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Abstract

New emission legislations introduced in the European Union and the U.S. have
made truck manufacturers face stricter requirements for low emissions and on-
board diagnostic systems. The on-board diagnostic system typically consists of
several tests that are run when the truck is driving. One way to construct such
tests is to use so called consistency relations. A consistency relation is a relation
with known variables that in the fault free case always holds. Calculation of a
consistency relation typically involves eliminating unknown variables from a set of
equations.

To eliminate variables from a differential polynomial system, methods from
differential algebra can be used. In this thesis, the purely algebraic Gröbner basis
algorithm and the differential Rosenfeld-Gröbner algorithm implemented in the
Maple package diffalg have been compared and evaluated. The conclusion
drawn is that there are no significant differences between the methods. However,
since using Gröbner basis requires differentiations to be made in advance, the
recommendation is to use the Rosenfeld-Gröbner algorithm.

Further, attempts to calculate consistency relations using the Rosenfeld-Gröb-
ner algorithm have been made to a real application, a model of a Scania diesel
engine. These attempts did not yield any successful results. It was only possible to
calculate one consistency relation. This can be explained by the high complexity
of the model.
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Chapter 1

Introduction

This master’s thesis was performed at Scania CV AB in Södertälje. Scania is a
worldwide manufacturer of heavy duty trucks, buses and engines for marine and
industrial use. The work was carried out at the diagnosis group responsible for
the on-board diagnosis (OBD).

1.1 Background

New emission legislations introduced in the European Union and the U.S. have
made truck manufacturers face stricter requirements for low emissions and on-
board diagnostic systems. Among other things, the newly introduced legislations
in the European Union states that faults on the truck affecting the emissions over
a certain level must be detected and the driver must be alerted. In the future,
these legislations will become even stricter and therefore there is a need to improve
the OBD system further.

Faults can for example be faulty sensors measuring the wrong value or leakage
in hoses that will give the engine unexpected properties and thus increase the
emissions. Other reasons to incorporate fault diagnosis is to make the driver
aware of faults that can damage the engine so the truck can be taken to a repair
shop in time. Another benefit is if the OBD system can isolate the fault and then
inform the mechanic about what component that is faulty when the truck arrives
to the repair shop. This way, the need for manual trouble-shooting is reduced to
a minimum and thus saving both time and money for the customer.

The diagnosis system typically consists of several tests that are run while driv-
ing on the computer controlling the engine. A test can for example be to check
whether the cooling water is boiling or not or to compare a measured signal to an
estimation of the same signal.

1



2 Introduction

1.2 Existing Work

Designing a diagnosis system manually is a difficult work that requires a lot of time
and engineering skills. Therefore, several master’s thesis have been performed at
Scania with the purpose of constructing a Matlab-toolbox for automatic gener-
ation of the diagnosis system.

The first step was taken in [7], where a Simulink-model was transformed to
analytical equations, and from these equations, small parts of the engine that
could hypothetically be used as tests were picked out. The parts of the engine
that were picked out were overdetermined and are good candidates to use for tests
in a diagnosis system. This is described more in Chapter 2. Later, in [16] the sets
found in [7] were examined and in the cases were the tests were possible to execute,
they were also implemented. This provided possible tests that could be used in a
diagnosis system. The next step was taken in [6] where the tests were evaluated
more thoroughly and the ”best” tests, i.e. the tests that were most sensitive to
faults in the engine model, were picked out to be a part of the diagnosis system.

1.3 Target Group

The target group is engineers at Scania CV AB and undergraduate science students
with an interest in diagnosis.

1.4 Objectives

The work previously done in [7, 16, 6] has provided a foundation towards a com-
pletely automated design of the diagnosis system for the engine. However, some
problems still remains, for example about the stability of the system. This the-
sis aims to investigate whether methods from differential algebra can be used to
improve the design of the diagnosis system.

1.5 Thesis Outline

This section describes the outline of the thesis.

Chapter 1 gives an introduction to the thesis.

Chapter 2 presents a background to model based diagnosis and structural anal-
ysis.

Chapter 3 starts with a introduction to Gröbner basis and differential algebra.
It also explains the need for a polynomial engine model and describes how
such a model could be made.

Chapter 4 contains a comparison between Gröbner basis and the Rosenfeld-
Gröbner algorithm implemented in the Maple package diffalg.
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Chapter 5 presents the results from the differential-algebraic approach to diag-
nosis for the engine model.

Chapter 6 presents some numerical approaches and shows why these are not
suitable for a diesel engine.

Chapter 7 concludes the thesis and presents some ideas for future work.
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Chapter 2

Model Based Diagnosis

This chapter briefly describes the concept of model based diagnosis. For more
details, see for example [20].

2.1 Model Based Diagnosis

As mentioned in Section 1.1, due to legislation demands, the OBD system is
required to find faults on the diesel engine. One way of finding these faults is model
based diagnosis. The basic idea of model based diagnosis is to use measurements
and a model of the engine. This knowledge is then used to try to decide whether
a fault has occurred or not.

There are several ways to detect faults, one is to calculate consistency rela-
tions1. A consistency relation is a relation between known variables that, in the
fault free case, always holds.

Example 2.1
Consider the system

ẋ = −x + u

y = x
(2.1)

with one state variable x, one known actuator signal u, and one known sensor y.
Using Equation (2.1), the unknown variable x can be eliminated and the consis-
tency relation ẏ + y − u = 0 can be calculated.

When designing a diagnosis system, it is important to know what consistency
relations that might not hold for a certain fault and what consistency relations
that will be unaffected from the fault. A consistency relation that, when a specific
fault occurs, does not hold is said to be sensitive to this fault. When a static
fault can be detected, the consistency relation is said to be strongly sensitive.
Correspondingly, a consistency relation that can only detect dynamic faults is
said to be weakly sensitive.

1Other terms often used in literature are parity relations or analytical redundancy relations.

5



6 Model Based Diagnosis

Example 2.2

Let y be a known sensor signal, u a known actuator signal. Let fu and fy be two
faults modeled as

ẋ = u + fu

y = x + fy

(2.2)

From this, by eliminating the unknown state variable x, the relation

ẏ − ḟy − u − fu = 0 (2.3)

can be calculated. This is not a consistency relation since it contains the unknown
signals fu and fy. The corresponding consistency relation is ẏ − u = 0 and is
strongly sensitive to the fault fu and weakly sensitive to the fault fy since the
consistency relation will not hold when the fault fy has a non-zero derivative
while if fy is a constant fault, the consistency relation will still hold.

2.1.1 Realization of Consistency Relations

Consistency relations normally consist of measured signals, but also time deriva-
tives of these that are normally not known. Estimating the derivative of a noisy
signal can be difficult, and if it is a high order derivative, almost impossible [20].
Because of this, consistency relations usually has to be realized on state-space
form. In the linear case, this problem is already solved by adding dynamics to the
consistency relation, see for example [20, ch. 5] for details.

In the nonlinear case, the problem is not that easy, but attempts have been
made in for example [10] to extend the procedure to a class of polynomial functions.

There exists methods for estimating the derivative, such as lowpass-filtering
and using difference quotients or curvefitting using polynomials and then analyt-
ically differentiate these. However, since realization of consistency relations has
not been considered in this thesis, this will not be discussed further.

2.2 Structural Analysis

With a large model, such as an engine model with 150 equations, it is difficult to
know what combinations of equations to use when starting to calculate consistency
relations. For this purpose, structural analysis has been shown to be useful at
Scania. Structural analysis only considers the structure of what variables are part
of which equations, the analytical relations are completely left out. This gives
a much easier system to analyze. The information on which variables that are
included in which equations is often represented in a biadjacency matrix, where
an ”x” in position (i, j) represents that variable j is included in equation i. This
is best illustrated with an example.
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Example 2.3

Consider the model

e1 : x3
1 = cos x2

e2 :
√

x2 = 5ex2 + u1

e3 : y1 = x1

e4 : y2 = x2

with four equations, two unknown variables x1 and x2, one known actuator signal
u1 and two sensor signals y1 and y2. The structural representation of this system
can be represented as the following biadjacency matrix.

Equation Unknown Known
x1 x2 u1 y1 y2

e1 x x
e2 x x
e3 x x
e4 x x

This representation can now be used to analyze the system structurally.

The purpose of using structural analysis in diagnosis is that with this represen-
tation, it is much easier to pick out overdetermined equation sets than if the
complete analytical relations were considered. These sets can, hypothetically, lead
to consistency relations.

Definition 2.1 (Structurally overdetermined set, [17]) A set of equations
E is said to be structurally overdetermined with respect to the set of variables X
iff

|E| > |varX,E(|) (2.4)

With words, Definition 2.1 means that a system is structurally overdetermined if
there are more equations than unknown variables.

Structurally overdetermined sets are basically sets where, hypothetically, all
unknown variables can be eliminated. However, when calculating a consistency
relation, only sets of equations with one more equation than unknown are nec-
essary. Therefore, using the definition of structurally overdetermined, minimally
structurally overdetermined (MSO) sets are defined.

Definition 2.2 (Minimally structurally overdetermined set, [18]) A struc-
turally overdetermined set is a minimally structurally overdetermined (MSO) set
if none of its proper subsets are structurally overdetermined.

MSO sets are basically sets with one more equation than unknown where every
unknown variable can be eliminated. If an equation is removed from the set, this
is no longer possible. The difference between an MSO set and a set of equations
with one more equation that unknown is illustrated in the following example.
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Example 2.4

The set of equations

e1 : x1 = x2 + u

e2 : x2 = cos x2 + 2u

e3 : y = sin x2

where x1 and x2 are unknown variables, u is a known actuator and y is a known
sensor signal is structurally overdetermined according to Definition 2.1. Also,
it has one more equation than unknown. However, it is not an MSO set since
the proper subset of equations {e2, e3} is structurally overdetermined. The set
{e2, e3} is however an MSO set according to Definition 2.2 since neither e2 nor e3

are structurally overdetermined.

MSO sets contain exactly enough information to produce a consistency relation,
but it is far from certain that it is possible to eliminate the unknown variables.
In this thesis, the Matlab implementation described in [7] has been used to find
all possible MSO sets. The implementation takes a Simulink-model as input and
transforms it into a structural model. The implementation then finds all possible
MSO sets and returns these. The algorithm used is based on graph-theoretical
methods and can found in [17].

2.2.1 Derivatives in Models

In structural analysis, derivatives of signals can be handled in two ways. Either by
treating ẋ and x as the same variable or by treating them as two different variables.
If the variables are treated as two different variables, the structural model is called
a differentiated-separated structural-model (DSSM) [17] and if the variables are
treated as the same variable the structural model is called a differentiated-lumped
structural-model (DLSM). In the previous work done at Scania [7], only DLSM
models were used. The difference between the two models are illustrated in the
following example.

Example 2.5

The model

e1 : ẋ1 = −x1 + u

e2 : y = x1

is as a DSSM represented as

Equation Unknown Known
ẋ1 x1 u y

e1 x x x
e2 x x

while as a DSLM it is represented as
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Equation Unknown Known
x1 u y

e1 x x
e2 x x

Here it can be noted that the model structurally represented as a DSLM is an
MSO set and represented as a DSSM set it is not. To get an MSO set with
DSSM representation, e2 has to be differentiated. This would give the structural
representation

Equation Unknown Known
ẋ1 x1 u y ẏ

e1 x x x
e2 x x
ė2 x x

In Example 2.5, when the model was represented as a DSSM, some equations had
to be differentiated if an MSO set should be found. This is interesting and will be
discussed in Chapter 4.



10 Model Based Diagnosis



Chapter 3

Gröbner Bases and

Polynomials

This chapter describes some theory that can be used to derive consistency relations.

3.1 Differential Gröbner Bases

Calculating a consistency relation typically includes eliminating unknown variables
from a set of equations. In the elimination process, methods from differential alge-
bra can be used. Given a set of non-differential polynomial equations, a Gröbner
basis can be calculated to eliminate the unknown variables. Non-differential means
that x and ẋ are treated as completely different variables. Similar to Gaussian
elimination for linear systems, when calculating a Gröbner basis, variables are
eliminated and the result is a set of equations with a sort of ”triangular” struc-
ture, i.e. the first equation contains all variables, the second equation might contain
an equal number of equations as the first or one less and so on. The result is a
polynomial basis that, in the usual case, contains more equations than the original
basis but that spans the same space as the original equations, i.e. they have the
same solution set.

Theoretically such reduction always terminate. However, in practice, for exam-
ple the limited memory of a computer makes it sometimes impossible to calculate
a Gröbner basis for some sets of equations. For an introduction to Gröbner bases
and how to compute these see [4, 5].

Example 3.1

Given a linear MSO set

x = u

y = x
(3.1)

11



12 Gröbner Bases and Polynomials

that should hold in the fault free case, and using Gaussian elimination to eliminate
the unknown variable x, we get

x − u = 0
− u + y = 0

(3.2)

The MSO set could be seen as a linear subspace in R3 that, when the model
is correct, we will never leave. The consistency relation y − u = 0 could just be
seen as a base vector instead of y − x = 0. The difference is that this base vector
is known, and checking if the consistency relation holds could be seen as a test if
the model still is in the same subspace as in the fault free case.

Now, compare instead the nonlinear model

x2 + y2 + u2 = 1

x + y = 1
(3.3)

where the first equation describes the unit sphere and the second describes a plane.
The space spanned by the two equations is a circle in R3. By calculating a Gröbner
basis, the result will be

x + y = 1

2y2 − 2y + u2 = 0
(3.4)

The second equation can be rewritten as

2y2 − 2y + u2 = 0 ⇐⇒
(

y − 1
2

1
2

)2

+

(

u
1√
2

)2

= 1
(3.5)

which, in R3, is an elliptic cylinder. The space spanned by Equation (3.3) and
Equation (3.4) can be seen in Figure 3.1. The original circle is expressed as the
intersection of a plane and an elliptic cylinder. Checking if the consistency relation
still holds could be seen as checking if we still are on the known elliptic cylinder.

There are limitations with Gröbner bases, for example they only handle poly-
nomials and can be very computer intense. Another problem is that they do not
handle derivatives and therefore some equations need to be differentiated by hand.
Using methods from differential algebra, the problem with differentiated variables
can be handled by the diffalg [14] package in Maple. The diffalg package
can handle polynomial systems, with algebraic as well as partially differentiated
variables.

The diffalg package mainly uses the Rosenfeld-Gröbner algorithm to cal-
culate a triangular differential basis. The algorithm consists of two steps, first
the differential step which ”reduces differential problems to purely algebraic ones”
which is the ”Rosenfeld”-part of the algorithm [2]. The second step is the ”purely



3.1 Differential Gröbner Bases 13

−1
−0.5

0
0.5

1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

u
y

x

(a) The spaces spanned by Equa-
tion (3.3).

−1
−0.5

0
0.5

1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

u
y

x

(b) The spaces spanned by Equa-
tion (3.4).

Figure 3.1: The manifold from Equation (3.3) represented as the intersection of a
plane and a sphere and as a plane and an elliptic cylinder.

algebraic step” which originally performed Gröbner bases calculations to calculate
a triangular base for the system, hence the name Rosenfeld-Gröbner. It should
here be pointed out that the algorithm does not first differentiate the whole system
and then perform the algebraic calculations but rather iterates between the two
steps. Later versions and implementations of the algorithm uses special properties
of the system so that the use of Gröbner bases is no longer necessary. These are
faster and more computationally efficient [2]. The Rosenfeld-Gröbner algorithm
was first presented in [3] but a short introduction can be found in [23].

3.1.1 Ranking

A ranking is a way to decide in what order variables should be eliminated with
diffalg, the corresponding term for Gröbner bases is called variable ordering.
Several rankings exist, but the most interesting for diagnosis are pure lexicographic
ordering and elimination ordering. Pure lexicographic ordering means that a list is
taken and diffalg or the Gröbner basis command tries to eliminate the variables
in the list in the order they appear. For example if the list [x1, x2, x3] is given and
pure lexicographic ordering is specified, Maple first tries to eliminate x1, then x2,
and last x3. Elimination order instead lets the user specify two sets where each
variable in the first set should be eliminated before any variable in the second set,
i.e. if ([v1, . . . , vn], [w1, . . . , wp]) is given and elimination ordering is specified, this
tells Maple that it should eliminate all the variables vi before any variable wj ,
if possible. This makes it good to use to calculate consistency relations since the
ranking can be specified as (X,Z) where X is the set of all unknown variables and
Z is the set of all known variables in the equations of the MSO set.

In this thesis, the ranking that x1 should be eliminated before x2 is denoted
x1 ≺ x2. There also exist other rankings where it is possibly to specify for example
that x2

1 ≺ x2
2 ≺ x1 ≺ x2 or, for diffalg, that any derivative of a variable should

be ranked higher than a non-differentiated variable.
An example on how to compute a consistency relation using differential Gröb-
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ner bases in Maple can be found in the following example.

Example 3.2

We have the system

e1 : ẋ1(t) = x1(t) + 2x2(t)

e2 : ẋ2(t) = x2
2(t) + u(t)

e3 : y(t) = x1(t)

To compute a consistency relation with diffalg in Maple the following can be
entered

> with(diffalg):

> e1:= diff(x1(t),t)-x1(t)-2*x2(t):

> e2:= diff(x2(t),t)-x2(t)^2-u(t):

> e3:= y(t)-x1(t):

> E := [e1,e2,e3]:

> R := differential_ring(ranking=[x1,x2,y,u],

> derivations=[t],notation=diff):

> G := Rosenfeld_Groebner(E, R):

> C := equations(G):

The first line loads the diffalg package so the commands used becomes available.
The next 4 lines defines the equations. The diffalg package as well as the Gröbner
basis command takes the ingoing equations and assumes these are equal to 0. Next,
R is defined using the command differential_ring.

The command differential_ring takes three arguments. The first specifies
the ranking. In this example, ranking=[x1,x2,y,u] specifies pure lexicographic
ordering, i.e. the variables are ranked as x1 ≺ x2 ≺ y ≺ u. The next argument,
derivations=[t] specifies that t is the only variable that we will differentiate with
respect to. The last argument to differential_ring specifies that differentiations
are notated as diff(x(t),t).

The second last line solves the problem and calculates a triangular basis from
the equations in E and the specifications in R. The last line extracts the equations
and from C we can now extract the consistency relation 2ÿ(t) − 2ẏ(t) − ẏ(t)2 +
2ẏ(t)y(t)− y(t)2 − 4u(t) = 0. This consistency relation can now be used to detect
faults in the system.

As mentioned earlier, eliminating all unknown variables using diffalg or using
the Gröbner basis algorithm can be a very computer intense task. The runtime
of the Gröbner basis algorithm for the worst case scenario is O

(
22n)

where n is
the number of the variables [1]. The complexity of the Rosenfeld-Gröbner algo-
rithm is not yet known [12], but since new unknowns are continually introduced
in differential algorithms, the complexity is even worse than for the Gröbner basis
algorithm [23, p. 13].



3.2 Polynomial Representation of Nonlinearities 15

It should here be noted that, even if the complexity of the Rosenfeld-Gröbner
algorithm was known, these algorithms solve different problems and the complex-
ity can not be compared, at least not directly. This is because the Gröbner basis
algorithm does not handle derivatives and some equations needs to be differen-
tiated leading to a greater number of equations. To calculate the consistency
relation in Example 3.2 with diffalg, it was sufficient to use the set of equations
{e1, e2, e3}. However, if the Gröbner basis algorithm should be used, the set of
equations {e1, ė1, e2, e3, ė3, ë3} must be used, i.e. six equations compared to the
three equations that diffalg needed. This is further investigated in Chapter 4.

3.2 Polynomial Representation of Nonlinearities

Since diffalg and Gröbner bases only handle polynomial nonlinearities, other
nonlinearities have to be replaced by polynomials. The nonlinearities in the engine
model were handled differently depending on the sort of nonlinearity.

3.2.1 Fractions

Fractions were handled by finding the least common denominator of the equations
and multiplying with that to change the equation. E.g. the equation

x1 +
x2

x1
= x3 (3.6)

would be rewritten as

x2
1 + x2 = x1x3 (3.7)

3.2.2 Lookup Tables

In the model of a Scania engine, many lookup tables are used. A lookup table can
be seen as a function that takes one or more input signals x and numerically maps
these to an output y, i.e. y = f(x) where f is defined by numerical values. When
approximating the lookup table with a polynomial, the first step would be to choose
what terms that should be included. This will be discussed in Section 3.3. If for
example the lookup table has only one input and N terms should be included, the
estimated output, ŷ, can then be written as ŷ = a0+a1x+. . .+aNxN =

∑N
j=0 ajx

j .
Let xi and yi denote values of x and y that yi = f(xi). Then the goal is to minimize
the sum

∑n
i=0(yi − ŷi)

2, i.e. minimize the 2–norm of the estimated error. To do
so, create the matrices A, z and b where

A =






1 x1 x2
1 · · · xN

1
...

...
...

. . .
...

1 xn x2
n · · · xN

n




 , z =






a0

...
aN




 , b =






y1

...
yn




 (3.8)
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Now the overdetermined linear equation system Az = b can be formed and
solved in a least square sense1 as z = (ATA)−1AT b. Lookup tables with more
than one input can be treated in the same way by changing the matrix A so it
consists of polynomials in all variables as well as mixed terms.

3.2.3 Square Roots

Square roots can be eliminated in four ways

• By doing the same procedure as in Section 3.2.2 and ”guessing” a degree of
the polynomial needed.

• By doing a Taylor expansion around a working point and guessing the needed
number of terms.

• By moving everything but the square root to one side of the equations and
squaring both sides.

• By introducing a help variable, e.g. transforming

√
x1x2 = x3 (3.9)

to the equation system

s1x2 = x3

s2
1 = x1

(3.10)

The first two methods are only approximations of the true functions and were
therefore not used. The third approach was used if the square root already was
the only term on one side of the equation, since that would keep the number of
equations lower than the fourth. If not, the fourth approach was used. Note
that using a help variable or squaring the equations to get rid of square roots
does not give an equivalent model since in Equation (3.9),

√
x1 is required to be

non-negative while in Equation (3.10) no such restriction exist on s1.

3.2.4 Other Analytical Functions

Analytical functions can be treated as either of the first two methods in Sec-
tion 3.2.3. In this thesis the first of the two methods were used since that gives
an equally good approximation over the whole working area while a Taylor series
is a very good approximation close to the working point but becomes worse the
further away from the working point the signals are.

1It’s not necessary to calculate the inverse of ATA, it is faster and more numerically stable to
solve the equation system with Gaussian elimination. In Matlab this can be done by typing x

= A\b.
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3.3 Order of Polynomials

The order of the polynomials chosen, greatly impacts the fit of the model. A
higher order always gives a better fit, but can lead to overly complex models. To
avoid this, the model complexity can be weighed in together with the model fit.
One of the most used methods is the Akaike information criterion [11]

AIC = min
d,θ

(

1 +
2d

N

) N∑

t=1

ǫ(t, θ)2 (3.11)

where N is the number of samples, θ are the estimated parameters, d is dimension
of θ and ǫ is the prediction error.

With only one input, it’s generally easy to choose what terms to add. If the
fit is to low, add the next higher order term and try again. If there is two or
three inputs, it is not that easy. One way to do this is to use a Genetic algorithm
approach such as the one used in [21]. Genetic algorithms is an optimization
technique that is inspired by Darwin’s theory of evolution and the Survival of the
fittest. The algorithm starts with the initialization of a population, in literature
often called chromosomes, which are possible solutions to the optimization prob-
lem. The chromosomes are often, but not always, coded as binary strings where
each bit represents a certain property of the chromosome. A ”1” means the chro-
mosome has that specific property and a ”0” means it does not. If the algorithm is
used for system identification, a natural coding would be that each bit of the chro-
mosome represents a term in the expression. For example the short binary string
”1010” could mean that this chromosome represents a model that has a constant
and a quadratic term but no linear or cubic term. After the chromosomes have
been initialized, they are evaluated with respect to some fitness function. This
fitness function can take several different things in account, for system identifica-
tion this fitness function can for example take model complexity and model fit. If
chromosome i is denoted ci, the fitness function could be chosen as

f(ci) = fcomplexity(ci) + kfitffit(ci) (3.12)

where kfit is a parameter that can be used to weigh model complexity against the
fit of the model. As an example, ffit could be the prediction error of the model
and fcomplexity could be defined as

fcomplexity(ci) = kdegreen(ci) (3.13)

where kdegree is a constant and n is the total degree of the terms. Other ways of
defining the complexity could of course be used, such as giving mixed terms higher
penalty than terms with only one variable in.

Next is the reproductive step, where the chromosomes from the old generation
reproduce. Typically, a better fitness gives a bigger the chance to reproduce. Here
it is possible to implement several different enhancements to the reproduction part
of the algorithm, such as mutation and elitism that are described in Algorithm 3.1.
The new generation is then evaluated and then the algorithm starts over again.
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The algorithm runs until some condition is fulfilled, for example a certain limit
on the fitness or after a predefined time. It is important to point out that this
algorithm does not necessarily give the optimal solution, but rather a ”close”
to optimal solution. The algorithm is described in Algorithm 3.1. One drawback
using genetic algorithms is that the runtime is nondeterministic, i.e. there is no way
to know in advance how long time the algorithm needs to run until a satisfactory
result is achieved. However, since this is can be done offline this is not a problem
in this case.

Algorithm 3.1 Genetic algorithm
Start Initialize populations of N chromosomes ci.
while Termination condition is false do

for all i do
Evaluate fitness f(ci) for chromosomes i

end for
Reproduce Create a new generation by using the following steps

1. Selection: Select the individuals that will be allowed to reproduce. This
is done according to some scheme, for example better fitness gives better
chance to reproduce.

2. Crossover: Combine the selected chromosomes to form the new generation.

3. Mutation: With some probability, mutate the new offspring.

4. Elitism: Add the best individuals from the old generation to the new gen-
eration.

5. Replace: From now on, use the new generation in the algorithm.

end while

To illustrate the algorithm, a small example is seen in Example 3.3.

Example 3.3

As an example, one of the lookup tables used in the engine model was approx-
imated by using Algorithm 3.1. The lookup table has two inputs, from now on
called x and y, and one output, called z. It was decided that the total degree of
each term would not be allowed to be higher than 5. This resulted in a chromo-
some with 21 bits. Below is how the chromosome was decoded with bit 1-7 in the
first row, bit 8-14 in the second row and bit 15-21 in the last row.

1 x x2 x3 x4 x5 y
y2 y3 y4 y5 xy xy2 xy3

xy4 x2y x2y2 x2y3 x3y x3y2 x4y

This means that a chromosome with the first three bits as ones and the 18
remaining as zeros would mean that the lookup table should be approximated as
a0 + a1x + a2x

2.



3.4 Interesting Sections 19

As fitness function, Equation (3.12) was used with Equation (3.13) as the
complexity function. Algorithm 3.1 was used to find what terms that should
be used. It is implemented in the Matlab toolbox Genetic Algorithm and

Direct Search Toolbox.
The algorithm converges in under 20 seconds, resulting in a polynomial with 7

terms. The resulting polynomial was

a0 + a1x
2a2y + a3y

2 + a4xy + a5x
2y2 + a6x

3y2 (3.14)

In Figure 3.2 the original lookup table, the approximated lookup table as well as
the absolute error can be seen. One can see that the error is quite large at the
two peaks in the corners. One way to reduce the height of these peaks would be
to increase kfit but that would result in a more complex expression.
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Figure 3.2: The lookup table used in Example 3.3.

3.4 Interesting Sections

When representing a function as a polynomial it is important to think of what part
of the function it needs to be valid for. Since a consistency relation could be seen
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as a test if the model is valid or not (see Section 2.1), the polynomial model needs
to be a good approximation to the original model for all possible values the signals
might take since, if the signals take values that have not been accounted for in the
modeling process, the OBD system would give false alarms since the model would
(probably) not be valid for these values. This implies that to make a polynomial
model of an engine that is accurate over a large working area, the complexity of the
polynomials will be high and that a lot of data is needed. However, this problem
has not been addressed and is considered out of scope for this thesis.

3.5 An Example of Finding Consistency Relations

Using diffalg

This section demonstrates, in an example, the possibilities of the method with
structural analysis and differential Gröbner bases. The example is taken from [8]
and is two coupled water tanks, with two sensors measuring the water level in
the tank and two sensors measuring the outflow of the tanks. The process also
has an actuator which controls a pump that fills the upper tank. The equations
describing the process are

ḣ1 = d1u − d2

√

h1

ḣ2 = d3

√

h1 − d4

√

h2

y1 = h1

y2 = h2

y3 = d5

√

h1

y4 = d6

√

h2

(3.15)

where di are model parameters, u is the control signal, yi are the measurement
signals and hi are the height in the tanks. To get a polynomial model of the
system, two help variables need to be introduced to avoid the square roots, see
Section 3.2.3. The new model with polynomials is

e1 : ḣ1 = d1u − d2s1

e2 : ḣ2 = d3s1 − d4s2

e3 : s2
1 = h1

e4 : s2
2 = h2 (3.16)

e5 : y1 = h1

e6 : y2 = h2

e7 : y3 = d5s1

e8 : y4 = d6s2

Note that the model in Equation (3.16) is not equivalent with the model in Equa-
tion (3.15) since in Equation (3.15), it is required that

√
hi is non-negative but
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in Equation (3.16) both positive and negative values on si satisfies the equations.
The corresponding biadjacency matrix is seen in Table 3.1.

Equation Unknown Known
h1 h2 s1 s2 u y1 y2 y3 y4

e1 x x x
e2 x x x
e3 x x
e4 x x
e5 x x
e6 x x
e7 x x
e8 x x

Table 3.1: The biadjacency matrix for Equation (3.16).

From this structural model it is possible to extract 17 MSO sets, all of which are
possible to eliminate the unknown variables from. Using diffalg, the consistency
relations were calculated in under 30 seconds. The consistency relations are
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−d1d3d6u + d2d4y4 + d2d6ẏ2 + d3d6ẏ1 = 0 (3.17r)

Of the 17 consistency relations that were calculated, only two consisted of non-
differentiated signals. To evaluate the consistency relations, derivatives were es-
timated by curve-fitting a polynomial of degree three in a neighborhood around
the point where the derivative was estimated. After that the polynomial was
analytically differentiated, i.e.

1. For each sample, tn, the derivative should be estimated in, pick out samples
around tn and denote that batch of data t = {tk}, k = n − m, . . . , n + m

2. In a least square sense, see Section 3.2.2, estimate the coefficients to the
polynomial y(t) = a0 + a1t + a2t

2 + a3t
3
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3. Estimate the derivatives in tn, i.e. save ẏ(tn) = a1 + 2a2tn + 3a3t
2
n and

ÿ(tn) = 2a2 + 6a3tn

Estimating the derivatives like this is a computer-intense task that can probably
not be used in an online application. However, for offline estimation it works fine.

The only faults considered in this example are additive faults on the sensors
yi and the actuator signal u. It is obvious that the consistency relations sensitive
to a fault in sensor yi will be the consistency relations that include the signal yi.
The same goes for faults in the actuator signal u. It is also easy to verify that the
consistency relations with only ẏi or ÿi and no yi will only be weakly sensitive to
faults in yi. The sensitivity to faults of the consistency relations are summarized
in Table 3.2.

Consistency relation Fu Fy1
Fy2

Fy3
Fy4

c1 1 1
c2 1 1
c3 1 1
c4 1 1
c5 1 1
c6 1 1
c7 1 1
c8 1 1
c9 1 1
c10 1 1
c11 1 x 1
c12 1 x 1
c13 1 x 1
c14 1 x 1
c15 x 1 1
c16 1 x 1
c17 1 x x 1

Table 3.2: Sensitivity to faults of consistency relations. A ”1” means the consis-
tency relation is strongly sensitive to the fault and an ”x” means the consistency
relation is weakly sensitive to the fault.

The system was simulated and a simple proportional controller was used to
control the system. The reference signal with the control signal as well as the
sensor signals with no measurement noise can be seen in Figure 3.3. To illustrate
the correctness of the consistency relations, the system was simulated with no
faults and no measurement noise at all. The result can be seen in Figure 3.4.
It can be noted that the consistency relations that are farest away from zero
are consistency relation 7, 10 and 16, that are shown in Equations (3.17g), (3.17j)
and (3.17q) are the only ones that contains second order derivatives. This suggests
that the estimation of second order derivatives are not good.

To validate that the consistency relations would be possible to detect faults, it
was evaluated how well they responded when faults were added in the simulations.
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no noise added.
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Figure 3.4: The consistency relations in the fault free case with no measurement
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To make the evaluation more realistic, some measurement noise was added as well.
To reduce the influence from the added noise, the measurement signals were low-
pass filtered. Faults were added as a ramp with slope 1 from 0 at time t = 35 s
up to the maximum value, and then removed as a ramp at time t = 75 s.

All consistency relations responded as they should according to Table 3.2.
However, some consistency relations responded stronger than others. For the sake
of brevity, only consistency relation 14 is shown simulated with faults in Figure 3.5.
From Table 3.2 it can be seen that the consistency relation should be strongly
sensitive to Fu and Fy4

and be weakly sensitive to Fy1
. In Figure 3.5, this can be

verified.
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Figure 3.5: Consistency relation 14 with faults.
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Chapter 4

A Comparison between

diffalg and Gröbner Bases

As described in Chapter 3, both diffalg as well as Gröbner bases can be used to
calculate consistency relations for polynomial systems. In this chapter, an attempt
to investigate which method that most suitable to use for diagnosis purpose, i.e.
is it better to directly use diffalg for the differential system, or is it better
to ”manually” differentiate the system and then use Gröbner basis? I.e. which
method is capable of solving the most cases?

In the introduction in [19], it is stated that differential algorithms is to prefer
over purely algebraic algorithms such as the Gröbner basis algorithm. However,
[19] regards more general systems with partial derivatives in many variables instead
of, as in this thesis, only time derivatives. Therefore, an investigation is of interest.

4.1 Differentiating for Gröbner Bases

To calculate a consistency relation using Gröbner basis, usually some equations
needs to be differentiated before the calculations can start. The question is which
equations need to be differentiated and how many times? In Example 2.3 only
one equation needed to be differentiated while in Example 3.2 it was necessary
to differentiate one equation once and another equation twice for a total of three
differentiations. In [18, p. 204] it is shown that there is an upper bound for how
many times each equation needs to be differentiated. Before this bound is given,
some variables needs to be introduced.

Starting with a set of equations E, let X denote the set of variables in E where
x and ẋ are considered to be the same variable structurally. Then let X̄ denote
the set of variables in E where x and ẋ are considered to be different variables.
Let α(x) be the highest order derivative of x in E and let ξ be defined as in
Equation (4.1).
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ξ =
∑

x∈X

(1 + α(x)) (4.1)

The number ξ can be seen as an upper limit of the number of variables in X̄
included in E. The following example demonstrates X, X̄ and ξ for a small set of
equations.

Example 4.1

From the set of equations E

E =







ẋ1 = −x1 + x2

ẋ2 = −x2 + u

y = x2

(4.2)

we get X = {x1, x2} and X̄ = {x1, x2, ẋ1, ẋ2}. We also get α(x1) = 1 and
α(x2) = 1 since the highest order derivatives of both x1 and x2 is one. Using
Equation 4.1 we get ξ = 2 + 2 = 4.

Since the engine models used at Scania are implemented in Simulink on state
space form, only first order derivatives are used. This means α is either 1 if the
differentiated state variable is a member of the MSO set or 0 if it is not. Further,
this implies that ξ is the number of unknowns plus the number of differentiated
variables in the MSO set. This means the we can rewrite ξ to

ξ = |X| + NdiffX
(4.3)

where NdiffX
is the number of differentiated signals in X.

A theorem from [18] is now presented.

Theorem 4.1 Given an MSO set E with respect to X, an upper limit m for the
number of differentiations that are needed to obtain an MSO set with respect to
X̄ is given by

m = 1 + ξ − |E| (4.4)

Proof: A proof is available in [18]. �

The bound m can, using Equation (4.3) and Equation (4.4), be rewritten as

m = 1 + ξ − |E|
= 1 + |X| + NdiffX

− |E|
= NdiffX

(4.5)

The last step in Equation (4.5) comes from the fact that E is an MSO set and has
therefore one more equation than unknown. This means that it is not necessary



4.2 Evaluating the Methods 29

to differentiate each equation more than the number of differentiated signals in
E. This is only a theoretical upper limit though, in practice, it is usually not
necessary to differentiate that many times.

Further, in [18], an algorithm is presented that, given an MSO set where x
and ẋ are considered the same variable, results in an MSO set where x and ẋ are
considered different variables. It is also shown that the equations in the new MSO
set are of minimal order. With minimal order, it is meant that the number of
differentiations of the equation is minimal. It is also shown that it is not possible
to lower the number of differentiations for one equation and increase the number of
differentiations of other equations, i.e. it is not possible to differentiate differently
and get a consistency relation with first order derivatives of two signals instead of
one second order derivative of one signal. The algorithm is shown in Algorithm 4.1.

Algorithm 4.1 Get differentiated MSO set
Input set of equations E.
M := E
while M+ = ∅ do

E := dE
dt

M := M ∪ E
end while
return M+

In words, Algorithm 4.1 can be described to take an MSO set of equations E
with respect to X. If E is already overdetermined with respect to X̄, then there is
nothing more to do. Else differentiate all equations once. If this gives an overde-
termined part with respect to X̄, take that part out and end the algorithm. If not,
keep differentiating until an MSO set with respect to X̄ is found. Theorem 4.1
guarantees that the algorithm always terminates in a finite number of iterations.
It should also be pointed out that the set of equations E used in the algorithm
does not have to be polynomials but can be any expressions.

4.2 Evaluating the Methods

To evaluate whether Gröbner basis or diffalg should be used for differential poly-
nomials, equation sets that were MSO sets were randomized using the following
design parameters:

Ndiff: Number of unknown variables appearing as differentiated variables.

Nalge: Number of unknown variables appearing only non-differentiated.

Mcompl: The probability of each term to be nonlinear in the MSO sets. Mcompl =
0 results in a completely linear system whereas Mcompl = 1 results in only
nonlinear terms. The nonlinear terms can be both mixed terms as well as
polynomial terms with a maximal degree of 3.
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Variables were randomized in Ndiff +Nalge equations with the probability of a term
to be nonlinear of Mcompl. In order to increase similarity to the engine models
used at Scania, the differentiated variables where added as ẋi = f(x) where f is a
polynomial function. In each equation, the number of terms was also randomized
between two and five. To get an MSO set, one extra equation was added as a
measurement equation looking like y1(t) = xi(t), i ∈ {1, . . . , Ndiff + Nalge}. Added
to that, in some algebraic equations, actuator signals were added to have some
more known signals in the system. This algorithm does not necessary generate an
MSO set of desired order since there might be smaller parts of the set that are
also structurally overdetermined. However, when the output was generated, the
system was checked and if it was not an MSO set of decided order, the algorithm
was run again until it really produced an MSO set of decided order. This is not
efficient, however, for smaller values of Ndiff and Nalge, the algorithm proved to be
sufficient.

4.2.1 Difference in Number of Equations

As stated in Section 4.1, the number of equations needed to calculate a consis-
tency relation depends on whether diffalg or Gröbner basis should be used. Since
Gröbner basis only handles algebraic expression, equations have to be differenti-
ated. In this section, a small investigation is made to estimate how many more
equations that are necessary in practice when using Gröbner basis.

In order to do this, systems where randomized according to the parameters
in Section 4.2. To get a quantitative estimation, each set of different parameters
where randomized multiple times and a mean was taken to reduce the influence
from the random factor. The total number of equations needed for Gröbner basis,
NGröbner, was found using Algorithm 4.1 and is shown in Figure 4.1 together with
the maximum bound given by Theorem 4.1.

In the figure, the number of equations needed for Gröbner basis seem to de-
pend on the complexity of the equations involved. The higher the value of Mcompl,
the larger the number of equations needed. Especially in Figure 4.1a and Fig-
ure 4.1b there is a significant increase in the number of equations needed when
going from the linear case to the nonlinear case. This is quite natural since when
differentiating a nonlinear term the number of unknown increases, e.g. when time
differentiating x2 the result is 2xẋ and both x and ẋ are in the new equation in-
stead of only ẋ as would have been the case if the term was linear. It also suggests,
not surprisingly, that the more nonlinear an MSO set is, the more difficult it is to
solve since it requires more equations.

The theoretical upper bound is a worst case scenario and not usually something
that the number of equations are close to. This can be seen in Figure 4.1.

4.3 Simulation Results

MSO sets were randomized according to Section 4.2 with both Ndiff and Nalge

varying from 1 to 5 and Mcompl varying from 0 to 1. The corresponding MSO
sets with x and ẋ considered to be separated variables were also calculated using
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(c) Equations needed for Gröbner basis
with Mcompl = 0.5.
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with Mcompl = 0.75.
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(e) Equations needed for Gröbner basis
with Mcompl = 1.
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Figure 4.1: Number of equations needed for Gröbner basis calculations compared
to the number of differential and algebraic equations needed for diffalg with
different vales on Mcompl.
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Algorithm 4.1 to be able to use Gröbner basis. After this, consistency relations
were calculated using both diffalg and the Gröbner basis command and, in the
cases where both commands were capable of calculating a consistency relation, the
resulting consistency relations were equal. This is as expected since Algorithm 4.1
returns an MSO set of minimal order and the diffalg command calculates a
triangular basis with minimal order.

From a total of 192 simulations with both Gröbner basis and diffalg. In 108
cases, both commands completed the calculation and neither of the two completed
in 58 cases. Gröbner basis completed and diffalg did not in 9 cases while diffalg

was the only one to complete in 17 cases.

In Figure 4.2, the percentage of completed diffalg calculations and Gröbner
basis calculations are shown together with the number of equations needed. The
percentage of completed calculations seem do decrease with the number of equa-
tions. It should be noted that the variations for Gröbner basis for large number
equations can be explained with few simulations with this number of equations
and therefore the values fluctuate. It should also be noted that the plot for Gröb-
ner basis has been cut off for values higher than 20. This is because for larger
amounts of equations, none of the computations completed.
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Figure 4.2: The number of equations and the percentage of diffalg and Gröbner
basis calculations that completed.

Figure 4.3 shows the number of equations needed for Gröbner basis calcula-
tions and the percentage of those who completed when using diffalg. Like in
Figure 4.2b, the plot has been cut off for values higher than 20 since none of the
computations completed for values of NGröbner larger than the values shown in the
plot.

The percentage of diffalg that completed and the percentage of Gröbner
basis that completed compared to the value of Mcompl is found in Figure 4.4. This
shows that the difficulty in eliminating all variables depends on the complexity of
the problem.
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Figure 4.3: Percentage of diffalg calculations that completed compared to the
number of equations that was needed for Gröbner Basis calculations. For compar-
isson, the percentage of Gröbner Basis calculations that completed are also plotted
as a dotted line.
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Figure 4.4: The number of equations and the percentage of diffalg and Gröbner
basis calculations that completed.
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4.4 Conclusions

From the results of the simulation results in Section 4.3, some conclusions can be
drawn.

As expected, the more equations an MSO set contains, the more difficult it is
to derive a consistency relation. Likewise, the more complex the equations of an
MSO set is, the more difficult it is to eliminate the unknown variables. However,
it is not possible to draw any clear conclusions about what method is better than
the other.

The diffalg package is capable of eliminating the unknown variables in more
MSO sets than using differentiation and calculating a Gröbner basis, however,
the difference is not significant. However, ”larger MSO sets”, both diffalg and
Gröbner basis are often incapable of solving the problem. Since Gröbner Basis
completes in some cases where diffalg does not, an idea could be to try diffalg

first and if it does not complete, then one could try Gröbner Basis.
Even if it has been decided to use diffalg for the calculations of consistency

relations, Algorithm 4.1 can still be useful. If the algorithm returns an MSO set
where one signal is differentiated several times and it is concluded that this deriva-
tive can not be estimated, there is no point in trying to calculate a consistency
relation since it will not be realizable. Another point in using Algorithm 4.1 is that
if one has several MSO sets from a model, Figure 4.3 suggests that one should start
with the MSO set that has the lowest number of equations needed for Gröbner
Basis since that calculation is more likely to succeed. Thus, Algorithm 4.1 could
be seen as a measure of the complexity of the MSO.



Chapter 5

Results of Differential

Algebraic Methods

In this chapter, the results of the approach to calculate consistency relations using
diffalg for the Scania diesel engine are discussed.

5.1 Polynomials

In Chapter 3 the need for a polynomial engine model was explained. Therefore, all
non-polynomial nonlinearities were transformed into polynomials. As a criterion
to what model complexity was needed, the fit was evaluated until it was deemed
sufficient. The reason for this, and that no other more sophisticated methods were
used such as these described in Section 3.3, is that, at the time of the design, it
was more of a question whether it was possible to get a ”good” representation of
the engine model using polynomials. As it later turns out, in Section 5.2, there
was no need for a more sophisticated way of designing the model as described in
Section 3.3. As an example, the simulated value and the measured value of the
pressure in the exhaust manifold, pem, is shown in Figure 5.1. As seen in the
figure, the simulated values are a good approximation of the true values.

5.2 The Engine Model

The MSO sets from the engine model was calculated using the algorithm described
in [7]. Unfortunately, as shown in the histogram in Figure 5.2, most of the MSO
sets contain many equations. Therefore, a straightforward attempt to calculate
consistency relations did not give any results1.

To try the simplest possible case, all polynomial nonlinearities were replaced
by x + 1 and all constants with 1, but still it was not possible to eliminate all

1When attempting to calculate consistency relations using elimination order the memory of
the computer ran out and the calculations had to be aborted.
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Figure 5.1: The pressure in the exhaust manifold, pem, as measured (solid) values
and simulated with polynomials (dash-dotted).

unknown variables. As a result of this, some ways to reduce the computational
load was investigated.

5.3 Elimination Order for Gröbner Bases

As mentioned in Chapter 3, computing a differential Gröbner basis is a very com-
puter intense task. One way to try to reduce this is to specify a ”clever” elimination
order using structural methods [9]. In [9] an approach investigated was to find vari-
ables only present in few equations (preferably in only 2 equations) and extracting
these equations and eliminating the unknown from these equations. Finding what
variables to eliminate is done by using graph theoretical algorithms. A perhaps
more intuitive approach is to find the variables that are the only unknown in one
equation and then eliminate these first. The reason for this is that it is assumed
that it is easier to eliminate these variables since these variables can be solved
for. This can be done by using a biadjacency matrix (see Section 2.2) for the
set of equations and choosing the variables that appear as a single ”x” in a row
of unknowns to eliminate first. After that, that column is set to zeros and the
algorithm continues.
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Figure 5.2: Histogram over the number of equations in each MSO set.

Example 5.1

In the MSO set consisting of the linear equations

e1 : ẋ1 = x2

e2 : ẋ2 = −2x2 + x3 + u

e3 : ẋ3 = x1 + 3u

e4 : y = x1

The corresponding biadjacency matrix is then as in Table 5.1a. Here, x1 would
be the first variable to eliminate since it’s the only unknown in e4, after that the
biadjacency matrix would be as in Table 5.1b.

Now, both x2 and x3 appear as the only unknowns in e′1 and e′3 and the
elimination order can be chosen as x1 ≺ x2 ≺ x3 or x1 ≺ x3 ≺ x2.

This method was tried with diffalg on the same example as in [9, p. 11], a
water tank system with an MSO set with 7 polynomial nonlinear equations and 6
unknowns2. Using the algorithm mentioned above gave an elimination order which
calculated the same consistency relation as in [9, p. 12] in only a few seconds
which was a little faster than letting diffalg choose the elimination order using
elimination ordering, see Section 3.1.1. This method was tried on the real engine
model but did not yield any successful results.

2In [9] the consistency relation was calculated using Gröbner bases, and some equations had
to be manually differentiated resulting in an MSO set with 11 equations and 10 unknowns.
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Equation Unknown Known
x1 x2 x3 u y

e1 x x
e2 x x x
e3 x x x
e4 x x

(a) Incidence matrix for the MSO set in Equa-
tion (5.1) .

Equation Unknown Known
x1 x2 x3 u y

e′1 x x
e2 x x x
e′3 x x x

(b) Incidence matrix for the MSO set in Equa-
tion (5.1) after x1 is ”eliminated” .

Table 5.1: Incidence matrices in Example 5.1.

5.4 ”Structure” of Equations

It’s not only the number of equations that matters for the computational load. The
complexity of the equations also plays an important role. Higher order derivatives,
and especially when these appear multiplied together with other terms could make
diffalg incapable of eliminating the unknown variables in the system. Multipli-
cation of derivatives with other terms in a state space model could for example
appear when the derivative and a fraction of two variables are in the same equation,
see Section 3.2.1.

Example 5.2

An MSO set with only one unknown is

ẋ(1 + x2) + y = 0

ẍ2 + x = 0
(5.1)

These equations were fed into diffalg but it was not possible to compute a
consistency relation.

As seen in Figure 5.3, one MSO set includes one polynomial nonlinearity, the
rest of the MSO sets contain at least 9 polynomials, all but one with a degree of
at least 3. Added to that, several other nonlinearities where signals are multiplied
and squared exist in the model. These circumstances, together with the large
number of equations makes the approach by using diffalg nonfeasible for the
complete diesel engine.
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Figure 5.3: Histogram over the number of polynomial nonlinearities in each MSO
set.

5.5 One Consistency Relation

As seen in Figure 5.2, one MSO set did only contain 9 equations and no derivatives
of signals. From this MSO set it was possible to eliminate all unknown signals and
obtain a consistency relation. The signals included in the consistency relation are
listed in Table 5.2. This means the consistency relation should be sensitive to
faults in these signals.

Signal name Description Unit
ntrb Turbine speed [r/min]
pamb Ambient pressure [Pa]
tamb Ambient temperature [K]
wcmp Air mass flow [kg/s]

Table 5.2: The signals used in the consistency relation.

To verify that the consistency relation really is consistent with the model, the
consistency relation was tested with data from simulations of the model. The
consistency relation was also tested with measurement data from a real diesel
engine measured during one ETC (European Transient Cycle) to see if the model
is a good approximation of the real engine. To reduce the influence of noise, the
mean value over 20 seconds was taken. The result is seen in Figure 5.4 where
the consistency relations have been normalized so the thresholds could be set to
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−1 and 1. The thresholds were set so that the maximal value of the consistency
relation with real data were 0.75. The consistency relation with simulated data is
scaled in the same way. As seen, the consistency relations are not 0 as they ideally
should be. This is mainly because of numerical issues and model errors, both for
the data from the real truck since the original model is faulty, but also from the
polynomial model since it is approximated from the original Simulink-model.
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(a) The consistency relation with fault
free simulated data.
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(b) The consistency relation with fault
free data from a real engine.

Figure 5.4: The consistency relation with no fault added with simulated and real
data. Both consistency relations have been scaled equally much.

The consistency relation should respond to faults in the signals in Table 5.2.
This was verified by adding faults and then simulating the consistency relation.
In Figure 5.5, a 20% relative error on the pressure sensor was added after half the
cycle. As seen in the figure, the consistency relation responds to this fault and
goes over the limit and the fault can be detected.
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(a) The consistency relation with 20%
gain error on pamb with simulated data.
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(b) The consistency relation with 20%
gain error on pamb with real data.

Figure 5.5: The consistency relation with 20% gain fault on pamb with simulated
and real data. Both consistency relations have been scaled equally much.

The consistency relation calculated with simulated data, Figure 5.4a and Fig-
ure 5.5a, is much better than the consistency relation calculated with real data,
Figure 5.4b and Figure 5.5b. This is expected since the consistency relation with
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simulated data has less model errors.

5.6 Complexity of Equations

In order to demonstrate to complexity of the problem to eliminate all variables,
some elimination results are presented from one of the MSO sets that were found.
Using the simplest possible polynomials, x + 1 and all constants set to 1, the
Maple command eliminate can be used on non differential equations. To cir-
cumvent that eliminate only handle algebraic equations, the differentiated vari-
ables were assumed to be known. Like before, nonlinearities such as fractions and
multiplication were left unchanged.

Since the equations originate from a Simulink-model, most of the equations
have the form xi = f(x), i.e. many variables are easy to eliminate. Starting
from 80 equations, eliminating all unknown but 6 results in about half a page of
remaining equations. Eliminating one more unknown results in just above one
page of remaining equations. The next unknown eliminated results in about two
pages of equations. Eliminating one more unknown results in four equations with
3 unknown variables on 46 pages! Elimination of the last terms was not possible.
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Chapter 6

Numerical Approaches

In this chapter, some numerical approaches for diagnosis of the diesel engine were
investigated.

6.1 Transformation to a Static System

If it is not possible to eliminate all unknown variables, is it possible to do something
if almost all unknown variables from an MSO set is eliminated? Consider the case
where it is possible to eliminate all variables but one and its time derivative. Then
the MSO set would consist of two equations and the unknown variable and its time
derivative. Can this be used to detect faults, and if so, is it possible to perform
the computations online?

Assume that there would be a static relation with no differentiated variables
at all. Then solving for the unknown would be a matter of finding the roots of
a polynomial in one variable, which can be a difficult task but not an impossible
one, and, if multiple roots are found, see if any of the roots in equation one gives
a ”small” value when inserted in equation two. Now, what if there’s a dynamic
part in the equations. Lets say we have two equations, one unknown variable and
it’s time derivative. Can that be solved? Finding the solutions numerically to a
system of two equations with two variables is a more difficult task, especially if it
has to be performed online. On top of that, if we find the solutions to the unknown,
say x and ẋ. How do we decide if these are consistent? The next example will
demonstrate some problems with this.

Example 6.1

A small time-discrete system is described by

x(t + 1) = −x(t)2 + u(t) (6.1a)

y(t) = x(t) + v(t) (6.1b)

where v(t) is measurement noise with standard deviation σ, u(t) is a known actu-
ator signal, y(t) is a known sensor signal and x(t) is an unknown state variable.
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This can be seen as a static system with two unknown variables x(t) and x(t + 1).

Now, we can solve for the unknown x(t) and x(t + 1). Can we then, by using
the model, see if these values are consistent? In this case this results in a residual
r(t) = y(t+1)+ y(t)2 −u(t) but in a more complex case it may not be possible to
calculate this analytically and the roots would have to be found numerically. This
system was implemented and v was simulated as white noise with σ = 1. Because
of the noise, the measurement signal was first lowpass filtered. Additionally, the
mean value over 20 seconds was taken to smooth out the noise. The system was
driven with u(t) as pulses with amplitude 1, and after ≈ 500 seconds was a 10%
gain error on the measurement signal y(t) added. This is shown in Figure 6.1. The
same result was achieved without low pass filtering, but with a noisier residual.
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Figure 6.1: Plot of the residual in Example 6.1.

As seen in Figure 6.1 the residual changes level when the fault is introduced.
In this case the residual was not equal to 0 though. Some short calculations reveal
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why this is not the case.

E(r) = E(y(t + 1) + y(t)2 − u(t))

= E(x(t + 1) + v(t + 1) + (x(t) + v(t))2 − u(t))

= E(x(t + 1) + x(t)2 − u(t)
︸ ︷︷ ︸

x(t+1)−x(t+1)=0

+v(t + 1) + v(t)2 + 2x(t)v(t))

= E(v(t + 1)
︸ ︷︷ ︸

=0

) + E(v(t)2 + 2x(t)v(t))

= E(v(t)2)
︸ ︷︷ ︸

σ2

+2x(t)E(v(t))
︸ ︷︷ ︸

=0

= σ2

(6.2)

With σ = 1 the expected value of r equals 1 in the fault free case as seen in
Figure 6.1.

In Example 6.1, a time-discrete system was considered for simplicity. If a
time-continuous system would have been considered instead, one would have to
approximate the time-derivative with a difference quotient and the resulting prob-
lem would have looked similar to Equation 6.1a anyway. In the example, the
expected value of the residual was σ2, which is constant. However, consider the
same system but with Equation (6.1a) as x(t + 1) = −u(t)x(t)2 instead. The
same calculations as in Equation (6.2) would give −u(t)σ2 as expected value of
the residual. With a small system, this is not a problem since the expected value
is known, but for a larger system this analysis might not be possible to do analyt-
ically. Also, to find roots of a polynomial numerically is something that has to be
done with nondeterministic methods that are not feasible for a real-time system.
Therefore, this approach was not considered anymore.

6.2 Simulating the System

Another approach is to eliminate as many variables as possible and then simu-
late the equations we have left, and then compare two simulated values of the
same variable. In the general case, we end up with a nonlinear DAE. That is,
a general differential-algebraic equation where we have to solve the equation1

F (ż(t), z(t), u(t)) = 0. The reason that this general form and not semiexplicit
form has to be considered is that the rewriting of equations as in Section 3.2.1 and
Section 3.2.3 might result in a system that is not on semiexplicit form. Solving
this system is normally a difficult task that can’t be done analytically and we have
to rely on numerical methods. To simulate the system, one have to have a starting
value for z(t0) and a starting value for ż(t0). These starting values are normally
not known and have to be guessed. Generally, there are several possible solutions
to the equation and, if the starting values are guessed wrong, the simulation might

1If there are no algebraic equations in F it is called an implicit ODE.
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give an undesired solution, even if it is a mathematically correct one. Additionally,
to be able to get a correct solution some constraints has to be posed on F . First
of all, all of the states has to be stable. The reason for this is because if F is not
stable, there is no way for the solution to converge if the starting values are guessed
wrong. Also, even if the starting values are guessed correctly, there will always
be numerical issues that will make the solution to diverge from the correct one if
the states does not converge to a solution. If F is an implicit ODE, the jacobian
∂F (ż,z,u)

∂ż
is required to be nonsingular for (ż(t0), z(t0), u(t0)) in a neighborhood of

the current point (ż(t), z(t), u(t)). This is because of the implicit function theo-
rem which states that if the jacobian of a function with respect to a variable is
nonsingular for some point (ż0, z0, u0), then there exist a non–ambiguous solution
to the function F in a neighborhood of (ż0, z0, u0).

The simplest and most intuitive way of simulating an implicit differential equa-
tion is to replace the derivative with a difference quotient [11]. A first order ap-
proximation of F can be

F

(
zn − zn−1

h
, zn, u(tn)

)

= 0, h = tn − tn−1 (6.3)

where zn is the approximation of z(tn) that the method gives. This is a first order
method with constant stepsize. To achieve satisfactory performance, multistep
methods must be used, i.e. the derivative has to be approximated with a higher
order quotient.

6.2.1 Variable Stepsize

To improve the simulation speed the stepsize can be variable, i.e. when the vari-
ables change quickly, smaller steps are taken and vice versa. Normally, it is desir-
able to take as large steps as possible since that decreases the simulation time, but
larger steps increases the error introduced in each step. A simple algorithm will
be presented that illustrates the variable stepsize method, and to not complicate
things the illustration will be done for a simple one-step Euler for an explicit ODE.
Now, suppose the equation we want to simulate is ẏ = f(t, y) with the initial con-
dition y(t0) = y0 is known. The whole idea is to do the step from tn to tn + h
twice with two different algorithms and then compare the answers, and from that
estimate the error. Forward Euler can be seen as the first terms in a Taylor series

y(tn + h) = y(tn) + ẏ(tn)h +
ÿ(tn)h2

2
+ O(h3) (6.4)

First order Euler includes the first two terms in Equation (6.4) and the introduced
error is, if the O(h3) term is skipped, proportional to h2. If the term ÿ(tn) was
known, knowing the error introduced would be easy. The problem is that ÿ(tn) is
not known. Therefore, it has to be estimated. Assume we take one step from tn
to tn + h. The simulated value, A1 is then

A1 = yn + hf(tn, yn) (6.5)
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We also know, from Equation (6.4) that

A1 = ytrue(tn + h) + Kh2 + O(h3) (6.6)

Now, since K is unknown, it has to be estimated. If f is simulated from tn to
tn + h in two steps, first to tn + h

2 and then to tn + h, then we would end up
with another simulated value on y, let’s call that A2. Now, in the first step the
introduced error is K(h

2 )2 + O(h3) and in the second step K(h
2 )2 + O(h3) with

the same K. Now we have two estimated values on y(t + h), with a total error
A1 − A2 = Kh2 + O(h3) − 1

2Kh2 + O(h3) = 1
2Kh2 + O(h3). Since O(h3) can

be assumed to be small we have a new equation that we can solve for the only
unknown K. The relative error can then be decided as |A1−A2|

h
≈ 1

2 |K|h2, and
if the absolute error is below some acceptable predefined limit ǫ the algorithm
continues for the new time tn +h, possible with a larger h. If the error is too large,
the algorithm tries again from time tn with a new and smaller h.

The above algorithm is very simple, and just included in the thesis to illustrate
the principle of variable stepsize methods. In a real problem, one would use more
complicated algorithms to simulate an ODE.

6.2.2 Variable Order

There also exist methods who not only have variable stepsize but also variable
order on the approximation of the derivatives. In Matlab one such method
is implemented in ode15i that can solve implicit ODE’s and DAE’s of index 1
[22]. Index is a way of classifying DAE’s and can be defined as the number of
differentiations you need to perform to write the DAE on state space form. For
DAE’s of index 1 the above approach can be performed with no problems, for
DAE’s with index higher than 1, this could lead to problems [11]. For DAE’s
with higher order, other methods exist such as trying to reduce the index by
differentiation.

6.2.3 A Small Example

As an example the small system

ẋ = −√
x + u (6.7a)

y = (−√
x + u)x + x + u = ẋx + x + u (6.7b)

can, with polynomial representation be written as

u2 − 2ẋu + ẋ2 − x = 0 (6.8a)

y − ẋx − x − u = 0 (6.8b)

Both these equations are implicit ODE’s with almost always nonsingular jaco-
bians. The jacobians with respect to ẋ are −2u + 2ẋ and −x which means that
as long as ẋ 6= u and x 6= 0 there should be no problems simulating the systems.
As a test, both equations were simulated and the simulated variable x̂ from both
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equations were compared and taken as a residual. In Figure 6.2 the residual is seen
with faults added as in Table 6.1. As seen, after the effect of the initial conditions,
r ≈ 0 in the fault free case and r 6= 0 when faults are added.

Time Fault Size of fault
0 − 200 No fault -
200 − 400 Actuator gain fault 10%
400 − 600 No fault -
600 − 800 Sensor gain fault 15%
800 − 1200 No fault -
1200 − 1400 Actuator bias fault 0.3
1400 − 1600 No fault -
1600 − 1800 Sensor bias fault 0.3
1800 − 2000 No fault -

Table 6.1: Fault modes.
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Figure 6.2: Plot of the residual.

Simulating equation systems with variable order and variable stepsize is non-
deterministic in time and therefore not suitable for a real-time system. Some other
problems occurred when trying to simulate the whole system, see the next section.
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6.3 The Engine Model and Numerical Methods

The method suggested in Section 6.2 was tried on an engine model from Scania.
For the second smallest MSO set, using polynomials of degree 2, it was possible to
eliminate all but 11 unknown variables and hence have 12 equations left. However,
due to numerical issues it was not possible to achieve any useful results. As
an example, one term in one of the equations contained the ambient pressure
pamb, raised to the power of 4 multiplied with the speed of the turbine, ntrb

raised to the power of 12. That means that the order of those two terms alone
is (105)4(104)12 = 1068, which is a very large number. At that magnitude, the
numerical precision in Matlab with double precision is ≈ 1052, which makes a
simulation impossible. Attempts to scale down the equations were made but were
not successful. As a comparison, with the case of all constants set to ”1” and
all polynomial nonlinearities set to x + 1, it was possible to eliminate all but 3
unknown variables. The same phenomena as for the ”real” model appears here.
For example, one of the terms includes the expression t2ambp

2
imp2

ambn
2
trb where tamb

is the ambient temperature, which is measured in Kelvin, and is of size 102, pim

is the pressure in the inlet manifold of size 105, pamb is the ambient pressure of
size 105 and ntrb is the speed of the turbo of size 104. All together this term has
the size (102)2(105)2(105)2(104)2 = 1032. At this size, double precision gives a
precision of ≈ 1016 which makes a simulation impossible.

It should also be mentioned that since simulating an implicit ODE probably
requires variable stepsize this means the computational time is nondeterministic.
This is not acceptable in a real-time system like the ECU since deadlines must
be held. This makes this method more of a theoretical approach rather than a
realistic method for OBD.
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Chapter 7

Conclusions and Future

Work

7.1 Conclusions

In this thesis, it has been investigated whether some methods from differential
algebra can be used in the design of a diagnosis system for a diesel engine at Scania.
To be able to use the diffalg package, a polynomial model is needed where other
nonlinearities such as lookup tables and square roots have to be approximated with
polynomials. The results in Section 5.1 showed that it is possible to transform a
model with nonpolynomial nonlinearities to a polynomial model successfully.

The evaluation in Chapter 4 suggests that when one faces the task of calculating
consistency relations for differential polynomial systems, there is no significant
difference between Gröbner basis and diffalg. However, for a complex system,
both methods may be incapable of solving the problem.

The calculate consistency relations from a diesel engine, the diffalg package
was used. The results in Section 3.5 showed that for small systems, this method
works with good results. However, for larger, more complex systems such as a
diesel engine the method was only capable to calculate one consistency relation.

In addition to the differential algebraic methods studied, a few numerical ap-
proaches were attempted. These methods did not yield any useful results. How-
ever, this is an interesting area which could be investigated further.

7.2 Future Work

The use of diffalg did not yield any useful results because of the model com-
plexity. To lower the computational complexity, the idea in [15], where cascaded
connected subsystems were found and each subsystem was treated separately could
be investigated.

In [13], the existing OBD-system used at Scania and the automatic generated
diagnosis system developed in [7, 16, 6] are evaluated. In [13] it is concluded that
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some of the signals in the automatic generated consistency relations do not affect
the consistency relations when a fault has occurred in these signals. This implies
that some parts of the model of the Scania engine might be simplified without the
loss of too much information. With a simplified model, the methods used in this
thesis might be usable.

Another interesting investigation could be to use more complex numerical ap-
proaches, for example particle filter to detect faults.
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Appendix A

Notation and Abbreviations

Notation

≺ Preceeds
∀ For all
ẋ x differentiated with respect to time
X The set of unknown variables with x and ẋ considered to be

the same variable
X̄ The set of unknown variables with x and ẋ considered to be

different variables
Z Set of known variables
E Set of equations
|X| Number of items in the set X
varX(E) The set of variables X that are part of the equations E
M+ Overdetermined part of M
σ Standard deviation

Abbreviations

DAE Differential-algebraic equation
DSSL Differentiated-separated structural-model
DSSM Differentiated-lumped structural-model
ECU Engine control unit
ETC European transient cycle
MSO Minimally structurally overdetermined
OBD On-board diagnostics
ODE Ordinary differential equation
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