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Abstract

Legislation requires substantially lowered emissions and that all trucks manufac-
tured are equipped with an On-Board Diagnosis (OBD) system. One approach for
designing an OBD system is to use model based diagnosis and residual generation.
At Scania CV AB, a method for automatic design of a diagnosis system from a
model has been developed but there are still possibilities for improvements to get
more and better residual generators. The main objective of this thesis is to analyze
and improve the existing method.

A theoretic outline of two methods using different causality assumptions is
presented and the differences are analyzed and discussed. Stability of residual
generators is analyzed and a method for constructing stable residual generators
and its consequences for the diagnosis system is presented.

Methods using integral and derivative causality are found not to be equivalent
for all dynamic systems, resulting in that a diagnosis system utilizing both methods
would be preferred for detectability reasons. A stable residual generator can be
constructed from an unstable residual generator. The method for stabilizing a
residual generator affects the fault sensitivity of the residual generator and the
fault detectability properties of the diagnosis system.
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Sammanfattning

Lagkrav kräver väsentligt sänkta emissionsnivåer och att alla tillverkade lastbi-
lar är utrustade med ett system för On-Board Diagnosis (OBD). Ett sätt att
konstruera ett OBD system är att använda modellbaserad diagnos och residual-
generering. På Scania CV AB har en metod för automatisk konstruktion av ett
diagnossystem utifrån en modell utvecklats, men det finns utrymme för bättringar
som leder till att fler och bättre residualgeneratorer konstrueras. Huvudsyftet med
examensarbetet är att analysera och förbättra den existerande metoden.

En teoretisk beskrivning av två metoder som använder sig av olika kausalitet
presenteras och skillnaderna analyseras och diskuteras. Stabiliteten hos residual-
generatorer analyseras och en metod för att konstruera stabila residualgeneratorer
och dess konsekvenser för diagnossystemet presenteras.

Metoder som använder sig av integrerande respektive deriverande kausalitet
visar sig inte vara ekvivalenta för alla dynamiska system, vilket resulterar i att ett
diagnossystem som använder sig av båda kausaliteterna är att föredra i ett diag-
nossystem med avseende på detekterbarhet. En stabil residualgenerator kan kon-
strueras från en instabil residualgenerator. Metoden för att stabilisera en residual-
generator påverkar felkänsligheten hos residualgeneratorn och feldetekterbarheten
hos diagnossystemet.
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Chapter 1

Introduction

This master thesis was performed at Scania CV AB in Södertälje in collaboration
with the department of Electrical Engineering, division of Vehicular Systems, at
Linköpings University. Scania is a worldwide manufacturer of heavy duty trucks,
buses and engines for marine and industrial use. The work was carried out at the
department for diagnosis, NED, which is responsible for the On-Board Diagnosis
(OBD) software.

1.1 Background

New stricter emission legislations, especially in the European Union, has made
truck manufactures face new challenges. Besides requirements of substantially
lowered emissions, the laws require that all heavy duty trucks manufactured are
equipped with an OBD system. To keep emissions below legislation demands,
sensors and actuators in the truck engine must be supervised and diagnosed con-
tinuously with the OBD system.

One approach for designing an OBD system, is to use model based diagnosis.
From a model of the process to be diagnosed, tests are constructed which run in
real-time in an engine control unit (ECU) located on the truck. A typical model
based diagnostic test is to check if a, so called, residual is within some limits.
A residual, computed by a residual generator, is often a comparison between a
measured quantity and a computed value based on a model of the process. In
general, model based tests are constructed by engineers with knowledge of the
process and it may be a time-consuming and error-prone task. Even for a small
change of the engine, the diagnosis system may have to be redesigned.

At Scania CV AB, a method for automatic design of diagnosis systems has been
developed. The method extracts overdetermined subsystems in a non-linear model
utilizing structural analysis. Residual generators based on these subsystems are
then created and evaluated automatically. For a specific engine model, the method
found 3401 possible residual generators. After evaluation, all residual generators
but 42 were discarded due to e.g. non-invertability and instability. To be able

3



4 Introduction

to design a diagnosis system with satisfactory properties, regarding e.g. isolation
and detection, a larger selection of residual generators is desirable.

1.2 Existing Work

The work behind the method for automatic design of a diagnosis system has been
carried out in three master thesis projects, all performed at Scania CV AB. In [4],
algorithms for transforming a Simulink model to an analytical equation system
and finding all overdetermined subsystems in equation systems were presented.
A more efficient algorithm for finding overdetermined subsystems is presented in
[13]. In [11] a method for automatic construction of model based diagnostic test
based on overdetermined subsystems was developed. In [3] algorithms for residual
evaluation and test selection were presented.

1.3 Objectives

The main objective of this thesis is to analyze and improve the existing method for
automatic design of diagnosis systems, previously developed at Scania CV AB. The
focus lies on the part of the procedure where residual generators are extracted from
overdetermined subsystems. The main objective can be divided into the following
parts

• The existing method shall be analyzed and described from a theoretically
point of view.

• The existing method shall be compared with other methods for residual
generation.

• Improvements, resulting in more and better residual generators, shall be
done.

1.4 Overview

Part I: Presents the background, objectives and main contributions of the thesis
and introduces the reader to important concepts of model based diagnosis.

Part II: Presents outlines of two different methods for constructing residual gen-
erators and analyzes the most obvious differences. Possible improvements of
the method used at Scania CV AB is discussed and suggested.

Part III: Carries out some of the suggested improvements. Methods for solving
algebraic loops and constructing stable residual generators are presented.
Properties of a stabilized residual generator and its consequences for the
diagnosis system is analyzed.
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1.5 Contributions

The main contributions of this thesis are

Chapter 4-5: A theoretic outline of the methods used at Scania CV AB and
Université Lille.

Chapter 6: An analysis of equivalence of methods for residual generation with
the same and different causality approaches.

Chapter 7: Methods for solving algebraic loops.

Chapter 8: Definitions and an analysis of stability of residual generators. A
method for designing stable residual generators that utilizes observer theory.

Chapter 9: An analysis of diagnostic related properties in the time and fre-
quency domains of stable residual generators designed with the method in
Chapter 8.

Chapter 10: An evaluation of stable residual generators designed with the method
in Chapter 8.

1.6 Target Group

The target group for this thesis is undergraduate and graduate engineering stu-
dents and employees at Scania CV AB. Knowledge in model based diagnosis, con-
trol theory and structural analysis is preferred for deeper understanding of some
parts.
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Chapter 2

Background Theory

This chapter will give a brief introduction to important concepts and the field of
theories used in the rest of the thesis.

2.1 Graph Theory and Structural Analysis

Today there are basically two different ways of constructing diagnosis systems
using model based diagnosis, one based on control theory and another based on
AI. A common framework, known as BRIDGE, has been discussed in a group of
researcher from both fields and it is presented in [19]. In this thesis, the methods
are based on control theory and structural analysis will be described as it is an
important tool in the methods.

2.1.1 Structural Model

The idea of structural models is to only consider the variables present in an equa-
tion, instead of considering the whole analytical expression. Consider the equation

e : f(x, z) = 0

where x are the unknown variables, z the known variables and f the analytical
expression combining them. The structural model corresponding to the equation e
does only contain the information about what variables x and z that are included
in the equation and the analytical expression f is ignored. A structural model can
be represented as a biadjacency matrix or a bipartite graph.

A dynamic system consists of differentiated unknown variables, which can be
treated in two different ways in a structural model. The differentiated variables,
ẋ and x, can be treated as separated variables and the model is then called a
differentially separated structural model. The other type of structural model is
called differentially lumped structural model, where the differentiated variables, ẋ
and x, are treated as structurally the same variable. From here, only differentially
lumped structural models are considered in this thesis and hence will only be
referred to as a structural model or shortly an SM.

7



8 Background Theory

Structural analysis is an important tool for identifying overdetermined subsys-
tems in a model. Let M denote a set of equations and X the set of unknown
variables present in the equations M .

Definition 2.1 The set M is structurally overdetermined (SO) if |M | > |X|,
justdetermined if |M | = |X| and underdetermined if |M | < |X|.

One specific type of SO sets with only one more equation than unknown variables
are of special interest. This type of subsystems is called MSO sets and are formally
defined as follows.

Definition 2.2 (Minimal Structurally Overdetermined) A structurally over-

determined set is a Minimal Structurally Overdetermined (MSO) set if none

of its proper subsets are structurally overdetermined.

Bipartite Graph

One way of representing an SM is with a bipartite graph.

Definition 2.3 (Bipartite Graph) A bipartite graph G = (U∪V, Ā) consists

of two sets, a vertex set {U, V }, where U ∩ V = ∅, and an edge set Ā ⊆ U × V ,

where

(ui, vj) ∈ Ā, if vj ∈ V is connected to ui ∈ U .

The set U is here seen as the set of equations in the analytical model and the set
V is the set of variables. An edge in the bipartite graph represents the existence
of a variable in the equation with which it is connected.

Consider the analytical equation system

e1 : ẋ1 = f(x1, u)
e2 : 0 = g(x1, x2)
e3 : y = h(x2).

(2.1)

Figure 2.1 shows the bipartite graph of the SM for the equation system (2.1).
e1 e2 e3

x1 x2 u y

Figure 2.1. The bipartite graph of the SM corresponding to the equation system (2.1).

A graph H =
(

VH , ĀH

)

is a subgraph of G =
(

VG, ĀG

)

if VH ⊆ VG and
ĀH ⊆ ĀG. This is denoted with H ⊆ G. If equality does not hold H is the proper
subgraph of G and it is denoted H ⊂ G. More about bipartite graphs can be
found in [1].
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Biadjacency Matrix

A biadjacency matrix is another way of representing a structural model. For a
biadjacency matrix to be valid, the vertex set has to consist of two disjoint sets.
The SM corresponding to the analytical equation system (2.1) can be represented
by the following biadjacency matrix.

Equation Unknown Known
x1 x2 u y

e1 X X
e2 X X
e3 X X

If a variable is present in an equation, it is denoted with ’X’ in the biadjacency
matrix and represents an edge in a bipartite graph. ’X’:s in the same row share
the equation vertex and in the same column share the variable vertex.

2.1.2 Matchings

Matchings in a structural model can be made in both bipartite graphs and bi-
adjacency matrices.

Definition 2.4 (Matching) A matching, Γ ⊆ Ā, is a set of edges in a bipartite

graph G = (U ∪ V, Ā) such that no two edges have common vertices.

An edge in a bipartite graph is represented with an ’X’ in a biadjacency matrix,
hence a matching in a biadjacency matrix is a collection of ’X’:s such that no two
’X’:s in the matching are in the same row or column.

Definition 2.5 (Complete Matching) A matching is a complete matching
with respect to a vertex set, if the matching covers all vertices in the set.

Definition 2.6 (Perfect Matching) A matching is a perfect matching of bi-

partite graph G, if the matching covers every vertex of G.

The definitions of complete and perfect matchings are here made since the proper-
ties it hold will be important in this thesis.

2.1.3 Directed Graph Associated with a Matching

A bipartite graph is a directed graph1 if all edges, ǫ ∈ Ā, has a direction. A
matching Γ, of a bipartite graph can introduce a direction to the bipartite graph
with which it is associated. In this thesis, an edge (ui, vi) ∈ Γ introduces a
direction of the edge from the equation ui to the variable vi. An edge (uj , vj) /∈ Γ
introduces an edge with the opposite direction.

Consider the bipartite graph in Figure 2.1 associated with the matching Γ =
{(e1, x1), (e2, x2)}. The corresponding directed graph is shown in Figure 2.2.

1Referred to as oriented graph in [2].
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u

e1

x1

e2

x2

e3

y

Figure 2.2. The corresponding directed graph from the bipartite graph in Figure 2.1
associated with the matching Γ = {(e1, x1), (e2, x2)}.

An edge directed to a variable vertex gives in what equation the variable will
be computed. An edge directed from a variable vertex gives for which equations
the variable is needed.

2.1.4 Canonical Decomposition

Any finite-dimensional SM can, according to classical results from the bipartite
graph theory, be decomposed into three subsystems with specific properties, see
figure 2.3. The subsystems can be associated with an over-, a just- and an under-
determined subsystem and the decomposition can be done with e.g. a Dulmage-
Mendelsohn decomposition. For diagnosis, only the overdetermined subsystem
M+ = M+

1 ∪· · ·∪M+
n ∪R is used, where R is the set of redundant equations. M+

i

is a König-Hall component, here called strongly connected component or SCC,
corresponding to a set of equations that have to be solved simultaneously.

R

X+ X 0 X-

M+

M 0

M -

0 0

0

M1
+

Mn
+

Figure 2.3. Decomposition of an SM into an over- , a just- and an under-determined
subsystem (M+, M0 and M−).
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2.2 Stability of Linear and Non-Linear Systems

There are several kinds of stability, such as stability of equilibrium points, stability
of periodic orbits and input-output stability. For more information see for example
[10]. One common definition of stability, regarding stability of solutions to a
differential equation, will here be presented. For a general autonomous non-linear
system written in state-space form

ẋ = f(x) (2.2)

with initial conditions x(0), stability of the solutions is defined as follows.

Definition 2.7 (Stability of solutions) Let x∗(t) be a solution to the differen-

tial equation (2.2) corresponding to the initial condition x∗(0). The solution is

said to be

• stable, if there for every ǫ exists a δ so that

|x∗(0) − x(0)| < δ ⇒ |x∗(t) − x(t)| < ǫ, ∀t ≥ 0

where x(t) is the solution to (2.2) corresponding to the initial condition x(0).

• unstable, if not stable.

• asymptotic stable, if it is stable and there is a δ so that

|x∗(0) − x(0)| < δ ⇒ |x∗(t) − x(t)| → 0, t → ∞.

Definition 2.7 is in general hard to use for stability investigation of linear or non-
linear systems. Some more applicable results will now be presented.

2.2.1 Stability of Linear Systems

For a linear system written in state-space form

ẋ = Ax + Bu

y = Cx + Du
(2.3)

following result and its proof can be found in for example [7], [9] or [16].

Theorem 2.1 (Stability of Linear Systems) A linear system described by (2.3)
is asymptotically stable if and only if

Re {λi(A)} < 0

where λi(A) are the eigenvalues of A.

Note that it is only the properties of the matrix A that determines the stability of
the linear system (2.3), Theorem 2.1 can therefore also be used for an autonomous
system, i.e. when B = D = 0.
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2.2.2 Stability of Non-Linear Systems

For non-linear systems, stability analysis is a bit more complicated than for linear
systems. One way to investigate stability for non-linear systems is to analyze the
stability of equilibrium points.

Equilibrium Points and Linearization

For a non-linear system

ẋ = f(x, u)

y = h(x, u)
(2.4)

an equilibrium point or singular point is defined as follows.

Definition 2.8 (Equilibrium Point) An equilibrium point to (2.4) is a point

(x̄, ū) so that

f(x̄, ū) = 0.

If the functions f and h in (2.4) is continuously differentiable near the point (x̄, ū)
the system can be linearized and written as

ż = Az + Bv

w = Cz + Dv

where z = x − x̄, v = u − ū, w = y − h(x̄, ū) and

A =
∂f

∂x

∣

∣

∣

∣

x=x̄

, B =
∂f

∂u

∣

∣

∣

∣

u=ū

, C =
∂h

∂x

∣

∣

∣

∣

x=x̄

, D =
∂h

∂u

∣

∣

∣

∣

u=ū

.

It should be noted that only the matrix A is needed for stability investigation.
Linearization of the non-autonomous system (2.4) will be used later and is therefore
presented here.

Stability of Equilibrium Points

Stability properties for an equilibrium point can be analyzed. Let the system

ẋ = f(x) (2.5)

have an equilibrium point x̄ so that f(x̄) = 0. Stability of the equilibrium point
can then be defined as follows.

Definition 2.9 (Stability of equilibrium points) The equilibrium point x̄ of

(2.5) is said to be

• stable, if for each ǫ > 0, there is a δ = δ(ǫ) > 0 such that

||x(0)|| < δ ⇒ ||x(t)|| < ǫ, ∀t ≥ 0
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• unstable, if not stable

• asymptotically stable, if it is stable and δ can be chosen such that

||x(0)|| < δ ⇒ lim
t→∞

x(t) = 0

If (2.5) is continuously differentiable near x̄, the system can be linearized and
described by

ẋ = Ax. (2.6)

The following theorem spells out conditions under which we can draw conclusions
about stability of the equilibrium point x̄ to the non-linear system (2.5) by inves-
tigating stability for the linearized system (2.6). The theorem and its proof can
be found in for example [10].

Theorem 2.2 (Local Asymptotic Stability of an Equilibrium Point) The

equilibrium point x̄ to (2.5) is

• locally asymptotic stable, if Re {λi(A)} < 0 for all eigenvalues λi(A) of

A given by the linearization (2.6) of (2.5) near x̄.

• unstable, if Re {λi(A)} > 0 for one or more of the eigenvalues of A.

It is important to note that this type of stability analysis is local and only says
something about the system near an equilibrium point. Even if one can show that
a non-linear system has numerous asymptotic stable equilibrium points theres is
no guarantee that the non-linear system is globally stable.

2.3 Observer Theory

In control theory, state feedback is a well studied and commonly used strategy
when designing a control system, see for example [6] and [7]. When sufficient
measurements of the states are unavailable, a commonly used approach is to design
an observer for state estimation. The basic idea is to use information about current
and past values of the input and output signals of the system to generate an
estimate of the (assumed unknown) current state. There are many approaches for
designing an observer to a non-linear system. For example, an observer design for
the system

ẋ = f(x, u)

y = h(x, u)
(2.7)

is
˙̂x = f(x̂, u) + ℓ(y − h(x̂, u))

where ℓ(·) is some linear or non-linear function. One problem arising, is how to
choose ℓ so that ē = 0 is an asymptotic stable equilibrium point to the estimation
error e = x̂ − x . This is a difficult problem to solve in general.
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2.3.1 Linear Observers and Eigenvalue Assignment

Consider a linear system given by

ẋ = Ax + Bu

y = Cx + Du.
(2.8)

A commonly used linear observer design for (2.8), see for example [16], is

˙̂x = Ax̂ + Bu + K(y − Cx̂ − Du). (2.9)

There are certain conditions under which the dynamic properties of the observer
(2.9) can be chosen freely. Before presenting those, some needed properties of
linear systems will be defined.

Definition 2.10 (Observability) The linear system (2.8) with u(t) ≡ 0 is called

observable on [t0, tf ] if any initial state x(t0) = x0 is uniquely determined by the

corresponding response y(t) for t ∈ [t0, tf ].

Theorem 2.3 (Observability Conditions) The linear system (2.8) is observ-
able if and only if the observability matrix O satisfies

rank{O (A,C)} = n

where

O (A,C) =











C
CA

...

CAn−1











and n is the number of states in (2.8).

Eigenvalue Assignment

Following result regarding eigenvalue assignment or pole-placement can be found
in for example [6], [7], [9] or [16].

Theorem 2.4 (Eigenvalue Assignment) If the linear system (A,C) described

by (2.8) is observable, the state feedback gain K in (2.9) can be chosen such that

the matrix A − KC gets arbitrary eigenvalues λi(A − KC).

Theorem 2.4 states that if the system (2.8) is observable, the dynamics of the
observer

˙̂x = Ax̂ + Bu + K(y − Cx̂)

can be chosen arbitrary by modifying the eigenvalues, i.e. the poles, to the matrix
A − KC.
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Stability of Linear Observers

The dynamic equation of the estimation error, e = x̂ − x, can be written as

ė = (A − KC)e. (2.10)

According to Theorem 2.1 the system (2.10) is asymptotic stable if and only if

Re {λi(A − KC)} < 0.

This result is also applicable to linearized non-linear systems. Assume that the
system (2.7) can be linearized near the equilibrium point (x̄, ū). The linear ob-
server (2.9) can then be used and the stability of the equilibrium point (x̄, ū) can
be analyzed. Since the analysis is based on a linear approximation of the under-
lying non-linear system the analysis is only valid in a region near the equilibrium
operating point. The conclusion that can be made is that the dynamics of the
estimation error is locally asymptotic stable near (x̄, ū).

Even if one have the possibility to choose the placement of the poles, there
is no easy answer on where they should be placed. The placement of poles is a
trade-off between sensitivity for disturbances and the rate of which the estimation-
error decreases to zero. There are numerous concepts and theories available for
computing the feedback-gain K. A few of them will be further described.

2.3.2 The Kalman Filter

When a stochastic description of system is considered, the Kalman Filter can be
used as an observer. The Kalman Filter has been the subject of extensive research
and application during the years and is widely used. Predictions from a stochastic
model and measurements of the system are weighted together so that the variance
of the estimation error, e = x̂ − x, is minimized. Consider a system described as

ẋ = Ax + Bu + Gw

y = Cx + v

where w and v are white noises and

E [w] = E [v] = 0

E
[

wwT
]

= Q

E
[

vvT
]

= R

E
[

wvT
]

= N.

The steady-state Kalman Filter, see for example [8], is given by

˙̂x = Ax̂ + Bu + K(y − Cx̂)

where
K =

[

PCT + GN
]

R−1 (2.11)
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and P is given by the matrix equation

AP + PAT + GQGT −
[

PCT + GN
]

R−1
[

PCT + GN
]T

= 0. (2.12)

When w and v are white and gaussian noises, the Kalman Filter is the optimal
linear filter. As can be seen in (2.11) and (2.12), the size of the feedback-gain
K depends on the covariance matrices Q and R. It can be shown that it is only
the relative difference between the matrices Q and R that is important. If the
stochastic properties of the disturbances w and v can not be modeled, the matrices
Q and R may be used as parameters in the filter design.

If Q > R is used, one assume that there are more disturbances affecting the
system than the measurements. This results in an observer where estimations of
the states are more based on measurements than on the predictions from the model.
The observer will respond quicker to changes than if R > Q but instead be very
sensitive to disturbances affecting the measurements. If instead R > Q, one say
that there are more disturbances affecting the measurements and the estimations of
the states will be more based on what the model predicts than the measurements.
The resulting observer will be insensitive for measurement disturbances but not
that fast.

2.3.3 Non-linear Kalman Filter

For a non-linear system on the form

ẋ = f(x, u) + Gw

y = h(x, u) + v
(2.13)

there are non-linear versions of the Kalman Filter, see for example [8]. The basic
idea is to linearize (2.13) along a trajectory and then apply linear Kalman Filter
theory on the linearized system. If linearizing continuously, the matrices A, C, Q
and R will change in time and the matrix P may not converge to a constant matrix
as t → ∞. Hence, the formulas for the steady-state Kalman filter given earlier
can not be used straight ahead. The trajectory, along which the linearizations are
made, can either be a nominal trajectory given by the solution to the equation
ẋ = f(x, u) or a trajectory based on the state-estimation currently available. The
second approach is called Extended Kalman Filter (EKF) or Schmidt EKF and
the linearization of (2.13) must be done in real-time which may require lots of
computations. The Extended Kalman Filter is not optimal in the same way as the
linear Kalman Filter. According to [8] there are almost no useful analytical results
on the performance of an EKF (at the time of publication). To get a reasonable
filter, a considerable amount of testing and tuning is needed. More information
regarding this can be found in for example [7] or [8].

Constant Gain Extended Kalman Filter

Another design approach, called Constant Gain Extended Kalman Filter (CGEKF)
is to linearize the non-linear model (2.13) at operating points and compute a
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Kalman feedback gain for every linearization, according to Section 2.3.2. The pre-
computed Kalman gains are then integrated with the non-linear model instead of
the linearized model. The resulting observer can be written as

˙̂x = f(x̂, u) + Ki(y − h(x̂, u)

where the calculation of Ki is based on a linearized model of (2.13) valid near
the operating point (x̄i, ūi). Present operating conditions, i.e. values of states
and input signals, then determines which Kalman gain to use. By linearizing in
a number of different points the observer can be used in a wide operating area.
This design approach may not require the same amount of computations as the
EKF and is therefore better suited for real-time applications. What concerns the
performance of the CGEKF, the situation is the same as for the EKF described
earlier. More information about the CGEKF can be found in [17].
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Chapter 3

Model Based Diagnosis

Computers are used continuously to control and evaluate data in many technical
systems today. Measurements from sensors and actuators can be used to diagnose
if a system is working normally and if not, locate where a fault has occurred and
take necessary actions. In many systems even a small fault may have consequences,
the occurrence of a fault in a truck engine may for example lead to a higher level
of emissions, higher fuel consumption or worse, a breakdown.

If, for example, two sensors are used to measure the same quantity, it is possible
to test if one of the sensors is faulty. These types of diagnosis tests are based on
hardware redundancy, but in many cases, satisfactory mathematical models of the
physical processes to be diagnosed do exist. These mathematical models can then
be used to find analytical redundancy, which is essential for the construction of a
model based diagnostic test.

The basis of model based diagnosis is shortly described in the following sections
and for a more detailed description see [14].

3.1 Diagnostic Tests

A diagnosis system often consists of a number of diagnostic tests based on obser-
vations of the system to be diagnosed. The purpose of each diagnostic test is to
investigate if a specific behavioral mode is present or not. A diagnostic test can
be viewed as a hypothesis test δ, with the hypothesis

H0 : Fp ∈ M

H1 : Fp ∈ MC

where Fp denotes the present behavioral mode in the system and M the behavioral
modes corresponding to the non-monitored faults. The common convention is that
when H0 is rejected, it is assumed that H1 is true. The outcome of the hypothesis
test δ is a decision

S =

{

S1 = MC if H0 is rejected
S0 ⊆ Ω if H0 is not rejected

19
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where Ω denotes all behavioral modes. For each hypothesis test δ, a rejection
region is defined, i.e. a subset of observations where the hypothesis H0 is rejected.
This is often done via a test quantity, which is a function T (z) from observations
to a scalar value that can be compared to a threshold J . The hypothesis test δ is
then defined as

S = δ(z) =

{

S1 if T (z) ≥ J
S0 if T (z) < J

This means that the test quantity T (z) must be designed such that it is low if the
observations z match the hypothesis H0, i.e. a behavioral mode in M can explain
the observations.

3.1.1 Analytical Redundancy

A sufficient and necessary condition to find test quantities is that the system
contains analytical redundancy, which can be formally defined as follows.

Definition 3.1 (Analytical Redundancy) There exists analytical redund-
ancy if there are two or more different ways to determine a variable x by only

using the observations z, i.e. x = f1(z) and x = f2(z) where f1(z) 6≡ f2(z).

For analytical redundancy to exist, a system must be overdetermined or consist
of at least one overdetermined subsystem.

3.2 Residual Generators

In a system where analytical redundancy exists, a common way to construct a test
quantity is to base it upon a residual. Two important properties of a residual, is
that it should be zero in the fault-free case and non-zero in the case of a fault. A
residual generator can be formally defined as

Definition 3.2 (Residual Generator) A system in state-space form with in-

puts z and output r is a residual generator and r is a residual if

z ∈ O ⇒ lim
t→∞

r = 0.

The set O is the set of all known signals z that is consistent with the fault-free
model describing the system that should be diagnosed with the residual. If the
model is valid under the hypothesis H0, the set is called OH0 .

3.2.1 Consistency Relations

A consistency relation1 is any relation between known signals that, in the fault-
free case, always holds. Because of this property, consistency relations are often
the basis for residuals. A consistency relation can formally be defined as

1Also referred to as parity relation, parity equation, parity function or analytical redundancy
relation.
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Definition 3.3 (Consistency Relation) An analytical relation C of known sig-

nals z is a consistency relation if

z ∈ O ⇒ C(z) = 0.

Note that a consistency relation can directly be used as a residual generator if all
signals in z are non-differentiated, i.e. C(z) is a static relation.

Example 3.1

Consider the system

ẋ = −x + u

y1 = x

y2 = x.

(3.1)

Obviously the system contains analytical redundancy and a consistency relation
derived from (3.1) is

0 = y1 − y2

which can be used to form the residual

r1 = y1 − y2. (3.2)

The static system (3.2) is then a residual generator. Another consistency relation
can be derived from (3.1) as

0 = ẏ1 + y1 − u

which requires some modification to form a residual generator. The same equations
can be used to construct a residual generator as

ẋ = −x + u

r2 = y1 − x.
(3.3)
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3.3 Faults

As shown in Figure 3.1, a technical system can often be separated into three
subsystems: actuators, the process and sensors. Depending on in what subsystem
a fault occurs, a fault is classified to be an actuator fault, process fault or sensor

fault. Typical actuator and sensor faults can be changes in gain and bias.

Actuators Process Sensors
u(t) y(t)

Figure 3.1. General structure of a technical system.

3.3.1 Fault Detectability and Sensitivity

Definition 3.2 does not state anything on what happens with the residual in case
of a fault. A specific fault fi is detectable in a system if there exists a fi 6= 0,
where the observations are distinguishable from observations when the system is
fault-free. Hence, fault detectability is a system property.

A specific linear residual generator is sensitive to a fault fi if Grfi
(s) 6= 0,

where Grfi
is the transfer function from fault to residual. A fault fi is strongly

detectable in the residual r if Grfi
(0) 6= 0.

Example 3.2

Consider again the model in Example 3.1. If the sensor faults affecting y1 and y2

are called fy1
and fy2

respectively, the model (3.1) can be written as

ẋ = −x + u

y1 = x + fy1

y2 = x + fy2
.

It is obvious that both fy1
and fy2

is detectable. By studying (3.2) and (3.3) one
can conclude that r1 is sensitive to fy1

and fy2
and that r2 is sensitive to fy1

.

3.4 The Procedure of Residual Generation

The procedure of designing residual generators based on a model is shown in Figure
3.2 and can briefly be outlined by the following steps.

Step 1: In most applications, the system to be diagnosed is modeled with some
tool, e.g. Simulink or Modelica. This step transforms the model to an
analytical equation system, more suitable for further analysis and manipu-
lation.
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Step 2: Redundancy is a requirement for model based diagnosis. This step aims
to find subsystems in an analytical equation system where redundancy exists.

Step 3: This step creates residual generators based on the subsystems containing
redundancy.

Two methods for residual generation will be described in Chapter 4 and 5. In both
methods Step 2 above is performed using structural analysis, see Section 2.1.

Model
Analytical
Equation
System

Redundant
Subsystems

Residual
Generators

Step 1 Step 2 Step 3

Figure 3.2. The procedure of residual generation.
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Part II

Methods for Residual

Generation
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Chapter 4

Residual Generation with

The Scania Method

This chapter describes the method used at Scania CV AB for computing all pos-
sible residual generators from a given Simulink-model. The method is outlined
by the following steps.

1. Extract analytical model equations from a Simulink-model.

2. Transform an analytical model to an SM.

3. Extract all MSO sets in the SM.

4. Find residual generators in all MSO sets.

The Scania method is based on work carried out in [3], [4] and [11]. In this
method, step 2 and 3 are contained in the second step in the more general design
procedure shown in Figure 3.2. The method is summarized by Algorithm 4.1 and
the different steps will be further described in the following sections.

Algorithm 4.1 outputs all residual generators as an unmatched residual equa-
tion, e, associated with a computation sequence, Ce, for the unknown variables
contained in e.

4.1 Extract Analytical Model Equations from the

Simulink Model

As mentioned above, all models used at Scania are implemented in Simulink.
This step in the design algorithm retrieves the analytical model equations from
the Simulink-file. The procedure is divided into three sub-steps. The first step
is to simplify the Simulink-model by arranging the information in a less compli-
cated structure. The analytical equations from the Simulink structure are then
extracted and stored together with information regarding the Simulink-blocks.

27
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Algorithm 4.1 The Scania Method

Input: A Simulink-model file (mdl), Sim

1: procedure FindResidualGenerators(Sim)
2: R := ∅

3: E := Sim2ME(Sim)
4: S := ME2SM(E)
5: SM := FindAllMSO(S)
6: for all MSO sets M ∈ SM do
7: M ′ := RemoveNonInvertibleEdges(M)
8: for all equations e ∈ M ′ do
9: M ′− := M ′ \ {e}

10: SCC := FindStronglyConnectedComponents(M ′−)
11: Γ := FindPerfectMatching(M ′−)
12: if |SCC| ≤ 1 ∧ |Γ| 6= 0 then
13: if BlockTypesOK(e) then
14: Ce := CalcCompSeq(equ(Γ))
15: R := R ∪ {Ce, e}
16: end if
17: end if
18: end for
19: end for
20: end procedure

Output: A set of residual generators R

Finally the analytical equations are simplified to decrease the complexity of the
system. For a more detailed description of this step see [4]. The step is performed
by Sim2ME in Algorithm 4.1.

4.2 Transform the Analytical Model to an SM

The analytical equations derived from the Simulink model are in this step trans-
formed to an SM. This is a straight forward process since information about the
Simulink blocks are included in the analytical model. The SM also contains in-
formation about invertibility i.e. which variables an equation will solve for. For a
more detailed description of this step see [4]. The step is performed by ME2SM
in Algorithm 4.1.

4.3 Extract all MSO sets in the SM

The procedure of finding all MSO sets in the SM is divided into three sub-steps.
First the overdetermined part of the model is extracted since just- or underde-
termined parts can not contain any MSO sets. The model is then simplified by
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combining equations that have to be used together in an MSO set, resulting in a
less complex model. The last step is to find all MSO sets. This is important but
complex and several algorithms for doing this has been developed, see [12]. The
algorithm used in this method is based on [4] and performed by FindAllMSO
in Algorithm 4.1. Briefly the algorithm performs a systematical reduction of the
set of equations in the overdetermined SM until all MSO sets are extracted. For
a detailed description see [4].

4.4 Find Residual Generators in the MSO Sets

Since the MSO sets have been extracted with structural analysis there is no guar-
antee that the equations in the MSO set can be ordered and executed. Since
an MSO sets always has one more equation than unknown variables a residual
generator can be constructed by computing all unknown variables and then use
the redundant equation as the residual equation. To guarantee that a unknown
variable is assigned by only one equation a computation sequence for the variables
in the MSO set has to be found. The main objective in this step is to find a
computation sequence in every MSO set.

4.4.1 Invertibility Properties

Many Simulink blocks used in the engine models at Scania are not invertible
e.g. maps, saturations, min and max functions. The Scania method uses integral
causality which means that a differential equation x =

∫

xd dt can not be inverted
as xd = d

dt
x since calculating derivatives are considered impossible. As mentioned

in Section 4.2, information about invertibility is included in the structural model
and this information is used to create a directed bipartite graph representation of
the MSO set. The invertibility properties are included in the bipartite graph by
removing edges that represent a non-invertible relation between a variable and a
equation. This is done by RemoveNonInvertibleEdges in Algorithm 4.1.

4.4.2 Bipartite Matchings and Computation Sequence

The implemented algorithm for finding all possible residual generators in the
MSO set (with non-invertible edges removed) removes one equation at a time and
searches the reduced equation set for a perfect matching, free of algebraic loops.
For doing this, the algorithm uses some special properties of bipartite graphs. If
the bipartite graph does not contain any SCC (Strongly Connected Components)
of size > 1, the found perfect matching is free of algebraic loops and this implies
that there only exists one matching, see [11].

Finally the equations in the cycle-free perfect matching are reordered so that
unknown variables used as inputs to an equation are calculated first, i.e. a compu-
tation sequence is created from the matching. The removed, unmatched equation,
only contains unknown variables computed by the computation sequence, and can
therefore be used as a residual equation. If the residual equation contains the
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Simulink-block Integrator, Mux or From Workspace the equation is not used
due to implementation difficulties and the residual generator is discarded.

The step is performed by the functions FindSCC, CalcCompSeq and Block-
TypesOK in Algorithm 4.1. For a more detailed description of the whole step,
see [11].

Example 4.1: The Scania Method

Consider the model

e1 : ẋ = αx + u

e2 : y = x.
(4.1)

This example will use Simulink/Matlab to calculate all executable residual gen-
erators from the model (4.1). An implementation of the model in Simulink is
shown in Figure 4.1.

y_data

Sensor

1
s

Integrator

alpha

Gain

u_data

Actuator

Figure 4.1. Simulink implementation of model (4.1).

First Matlab was used to extract model equations from the Simulink-model
file. The result is shown below.

1 Actuator FromWorkspace 0 : a4 = u_data

2 Gain Gain 0 : a3 = alpha * a2

3 Integrator Integrator 1 : a2 = Int(a1)

4 Sensor ToWorkspace 0 : y_data = a2

5 Sum Sum 0 : a1 = a4 - a3

The first column contains the number of the extracted analytical equation, the
second column the physical interpretation of the equation, the third column the
Simulink blocktype and the fourth column a 1 if the equation can not be inverted
and 0 else. Note that a1, . . . , a4 are variables used by Simulink representing
the signals connecting the blocks in the model. The extracted analytical model
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equations can be written in a more convenient way as

e1 : a4 = u (4.2a)

e2 : a3 = αa2 (4.2b)

e3 : a2 =

∫

a1 dt (4.2c)

e4 : y = a2 (4.2d)

e5 : a1 = a4 − a3. (4.2e)

Note that the integration in (4.2c) is performed numerically and requires knowl-
edge about the initial value of variable a2. The model is then transformed to a
biadjacency matrix shown below

Equation Unknown Known
a1 a2 a3 a4 u y

e1 X X
e2 X X
e3 ∆ X
e4 X X
e5 X X X

and the corresponding bipartite graph is shown in Figure 4.2. Note that the edge
(e3, a1) marked with a dashed line represents the non-invertible relation corre-
sponding to the ∆ in the biadjacency matrix due to integral causality.

e2 e4 e1 e5 e3

a3 a2 y u a4 a1

Figure 4.2. The bipartite graph corresponding to model (4.2).

The model (4.2) consists of four unknown variables, {a1, a2, a3, a4}, and five
equations, {e1, e2, e3, e4, e5}, and the MSO found contains all equations. By look-
ing at the biadjacency matrix one can see that there are no SCC present and
therefore no unsolvable algebraic cycles. Next, one equation at a time is removed
and the bipartite graph is searched for complete matchings. Only two perfect
matchings can be found. When equation e3 is removed the matching found is

Γ3 = {(e1, a4), (e2, a3), (e4, a2), (e5, a1)} .

Since e3 contains an integrator it is not used as a residual equation and the cor-
responding residual generator is discarded. The perfect matching found when
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equation e4 is removed is

Γ4 = {(e1, a4), (e2, a3), (e3, a2), (e5, a1)} .

Equation e4 can be used as a residual equation and the computation sequence
given from the matching Γ4 is shown in Figure 4.3.

e2

a3

e5

a1

e3

a2

e4

ZERO

u y

Figure 4.3. The directed graph for residual generator r.

The found residual generator r can be written as

a3(t) := αa2(t)

a1(t) := u(t) − a3(t)

a2(t) :=

∫

a1 dt

r(t) := y(t) − a2(t).

This residual generator is considered executable since integral causality is assumed
in the Scania Method i.e. the initial condition for the integrator is known and
therefore the initial value of variable a2.

4.5 Structure of the Residual Generators

All models considered in this thesis are in state-space form, and can be described
with

ẋ = f(x, u)
y = h(x, u).

Searching the model for MSO sets, see Section 4.3, may result in sets where vari-
ables xi is included, but the differentiated variables ẋi is not. Hence, we separate
the variables in x in two disjoint sets, x1 and x2. For a variable xi ∈ x1, the
differentiated variable ẋi is included in the MSO set. The set x2 includes all the
variables in the MSO set where the differentiated variable is not included. With
the separation of the variables, the MSO set can be written as

ẋ1 = f1(x1, x2, u) (4.3a)

0 = g1(x1, x2, u, y). (4.3b)
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Let nw denote the number of elements in the vector w. Due to (4.3) being an MSO
set, it holds that ng1

= nx2
+1. To obtain a residual generator in state-space form

x2 has to be solved for in (4.3b) and x2 can then be substituted into (4.3a). If x2

can not be solved for, the Scania method will discard the MSO set for not being
possible as a residual generator on state-space form. With the substitution, the
MSO set (4.3) can be written as

ẋ1 = f̃(x1, z) (4.4a)

0 = g̃(x1, z), (4.4b)

where z = {u, y} is a vector of known variables and f̃ and g̃ are the function vectors
f1 and g1 where x2 is substituted. Hence, the equation (4.4b) is the part of (4.3b)
where x2 was not solved for and ng̃ = 1. This shows that only DAE systems with
index 0 and 1 are found with the Scania Method and that all found DAE systems
can be written in state-space form. Note that there might exist another solution
for x2 in (4.3b). This may result in that another equation instead of equation
(4.4b) will be used as the residual equation.
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Chapter 5

Residual Generation with

The Lille Method

This section describes a method for finding all computable residual generators for
a given set of analytical model equations. The method is based on work mostly
done at the Université Lille and the Technical University of Denmark, described
in [2]. In this thesis the method will be referred to as the Lille method and it can
be outlined by the following steps.

1. Extend a model with equations describing differentiation relations between
variables.

2. Transform an analytical model to an SM.

3. Find residual generators in the SM.

The analytical model equations are here considered as given, i.e. step 1 in
Figure 3.2, an extraction from a Simulink model as in Section 4.1, is not per-
formed. In this method, step 1 and 2 are contained in the second step in Figure 3.2.
The method is summarized by Algorithm 5.1 and the different steps are further
described in the following sections.

5.1 Extending the Model

The dynamic aspect of the model variables can be considered as an extra set of
equations. In this method, the unknown variables x and ẋ are considered to be
structurally different. A new set of variables is introduced xd

i = ẋi and extended
differential equations are added for every xd

i in the analytical model. The extended
differential equations are

xd
i = ẋi.

This step is performed by AddExtendedDifferentialEquations in Algorithm
5.1 and gives an extended analytical model.

35
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Algorithm 5.1 The Lille Method

Input: A Set of Model Equations, E

1: procedure FindResidualGenerators(E)
2: RG := ∅

3: E′ := AddExtendedDifferentialEquations(E)
4: S := ME2SM(E′)
5: SO := IdentifySOSubsystem(S)
6: C := AllCompleteCausalMatchings(SO)
7: for all complete causal matchings Γ ∈ C do
8: CS := Rank(equ(Γ))
9: R := SO \ equ(Γ)

10: CR := R ∪ {CS,R}
11: RG := ConstructRG(CR)
12: end for
13: end procedure

Output: A Set of Residual Generators, RG

5.2 Transform the Analytical Model to an SM

The extended analytical model equations are in this step transformed to an SM,
which is further described in Section 2.1.1. In Algorithm 5.1, this is done by
ME2SM.

Due to stability problems with integration, the Lille method uses derivative
causality which means that a differential equation xd = d

dt
x is used to compute xd,

but it is not inverted as x(t) = x(0) +
∫ t

0
xd(τ) dτ . The problem when calculating

derivatives if noise is present is not considered here. If the initial condition x(0)
is known, x(t) can be computed uniquely with integration and the variable x can
be matched in the differential equation. This is called integral causality, but it is
not further considered in the method. The variable which can not be matched is
denoted with a ∆ in the biadjacency matrix. A more detailed description is given
in [2].

5.3 Find Residual Generators in the SM

If present, the SO part of the structural model is extracted by canonical decomposi-
tion, see Section 2.1.4. This is done by IdentifySOSubsystem in Algorithm 5.1.
In the SO part, consistency relations have to be found which are constructed from
complete causal matchings of the unknown variables, associated with unmatched
equations. When searching for the matchings the assumption of derivative causal-
ity is considered. In Algorithm 5.1, this is done in steps 6 - 12. equ(Γ) represents
the equations in the matching Γ.

A causal matching is a matching that does not contain any differential loops,
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see Section 5.3.1. A non-causal matching can not be unambiguously determined,
if the initial condition is not known, and hence can not be used to construct a
consistency relation. If the matching contains algebraic loops, the loops have to
be condensed into an equation system where all the unknown variables can be
computed from known variables, this is further described in Section 7.1.

The matchings found can be represented with a directed graph and an algo-
rithm is used on the biadjacency matrix to find a possible computation sequence,
called ranking algorithm. The ranking algorithm 5.2 is similar to the one presented
in [2], but some adjustments are made, due to the algorithm not working satisfac-
torily. The ranking algorithm does only find computation sequences without loops,
so it may not find any complete matching even though it exists. In more complex
situations complete matchings can be found by selecting an initial matching and
trying to increase the alternated chain by changing the matched and unmatched
variables.

Algorithm 5.2 Ranking Algorithm

Input: Biadjacency matrix or bipartite graph
1: Mark all known variables with 0.
2: i := 1.
3: Find an equation with exactly one unmarked variable. Associate rank i

with this equation and mark it as well as the corresponding variable.
4: If there are unmarked equations whose variables are all marked, associate

them with rank i, mark them and connect them with the pseudo-variable
ZERO.

5: i := i + 1.
6: If there are unmarked variables or equations, continue with step 3.

Output: Ranking of the equations

After finding a computation sequence for a complete matching, the unmatched
equations are denoted ZERO. These are the equations that are used as residual
equations in the overdetermined subgraph. With the computation sequence for the
unknown variables and the residual equations, consistency relations are obtained.

Assuming that all derivatives of known variables can be approximated, the con-
sistency relations obtained can be written in state-space form. The frequencies of
the known signals must be considered to have an upper limit for the assumption to
hold. As the consistency relation can be modified to a system in state-space form,
the consistency relation can be used to construct a residual generator. Approaches
to this are proposed in [18] and [5], but it is considered out of scope of this thesis.
Since faults affecting a consistency relation is the same as in the corresponding
residual generator, it is still interesting to compare the two. Hence, all examples
of methods assuming derivative causality will in this thesis end up in a consistency
relation. Modifying a consistency relation to a residual generator is performed by
ConstructRG in Algorithm 5.1.
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5.3.1 Differential Loop

A differential loop is an algebraic loop, see Section 7.1, containing one or more
differential equations. Due to the differential equations, the loop can not be un-
ambiguously determined if the initial values of the unknown variables in the loop
are not known.

Example 5.1: A Differential Loop

Consider the model
e1 : xd = x
e2 : xd = ẋ

that leads to the directed graph in Figure 5.1. The obtained equation to be solved
is x = ẋ. The solution x = x0e

t can not be unambiguously determined, if x0 is
not known.

x

e1

ẋ

e2

Figure 5.1. Directed graph showing a differential loop, giving a non-causal matching.

Example 5.2: The Lille Method

Consider the model
e1 : ẋ = αx + u
e2 : y = x

Adding extended differential equations to the model, see Section 5.1, gives

e1 : xd = αx + u
e2 : y = x
e3 : xd = ẋ.

(5.1)

The transformation to a SM gives the biadjacency matrix shown below and the
bipartite graph shown in Figure 5.2.

Equation Unknown Known
xd x u y

e1 X X X
e2 X X
e3 X ∆
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e1 e2 e3

xd x u y

Figure 5.2. The bipartite graph corresponding to model (5.1).

This structural model is a SO system and hence does not need to be decom-
posed. If the ranking algorithm is used, Algorithm 5.2, it is only possible to find
two different matchings. By changing edges in the matching, three complete causal
matchings with respect to the unknown variables are found

Γ1 =
{(

e1, x
d
)

, (e2, x)
}

Γ2 =
{

(e1, x) ,
(

e3, x
d
)}

Γ3 =
{

(e2, x) ,
(

e3, x
d
)}

.

For Γ1 with the unmatched equation e3 the directed graph is shown in Figure
5.3 and the corresponding consistency relation is

0 = αy + u − ẏ. (5.2)

y

e2

x

e1

xd

e3

ZERO

u

Figure 5.3. The directed graph of Γ1 with e3 as residual equation giving the consistency
relation (5.2).

For Γ2 with the unmatched equation e2, the directed graph is shown in Figure
5.4.
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e3

xd

e1

x

e2

ZERO

u y

Figure 5.4. The directed graph of Γ2 with e2 as residual equation.

Due to the differential loop in Γ2, the consistency relation is discarded. For Γ3

with the unmatched equation e1, the directed graph is shown in Figure 5.5 and
the corresponding consistency relation is

0 = ẏ − αy − u. (5.3)

y

e2

x

e3

xd

e1

ZERO

u

Figure 5.5. The directed graph of Γ3 with e1 as residual equation giving the consistency
relation (5.3).



Chapter 6

Analysis of Methods for

Residual Generation

In this chapter an analysis of methods for residual generation will be made. The
most obvious difference in the methods described in Chapters 4 and 5 is the causal-
ity assumption, hence the methods compared here are both methods with integral
and derivative causality. As methods using derivative causality, the Lille method
described in Chapter 5 are used with one modification. The SO systems, where
residual generators are searched for, are the MSO sets of the system. For meth-
ods with integral causality a slightly different approach, compared to the Scania
method, is used with extended equation systems. In the rest of this thesis, methods
assuming integral causality will use the approach described below.

6.1 Integral Causality

When considering integral causality a new set of variables is introduced, to make
the comparison easier the same notion as with derivative causality in the Lille
method is used, ẋi = xd

i . For every xd
i the analytical model is extended with the

differential equation

xd
i = ẋi.

Integral causality implies that a matching in the equation can be made with xi, but
not with xd

i . This is the opposite to derivative causality, and the Lille Method,
and xd

i will, instead of x, be denoted with ∆ in the biadjacency matrix. The
computation of xi is

xi(t) = xi(0) +

t
∫

0

xd
i (τ) dτ

where xi(0) is assumed to be known. This is actually the same as what is done in
the Example 4.1, though the differential equation is denoted with x =

∫

xd. The

41
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equation e3 in (4.2) can be seen as the differential equation of the DAE system
where a1 = ȧ2

e1 : a4 = u

e2 : a3 = αa2

e4 : y = a2

e5 : ȧ2 = a4 − a3.

In this section, integral causality has been discussed and a comparison with
the Scania method is done. This is also shortly described in [2] and, for the AI
approach to diagnosis, in for example [15].

Example 6.1: Integral Causality

Consider the example model

e1 : ẋ = αx + u

e2 : y = x.

The extended model is
e1 : xd = αx + u
e2 : y = x
e3 : xd = ẋ.

(6.1)

Transformation of the extended analytical model to a structural model gives
the following biadjacency matrix and the bipartite graph in Figure 6.1.

Equation Unknown Known
xd x u y x(0)

e1 X X X
e2 X X
e3 ∆ X X

e1 e2 e3

xd x u y x(0)

Figure 6.1. The bipartite graph corresponding to model (6.1).

The model (6.1) consists of two unknown variables, x and xd, and three equa-
tions, e1, e2 and e3. It is trivial to extract all MSO sets from the structural model
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since the only MSO set is {e1, e2, e3}. By looking at the biadjacency matrix one
can see that there are an SCC present, if equations e1 and e3 are used in a match-
ing. Though this is no problem when integral causality is used, since the residual
generators obtained always must be systems in state-space form.

In the MSO set there are two complete matchings found, Γ1 =
{(

e1, x
d
)

, (e2, x)
}

and Γ2 =
{(

e1, x
d
)

, (e3, x)
}

. Now, a residual generator is obtained from the
matching Γ2 with the residual equation e2, the directed graph is shown in Figure
6.2 and the system is

e1 : xd = αx + u
e3 : ẋ = xd

e2 : r1 = y − x.

u

e1

xd

e3

x

e2

ZERO

x(0) y

Figure 6.2. The directed graph for residual generator r1.

To get a residual generator from the matching Γ1 with the residual equation
e3 some modifications of the system are required, this since it is not in state-space
form. The directed graph is shown in Figure 6.3, and a corresponding equation
system is

e2 : x = y
e1 : xd = αx + u
e3 : ṙ2 = ẋ − xd.

where dynamics are introduced in the residual r2 due to a differentiated variable
in the residual equation. Depending on how the residual generator is modified,
different dynamics can be introduced. Modification approaches are presented in
e.g. [14].
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y

e2

x

e1

xd

e3

ZERO

u x(0)

Figure 6.3. The directed graph for residual generator r2.

Since x(0) is considered given when integral causality is used and obviously
no fault can occur in the signal, x(0) will not be represented in SM in following
sections.

6.2 Equivalence of Methods

To be able to show if two different methods are equivalent, it is first required that
a definition is made of what is meant. When designing a diagnosis system the
important results are what fault detectability that can be obtained. Hence it is
important which system equations the residual generators are constructed from.

Definition 6.1 (Input-Output Equivalence for Model M) Two methods for

designing residual generators are input-output equivalent for the given an-
alytical model M , if all sets of system equations used to construct residual

generators are the same in both methods.

For a fault to be detectable in a diagnosis system there has to be a residual
generator sensitive to that specific fault, see [14]. For a residual generator to
be sensitive to a fault, that fault has to be present in the system of equations
from which the residual generator is constructed. Hence, two residual generators
constructed from different system of equations can be sensitive to different faults.

6.3 Comparison of Methods

In this section, methods with integral and derivative causality are defined and com-
pared. In the end, some examples with similarities and differences due to causality
assumptions are given. If a method uses the extended differential equations as
residual equations it is said to use differential residual equations or shorter, DRE.
All methods will use MSO sets to find residual generators and hence all methods
can be outlined by the following steps.

1. Add the extended differential equations to the analytical model.
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2. Transform the extended analytical model to an SM.

3. Find all MSO sets in the SM.

4. Find all complete matchings of unknown variables in the MSO sets where
all edges in the matchings represents invertible relations.

5. Construct a residual generator from every matching together with the re-
maining residual equation in the MSO set where the matching was found.

Now, four methods using this four steps for finding residual generators are proposed
and will be used in different comparisons. The methods are shown in Table 6.3.

Method Causality DRE

A Derivative No
B Derivative Yes
C Integral No
D Integral Yes

Table 6.1. Different methods for comparison.

The meaning of the table is e.g. that method A uses derivative causality and
that all residuals with a DRE will be discarded in the method.

6.3.1 Equivalence of Methods with same Causality

In this section a comparison of methods with the same causality assumption will
be done, but where one is using DRE and the other is not. This means method A
will be compared to method B and method C to method D.

To simplify the understanding of the proofs, it is here given a general semi-
explicit equation system with extended differential equations

xd
1 = f(x1, x2, z) (6.2a)

0 = g(x1, x2, z) (6.2b)

ẋ1 = xd
1 (6.2c)

where x1,xd
1 and x2 are vectors of unknown variables and z are a vector of known

variables. A DRE is then an residual equation in (6.2c), here denoted with di.
A specific equation in (6.2a) or (6.2b) is here denoted with ei. The following
theorems shows the relation between some of the methods compared.

Theorem 6.1 For a given equation system, M , method A and B are input-output

equivalent.

Theorem 6.2 For a given equation system, M , method C and D are input-output

equivalent.
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Proof (Theorem 6.1) First, from the definitions of the methods it holds that every
residual generator obtained with method A will also be obtained with method B. Assume
a residual generator is obtained with method B from a perfect matching, Γ, in the
equation set M together with the DRE, di. Then, the equation set leading to the residual
generator is Md = M ∪di. Derivative causality gives that xd

i ∈ xd
1 can always be matched

in di. Switch the edge (ei, x
d
i ), where xd

i is matched with equation ei ∈ M , with the edge
(di, x

d
i ). This gives the equation set M2 = (M \ei)∪di of the matching, Γ2. The residual

generator obtained from the perfect matching Γ2, with equation set M2, and the residual
equation ei, has the equation set Me = M2 ∪ ei. It holds that

Me = M2 ∪ ei = (M \ ei) ∪ di ∪ ei = M ∪ di = Md

which shows that both residual generators obtained use the same equation set. The con-

clusion is that, for every residual generator obtained with a DRE, there exists a residual

generator using the same equation set but not using a DRE. Hence for all equation sets

leading to a residual generator in method B there will exist at least one residual generator

with the same equation set obtained in method A. �

Proof (Theorem 6.2) The proof is the same as above, with the difference that the

edges switched are (ei, xi) ∈ Γ and (di, xi), where xi ∈ x1. �

Theorem 6.1 and 6.2 show that some of the methods are equivalent, hence one
do not have to use all of the methods when constructing residual generators. For
dynamic systems we will, from now on, only use method A and C.

With a similar discussion as above it is also possible to compare the residuals
that are obtained from the two residual generators that switched edges in the proof.
Theoretically, and if the same computations of integrals and derivatives are used,
one can show that these residuals will at every time have the same absolute value.
This is another reason to only compare method A and C for dynamic systems.

6.3.2 Methods with different Causality

As said earlier in this chapter, the most obvious difference between the Scania
method and the Lille method is the causality assumption. What differences the
causality assumptions can have to the obtained diagnosis systems is here discussed
by equivalence of methods for different types of systems. The two types of sys-
tems that are investigated are static systems and dynamic systems of first order
derivatives.

Static Systems

In this section a comparison is made using static systems. For a static system it
holds that xd = ∅ and hence no differential equations will be added to the model.
Consider a static equation system

0 = g(x, z)

where x and z are vectors of respectively known and unknown variables. All
methods will get the same SM and also the same MSO sets. Since no differential
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equations are added to the model, obviously method A and B are input-output
equivalent as well as method C and D. There are no extended differential equations
added for a static model in any of the methods, which gives that the SM will not
contain any information about causality. Since none of the differences for the
methods is considered in static systems, conclusions can be drawn that, for all
static systems, the methods (A, B, C and D) are pairwise input-output equivalent.

Dynamic Systems

A discussion regarding equivalence of methods with different causality is found
in this section. Some examples of dynamic systems and the finding of residual
generators, which might simplify the understanding of this discussion, is made in
the next section. Due to Theorems 6.1 and 6.2 only methods A and C will be
considered from now on. First, consider a general dynamic system in semi-explicit
form

ẋ1 = f(x1, x2, z)

0 = g(x1, x2, z)

where x1, x2 and z are vectors and x2 consists of the unknown variables where
ẋ2 are not in the system. An MSO set found in 6.3, with extended differential
equations, can be written as

xd
1 = f(x1, x2, z) (6.3a)

0 = g(x1, x2, z) (6.3b)

ẋ1 = xd
1. (6.3c)

Note that the causality marking in the SM will only be made for one variable of
the equations in (6.3c). Also note that what is actually done when adding the
extended differential equations (6.3c) is to transform a general equation system to
semi-explicit form.

If a residual generator is found with method A, all elements in xd
1 have to be

matched in (6.3c) and x1 and x2 have to be solved for in the equations (6.3a)
and (6.3b). Similarly, if a residual generator is to be found with method C, all
elements in x1 have to be matched in (6.3c) and xd

1 and x2 have to be solved for
in the equations (6.3a) and (6.3b).

Now assume that x1 and x2 but not xd
1 can be solved for in (6.3a) and (6.3b),

this results in that a residual generator can be found with method A but not with
method C. If instead it is assumed that (6.3a) and (6.3b) can be solved for xd

1

and x2 but not x1, a residual generator can be found with method C but not with
method A. Hence, one can conclude that for dynamic systems in general, method
A and C are not input-output equivalent. Though there are dynamic systems
where the methods are. Consider for example an equation system with only one
MSO set, if it is possible to solve (6.3a) and (6.3b) for xd

1 and x2 and also for x1

and x2 both method A and C finds residual generators in the only equation set of
the system.
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Since for all dynamic systems method A and C are not input-output equivalent,
there could be differences in detectability for diagnosis systems constructed with
the different methods. The most obvious example is a system where one of the
methods finds a residual generator but the other does not, see for example 6.3.3.
Hence using both methods would for detectability be preferable when designing
diagnosis systems.

6.3.3 Some Examples

This section will give some examples of dynamic systems and how residual gen-
erators are found using method A and C. They will show both similarities and
differences.

An Equivalent Dynamic System

This example shows an equation system where method A and C are input-output
equivalent. Consider the extended equation system

e1 : xd = −x + u
e2 : y = x
e3 : xd = ẋ.

(6.4)

The system has one MSO set and the SM considered with integral causality are
represented with the following biadjacency matrix.

Equation Unknown Known
xd x u y

e1 X© X X
e2 X X
e3 ∆ X©

One complete matching is denoted with circles and the residual generator obtained
from this matching is

e1 : xd = −x + u
e3 : ẋ = xd

e2 : r = y − x.

Now, look at the SM with derivative causality represented with the following
biadjacency matrix.

Equation Unknown Known
xd x u y

e1 X X X
e2 X© X
e3 X© ∆

One complete matching is denoted with circles and the consistency relation ob-
tained from this matching is

0 = ẏ + y − u.
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As there is only one MSO set found in the dynamic system and both method
C and A finds a residual generator, the methods are input-output equivalent for
the equation system (6.4).

A Non-Equivalent System 1

This example shows an equation system with only one MSO set where method C
finds a residual generator, but where method A does not. The problem arising
when using derivative causality is due to non-invertible functions. Method A
would, if the functions were invertible, find a complete matching. Consider the
extended equation system

e1 : xd
1 = f1(x1, x2)

e2 : xd
2 = f2(x2, u)

e3 : y = x1

e4 : xd
1 = ẋ1

e5 : xd
2 = ẋ2.

(6.5)

where f1(x1, x2) is non-invertible for both variables and f2(x2, u) for x2. The SM
considered with integral causality are represented with the following biadjacency
matrix.

Equation Unknown Known
xd

1 xd
2 x1 x2 u y

e1 X© ∆ ∆

e2 X© ∆ X
e3 X X
e4 ∆ X©
e5 ∆ X©

The model is an MSO set and one complete matching is denoted with circles in
the biadjacency matrix. The residual generator found from this matching is

e1 : xd
1 = f1(x1, x2)

e2 : xd
2 = f2(x2, u)

e4 : ẋ1 = xd
1

e5 : ẋ2 = xd
2

e3 : r = y − x1.

Now, look at the SM with derivative causality represented with the following
biadjacency matrix.

Equation Unknown Known
xd

1 xd
2 x1 x2 u y

e1 X ∆ ∆
e2 X ∆ X
e3 X X
e4 X ∆
e5 X ∆
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Since the column of x2 only includes ∆, there are no complete matchings found
in the system and obviously no consistency relations. Since only method C finds
a residual generator in the MSO set the methods are not input-output equivalent
for the equation system (6.5).

A Non-Equivalent System 2

This example shows an MSO set where method A finds a residual generator, but
where method C does not. Consider the equation system with extended differential
equations

e1 : xd
1 = −x1 + x3

e2 : xd
2 = −x2 + x3

e3 : y1 = x1

e4 : y2 = x2

e5 : xd
1 = ẋ1

e6 : xd
2 = ẋ2.

(6.6)

The SM of (6.6) with integral causality is shown in the following biadjacency
matrix.

Equation Unknown Known
xd

1 xd
2 x1 x2 x3 y1 y2

e1 X X X
e2 X X X
e3 X X
e4 X X
e5 ∆ X
e6 ∆ X

No complete matchings can be found in the MSO set, due to the fact that e.g.
xd

1 and xd
2 must be matched in e1 and e2, which are the only equations including

x3, giving that x3 can not be matched. Now, look at the following biadjacency
matrix of the SM for (6.6) with derivative causality.

Equation Unknown Known
xd

1 xd
2 x1 x2 x3 y1 y2

e1 X X X©
e2 X X X
e3 X© X
e4 X© X
e5 X© ∆

e6 X© ∆

A complete matching is shown with circles in the biadjacency matrix. The
equation e2 is used as the residual equation and the obtained consistency relation
is

0 = ẏ1 + y1 − ẏ2 − y2.
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This example shows that the system (6.6) can be used to construct a residual
generator with derivative causality but not with integral causality. Hence for the
system (6.6), method A and C will not be input-output equivalent.

An Unstable System

Consider the unstable equation system with an added differential equation

e1 : xd = x + u
e2 : y = x
e3 : xd = ẋ.

The corresponding SM with integral causality is shown in the following biadjacency
matrix.

Equation Unknown Known
xd x u y

e1 X© X X
e2 X X
e3 ∆ X©

The SM is an MSO set and the matching Γ =
{

(e1, x
d), (e3, x)

}

with e2 as residual
equation will be the only found residual generator1. The equation system is

e1 : xd = x + u
e3 : ẋ = xd

e2 : r = y − x.
(6.7)

This residual generator is unstable, hence can not be used in a diagnosis system
as it is. Though, by utilizing the method described in Chapter 8, a stable residual
generator based on (6.7) can be constructed. Now, consider the SM with derivative
causality shown in the following biadjacency matrix.

Equation Unknown Known
xd x u y

e1 X X X
e2 X© X
e3 X© ∆

There are two matchings found, but both matchings results in the same consistency
relation

0 = ẏ − y − u. (6.8)

Since (6.8) only consists of signals considered as known, it can always be used in
a diagnosis system. This is an example showing the problem of instability with
integral causality, a problem that is not present with derivative causality.

1According to the Scania method this is a residual generator. Actually, due to violation of
Definition 3.2, it is not. In Section 8.1, this is defined as an unstable residual generator.
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6.4 Improvements of the Scania Method

As said in Section 3.4, the procedure of designing residual generators can generally
be divided into three steps.

1. Transform the model to an analytical equation system.

2. Find redundant subsystems in the analytical equation system.

3. Create residual generators from the redundant subsystems.

There are several improvements of the Scania Method to be further investigated.
The first and second step in the design procedure, described in Sections 4.1 - 4.3,
are considered to be satisfactory and will not be further investigated in this thesis.
The following improvements all belong to the third step and would most likely
increase the number of residual generators found.

• Handling algebraic loops, i.e. SCC of size larger than 1.

• Solve the problem of stabilizing unstable residual generators.

• Use derivative causality, i.e. make Integrator blocks invertible.

• Handle more than one solution to the unknown variables in the model.

Algebraic loops were addressed in Section 4.4, some methods for solving them
are presented in Chapter 7. Unstable residual generators were briefly discussed
in Section 6.3.3, and is further investigated in Chapters 8 - 10. A method with
derivative causality were analyzed in Chapter 5. The main problem with this
approach arises when trying to construct residual generators in state-space form
from the obtained consistency relations. Since derivatives of measurement signals
need to be estimated or the order of the consistency relation lowered, this is con-
sidered to be a hard problem to solve and out of scope of this thesis. Inverting
functions may result in variables having more than one solution. This leads to
computation sequences where variables and the corresponding residual generator
can not be unambiguously calculated. In the Scania method, residual generators
with this property are discarded and solving this problem would definitely be of
great interest. It would probably increase the number of found residual generators,
nevertheless the problem is considered out of scope of this thesis.
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Chapter 7

Solving Algebraic Loops

Algebraic loops were first addressed in Section 4.4 giving that all residual genera-
tors containing algebraic loops are discarded in the Scania method. This section
gives an explanation to algebraic loops and how they are found in structural analy-
sis. Some solutions to the problem of solving algebraic loops will also be discussed.

7.1 Algebraic Loops

If an algebraic loop exists, two or more variables in a model have to be solved
simultaneously. An algebraic loop can be found either by looking at SCCs in the
canonical decomposition, see Section 2.1.4, or loops1 in the matching of a bipartite
graph.

If the equations can be solved for the unknown variables in the loop, it can
be condensed to a system of equations where the computations of the unknown
variables only consist of known variables. The condensed equation system can
then be used to compute the residual generator.

Example 7.1: An Algebraic Loop

Consider the model

e1 : y1 = x1 + x2

e2 : y2 = x1 − x2

that gives the following biadjacency matrix.

Equation Unknown Known
x1 x2 y1 y2

e1 X X© X
e2 X© X X

1Often referred to as cycles in bipartite graph theory.
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Two complete matchings with respect to unknown variables can be found. A
directed graph from the one that is denoted with circles is shown in Figure 7.1.
Analytically, the algebraic loop can easily be solved which gives

e1 : x1 = y1+y2

2

e2 : x2 = y1−y2

2 .
(7.1)

x1

e2

x2

e1

y1

y2

Figure 7.1. The directed graph from the matching in 7.1 showing an algebraic loop.

The condensed equation system (7.1) can be shown as the directed graph in
Figure 7.2. Another way of solving the algebraic loop is to first solve it for one
of the unknown variables and use the result to solve the other. One possibility is
shown here with an equation system and a directed graph.

e1 : x1 = y1+y2

2
e2 : x2 = x1 − y2

y2

x1

e1

e2

y1

x2

Figure 7.2. The condensed directed graph from the equation system 7.1.
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y1

y2

e1

x1

e2

x2

1

Figure 7.3. The condensed directed graph from the equation system 7.1.

A residual generator constructed with the Scania method can not handle more
than one unique solution of the states in a system. This gives that even if a
solution of an algebraic loop does exist, the solution can not be used if the unknown
variables can not be uniquely defined.

7.2 Algebraic Loops in the Engine Model

If using the Scania method on the engine model, there are 31 possible residual
generators discarded due to algebraic loops. Hence, if the algebraic loops are
solved, it might be possible to save all these residual generators.

The Scania method was used with an engine model developed at Scania CV AB.
In all discarded possible residual generators, only one algebraic loop was found,
which is shown in (7.2).

x1 = x5−1
z1−1

x2 = kx4

x3 = z2z3

x2

x4 = m(x1, z4)
x5 = z5

x3

(7.2)

The algebraic loop consists of five unknown, x, and five known variables, z, called
known here since they are the variables that need to be computed before the loop
can be solved. The function m is a two-dimensional map of size 60 × 60, shown
in Figure 7.4. The operating range of the map is concentrated to the center of
the z4-axis. The large values of m, for values of x1 close to 1, originates from the
parameter settings of the engine model and will not be used in a fault-free engine
cycle.

If reducing the algebraic loop (7.2) to one equation with only one unknown
variable x1, it ends up with

0 = g(x1, z1, z2, z3, z5) − m(x1, z4) (7.3)

where

g(x1, z1, z2, z3, z5) =
z2z3(z1 − 1)

kz5
x1 +

z2z3

kz5
.
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Figure 7.4. The map represented by m(x1, z4) in equation system (7.2).

There are connections between known variables and constants which can be merged
to make the map smaller. If z6 = z2z3

kz5

and z7 = (z1 − 1)z6, the algebraic loop can
be written as

0 = g(x1, z6, z7) − m(x1, z4) (7.4)

where

g(x1, z6, z7) = z6x1 + z7

If the algebraic loop (7.2) could be solved for one of the unknown variables it would
in this case be easy to use these equations to solve the remaining. This gives that,
if e.g. the algebraic loop could be solved for x1 in (7.3) or (7.4) the remaining
unknown variables can be solved for using x1 as known variable in (7.2). This is
not always the case for a general algebraic loop and if not, all included algebraic
loops also need to be solved.

7.3 Methods for Solving Algebraic Loops

There are different ways for solving algebraic loops, analytical solution, iterative

solution and mapping are commonly used methods. These methods together with
a solution based on the specific case, here called step-through solution, will be
further described.

7.3.1 Analytical Solution

An algebraic loop can be written as

0 = f(x, z)
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where x is a vector of unknown variables and z is a vector of known variables in
the algebraic loop. Analytically, by hand or with an analytical solver (e.g. Maple),
the equation might be solved, which would give

x = g(z).

If this holds, the unknown variables x can be computed from only known variables.
Since the map m is included in the algebraic loop (7.3) there exist no algebraic
solution to this specific example.

7.3.2 Iterative Solution

An algebraic loop can be solved iteratively by e.g. Newton’s method or fix-point
iterations. The basic idea is to make iterations converging to the wanted value,
terminating the iterations when a specified accuracy is obtained. These methods
are non-deterministic in time and hence not a preferred option when computing
in real-time. To limit the maximum time used, it is possible to terminate the
computation after a certain number of iterations. Though, if terminating a solution
due to this condition it will not get the specified accuracy. To be able to find all
possible solutions of the algebraic loop, first it is needed to find all intervals, of
the variable, leading to a unique solution and that is not an easy task.

It is possible to solve the algebraic loop (7.2) using this method, but since it
is not deterministic in time with a specified accuracy it could take too much CPU
time and hence the method will not be used.

7.3.3 Mapping

It is possible to map the inverse function to some degree of accuracy. The larger
the map, the better accuracy, but also more memory is demanded. In the equation
(7.3.1), consider z as the inputs and x as the outputs. Every combination of inputs
z can be mapped to a unique value in x. A problem arises if x has more than one
unique solution, then all the values have to be taken in account when computing
the residual generator. This will not be considered in this thesis. The amount
of memory required for the map grows with the number of elements in z and the
desired accuracy. Mapping for more values of an element in z results in better
accuracy. If nzi

is the number of values that zi ∈ z are mapped for, then the
amount of memory required for the map depends on the product of all nzi

. If
mapping (7.2), z has five elements and the amount of memory required for the
map is too much and hence will not be used.

The reduced algebraic loop (7.4) has a z with only three three elements and
less memory will be required for the map. This map can be used, though this has
not been done due to time shortage.

7.3.4 Step-Through Solution

Consider again the merged algebraic loop (7.4). Solving this equation only con-
siders the dimension of x1 in the map m, due to the consideration that z4 in m is
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a known variable in the loop. If linear interpolation is used in intervals between
points in the map, a solution at an interval is found by solving a linear equation,
since g(x1, z6, z7) is also linear. Hence, solving (7.4) for x1 can be done by step-
ping through all these intervals in the map, computing x1 at all intervals where
solutions do exist. Due to the linear equations, solutions in intervals are either
unique or indefinite. If only one unique solution exists for an algebraic loop, this
way of solving it will have a constant evaluation time depending on the number of
intervals, in the map, that have to be checked. The solving of an algebraic loop
with linear intervals is summarized in Algorithm 7.1.

Algorithm 7.1 Step-Through Solution

Input: A function f(x, z), where x is the variable to be solved for, f is linear at
intervals of x and z is a vector of known signals

1: procedure StepThroughSolution(f(x, z))
2: x := ∅

3: for all linear intervals, I = (xi, xi+1), of f do
4: fi = f(xi, z)
5: fi+1 = f(xi+1, z)
6: if fi = 0 and fi+1 = 0 then
7: x := IndefiniteSolution(fi, fi+1)
8: return
9: else if fi = 0 then

10: x := x ∪ xi

11: else if fifi+1 < 0 then
12: sol := FindSolution(xi, xi+1, fi, fi+1)
13: x := x ∪ sol
14: end if
15: end for
16: end procedure

Output: A solution for the variable x

In the specific case of the algebraic loop in the engine model, (7.4) is used as
f(x, z) in Algorithm 7.1. The intervals I = (xi, xi+1) are the intervals between
breaking points of the x-axis where interpolation of the map m is made. The goal
is to find all values of x where the function f(x, z) = 0, to do this all linear intervals
of f(x, z) have to be checked. If f = 0 at a whole interval, there are indefinite
number of solutions and IndefiniteSolution is called. If one solution exists at
an interval, FindSolution computes the solution using the fact that two uniform
triangles can be formed in the interval, shown in Figure 7.5. The solution is

x = xi −
fi(xi+1 − xi)

fi+1 − fi

.

This method could be used to solve the algebraic loop (7.2). For example, solve
(7.4) for x1 using 7.1 and use the result to solve the remaining unknown variables.
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0
xxi xi+1

fi

fi+1

Figure 7.5. How to compute the solution for x at the interval I = (xi, xi+1), where the
function f is linear.

It would be deterministic in time and Algorithm 7.1 would require some memory.
Though compared to mapping, if more algebraic loops with linear intervals are
found in a model, the same algorithm can be used and no additional memory is
required.
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Chapter 8

Constructing Stable

Residual Generators

The Scania Method does not consider stability of residual generators at all during
the design process. Some of the residual generators found are unstable and the
corresponding residuals are not suitable for diagnosis. When using the Scania
Method on a specific engine model, 70 residual generators were found in total.
After running the stability investigation algorithm described in Section 8.1.2, 18
residual generators were removed due to instability, which is almost 26 %. For
detectability and isolability matters, a method for constructing stable residual
generators would be of great importance.

8.1 Stability of Residual Generators

With definitions 3.2 and 2.7 in mind, stability of residual generators in state-space
form will now be defined. As described in Section 4.5, a general form for a residual
generator found with the Scania Method is

ẋ = f(x, z) (8.1a)

r = g(x, z) (8.1b)

Assume that the solution x(t) to (8.1a) is uniquely determined by the initial con-
ditions x0 = x(0).

Definition 8.1 (Stability of a Residual Generator for a given z) A resid-

ual generator (8.1) is stable for a given z if:

1. The solution x(t) to (8.1a) is stable, according to Definition 2.7, for all x0

2. lim
t→∞

r = 0

A residual generator is unstable for a given z if not stable.
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Definition 8.2 (Stability of a Residual Generator for Ω) A residual gener-

ator (8.1) is stable for a set Ω of z if it is stable for all z ∈ Ω. A residual generator

is unstable for Ω if not stable.

Definition 8.3 (Stability of a Residual Generator) A residual generator (8.1)
is stable if it is stable for all z ∈ OH0

. A residual generator is unstable if not

stable.

8.1.1 Causes of Instability

In order to evaluate a residual generator, the non-linear system (8.1a) must be
simulated. Since this is done in a computer, numerical integration methods are
used which can result in numerical instability. An investigation concerning the
accuracy and stability of different integration methods is carried out in [3], where
fixed step simulation is compared with variable step simulation. The conclusions
is that forward Euler with stepsize 2.5 ms is well enough and does not cause
instability problems when simulating residual generators. Numerical stability is
considered out of the scope of this thesis and will not be further investigated.

With the assumption that numerical problems are not the cause of instability,
stability properties of the residual generator must be investigated. Non-ideal cir-
cumstances may cause instability during execution of a residual generator. The
non-ideal circumstances can for example be certain approximations and assump-
tions made for simplicity during the modeling work or measurement noise and
errors in actuators and sensors. They both lead to inconsistency between the
measured data and what the model predicts which may cause a stable residual
generator to behave like an unstable residual generator. The instability may be
related to the robustness of the residual generator. Robustness is a measure on
how the difference between the model and the real system affects the stability
properties of the system, see [7] or [10].

Another cause of instability is bad initial conditions of states. A residual
generator may have both stable and unstable operating points. An initial condition
near an unstable operating point may lead to instability even if the data, with
which the residual generator is run, originates from a stable operating point. This
is illustrated in example 8.1.

Example 8.1

Consider the autonomous non-linear system described by

ẋ = x2 − 1 (8.2a)

y = x. (8.2b)

A residual generator based on (8.2) is

ẋ = x2 − 1 (8.3a)

r = y − x. (8.3b)
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The system (8.3a) has the equilibrium points x̄1 = 1 and x̄2 = −1. The lineariza-
tion in x̄1 is

A1 = 2, B1 = 0, C1 = 1, D1 = 0

and

A2 = −2, B2 = 0, C2 = 1, D2 = 0

in x̄2. The eigenvalues of A1 and A2 are 2 and -2 respectively, and the equilibrium
point x̄1 is unstable and x̄2 is stable. To illustrate that initial conditions can
affect the stability of a residual generator, (8.3) was implemented and simulated
in Simulink. The implementation is shown in Figure 8.1.

1

r

u2

Math
Function

1
s

Integrator

1

Constant

Add1

Add

1

y

Figure 8.1. Simulink implementation of residual generator (8.3).

The residual generator was simulated with initial conditions x0 = −1, x0 =
−3.5 and x0 = 1.5. A constant measurement sequence where y = −1, correspond-
ing to the stable equilibrium point x̄2, with added gaussian noise was used. The
result is shown in Figure 8.2. It is obvious that x0 = 1.5 causes instability and that
x0 = −3.5 and x0 = −1 does not. The conclusion is that bad initial conditions
may cause instability even if the residual generator is run in a stable operating
point. Initial conditions must therefore be carefully chosen.
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Figure 8.2. Simulation of residual generator (8.3) for initial conditions x0 = −1, x0 =
−3.5 and x0 = 1.5 and constant y = −1. It is obvious that x0 = 1.5 causes instability of
the residual generator and that x0 = −3.5 and x0 = −1 does not.

8.1.2 Residual Stability Investigation

In Section 2.2, results regarding stability of linear and non-linear systems were
presented. The methods for investigating stability of non-linear systems consider
stability of equilibrium points. One approach would then be to linearize the non-
linear systems in all found equilibrium points and then use the theory described
in Section 2.2. Stability of equilibrium points are relevant in control theory since
a control system often is designed to keep the closed system near a stable equilib-
rium point. For the application considered in this thesis, i.e. non-linear residual
generators, local stability of equilibrium points are not satisfying enough since it
do not say anything about global stability of the system. Another approach is
to analyze stability with Lyapunov theory, see for example [10]. The non-linear
systems involved in the residual generators considered here, are complex and this
is therefore considered hard and out of the scope of this thesis. Another, more
realistic option, for stability investigation is to simulate the residual generator and
then analyze the resulting data. A method for doing this has been developed at
Scania and is described in [3]. The method uses data from an ETC test cycle and
investigates stability of the solutions to the simulated system (8.1a) somewhat
according to Definition 2.7. Some properties of the computed residual are also
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concerned which means that the stability somehow is analyzed also according to
Definition 8.1. The algorithm regards the following aspects:

• Model drift: check that states cross their own mean-value more than a
certain number of times, depending on input data.

• Feasibility: verify that states are inside feasible regions during the entire
simulation.

• Correlation: check that cross-correlation between input and the residual is
not to high in the fault-free case.

• Mean-error consistency: check that the mean-value of the residual does
not change too much when running the residual generator with different
data.

If any of these tests fail, the residual generator is classed as unstable and hence
discarded.

8.2 Stabilizing Residual Generators utilizing Ob-

server Theory

Some of the residual generators extracted with the Scania Method are found to be
unstable after investigation with the method described in Section 8.1.2. During
execution of residual generators, the presence of model and measurement noise,
disturbances or errors may cause a stable residual generator to behave like an
unstable residual generator. As said in Section 8.1.1, this may be related to the
robustness of the residual generator. An unstable residual is not suited for di-
agnosis since it may not detect faults like proposed or even stay close to zero in
the fault-free case. A method for creating stable residual generators have been
developed and will here be described.

Consider a residual generator

ẋ = f(x, z) (8.4a)

r = g(x, z). (8.4b)

If z ∈ OH0
, Definition 8.1 says that a stable residual generator should have prop-

erties so that the solution x(t) to (8.4a) are stable for all initial conditions x(0)
and that r → 0 when t → ∞. Since r = g(x, z), instability of x(t) may cause the
residual to drift away and not stay close to zero. One intuitive approach to design
a stable residual generator is to use feedback of the residual r along with equation
(8.4a). A residual generator designed with this approach, based on (8.4), can be
written as

˙̂x = f(x̂, z) + κ(x̂, z) (8.5a)

r = g(x̂, z) (8.5b)
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where κ(·) is some function of x̂ and z. The main idea with the feedback approach
is that if the residual r starts to drift away, the dynamic equation (8.5a) will
compensate this by calculating x̂ so that the residual r goes back to zero. The
design is based on that the function κ(·) is chosen so that the residual generator
gets this property. As mentioned earlier, the aim of residual generation is to
produce a system that effectively detects and isolates faults, so κ must be chosen
with this in mind.

To be able to better analyze the problem, consider a linearization of (8.4) valid
near an equilibrium point (x̄, z̄)

ẋ = Ax + Bz (8.6a)

r = Cx + Dz. (8.6b)

A residual generator based on (8.6), designed according to the approach described
above and with the non-linear function κ replaced with the matrix K, is

˙̂x = Ax̂ + Bz + Kr (8.7a)

r = Cx̂ + Dz (8.7b)

which can be written as

˙̂x = (A + KC)x̂ + (B + KD)z (8.8a)

r = Cx̂ + Dz. (8.8b)

The problem of choosing a non-linear function κ is now instead the less complex
problem of choosing a matrix K, so that residual generator (8.8) is stable. This is
a well studied problem for control theory applications, see Section 2.3. The type
of system (8.8) is then called an observer. The methods for calculating the matrix
K considered in Section 2.3 are

1. Eigenvalue Assignment

2. The Kalman Filter

3. Extended Kalman Filter

4. Constant Gain Extended Kalman Filter

Eigenvalue Assignment, Section 2.3.1, does not solve the problem completely since
we instead have to choose where to place the eigenvalues. As said in Section 2.2.1,
eigenvalues to the matrix A + KC corresponding to poles in the left hand side of
the complex plane guarantees stability of (8.7). The Kalman Filter, Section 2.3.2,
requires a stochastic model of the system or that the matrices Q and R are used
as design variables. The Kalman Filter approach, on the other hand, guarantees
stability of (8.7). The Extended Kalman Filter, Section 2.3.3, would be a good
candidate to create a stable residual generator for (8.4), since it handles non-linear
systems. Due to the heavy computational burden required, this is not a realistic
option because the residual generator will be implemented in a real-time system.
Since the original residual generator (8.4) is non-linear and The Kalman Filter
gain matrix K can be easily calculated with Matlab, a design approach based on
the Constant Gain Extended Kalman Filter, Section 2.3.3, is chosen in this thesis.
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8.2.1 Design Method

The method developed here for creating stable residual generators only handles a
specific class of (8.4) where the function g(x, z) is linear, and the residual generator
can be written as

ẋ = f(x, z) (8.9a)

r = Cx + Dz. (8.9b)

This delimitation is done since a residual in many applications is a comparison of
a sensor value y and states x on the form r = y − C̃x, which can be written as
(8.9) with z =

[

u y
]T

, C = −C̃ and D =
[

0 1
]

. The different steps in the
design process will now be further described.

Searching for Equilibrium Points: First, the non-linear system (8.9a) is sear-
ched for equilibrium points. Since the system is complex and hard to analyze
analytically, it is done numerically. To be able to do this, a Simulink imple-
mentation of (8.9) is used. From the data structures created when searching
for residual generators with The Scania Method, Simulink implementations
of all found residual generators can be generated. The function findop in
Simulink Control Design is used to find operating points. The function
finds equilibrium points to a Simulink-model near a specified starting point
by using optimization methods. To find equilibrium points in the region
where the residual generator will be run, the starting values of the state
variables x and variables z to findop are picked from measurement data.

Linearization: The system (8.9a) is linearized in every equilibrium point (x̄i, z̄i),
i = 1, . . . ,M , where M is the number of equilibrium points found. The lin-
earization is done with the Matlab function linearize. To specify the
equilibrium points, the function uses the values of variables x̄ and z̄ that
were saved in the previous step. The linearizations can be written as

ẋ = Aix + Biz, i = 1, . . . ,M

and a linear approximation of the non-linear system (8.9a) for every equilib-
rium point is now available.

Computation of Feedback Gain: For every equilibrium point (x̄i, z̄i) a Kal-
man gain is computed according to Section 2.3.2. The matrices Q and R are
used as design parameters and tuned by hand so that the residual generator
achieves satisfactory diagnostic performances. In Matlab, the computation
of Kalman gain is done with the function lqe. How the feedback-gain K
and placement of the poles affects the performance of the residual generator
is further investigated in Chapter 9.

Gain Switching: When the residual generator is run, the feedback gain cor-
responding to the operating conditions closest to present conditions will be
used. All computed Kalman gains are stored in a look-up table and therefore
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a look-up key must be chosen. In other words, we need a function, σ(·), that
on the basis of present operating conditions gives the index to the most suit-
able Kalman gain. This look-up key can for example be a function of states
and known variables. The main properties of the function σ is that it must
assign a unique integer value i ≤ M for all possible operating conditions. In
this thesis σ is chosen to be a function of a single known variable zs

σ : zs → i zs ∈ R, i ∈ [1, . . . ,M ] .

The signal zs must characterize present operating conditions well and hence,
be carefully chosen.

A residual generator created with the method described above, can finally be
written as

˙̂x = f(x̂, z) + Kir

r = Cx̂ + Dz

where i = σ(zs), i ∈ [1, . . . ,M ], zs ∈ R and zs ⊆ z.

Example 8.2

Consider again the non-linear residual generator in Example 8.1

ẋ = x2 − 1 (8.10a)

r = y − x. (8.10b)

As seen in Example 8.1, a bad initial condition caused instability of (8.10). A
residual generator based on (8.10) will now be designed, according to the method
proposed in Section 8.2.1.

Finding Equilibrium Points

This was done in Example 8.1, the system (8.10a) has the equilibrium points
x̄1 = 1 and x̄2 = −1.

Linearization

This was also done in Example 8.1, the linearization valid near x̄1 can be written
as

ẋ = 2x

with the corresponding system matrices

A1 = 2, B1 = 0, C1 = 1, D1 = 0

where C and D originates from the linear equation (8.2b) in Example 8.1. The
linerization valid near x̄2 can be written as

ẋ = −2x

and the corresponding system matrices are

A2 = −2, B2 = 0, C2 = 1, D2 = 0.
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Computation of Feedback Gain

Different values of the covariance matrices Q and R was tested, finally Q = 100 and
R = 1 was chosen since this gave the residual generator satisfying performances.
Following command was used in Matlab

K1 = lqe(A1,1,C1,Q,R,0)

K2 = lqe(A2,1,C2,Q,R,0)

This gave K1 = 8.1980 and K2 = 2.1980.

Gain Switching

Since the model (8.2) in Example 8.1 says that y = x, the known signal y charac-
terizes present operating conditions and is chosen as switch signal. If y is near 1,
the matrix K1 is chosen and if y is near -1, matrix K2 is chosen. This is imple-
mented with the block Direct Lookup Table in Simulink.

The residual generator can now be written as

˙̂x = x̂2 − 1 + Kir (8.11a)

r = y − x̂ (8.11b)

where i = 1 near the operating point x̄1 and i = 2 near x̄2. An implementation of
(8.11) in Simulink is shown in Figure 8.3 and 8.4.
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Figure 8.3. Simulink implementation of residual generator (8.11). The block Feedback

is shown in Figure 8.4
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Figure 8.4. The block Feedback in the Simulink implementation of residual generator
(8.11) shown in Figure 8.3
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Simulation of the residual generator with initial conditions x0 = −1, x0 = −3.5,
x0 = 1.5 and a constant y = −1 with added simulated noise, was performed.
The result is shown in 8.5, which should be compared to Figure 8.2. According
to Figure 8.5, the residual r approaches zeros even if a bad initial condition is
chosen and the state x does not drift away as in Figure 8.2. Residual generator
(8.11) seems to be stable for y = −1, since initial condition x0 = 1.5 does not
cause instability of (8.11). This confirms that the method for constructing stable
residual proposed in Section 8.2.1 is working well in this case.
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Figure 8.5. Simulation of residual generator (8.11) for initial conditions x0 = −1,
x0 = −3.5 and x0 = 1.5 and constant y = −1. The residual generator is stable for all
three initial conditions.

8.2.2 Stability Analysis

Consider again a residual generator designed according to the method in Section
8.2.1

˙̂x = f(x̂, z) + Kr (8.12a)

r = Cx̂ + Dz. (8.12b)

According to the stability definitions presented, the residual generator (8.12) is
stable if

1. The solution x(t) to (8.12a) is stable, according to Definition 2.7 , for all x0
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2. lim
t→∞

r(t) = 0

for all z ∈ OH0
. To analyze and investigate the stability of (8.12), the residual

generator needs to be simulated for all possible x0 ∈ R and for all z ∈ OH0
to see

if the conditions above is fulfilled. This may be a complex and time consuming
task. Another way to investigate stability is to analyze (8.12) with the method
described in Section 8.1.2. If a residual generator is classed as stable after this
investigation, it is in this thesis considered as stable. Even if this is possible
in most cases, it would be satisfactory to see if the design method proposed in
Section 8.2.1 produces residual generators that are stable, and this will now be
investigated. The analysis will be performed under the limitation that the residual
generator is linear and can be described by

˙̂x = Ax̂ + Bu + Kr (8.13a)

r = y − C̃x̂ − D̃u. (8.13b)

Note that (8.13b) can be written as (8.12b) with z =
[

u y
]T

, C = −C̃ and
D =

[

−D̃ 1
]

. Now, assume that residual generator (8.13) is based on the linear
model

ẋ = Ax + Bu

y = C̃x + D̃u

valid under H0 if (u, y) ∈ OH0
. With these limitations and the assumption, it will

now be shown that residual generator (8.13) is stable according to Definition 8.3.

Stability Condition 1

Residual generator (8.13) can be rewritten as

˙̂x = (A − KC̃)x̂ + (B − KD̃)u + Ky (8.14a)

r̂ = y − C̃x̂ − D̃u (8.14b)

and according to Section 2.2.1, (8.14a) is asymptotic stable if Re {λi(A−KC̃)} < 0.

Stability Condition 2

Under the assumption that H0 is valid and (u, y) ∈ OH0
, y = C̃x + D̃u, and

residual generator (8.13) can be written as
[

˙̂x
ẋ

]

=

[

A − KC̃ KC̃
0 A

] [

x̂
x

]

+

[

B
B

]

u (8.15a)

r =
[

−C̃ C̃
]

[

x̂
x

]

(8.15b)

With the transformation ξ = x̂ − x, (8.15) becomes

ξ̇ = (A − KC̃)ξ (8.16a)

r = −C̃ξ. (8.16b)
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If Re {λi(A − KC̃)} < 0, the system is asymptotically stable and since (8.16) is
an autonomous system

lim
t→∞

r(t) = 0

Condition 1 and 2 in stability Definition 8.1 is fulfilled and hence (8.13) is a stable
residual generator for (u, y) ∈ OH0

.



Chapter 9

Analysis of Stabilized

Residual Generators

In this chapter, the properties of a linearized residual generator with feedback,
designed according to Section 8.2.1, is analyzed. Both properties in the frequency
and time domain is concerned.

9.1 Derivation of Transfer Functions

To investigate how faults in known signals u and y affects the residual, the faults
must be included in the model. Consider a linearized model valid near an equi-
librium point (x̄, ū), where additive faults affecting u and y are called fu and fy

respectively.

ẋ = Ax + B(u + fu) (9.1a)

y = Cx + fy. (9.1b)

The additive faults affecting u are called actuator faults fu and the faults affecting
y are called sensor fault

ẋ = Ax + Bu (9.2a)

r = y − Cx. (9.2b)

s fy. A residual generator based on (9.1) is A stable residual generator, based on
(9.2), designed according to Section 8.2 is

˙̂x = Ax̂ + Bu + Kr

r = y − Cx̂

⇐⇒

˙̂x = (A − KC)x̂ + Bu + Ky (9.3a)

r = y − Cx̂. (9.3b)
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By using y = Cx+fy and Bu = ẋ−Ax−Bfu from (9.1) and introducing ξ = x̂−x
as the estimation error, residual generator (9.3) can be written as

ξ̇ = (A − KC)ξ − Bfu + Kfy (9.4a)

r = fy − Cξ. (9.4b)

Under the assumption that ξ(t0) = 0 and by using the one-sided Laplace transform,
(9.4) can be transformed to

ξ(s) = (sI − A + KC)
−1

(−Bfu(s) + Kfy(s))

r(s) = fy(s) − Cξ(s)

⇐⇒

r(s) =
[

C (sI − A + KC)
−1

B I − C (sI − A + KC)
−1

K
]

[

fu

fy

]

. (9.5)

From (9.5) we can obtain the transfer functions from actuator faults fu to the
residual r

Grfu
(s) = C (sI − A + KC)

−1
B (9.6)

and from sensor faults fy to the residual r

Grfy
(s) = I − C (sI − A + KC)

−1
K. (9.7)

Note, that the transfer function from, for example, fault fui
to the residual r is

denoted Grfui
.

9.2 Some Properties in the Frequency Domain

Some conclusions can be drawn by studying the properties of a residual generator
in the frequency domain. First the frequency functions

Grfu
(jω) = C (jωI − A + KC)

−1
B

are considered. Note that the limit

lim
ω→∞

Grfui
(jω) = 0

The frequency functions

Grfy
(jω) = I − C (jωI − A + KC)

−1
K

instead have the limit
lim

ω→∞

Grfyi
(jω) = 1

For all stabilized residual generators studied in this thesis, Grfui
(0) > 0 and

Grfyi
(0) < 1. Therefore the corresponding frequency functions Grfui

(jω) and
Grfyi

(jω) have low-pass respective high-pass characteristics.
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It can be noted that if no feedback is used, K = 0 ⇒ Grfy
(jω) = I, this means

that if a residual generator with feedback is used and Grfyi
(0) < I, the ability

to detect the sensor fault fyi
is decreased due to the change in characteristics of

Grfyi
caused by the feedback. The difference in the frequency domain can also be

seen in the time domain and results in that the step-responses for faults fui
and

fyi
will have different characteristics, this is illustrated in the following example.

Example 9.1

Consider an unstable linear residual generator

ẋ = 0.1x + u (9.8a)

r = y − x. (9.8b)

A stable residual generator based on (9.8), designed according to Section 8.2.1 is

˙̂x = 0.1x̂ + u + Kr

r = y − x̂.

If fu is an additive fault in the actuator u and fy an additive fault in the sensor
y, the transfer functions from fu and fy to the residual r are given by

Grfu
(s) =

1

s − 0.1 + K

Grfy
(s) =

s − 0.1

s − 0.1 + K

where K > 0.1 ensures stability. If K = 2.1 is chosen then

Grfu
(s) =

1

s + 2

Grfy
(s) =

s − 0.1

s + 2
.

This means that Grfu
(0) = 0.5 and Grfy

(0) = −0.05. Furthermore, Grfu
(0) > 0

and Grfy
(0) < 1, and Grfu

(jω) have low-pass and Grfy
(jω) high-pass character-

istics. A Bode magnitude plot of Grfu
(s) and Grfy

(s) is shown in Figure 9.1 and
in Figure 9.2 responses for steps in the fault signals fu and fy are shown. It is
clear that the transfer functions have different characteristics and that there is a
significant difference between the two step-responses.
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Figure 9.1. A Bode magnitude plot of Grfu(s) (to the left) and Grfy (s) (to the right).
It is clear that Grfu(s) have low-pass and Grfy (s) high-pass characteristics.
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9.3 Detectability Analysis

As said in Section 3.3.1, a fault f is strongly detectable in the residual r if Grf (0) 6=
0. If K 6= 0, the transfer functions are described by (9.6) and (9.7) and if s = 0
we have

Grfu
(0) = C (KC − A)

−1
B (9.9)

Grfy
(0) = I − C (KC − A)

−1
K. (9.10)

Fault fui
is strongly detectable if

{

C (KC − A)
−1

B
}

i
6= 0

where {v̄}i denotes element i in the vector v̄. Fault fyi
is strongly detectable if

{

C (KC − A)
−1

K
}

i
6= 1.

This means that the feedback gain K can be used to change the detectability
properties for a residual generator. However, there are no guarantees that K can
be chosen so that all faults fu and fy are strongly detectable.

If the residual generator does not use any feedback at all, i.e. K = 0, the
transfer functions (9.9) and (9.10) becomes

Grfu
(0) = −CA−1B

Grfy
(0) = I.

One can see that fault fui
is strongly detectable if

{

CA−1B
}

i
6= 0

and that fault fyi
always is strongly detectable.

9.3.1 Static Gains

If the static gain from a specific fault to residual is close to zero, a constant fault
may be hard to detect, even if the fault is strongly detectable. The static gains
for actuator faults fu is, as said above, given by

Grfu
(0) = C (KC − A)

−1
B

and for sensor faults fy by

Grfy
(0) = I − C (KC − A)

−1
K

The static gain is highly dependent on the choice of feedback gain K. If K = 0,
the static gains are −CA−1B and I for Grfu

and Grfy
respectively. A large K will,
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for example, make Grfu
(0) small and therefore fu less detectable. This means that

the static gains can be modified by using feedback in the residual generator and
this must be considered when choosing the feedback gain K. How the properties
of a residual generator depends on the choice of feedback gain is illustrated with
an example.

Example 9.2

Consider again the model (9.8). In Example 9.1, a stable residual generator was
designed and the transfer functions from faults fu and fy to the residual r are
given by

Grfu
(s) =

1

s − 0.1 + K

Grfy
(s) =

s − 0.1

s − 0.1 + K
.

To ensure stability K > 0.1 must be chosen. How the Bode magnitude plots of
Grfu

(s) and Grfy
(s) and the responses for steps in fault signals fu and fy depends

on the feedback gain K, are shown in Figure 9.3, 9.4 and 9.5.
It is obvious that the static gain is highly dependent on the choice of K and

that there are significant differences in the step-responses for different values of
K. A larger K will make the residual generator fast but less sensitive for constant
faults since the static gain is small. A smaller value on K will result in a larger
static gain but the residual generator will not be that fast and the K may not be
enough to stabilize the residual generator.
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Figure 9.3. A bode magnitude plot of Grfu(s) (to the left) and Grfy (s) (to the right)
for different values of the feedback gain K. The static gain is highly dependent on the
choice of K.
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9.4 Discussion

If the frequency functions Grfy
(jω) have high-pass characteristics, the response

for a sudden fault fy will peak and then decrease to a small value which makes
the fault hard to detect. This is a great disadvantage when using feedback in a
residual generator, and is illustrated in Example 9.1 and 9.2.

The choice of feedback gain K mainly affects the gain from fault to residual
and the speed of the residual generator. A large K will result in fast dynamics
and the eigenvalues to the matrix A−KC will be large and negative. The residual
generator will respond fast to changes in the measurements y but will on the other
hand, be sensitive for disturbances affecting the measurements. A large K will
also make the static gains for the transfer functions Grfu

and Grfy
small and this

will make the residual generator less sensitive for constant faults fu and fy and
hence, decrease the detectability properties.

A small K may, first of all, not be sufficient for stabilizing an unstable residual
generator. It will also lead to slower dynamics of the residual generator so that
the response to faults in the measurements y will be slow. The response to abrupt
faults fu and fy may be slow but the static gains for the transfer functions Grfu

and Grfy
will, on the other hand be larger than with a large K.

There is no guarantee that one specific K will give a stabilized residual gen-
erator, designed according to Section 8.2.1, satisfying properties concerning both
sensor and actuator faults. One approach that can be used, is to design different
stable residual generators based on one given unstable residual generator. As-
sume that we have an unstable residual generator that requires a K > ǫ to ensure
stability. We then design one residual generator with K1 > ǫ with appropriate
properties concerning actuator faults and one residual generator with K2 > ǫ,
K2 6= K1 with appropriate properties concerning sensor faults. This will give us
two stable residual generators

˙̂x1 = f(x̂1, z) + K1r1

r1 = Cx̂1 + Dz

and

˙̂x2 = f(x̂2, z) + K2r2

r2 = Cx̂2 + Dz

Of course this approach can be extended and one residual generator can be de-
signed for every fault that the original residual generator, is sensitive for.



Chapter 10

Evaluation of Stabilized

Residual Generators

For a specific engine model and a set of measurement data, 70 potential residual
generators were found with The Scania method. The stability investigation algo-
rithm, mentioned in Section 8.1.2, discarded 18 of those residual generators due to
instability. Most of those 18 can not be simulated at all, because they make the
simulation software crash. In this chapter, two unstable residual generators with
different properties are considered. One of the residual generators can be simu-
lated, but the corresponding residual is far from zero in the none-faulty case. The
other residual generator can only be simulated for a short time since the residual
approaches infinity in the none-faulty case. The design method proposed in Sec-
tion 8.2.1 is used to stabilize these residual generators which are then simulated
and evaluated.

10.1 Residual Generator 1

One specific residual generator can be simulated but the performance of the resid-
ual is poor. The residual generator have three states, uses eleven known signals
and can be written as

ẋ = f(x, u) (10.1a)

r = y − Cx (10.1b)
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where

x =
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tim

uvgt

































, y = ntrb, C =
[

0 0 1
]

.

10.1.1 Implementation in Simulink

As said in Chapter 4, the Scania Method starts with a Simulink model when
searching for residual generators. From the data structures created during this
procedure, Simulink implementations of all residual generators can be generated.
A Simulink implementation of the residual generator considered here, is shown
in Figure 10.1 - 10.2. When simulating the residual generator, a sequence of
measured data from a truck engine is used. The data is fed to the Simulink model
in Figure 10.1 from the block Insignals u in Figure 10.2(a) where the data is
imported from the Matlab workspace with the block type From Workspace. The
block System f(x,u), is automatically generated from the data structures created
during the extraction of residual generators from the engine model, therefore it
looks a bit messy and is not shown. The integration of the result from the block
System f(x,u) is done in the block Integrators shown in Figure 10.2(b). The
simulation results are exported to the Matlab workspace with the block type To

Workspace.

10.1.2 Design of Stable Residual Generators

By using the method described in Section 8.2, two different stable residual gener-
ators based on (10.1) were designed for comparison. Each step will now be further
described.

Searching for Equilibrium Points

By using the the Matlab function findop and the Simulink implementation
shown in Figure 10.1, the model (10.1a) was searched for equilibrium points. The
initial values of the state n̂trb and all inputs u were picked from available mea-
surement data. Initial values for the states p̂es and p̂cmp were set to 1.2 · 105 and
3.2 · 105 respectively, which was considered as reasonable values. In total, values
from 111 points in the measured data were used and 22 operating points were
found. For example, one equilibrium point called operating point 9, were

x̄9 =
[

1.185·105 3.2·105 9.198·104

]

ū9 =
[

3.331·105 3.167·105 0.1942 2.573 151.4 1232 1.023·105 192.9 339.8 45.51

]

.
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Figure 10.1. Simulink implementation of residual generator 1.
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86 Evaluation of Stabilized Residual Generators

Linearization

The Matlab function linearize was then used to linearize residual generator
1 in all equilibrium points found in the previous step. In operating point 9, the
linearization of (10.1) were

ẇ = Aw + Bv

r = y − Cv

where w = x − x̄9, v = u − ū9,

A =





−2.564 0 −0.2748

0 −97.43 −0.6316

−0.2453 −0.1559 12.44





B =





0.1295 −0.01844 0 7.607 46.58 1.249 2.385 1.1 34.47 107.4

0 96.92 3.33·106 0 0 0 −1.57 1676 0 0

0.1857 0.797 −1.731·105 −328.8 −2013 −53.98 0.4875 −221.9 −1490 −6706





The corresponding eigenvalues are λ1 = −2.5685, λ2 = 12.4460 and λ3 = −97.4305.
Since Re {λ2} > 0, operating point 9 is not a stable equilibrium point. In total, 8 of
the 22 operating points were found to be unstable. Note that this is a bit strange,
since the residual generator is extracted from a stable engine model. Though this
explains why the behavior of the residual is unstable.

Computation of Feedback Gain

Kalman feedback gains were computed with the Matlab function lqe. The covari-
ance matrices Q and R were used as design parameters and two different Kalman
gains were computed for every operating point, one for each residual generator. A
set of Kalman gains were computed with the covariance matrices

Q =





10−3 0 0
0 10−3 0
0 0 10−3



 and R = 1,

the residual generator using those was called residual generator 1a. The other set
of Kalman gains were computed with the covariance matrices

Q =





103 0 0
0 103 0
0 0 103



 and R = 1,

the corresponding residual generator was called residual generator 1b. The covari-
ance matrix N and the matrix G, see Section 2.3.2, used in the calculation was
set to

N =





0
0
0



 , G =





1 0 0
0 1 0
0 0 1







10.1 Residual Generator 1 87

since the system and measurement noises affecting the residual generator were
assumed to be uncorrelated. The Kalman gains computed for operating point 9
were

K9 =





−0.4557
−0.1431
24.8921





for residual generator 1a and

K9 =





−1.6549
−0.2293
46.4355





for residual generator 1b.

Gain Switching

All computed Kalman gains were stored in a matrix, used as a look-up table in
Simulink. As switch signal or look-up key for the table, the input signal δ was
used. The reason for choosing δ is that it has a unique value in all operating
points. The value of δ in every operating point is plotted in Figure 10.3.
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Figure 10.3. The value of the input signal δ plotted for every operating point. The
curve is monotone, which means that δ has one unique value for every operating point
and hence well suited as look-up key for gain switching.

The stabilized residual generators 1a and 1b can both be written as

˙̂x = f(x̂, u) + Kir (10.2a)

r = ntrb − Cx (10.2b)

where i = σ(δ), i ∈ [1, . . . , 22]. Both residual generator 1a and 1b were im-
plemented in Simulink as shown in Figures 10.4 and 10.5. The only difference
between the two residual generators are the matrix containing the feedback gains.
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The blocks Insignals and Integrators can be found in Figure 10.2(a) and
10.2(b). The Simulink block Lookup Table performs a linear interpolation of
the switch signal δ and converts it to an integer i ≤ 22 that specifies the current
operating point. The integer i is then used to select a feedback gain Ki from the
block Direct Lookup Table (n-D).
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Figure 10.4. Simulink implementation of the stabilized residual generators 1a and 1b
described by (10.2).
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Figure 10.5. Simulink implementation of the block Feedback in Figure 10.4.
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10.1.3 Fault-Free Simulation

To evaluate the performance of the three residual generators 1, 1a and 1b in the
fault-free case, they were simulated in Simulink. As input data for the simulation,
non-faulty measurement data from a truck engine were used. The input signals
can be found in Figure 10.6.

Residual Generator 1

The three states p̂es, p̂cmp and n̂trb are shown in Figure 10.7 and the residual,
r = ntrb−n̂trb, in Figure 10.8. By studying the figure, one can see that the residual
is affected by the instability of residual generator 1. If residual generator 1 would
have been stable, the computed state n̂trb (solid line) and measured signal ntrb

(dotted line) in Figure 10.7 would have been more alike. Now, there is a significant
difference between n̂trb and ntrb, which causes the residual to be far away from
zero, as can be seen in Figure 10.8.

Residual Generator 1a and 1b

The three states of residual generator 1a and 1b is shown in Figure 10.9. By
comparing Figure 10.9 with Figure 10.7, one can see that the third state n̂trb in
both residual generator 1a and 1b better follows the measured signal ntrb than the
third state in residual generator 1. In Figure 10.10 the residual is shown for both
residual generators. The same comparison can be done between Figure 10.10 and
Figure 10.8. The residuals from residual generator 1a and 1b are closer to zero
and more ’calm’ than the residual from residual generator 1.

By studying Figure 10.9 and 10.10, one can also see that residual generator 1b
(solid line) better follows the measured signal than residual generator 1a (dashed
line). Furthermore, the residual from residual generator 1b is more ’calm’ and
close to zero than the residual from residual generator 1a. Residual generator 1b
seem to have better properties than residual generator 1a, at least in the fault-free
case.
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Figure 10.6. The input signals u used in the fault-free simulation of residual generator
1, 1a and 1b.
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Figure 10.7. The states p̂es, p̂cmp and n̂trb after the Simulink simulation of residual
generator 1 using fault-free input data. There is a significant difference between the
computed state n̂trb (solid line) and the measured signal ntrb (dotted line), this is a
consequence of the instability of residual generator 1.
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Figure 10.8. The residual r = ntrb − n̂trb after the Simulink simulation of residual
generator 1. Due to the instability, the residual is far away from zero and very ’alive’.
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Figure 10.9. The three states p̂es, p̂cmp and n̂trb after the Simulink simulation of
residual generators 1a (dashed line) and 1b (solid line) using fault-free input data. The
third state computed by residual generator 1b better follows the measured signal (dotted
line) than the state from residual generator 1a.
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Figure 10.10. The residual r = ntrb − n̂trb after the Simulink simulation of residual
generator 1a (dashed line) and 1b (solid line). The residual computed by residual gen-
erator 1b (solid line) is closer to zero and more ’calm’ than the residual from residual
generator 1a.
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10.1.4 Simulation with Gain Faults

To be able to better evaluate the performance of the stabilized residual generator,
Simulink simulations with simulated gain faults in actuators and sensors were
performed. For the case with residual generator 1, there are 10 actuator faults
and one sensor fault to be studied. All actuator faults have been studied but only
faults in actuator wcmp will be considered here. The reason for this, is that the
input signal wcmp have the largest static gain of all input signals. This means
that a static fault in wcmp will be more prominent than a static fault affecting any
other input signal. For more information regarding static gains, see Chapter 9.

The faults were implemented as a 30% gain fault in the signals wcmp (actuator)
and ntrb (sensor). Only single faults were considered and both faults occured
at t = 903 s and lasted for 5 s each. To be able to compare how the three
residual generators 1, 1a and 1b handles faults, the residuals were normalized.
The normalization was done by dividing the residual with the estimated standard
deviation for the non-faulty residual, σNF , defined as

σNF =

√

√

√

√

1

N

N
∑

i=1

(ri − r̄)

where ri is sample number i of the non-faulty residual and r̄ the mean value of the
same residual. Theoretically, this normalization would give the residuals computed
by the three residual generators same variance. Due to peaks in the none-faulty
residuals, see for example Figure 10.10 at t = 878 s, this is not really the case.

In Figure 10.11 the result after the simulation with gain faults in the actuator
and sensor is shown. To show how the residual generators are affected by faults,
the non-faulty residuals are also presented. Magnifications near the time when the
faults occurs is shown in Figure 10.12.

Residual Generator 1

As said earlier, the residual from residual generator 1 does not stay close to zero
in the fault free case due to instability. Despite the instability problems, residual
generator 1 clearly reacts when a fault is present. By studying the Figures 10.11(a),
10.11(b), 10.12(a) and 10.12(b), one can see that the residual switches level when
the faults occur. One common way to see if a fault is present is to compare the
residual with a pre-computed threshold, see [14]. If the residual is very ’alive’ and
not that close to zero in the fault-free case, it can be hard to compute a constant
threshold. This is the case for the residual generator 1 and the computed residual
is not suited for diagnosis even if it clearly reacts on both sensor and actuator
faults.

Residual Generator 1a and 1b

The residual from the stabilized residual generators, 1a and 1b, shown in Figures
10.11(c) and 10.11(d) and Figures 10.11(e) and 10.11(f) reacts a bit different on
faults. As said in Chapter 9, the design approach proposed in Section 8.2.1 will



94 Evaluation of Stabilized Residual Generators

result in that the frequency functions Grfu
(jω) and Grfy

(jω) will have different
characteristics. The response of residual generators 1a and 1b on a sensor fault,
Figures 10.12(d) and 10.12(f), clearly shows that the corresponding frequency func-
tion from fault to residual has high-pass characteristics. How residual generator
1a and 1b reacts on a sensor fault can be a problem. The residual clearly peaks
when the fault occurs but then decreases to a level close to zero, and this can make
the fault hard to detect.

By studying the Figures 10.12(c) and 10.12(e) one can see that there is a
difference in how residual generators 1a and 1b reacts on actuator gain fault. As
said in Section 2.3, a larger Q results in that the residual generator will be more
sensitive for disturbances affecting the measured signal and this is exactly the case
for residual generator 1b, as can be seen in Figures 10.12(e) and 10.11(e). On
the other hand, the large Q results in that the state, n̂trb, in residual generator
1b follows the measurement better than the same state in residual generator 1a,
which can be seen in Figure 10.9. The resulting residual r = n̂trb − ntrb will be
closer to zero for residual generator 1b than for residual generator 1a, which can
be seen in Figure 10.10.

In conclusion, residual generator 1b has a residual close to zero that is very
’noisy’ and this can make a fault hard to detect. Residual generator 1a, is on the
other hand, according to Figure 10.11(c) a bit more ’alive’ but reacts more clearly
on an actuator fault. The way residual generator 1a and 1b reacts on a sensor
fault is a direct consequence of the feedback which gives the frequency functions
from sensor fault to residual high-pass characteristics.

10.1.5 Simulation with Bias Faults

To study how the residual generators reacts on bias faults in actuators and sensors,
simulations in Simulink were performed. Only bias faults in actuator wcmp and
sensor ntrb were considered, with the same motivation as for gain faults.

Only single faults were considered and the faults were implemented as sudden
additive faults in the signals wcmp (actuator) and ntrb (sensor). The size of the
faults was chosen to be 30 % of the mean value of the signal affected by the fault
and the faults both occured at t = 903 s and lasted 5 s each. Furthermore, the
residuals were normalized as described in Section 10.1.4.

In Figure 10.13 the result of the simulation is shown. To show how the residual
generators are affected by faults, the non-faulty residuals are also presented.

By studying Figures 10.13(b), 10.13(d) and 10.13(f) one can see that the re-
sponse of a bias sensor fault is very prominent, especially for residual generator
1. The responses of a bias actuator fault, Figures 10.13(a), 10.13(c) and 10.13(e),
can be compared with the corresponding plots in Figure 10.11. One can see that
the behaviors of residual generators 1, 1a and 1b are almost the same for bias and
gain faults.
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Figure 10.11. Simulation of residual generator 1, 1a and 1b in Simulink, with actuator
and sensor gain faults affecting the measured signals wcmp (actuator) and ntrb (sensor).
The solid lines show the residuals with faults and the dotted lines the residuals in the
fault-free case.
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Figure 10.12. A magnification of Figure 10.11 near the time when the faults occur.
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(f) Sensor bias fault, residual generator 1b

Figure 10.13. Simulation of residual generator 1, 1a and 1b in Simulink, with actuator
and sensor bias faults affecting the measured signals wcmp (actuator) and ntrb (sensor).
The solid lines show the residuals with faults and the dotted lines the residuals in the
fault-free case. The behaviors of the residual generators are almost the same as for gain
faults, see Figure 10.11.
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10.2 Residual Generator 2

Another residual generator can not be simulated at all due to instability problems.
The residual generator have four states, uses eleven known signals and can be
written as

ẋ = f(x, u) (10.3a)

r = y − Cx (10.3b)

where

x =









p̂em

p̂es

p̂cmp

n̂trb









, u =

































pim

wcmp

α
δ

navg

pamb

tamb

tim

uegr

uvgt

































, y = ntrb, C =
[

0 0 0 1
]

.

Since the implementation, design of stable residual generators and simulation were
performed in the same way as for residual generator 1, see Section 10.1, the eval-
uation of residual generator 2 will be briefly described.

10.2.1 Design of Stable Residual Generators

By using the method described in Section 8.2, two stable residual generators based
on (10.3) were designed in the same way described in Section 10.1.2. Totally
19 equilibrium points were found, and 9 of them were unstable. Two different
Kalman gains were computed for every operating point, one set with the covariance
matrices

Q =









10−3 0 0 0
0 10−3 0 0
0 0 10−3 0
0 0 0 10−3









and R = 1

and the resulting residual generator was called residual generator 2a. The other
set were computed with the covariance matrices

Q =









103 0 0 0
0 103 0 0
0 0 103 0
0 0 0 103









and R = 1
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and the residual generator was called residual generator 2b. The covariance matrix
N and the matrix G, see Section 2.3.2, used in the calculation were set to

N =









0
0
0
0









, G =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

For the same reason as for residual generator 1, the input signal δ was chosen as
signal for gain switching. Finally, the stabilized residual generators 2a and 2b were
implemented in Simulink.

10.2.2 Fault-Free Simulation

To evaluate the performance of the three residual generators 2, 2a and 2b in the
fault-free case, they were simulated in Simulink. As input data for the simulation,
non-faulty measurement data were used.

Residual Generator 2

Due to the instability of residual generator 2, the simulation could not be run for
more than 0.7 s. The states p̂em, p̂es, p̂cmp and n̂trb are more or less affected by
the instability and are drifting away, as can be seen in Figure 10.14. There is a
significant difference between the fourth state n̂trb (solid line) and the measured
signal ntrb (dotted line). This causes the residual, r = ntrb − n̂trb to be far away
from zero, as can be seen in Figure 10.15.

Residual Generator 2a and 2b

By using the design method described in Section 8.2.1 to design residual generators
2a and 2b, the clearly unstable residual generator 2 can be simulated without
problems. The four states of residual generator 2a and 2b is shown in Figure 10.16
and the computed residuals in Figure 10.17. As for residual generator 1, residual
generator 2b with the Kalman gains calculated with the covariance matrices related
as Q > R, see Section 10.2.1, produces a residual with better properties. This can
be seen by studying Figure 10.17.

10.2.3 Simulation with Faults

Due to the instability of residual generator 2, simulation with faults could not
be performed because the simulation software crashed. What concerns residual
generator 2a and 2b, the results for both gain and bias fault are similar as for
residual generator 1a and 1b and therefore, no plots is presented.
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Figure 10.14. The states p̂em, p̂es, p̂cmp and n̂trb after the Simulink simulation of
residual generator 2 using fault-free input data. Due to the instability, residual generator
2 can not be simulated for more than 0.7 s.
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Figure 10.15. The residual r = ntrb − n̂trb calculated residual generator 2. Due to
the instability, residual generator 2 could not be simulated for more than 0.7 s and the
residual is far away from zero.
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Figure 10.16. The four states p̂em, p̂es, p̂cmp and n̂trb after the Simulink simulation of
residual generators 2a (dashed line) and 2b (solid line) using fault-free input data. The
fourth state computed by residual generator 2b better follows the measured signal than
the state from residual generator 2a.
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Figure 10.17. The residual r = ntrb − n̂trb from residual generator 2a (dashed line)
and 2b (solid line). The residual computed by residual generator 2b is closer to zero and
more ’calm’ than the residual from residual generator 2a.
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Chapter 11

Conclusions

Methods for Residual Generation

• Methods using extended differential equations as residual equations (DRE)
are equivalent with methods that does not.

• Methods using integral and derivative causality are equivalent for all static
systems.

• Methods using integral and derivative causality are not equivalent for all
dynamic systems. Hence, a method using both causality assumptions would
likely produce a diagnosis system with better detectability properties than
a method assuming one of the causalities.

The Scania Method

• Some of the systems, assumed to be residual generators, found with the
Scania Method are not residual generators according to Definition 3.2, due
to instability. Instability of a residual generator is often caused by weak
robustness of the system.

• From an unstable residual generator, a stable residual generator can be con-
structed with the method described in Section 8.2.

• The method for constructing a stable residual generator affects the sensitivity
of the residual generator and the detectability properties of the diagnosis
system. The properties of the stabilized residual generator highly depends
on the parameters used in the design process.
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