall be
designed. It is also important in order to get an understanding of how good a test is,
which components it affects and also which tests that are needed in the isolation
process.

Since step 4 in the process of method 2 is not implemented this could be done
as future work. Step 4 consists of making a final ranking of the components with more
information considered. An example of information that can be considered is: expert
knowledge, mean time between failure, statistic about faulty components, cost for the
components and time it takes to change the components. This extension is a question

9.1 Future Work 55

about how much information that should be considered and how they should be
weighed between themselves. A suggestion is to show a list where all the information
in present in its own column and to have one column that sums up the weighing of the
information into a “change value”. The components can then be sorted after this
“change value”.

 57

Bibliography

[1] Saab AB, General Description Publication, Fuel System,
Linköping 2005, J3-A-37-00-00-00A-040E-A

[2] Saab AB, General Description Publication, General systems electronic control unit,
Linköping 2005, J3-A-37-00-00-00A-040E-A

[3] Saab AB, Detailed Description Publication, Fuel system,
Linköping 2005, J3-A-37-00-00-00A-040G-A

[4] Saab AB, Testmetodbeskrivning,
Linköping 2005 JSU2-37-TMB:4184

[5] Saab AB. Detailed Description Publication, Maintenance data recording system,
Linköping 2005, J3-A-69-00-00-00A-040G-A

[6] Gustafsson F., Ljung L, , Millnert M., Signalbehandling, Studentlitteratur,
Lund 2001, ISBN 914401709X

[7] Nyberg M., Frisk E, Model Based Diagnosis of Technical Processes,
Linköping 2005

[8] Russell S., Norvig P,, Artificial Intelligence, A modern approach 1st ed, Prentice
Hall, New Jersey, 1995. ISBN 0131038052

[9] Russell S., Norvig P., Artificial Intelligence, A modern approach 2nd ed, Prentice
Hall, New Jersey 2003. ISBN 0130803022

[10] Saab AB. Aircraft Maintenance Publication, Fuel system,
Linköping 2005, J3-A-37-00-00-00A-002A-A

 59

Abbreviations

AIU – Aircraft Interface Unit
ARTU – Afterward Refueling Transfer Unit
BIT – Built In Test
CVU – Controlled Vent Unit
ESH – Extended Structured Hypothesis tests
FDI – Fault Detection and Isolation
FM – Function Monitoring
FRTU – Forward Refueling Transfer Unit
GECU – General Electronic Control Unit
GUI – Graphical User Interface
JAS – Jakt Attack Spaning
NGT – Negative-G Tank
RUF – Registration Used for maintenance and Fight security
SC – Safety Check
SH – Structured Hypothesis tests
SysC – System Computer
TA – Time Array
TW – Time Window

Appendix A 61

Appendix A

Next pages contain a picture of the complete fuel system.

62 Appendix A

Appendix A 63

