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Chapter 1

Introduction

This Master’s thesis is performed in a collaboration with Scania CV AB in Söder-
tälje, the division of Vehicular Systems and the division of Automatic Control at
the department of Electrical Engineering at Linköpings universitet.

Scania is a large manufacturer of heavy duty trucks, that together with other
truck manufacturers meet an increasingly stricter emission legislation. Scania
needs to comply and their demand for an effective On Board Diagnosis (OBD)
system is therefore rising. The OBD system’s main purpose is to detect faults,
e.g. faults in actuators and sensors, leading to emissions beyond legislated levels.
Even small faults not severely affecting the emissions are of interest to detect in an
early stage. The information from detection and isolation of an arbitrary fault can
be used during regular maintenance, or for fast repair and replacement of faulty
components.

One idea for improving the OBD system is to employ a model for the construc-
tion of an observer based diagnosis system. In this thesis, the model is of a Scania
diesel truck engine with Exhaust Gas Recirculation (EGR) and a Variable Geome-
try Turbine (VGT). Inputs and measurements from the engine are compared with
the estimates from the observer and a statement of the system condition is made.

The proposal in this thesis is, because of a nonlinear model, that a nonlinear
filter method is used as an observer for improving the model estimates. Due to
the nonlinearities in the model, the use of a nonlinear filter hopefully provides an
advantage for Fault Detection and Isolation (FDI) compared to other methods.

Two nonlinear filters are tested, one is the particle filter and the other is the
more commonly used extended Kalman filter. The particle filter mentioned here is
not to confuse with a particle filter used for the removal of particles in the exhausts
and the extended Kalman filter is simply the ordinary Kalman filter together with
a linearization of the nonlinear model.

An overview of a diagnosis system that is monitoring a truck engine is presented
in Figure 1.1. The diagnosis systems constructed in this thesis have the same
structure as shown in the figure.

1



2 Introduction

MODEL FILTER

G(r)>J?
TESTS

REPAIR?

DIAGNOSIS SYSTEM

Figure 1.1. This figure gives an overview of a diagnosis system monitoring a process
which in this case is the engine. The arrows represent data flows between the different
subsystems. The two arrows out from the truck is input signals (control signals) to the
engine which are used by the model to predict the state. The state prediction and the
sensor values are used by the filter to make a state estimate (the filter also provides other
information) which is used by the tests for monitoring the system. In case of a fault, the
diagnosis system alarm and appropriate actions should be taken.

1.1 Objectives

The main objective is to, by using the particle filter and the extended Kalman
filter, construct a diagnosis systems for a Scania diesel truck engine and evaluate
the properties for FDI. Using a particle filter as the primary method, different
approaches for the diagnosis problem are tried.

Construction of a diagnosis system with as good performance as possible, that
is still easy to implement with a short execution time, is considered as a secondary
objective.

Absolute performance improvements, if there are any compared to the methods
used in the OBD system today are not presented in this thesis.
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1.2 Contributions

The contributions in this thesis are summarized to:

• Modifications of a model of a Scania truck engine for the application of the
particle filter and the extended Kalman filter.

• The construction of a particle filter applicable to the engine model with
performance good enough for the diagnostics purposes.

• The construction of an extended Kalman filter applicable to the engine model
for comparison with the particle filter.

• The design of tests with good performance of finding faults in the engine.

1.3 Limitations

Some factors that confines the scope of this Master’s thesis:

• The engine model is pre-constructed for another purpose, no modifications
of the model are made for the use in this thesis.

• There are a limited availability of measurement data for the diagnosis sys-
tems evaluation.





Chapter 2

Nonlinear Filtering

This chapter is an introduction to two methods for nonlinear filtering, the Particle
Filter (PF) and the Extended Kalman Filter (EKF). The focus in this Master’s
thesis lies on the PF, but the result is compared to that of the EKF and therefore
the theory of the EKF is also included.

The filters introduced in this section are applicable to discrete systems with
nonlinear dynamics and a nonlinear measurement, described by the functions
f(xk, uk) and h(xk, uk) where xk is the state variable and uk is the system in-
put signal at time k. Further let yk denote the measurement. The system is then
assumed to be in the form

xk+1 = f(xk, uk) + vk, (2.1a)

yk = h(xk, uk) + nk, (2.1b)

where the variables vk and nk are the system and measurement noise with known
distributions. The initial distribution of the state variable also have to be known.

Both the PF and the EKF are Bayesian filters. In Bayesian filtering the so-
lution lies in calculating the state Probability Density Function (PDF), for every
iteration. Using the expressions

p(xk|Yk−1) =

∫

p(xk|xk−1)p(xk−1|Yk−1) dxk−1, (2.2a)

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
, (2.2b)

where the filter solution is the PDF p(xk|Yk), which is the probability density of xk
given all previous values of the measurements, i.e. Yk = {yi}ki=1. The expressions
(2.2a) and (2.2b) are often referred to as the time update and the measurement
update, see [1] for more information.

It is not always possible to analytically calculate these expressions for any kind
of distributions. The EKF approximates the solutions when the distributions are
Gaussian and the PF approximates the solutions for any kind of distributions. The
PDF solution from (2.2b) contains everything needed for state estimation which
is the main task for the filters in this thesis.

5



6 Nonlinear Filtering

2.1 Particle Filter

There are several types and variations of PFs. A general method will be presented
as the Bootstrap filter, as well as various methods for improving the Bootstrap
algorithm for the application in this thesis. The Bootstrap filter was introduced in
[7] and is a PF easy to apply to a given system. For a more extensive description
of PF methods, see [6], [4] and [1].

The key idea in the Bootstrap filter, as well as in any PF, is to represent
the required PDF by a set of samples. The samples are associated with weights
which represent how important these samples are. Each sample, with its respective
weight, is referred to as a particle.

The particles are in each time step as the iteration goes on, due to model errors
and noise, likely to drift away from the real state. This results in small weights
which is bad because the weights represent the significance of the PDF estimate.
This is called the degeneracy problem and can be solved by removing particles
with low weight and duplicating those with high weight. An example of how a
particle cloud is affected by the degeneracy can be observed in Figure 2.2.

One of the strengths of the PF, is that the discrete PDF representation has no
difficulties with non-Gaussian distributions. Consider a two dimensional system
with the PDF according to Figure 2.1. This distribution is bimodal and therefore,
clearly not Gaussian. This distribution would be impossible to represent with a
KF/EKF and information about the states, in that case, would be lost.

(a) PDF at time k. (b) PDF at time k + 1.

Figure 2.1. A PF estimation of the state PDF at two time steps for a two dimensional
system with a bimodal state distribution.

2.1.1 PDF estimation

The PF procedure for the PDF estimation can be divided into three steps, Initia-
tion, Prediction and Update. A fourth step can be added to counter the effect of
degeneracy. The PDF is through the entire estimation procedure represented by
a set of particles, each particle consisting of a state vector and one weight.
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Initiation

The initiation stage of the filter is done by drawing N samples, x
(i)∗
0 where i =

1, . . . , N , from a known distribution of the state, i.e. p(x0). The initial weight for
each sample is 1/N .

Prediction

The particles x
(i)∗
k−1 are propagated through the system (2.1a). Note that the

distribution of vk, p(vk), has to be known, or at least samples from the distribution

have to be available. The new set of particles x
(i)
k represents p(xk|Yk−1) which is

the approximation of (2.2a).

Update

Each particle, x
(i)
k , are compared with the obtained measurement yk through the

observation (2.1b). The comparison gives the estimate of the conditional PDF
p(yk|xk) = p(yk − h(xk, uk)), defined by the statistics of the measurement noise
p(nk). Estimating the conditional PDF correspond to computing

p(yk|xk) =

∫

δ(yk − h(xk, uk)− nk)p(nk) dxk (2.3)

for each particle, where δ is the dirac function. A weight depending on the estimate
of (2.3) and the prior weight

w
(i)
k ∝ p(yk|x

(i)
k )w

(i)
k−1 (2.4)

can be set to each particle, see [1]. If the prior weight for each particle is 1/N then
the weight could be computed as [5]

w
(i)
k = p(yk|x(i)

k )
1

N
. (2.5)

The wanted state PDF can now be approximated with

p(xk|Yk) ≈
N
∑

i=1

w̄
(i)
k δ(xk − x

(i)
k ) (2.6)

where w̄
(i)
k is the normalized weight

w̄
(i)
k =

w
(i)
k

∑N
i=1 w

(i)
k

. (2.7)

The approximation in (2.6) can be shown to approach the true PDF as N → ∞,
see [1].
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(a) Before resampling.
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(b) After resampling.

Figure 2.2. Both plot (a) and (b) display a particle cloud with N = 2000 particles for
the same system at time k. Each particle in (a) are represented as a dot, and has been set
an individual weight according to (2.4). After the resampling step, plot (b), the weight
of each particle has been set to 1/N and therefore several dots represent more than one
particle.

2.1.2 Resampling

This stage is used to avoid the degeneracy phenomenon mentioned in Section 2.1.
The problem is that the particles are likely to drift away from the real state
and therefore approximating the PDF with particles of low weight. The weights
represent the significance in the estimation and are desired to be as high as possible.

The solution to this problem is to remove particles with low weights and du-

plicate those with high weight. This can be done by resampling N particles x
(i)∗
k

according to the rule

Pr(x
(j)∗
k = x

(i)
k ) = w̄

(i)
k . (2.8)

Statistically, the particles with high weight will be selected many times. This
way of resampling in every iteration is called Sampling Importance Resampling
(SIR) and will reset the normalized weight of each particle to 1/N . The particles

{x(i)
k }Ni=1 with high weight before the resampling stage, are now represented many

times in {x(i)∗
k }Ni=1 instead.

An example of a particle cloud before and after the resampling procedure can
be seen in Figure 2.2.

2.1.3 Bootstrap Algorithm

A summary of the PF method described in Sections 2.1.1 and 2.1.2 is here pre-
sented as the Bootstrap algorithm.

1. Initiation

k := 1, draw N samples x
(i)∗
0 from the initial PDF p(x0).

2. Prediction

Draw N independent samples of the noise vk−1 according to p(vk−1) and
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compute x
(i)
k = f(x

(i)∗
k−1, uk−1) + v

(i)
k−1.

3. Measurement Update

Given yk, compute the weight w
(i)
k = p(yk|x(i)

k ) 1
N and the normalized weight

w̄
(i)
k =

w
(i)

k
∑

N

i=1
w

(i)

k

for each sample.

4. Resampling

Draw N samples x
(j)∗
k , replacing the old set of particles, with the probability

Pr(x
(j)∗
k = x

(i)
k ) = w̄

(i)
k to draw a certain particle.

5. k := k + 1→ step 2.

2.1.4 Likelihood

The PDF p(yk|Yk−1) can be referred to as the likelihood and is defined as the
probability of yk given Yk−1,

p(yk|Yk−1) =

∫

p(yk|xk)p(xk|Yk−1) dxk. (2.9)

The likelihood can be found in expression (2.2b) as the denominator but does not
have to be calculated explicitly for the state PDF estimation. The likelihood can
be approximated as

p(yk|Yk−1) ≈
N
∑

i=1

wk(i). (2.10)

This quantity is in the diagnostics section used for hypothesis testing. For a proof
of approximation (2.10), see [5].

2.1.5 State Estimates

A couple of different methods for estimating the state values, given the PDF
estimate, are

x̂k =

N
∑

i=0

w
(i)
k x

(i)
k , (2.11a)

x̂k =
1

N

N
∑

i=0

x
(i)∗
k , (2.11b)

x̂k = x
(i)
k where i = arg max

i
w

(i)
k . (2.11c)

The first two are quite similar, both are mean value estimations with the difference
that (2.11b) is done after the resampling stage and forsakes some particles with low
weights in favor of saving CPU time. The third one, (2.11c), which uses the value
of the particle with the highest weight, tends to be useful when the distribution is
multimodal. If (2.11a) or (2.11b) is used on a bimodal distribution (see Figure 2.1),
the estimate will end up between the peaks and lose its significance.
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2.1.6 Improvements

There are a number of possible modifications that can be made to improve the
performance of the PF, but only a few of them will be briefly explained here. There
are e.g. several different resamling algorithms with different properties, that are for
different systems more or less appropriate. Other methods then the SIR method
will not be presented in this thesis, see [1] for more information.

Importance density

One possible way to improve the importance sampling, i.e. the way the weights
are chosen, is to use an importance density, q(·). The modified computation of the
weights with an importance density are computed as

w
(i)
k ∝

p(yk|x(i)
k )p(x

(i)
k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1, yk)

w
(i)
k−1. (2.12)

The importance density represent were the particles are believed to end up after
the prediction step. This density gives the opportunity to move the particles closer
to the measurement, and in this way, increase the total weight of the estimate, i.e.
the likelihood. The difficulties here lies in choosing q(·). If q(·) is chosen well, fewer
particles are needed for the same quality of the estimate. For more information
how to use and choose the importance density, see [1], [6] and [4].

Roughening

There is a possibility that the particles may collapse to a single value, this would
happen relatively quick if there were no system noise. The system noise spreads
the particles when they are propagated through (2.1a) in the prediction step. If
the particles represent the same state value before the prediction, and there is no
system noise, the particles would again end up representing the same state value.
This problem is likely to occur after the resampling if there are few particles chosen
to represent the PDF.

A solution to this problem is the roughening procedure, which is a simple
procedure that will jitter the resampled values. The jitter effect will boost the
number of particles close to the real state which gives a better estimate of the
PDF, see [7].

2.2 Extended Kalman Filter

The EKF is basically the ordinary Kalman Filter (KF) for a linearization of a
nonlinear system. The theory for the KF extends only to linear systems and the KF
equations will be presented in this section along with a method for linearization.

The KF was introduced in [11] and is an optimal filter for a linear system with
Gaussian noise. If the system or measurement noise has another distribution, the
KF is still the optimal unbiased linear filter. For a formal proof, see for instance



2.2 Extended Kalman Filter 11

[8]. For a more general description of the KF and the EKF that extends beyond
the scope of this thesis, see [11], [10] and [8].

2.2.1 Kalman equations

Consider the linear system

xk+1 = Akxk +Bkuk + vk, (2.13a)

yk = Ckxk + nk, (2.13b)

where vk and nk are Gaussian noise with covariance matrices Qk and Rk, respec-
tively. The time update and measurement update equations for the KF solution
of (2.2a) and (2.2b) for the linear system (2.13) are

x̂k+1|k = Akx̂k|k +Bkuk (2.14a)

Pk+1|k = AkPk|kA
T
k +Qk (2.14b)

x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1) (2.14c)

Pk|k = Pk|k−1 −KkCkPk|k−1 (2.14d)

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +Rk)

−1. (2.14e)

The Kalman equations, (2.14), solves (2.2a) and (2.2b) for a linear system with
the assumption that vk and nk are Gaussian. For a formal proof of (2.14), see [8].

2.2.2 Likelihood

The likelihood for the EKF is defined in the same way as for the PF, i.e. as (2.9).
The Kalman solution of the likelihood is

p(yk|Yk−1) = N(Cx̂k|k, CPk|kC
T +Rk). (2.15)

2.2.3 Linearization

For the KF equations to be applicable to a system, the system has to be linear in
the form described by (2.13). If the system is nonlinear and described according to
(2.1), the system has to be linearized. The most straightforward way to linearize
the system is by using a Taylor expansion around the linearization point (x∗, u∗).
The Taylor expansion for f(xk, uk), neglecting second order terms and higher, is

f(xk, uk) ≈ f(x∗, u∗) +
df(x∗, u∗)

dxk
(xk − x∗) +

df(x∗, u∗)

duk
(uk − u∗). (2.16)

For a system with dimension i where the dynamics of each state is represented
by a function fi(xk, uk), the linearization in every time step leads to the system
matrix

Ak =









dfk,1
dxk,1

. . .
dfk,1
dxk,i

...
. . .

...
dfk,i
dxk,1

. . .
dfk,i
dxk,i









. (2.17)
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Further let j be the number of input signals. The dynamics between the input
and the states is then described by the matrix

Bk =









dfk,1
duk,1

. . .
dfk,1
duk,j

...
. . .

...
dfk,i
duk,1

. . .
dfk,i
duk,j









. (2.18)

With the variable change, z = x−x∗, ũ = u−u∗, the matrices in (2.17) and (2.18)
are valid for the following system

zk+1 = Akzk +Bkũk (2.19)

around the linearization point (x∗, u∗). The C matrix is, for the measurement ζ
in the observation equation ζ = Cz, obtained in the same way for the nonlinear
function h(xk, uk)

1 in (2.1b).

2.3 Comparison

The strength in using a PF for state estimation, is not only its ability to handle
nonlinear systems. In comparison to the EKF, the PF has no problem with han-
dling non-Gaussian system and measurement noise. A downside with the PF is
that the performance depends on the number of particles used. Too many particles
will increase the need of computational power and too few will give a bad PDF
estimate.

If the linearization does not explain the dynamics well enough the EKF will give
a bad estimate of the PDF. This could also happen if the system or measurement
noise is non-Gaussian, but the KF is not very sensitive to non-Gaussian noise as
long as the noise is unimodal. A Gaussian approximation of a bimodal distribution,
e.g as in Figure 2.1, would not be very accurate.

With the assumption that an infinite number of particles can be used, the
performance of the PF are only matched by the EKF, or KF, if the system is
linear and the noise is Gaussian. When a limited number of particles is used with
a linear system with Gaussian noise, the EKF, or KF, will outperform the PF. In
the last case, there is nothing to gain by using the PF.

1The observation function h(·) for the model considered in this thesis does not depend on u.
Therefore is it only needed to linearize h(·) in respect to x.



Chapter 3

Model Based Diagnosis

This chapter is a short introduction to the concepts of model based diagnosis
used in this Master’s thesis. For a more extensive description, see Model Based
Diagnosis of Technical Processes by Nyberg and Frisk [12] which contains most of
the material presented here. For some other sources of information about diagnosis
in general, FDI and nonlinear approaches, see [13] and [3].

The purpose of a diagnosis system is to find faults in a process. And if possible,
also to identify the fault, i.e. make a diagnosis. The principle of a basic diagnosis
system can be seen in Figure 3.1.

Diagnosis
statement

Input Measurement

PROCESS DIAGNOSIS
SYSTEM

Figure 3.1. A sketch over a basic diagnosis system applied to a process.

Definition 3.1 (Fault) A fault is a not permitted deviation of at least one char-
acteristic property or variable of the system from acceptable/usual/standard/nominal
behavior.

Definition 3.2 (Diagnosis) A conclusion of what fault or combination of faults
that can explain the process behavior is said to be a diagnosis.

If there exists a fault in a process and that fault is successfully located by the
diagnosis system, appropriate actions could be taken, e.g. if a sensor is faulty, that
sensor could be replaced. Or if a control system (if there is any) controlling the
process has feedback from the diagnosis systems, it could compensate for that fault
directly.

A model based diagnosis system uses a model of the process along with mea-
surements from the actual process to make its diagnosis statement, see Figure 3.2.

13
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Diagnosis
statement

PROCESS

Estimate

TESTSMODEL

DIAGNOSIS SYSTEM

Measurement

Input

Figure 3.2. A sketch over the principals of a basic model based diagnosis system applied
to a process.

For a diagnosis system to be able to make a diagnosis statement, there has to
be redundancy in the system, i.e. there has to be at least two different ways to
observe a variable, either directly or indirectly. Typically one from a model and
the other from a sensor.

Example 3.1: Model based diagnosis system

Consider a simple process described by the discrete model

xk+1 = uk (3.1)

and the measurement yk from a sensor measuring xk, i.e. yk = xk. The signal uk is
the input to an actuator. Using the redundancy available, a comparison between
yk and uk can be made according to

Tk = yk − uk−1, (3.2)

where Tk should be close to zero when the system is fault free. In the presence of
a fault, in the sensor measuring xk, or in the actuator uk, Tk will differ from zero.
If the system is fault free up to time k = 40 and faulty after time k = 40, Tk could
e.g. be observed as in Figure 3.3. In this example it is impossible to decide whether
the sensor or the actuator is faulty after time k, i.e. the diagnosis statement is, a
fault in either uk or yk.

The function Tk in (3.2) is called a test quantity and is defined as

Tk = T (yk, uk), (3.3)

and typically returns a scalar value. A test quantity is said to respond when it is
large/low enough and crosses a specified limit (threshold).
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Figure 3.3. A test quantity, Tk, for a system subjected to a fault at time k = 40. The
small deviations is sensor noise.

An important issue for a diagnosis system is the ability to isolate a fault, i.e.
to be able to determine which fault that has caused the behavior of the faulty
system. Isolation is not possible for the system in Example 3.1 because there is
only one test quantity and two possible faults and no information of the system
behavior during faulty conditions. If isolation is wanted for a system with many
possible faults, it is often required (not always) that several test quantities have
to be created. An overview of a more complex diagnosis system, with many test
quantities and faults, can be obtained with the help of a decision structure.

Example 3.2: Decision structure

Let Fi denote a certain fault i, then consider a system with, say three faults and
three test quantities Ti, i.e. i = {1, 2, 3}. Further let the test quantity T1 be
sensitive to all faults, T2 to F2, and T3 sensitive to F2 and F3. The decision
structure for the diagnosis system described is then

F1 F2 F3

T1 X X X
T2 0 X 0
T3 0 X X

(3.4)

where an X marks that Ti is sensitive to fault Fj . A zero in row i, column j means
that Ti will never respond to Fj , i.e. the test quantity will never be affected by
fault Fj . Sensitivity mentioned here means that a test quantity has a chance of
responding when the system is subjected to a fault and not that it always responds.

3.1 Fault Isolation

Observe the decision structure (3.4) in Example 3.2. If that diagnosis system is
subjected to, for instance fault F1, the system is not able to isolate which fault has
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occurred. That is because the only test quantity sensitive to F1, is also sensitive
to faults F2 and F3. When T1 responds to fault F1 the system can only draw
the conclusion that any of the faults has occurred. A decision structure where all
faults are isolable from each other can look like

F1 F2 F3

T1 X X 0
T2 0 X X
T3 X 0 X

(3.5)

where it is easy to see that if fault F1 occur, test quantity T1 and T3 might
respond. And if they do respond, the only reasonable explanation will be that
F1 is the cause. This conclusion is made by looking in (3.5) and seeing that
the only common factor for T1 and T3 is F1. The zeros in a decision structure are
decoupled faults. Decoupling of faults, i.e. to make the diagnosis system insensitive
to a specific fault, is important to do for obtaining a wanted decision structure
and in that way, a diagnosis systems able of isolating each fault.

Sometimes it can be necessary to have more test quantities than faults to
achieve a diagnosis system able of isolating each fault. More test quantities than
faults can also be used to increase the chance of detecting the faults.

3.2 Thresholds

To make the decision that a fault has occurred simply based on when a test
quantity differs from zero is in reality not a good idea. Consider the test quantity
presented in Figure 3.3, due to sensor noise the test quantity differs from zero even
when a fault has not occurred. This problem is solved using thresholds and the
rule that a fault has occurred when the test quantity exceeds a threshold. The
same test quantity as in Figure 3.3 can be seen in Figure 3.4 with two thresholds
denoted J . A difficult part when thresholding a test quantity is to decide the size
of the threshold, if it is set too high it will not respond to small faults, and if it is
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Figure 3.4. A test quantity Tk with a lower and an upper threshold for a system
subjected to a fault at time k = 40. The small deviations is sensor noise.
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too small it will generate false alarms, i.e. respond even when the system is fault
free.

3.2.1 Adaptive Thresholds

If a constant threshold is used according to Figure 3.4 the test could lose detection
performance when applied to a test quantity based on a model with large model
errors, see Figure 3.5(a). This problem can be solved, if the model error is some-
what systematic, by the use of an adaptive threshold, i.e. a threshold Jk that is a
function of the model error. The threshold adapts to the disturbances and follows
the test quantity in in the fault free case. The threshold should not adapt itself
due to a fault. See Figure 3.5 for an example of a diagnosis system with adaptive
thresholds.
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(a) Tk with a constant threshold J .
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(b) Tk with an adaptive threshold Jk.

Figure 3.5. Consider a system with model errors subjected to a fault between time
k = 40 and k = 60, both reflected in test quantity Tk. In Plot (a) the fault is not
detected at all and in Plot (b) the test quantity clearly exceeds the threshold and the
fault is therefore detected.

3.3 Test Quantities

There are many different ways to construct a test quantity, this section only pro-
vides information about the type of test quantities used in this thesis.

3.3.1 Residual Based

Let yk,i denote the measurement of state i at time k and ŷk,i the estimate from a
model. Then one way to make a test quantity, as done in Example 3.1, is simply
to use the residual

Tk = yk,i − ŷk,i. (3.6)

A residual is typically around zero when in the fault free case.
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Sometimes it is wise to let the test quantity be a function or filter of the
residual,

T = G(yk,i − ŷk,i). (3.7)

In Example 3.1 where the deviations are noise, it is appropriate to use a low pass
filter. With the use of a low pass filter, the threshold could be lowered to increase
the possibility to detect small faults.

3.3.2 Likelihood Based

For the presentation of the likelihood based test an explanation of the hypothesis
concept is needed. Let a hypothesis Hi be defined by H0

i and H1
i as

H0
i : F ∈ Si (3.8)

H1
i : F /∈ Si (3.9)

where Si is a set of faults. The null hypothesis H0
i can only be rejected, not

accepted. If it is rejected then H1
i is accepted, e.g. if a residual based test quantity

Ti has been made based on the hypothesis Hi and responds, it has responded due
to a fault that is not in the set Si and the null hypothesis is then rejected.

When statistical information is available (based on a hypothesis) in the form
of the likelihood defined in (2.10), a likelihood ratio test can be used. With the
notation L(Hi) = p(yk|Yk−1,Hi), given that p(yk|Yk−1) is based on a model with
the hypothesis Hi, i.e. the model includes the set of faults Si, a test quantity can
be written as

T = log

(

L(Hi)

L(Hj)

)

. (3.10)

The test quantity (3.10) is referred to as a log1-likelihood ratio test, which will
respond with positive values indicating that it is more likely that Hi is true and
with negative values in the favor of Hj .

In comparison to a residual based test, the likelihood based test must have
information from two models, one including the faults in Si and the other including
the faults in Sj .

As in using a residual based test, it can be wise to filter the log-likelihood ratio
test. Uncertainties in the models, which is based on a hypothesis, can be inexact
and lead to noisy behavior. In the case when the model contains feedback from
the process, measurement noise also affects the likelihood.

3.3.3 Cusum Test

The cusum test is in this thesis based on either a residual or a log-likelihood ratio,
and corresponds to the filter G(·) in (3.7). For more information about the cusum
test than presented here, see [8].

1The logarithm is used simply based on some issues regarding the realization. An ordinary
likelihood test could be used with similar performance.
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A one-sided cusum test is constructed for an arbitrary signal sk (in this thesis,
sk is equal to a residual or a log-likelihood ratio) according to

gk = gk−1 + sk − η, (3.11a)

gk = 0, if gk < 0, (3.11b)

and alarm when the sum gk exceeds a threshold J . For a residual based test
quantity the cusum test is two-sided, i.e. another one-sided test, for negative faults,
is used in parallel.

The parameter η is called a drift parameter and is a constant used to compen-
sate for model errors and is used similarly to a constant threshold, see Section 3.2.
The sum gk works as a low pass filter and the threshold J must be high enough
so the test does not alarm in the fault free case. An example on how η and J are
tuned in a two-sided cusum test, for a fault free signal sk with model errors, can
be seen in Figure 3.6.
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(a) sk with a constant drifting parameter η.
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(b) gk with an constant threshold J .

Figure 3.6. Consider a fault free system not in a stationary point with model errors
and noise. In Plot (a) the drifting parameter is set to compensate for the largest model
errors in the signal sk and in Plot (b), the sum gk is thresholded with J to avoid alarms.

3.4 Power Function

If the null hypothesis H0
i is rejected when it in reality is true, it is called a false

alarm, i.e, a test quantity Ti has crossed a threshold even though a fault has not
occurred. In the other case of when a fault has occurred and a test quantity Ti
does not respond, it is called missed detection.

The probability of false alarm and missed detection is used to evaluate tests.
The probability of detection often rises with the size of the fault and are wanted as
low as possible when a fault has not occurred. The probabilities of false alarm and
missed detection can be described by the power function defined as the probability
to reject H0 given a specific value on θ

β(θ) = Pr(reject H0 | θ). (3.12)
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Example 3.3: Power Function

Consider a residual based test quantity T1 based on the hypothesis H1 according
to

H0
1 : θ = θ0 No fault, F = NF

H1
1 : θ 6= θ0 Faulty, F = F1

with an upper threshold J1 and a lower threshold J2. The parameter θ is an
arbitrary parameter in the system that can deviate from its nominal value θ0. For
this system, the power function (3.12) corresponds to

β(θ) = Pr(J1 < T, J2 > T | θ), (3.13)

and depended on the system (that is not presented here), a typical power function
is presented in Figure 3.7.
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Figure 3.7. A typical power function β(θ) where the nominal value for θ in the null
hypothesis is zero.



Chapter 4

Engine Models

Two available models of a Scania truck engine are considered in this chapter. One
of them is from Scania [9], implemented in Simulink. The other one is developed
by Johan Wahlström at Vehicular systems at Linköpings universitet [14] and is
available as a Matlab script. The models will be evaluated against each other
based the accuracy of the state prediction and the execution time.

For the application of the PF and the EKF to be possible, the models have to
be available as scripts, i.e. not as a Simulink scheme. For evaluation of the two
models, the model from Scania is converted into a Matlab script. The data used
for the evaluation is fault free, and the models are compared with the application
of the filters in mind.

With an accurate model that gives a good state prediction, the dependence
on the filters are decreased and estimation and diagnosis performance are gained.
Therefore the model accuracy is important, but so is the execution time, shorter
execution time can be used for e.g. increasing the number of particles and help in
practical issues regarding simulation and implementation.

Both models represent a continuous system with a nonlinear function denoted
g(x(t), u(t)), where x(t) is the state, u(t) is the input signal and t is the time. The
system can be written in the form

ẋ(t) = g(x(t), u(t)), (4.1a)

y(t) = Cx(t), (4.1b)

where y(t) is the measurement which relates to states through the constant ma-
trix C. To be able to apply the filters to the models, the models have to be in the
form of (2.1), i.e. the models have to be discretized in time.

Section 4.1 gives a short overview of which engine the models represent and the
method used for the time discretization of the models is presented in Section 4.2.
The comparison and evaluation, as well as the selection of which model best suited
for the diagnosis systems construction in Chapter 5, takes place in Section 4.3.
The last section, Section 4.3.4, gives more details about the selected model and
the modeled properties.

21
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Figure 4.1. A sketch of a Scania diesel engine with VGT and EGR. The parameters in
the boxes are the modeled dynamics, a * marks that the parameter is not modeled in the
3-state model explained in Section 4.3, and generally, just some of the engine properties
are modeled and therefore presented here. A ⇒ marks an one-way gas flow and a short
description of the parameters in the sketch can be found in Table 4.1.

4.1 Engine with VGT and EGR

The studied Scania truck engine is a diesel engine with a variable geometry tur-
bocharger (VGT) and exhaust gas recirculation (EGR). A sketch of the modeled
properties in the engine are presented in Figure 4.1 and a short description of the
parameters used can be found in Table 4.1. The EGR system is for reducing the
NOx emissions by increasing the fraction of recirculated emission in the intake
manifold and the VGT is simply a fuel efficient way to increase engine power.
Both the EGR system and the VGT introduce complexity to the system resulting
in the feebacks (loops) seen in Figure 4.1, which generally affects the diagnosis
system performance for the systems constructed in Chapter 5 negatively.

4.2 Time Discretization

The easiest way to discretize the system defined by (4.1) is to approximate the
derivative with the Euler forward method as

ẋ(t) ≈ xk+1 − xk
Td

, (4.2)
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Table 4.1. Engine parameters important for the representation of the models

Parameter Description

pamb Ambient pressure
pim Intake manifold pressure
pem Exhaust manifold pressure
pic Intercooler pressure
pes Exhaust system pressure
Tamb Ambient temperature
Tim Intake manifold temperature
neng Rotational engine speed
nvgt Rotational compressor speed
uegr EGR control signal
uvgt VGT control signal
uδ Injected amount of fuel
uα Injection angle

where the step length Td is the time between time k and k+1. The discrete system
will then be

xk+1 = xk + Tdg(xk, uk), (4.3a)

yk = Cxk. (4.3b)

There are several other methods for discretization but Euler forward (4.2), with
an appropriate step length Td, is sufficient for the application in this thesis.

4.3 Model Overview

This section gives a short presentation of the two available models, along with
a comparison based on the issues for the application in this thesis. For more
information about the models, see [9] and [14].

4.3.1 6-state Model

The model made by Scania is implemented in Simulink and is a continuous state
space model with six states represented by the state variable

x = (pim, Tim, pem, pic, nvgt, pes)
T, (4.4)

the input variable

u = (neng, uegr, uvgt, uδ, uα)T (4.5)

and the measurement

y = (pim, Tim, pem, ntrb)T. (4.6)
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The nonlinear function g(x(t), u(t)) in (4.1a), for the 6-state model, contains sev-
eral maps (look-up-tables) of complex engine functions where the maps only rep-
resent some of the nonlinearities in the engine. Other nonlinearities are e.g. satu-
rations, min/max functions.

All the modeled properties of the engine are represented in Figure 4.1.

4.3.2 3-state Model

The model developed by Johan Wahlström at Vehicular systems at Linköpings
universitet is implemented as a Matlab script and is a continuous state space
model with three states represented by the state variable

x = (pim, pem, nvgt)
T, (4.7)

the input variable

u = (neng, uegr, uvgt, uδ)
T (4.8)

and the measurement

y = (pim, pem, nvgt)
T. (4.9)

This model is like the 6-state model based on physical relations but the parameters
is tuned for the states to match measurement data from an ETC1 cycle of the
Scania truck engine. The model is with its three states not representing all the
the details in Figure 4.1.

The 3-state model, apart from the three states, also include the relation be-
tween the control signals uegr and uvgt, and their actuators ũegr and ũvgt. These
relations are modeled as first order dynamics

˙̃uegr =
1

τegr
(uegr − ũegr), (4.10)

˙̃uvgt =
1

τvgt
(uvgt − ũvgt), (4.11)

where τegr and τvgt are time constants. Due to the simple dynamics, where ũegr

and ũvgt are the only variables in the model that are affected by the inputs uegr

and uvgt respectively, they are not considered as state variables. Therefore ũegr

and ũvgt are viewed as inputs directly affecting the system, instead of uegr and
uvgt. The result is that modeled dynamics are pushed outside the model, and the
states are instead considered as inputs.

4.3.3 Comparison

The main difference between the two models is the way they model the engine
properties. The parameters in the 6-state model represent actual physical proper-
ties in the engine, for instance is the parameter representing the intake manifold

1European Transients Cycle, a test cycle for emission certification of heavy-duty diesel engines.
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volume Vim set to match the actual intake manifold volume in the engine. In the
3-state model, the system has been reduced and does not represent all the dynam-
ics in the engine and a couple of the parameters has been altered as compensation,
e.g. the parameter Vim also exist but do not represent the actual volume in the
intake manifold.

The execution time of each discretized model depends on both the complexity
of the model and the step length Td used in the discretization. A too large Td can
make the system unstable. For information on Euler forward and stability, see [2].

The input and measurement data used for the evaluation is collected with a
sampling time Ts = 0.01 s. Trying with Td = Ts for the 3-state model shows no
sign of divergence problems in the predictions and the execution time is acceptable.
For the 6-state model it is necessary to use the maximum step length of Td = 0.002
to avoid divergence.

When the same step length Td = 0.002 s is used for both models, the 6-state
model shows bad performance in execution time compared to the 3-state model.
Most of the time is used by look-up-tables functions interpolating in the maps.
Here it is important to note that the implementation in Simulink outperforms
the implementation in Matlab greatly, both using an Euler solver. Simulink

uses different functions for the interpolation which shortens the execution time.
The Simulink functions are sadly of no use for the PF application.

It is more difficult to compare the state predictions (model accuracy) between
the models. The 3-state model gives a more accurate state prediction during
transients, and both models give approximately equal results during stationarity
with. The states pim, pem and nvgt are shown in Figure 4.2 for a 20Ts prediction
with Ts = 0.002. When changing Ts to 0.01 for the 3-state model, the result
becomes worse but still comparable to the result of the 6-state model with Ts =
0.002. In the figure, it is seen that the 3-state model gives better state prediction
when using the same Ts = 0.002.

Another important issue regarding the execution time is when the PF is applied
to the model. The PF performance will depend on the number of particles used,
and the number of particles needed is highly dependent on the dimension of the
state vector in the model. The 3-state model having only three states compared
to that of six, gives that a smaller number of particles can be used for the same
performance. The total execution time for one time step is proportional to the
number of particles used times the execution time of the model.

Of the two available models, the 3-state model is chosen to be used in the
construction of the diagnosis systems. This decision is based on the issues discussed
in this section and are summarized to:

• The 3-state model has half the number of states than the 6-state model has,
which should lower the number of particles needed substantially.

• The actual execution time of the model is much faster, which directly de-
creases the computational power needed.

• The discretization step length Td can be set five times higher leading to five
times less simulation time is needed. The execution time of the model is
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wanted as low as possible because the actual simulation time for the evalua-
tion should not practically interfere with the diagnosis systems construction.

• The 3-state model has generally more accurate state predictions, which is
maybe the most important argument for using it.
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Figure 4.2. The states pim, pem and nvgt during a part of an ETC cycle for the 6-
state model (dotted) and the 3-state mode (dashed). The states are presented for a 20Ts

prediction with Ts = 0.002 and plotted with real measurement data (line).

4.3.4 3-state Model Equations

For a better understanding of the model complexity, the model equations for the
3-state model are presented in this section. Explanations for the origin of the
equations are given but very briefly and with no motivations. For a more extensive
description of the equations, see [14].

The model is slightly modified compared to the original in [14], but the modi-
fications are quite small2 and the equations presented here are the same as those

2A few equations has been excluded because they do not contribute to the state modeling
that is important in this study.
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Table 4.2. Equation parameters used for the representation of the 3-state model.

Parameter Description Unit

Wc,Wegr,Wei,Weo,Wt,Wf Massflow kg/s
Aegr, Avgt Area m2

pim, pem, pamb Pressure Pa
Pt, Pc Power W
Tim, Tem, Tamb Temperature K
Vim, Vem, Vd Volume m3

ηig, ηigch, ηm, ηtm, ηc Efficiency -
ncyl Number of cylinders -
ne, nt Rotational speed rpm
Ra, Re Gas constant J/(kgK)
Rt, Rc Radius m
a, c Constants -
x Fraction -
uegr, uvgt EGR, VGT input %
uδ Injected fuel mg/cycle
qHV Heating value J/kg
qin Energy in to the cylinders J
γa, γe, γcyl Specific heat capacity ratio -
rc Compression ratio -
Πegr,Πe,Πt,Πc Pressure ratio -
Me,Mig,Mp,Mfric Torque Nm
ωt Turbine angular speed rad/s
Jt Turbine Inertia kgm2

τegr, τvgt Time constant s
BSR Blade speed ratio -
powπ Exponent -
Φc Volumetric flow coefficient -
Ψegr,Ψc Energy transfer coefficient -

used in the original model. The most important parameters used for the presen-
tation of the equations are briefly explained in Table 4.2.

Several equations contain complex nonlinearities and the use of a demanding
nonlinear estimation method like the PF will hopefully be justified.

Manifolds

The dynamics in the intake manifold and the exhaust manifold are represented by
their respective pressure, pim and pem, which constitute two of the three states in
the 3-state model. The models are based on a standard isothermical model based
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on mass conservation together with a constant intake manifold temperature Tim.

ṗim =
RaTim

Vim
(Wc +Wegr −Wei)

ṗem =
ReTem

Vem
(Weo −Wt −Wegr)

Cylinders

The following equations represent the mass flow in/out of the cylinders which can
be observed in Figure 4.1 as the line in/out of the combustion block. The mass
flow into the engine is denoted Wei and is a function of the engine speed, the
intake manifold pressure and volumetric efficiency ηvol. The volumetric efficiency
is a measurement on how effective the cylinders can be filled with air.

Wei =
ηvolpimneVd

120RaTim

ηvol = cvol1
√
pim + cvol2

√
ne + cvol3

Wf =
10−6

120
uδnencyl

Weo =Wf +Wei.

The exhaust manifold temperature Tem is a function of the cylinder out tempera-
ture Te according to

Tem = Tamb + (Te − Tamb)e−
htotπdpipelpipenpipe

Weo
cpe .

The cylinder output temperature Te is modeled based on a ideal Seliger cycle
together with a couple of other equations they represent the exhaust manifold
temperature Tem. These equations are nonlinear and dependent on each other
and therefore solved numerically using fixed point iteration with the initial values
xr,0 and T1,0.

qin,j+1 =
WfqHV

Wei +Wf
(1− xr,j)

xp,j+1 = 1 +
qin,j+1xcv

cvaT1,jr
γa−1
c

xv,j+1 = 1 +
qin,j+1(1− xcv)

cpa

(

qin,j+1xcv

cva
+ T1,jr

γa−1
c

)

xr,j+1 =
Π

1/γa
e x

−1/γa

p,j+1

rcxv,j+1

Te,j+1 = ηscΠ1−1/γa
e r1−γa

c x
1/γa−1
p,j+1

(

qin,k+1

(

1− xcv

cpa
+
xcv

cva

)

+ T1,jr
γa−1
c

)

T1,j+1 = xr,j+1Te,j+1 + (1− xr,j+1)Tim.
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The cylinder torque, i.e. the engine torque Me, is modeled with three components
where the torque Mig is the gross indicated work that is coupled to the energy in
the fuel. The torque loss are due to the friction torque Mfric and the pumping
losses Mp, which is a function of the pressure differences. The engine torque is
computed according to

Me =Mig −Mp −Mfric

Mp =
Vd

4π
(pem − pim)

Mig =
uδ10−6ncylqHVηig

4π

ηig = ηigch

(

1− 1

rγcyl−1

)

Mfric =
Vd

4π
105(cfric1n

2
eratio + cfric2neratio + cfric3)

neratio =
ne

100
.

EGR valve

The mass flow through the EGR valve is modeled as a simplification of a compress-
ible one way flow where some of the parameters representing physical properties
has been replaced with tuning parameters. With the EGR cooler equations and
ũegr not considered as a state, the following equations are presented

Wegr =
AegrpemΨegr√
TemRe

Ψegr = 1−
(

1−Πegr

1−Πegropt
− 1

)

Πegr =







Πegropt if pim

pem
< Πegropt

pim

pem
if Πegropt ≤ pim

pem
≤ 1

1 if 1 < pim

pem

Aegr = Aegrmaxfegr(ũegr)

fegr(ũegr) =

{

cegr1ũ
2
egr + cegr2ũegr + cegr3 if ũegr ≤ − cegr2

2cegr1

cegr3 −
c2egr2

4cegr1
if ũegr > − cegr2

2cegr1

˙̃uegr =
1

τegr
(uegr − ũegr).

Turbo

The third state is the turbine speed, ωt = nvgt, which is modeled using Newton’s
second law of motion as

ω̇t =
Ptηm − Pc

Jtωt
,
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where ηt is the turbine efficiency which is one of the nonlinear parameters modeled
using a map in the 6-state model. The turbine efficiency are in the 3-state model
represented by the following equations

Ptηm = ηtmWtcpeTem

(

1−Π1−1/γe

)

Πt =
pamb

pem

ηtm = ηtm,max − cm(BSR− BSRopt)
2

BSR =
rtωt

√

2cpeTem

(

1−Π1−1/γe
)

cm = cm1(ωt − cm2)cm3 .

The turbine mass flow model equations with ũvgt not considered as a state are
given by

Wt =
AvgtmaxpemfΠt

(Πt)fvgt(ũvgt)√
Tem

fΠt
(Πt) =

√

1−ΠKt
t

fvgt(ũvgt) = cf2 + cf1

√

1−
(

ũvgt − cvgt2

cvgt1

)2

˙̃uvgt =
1

τvgt
(uvgt − ũvgt)

and are also one of the functions represented by a map in the 6-state model. The
compressor efficiency ηc are computed similarly to the turbine efficiency as

Pc =
WccpaTamb

ηc

(

Π1−1/γa
c − 1

)

Πc =
pim
pamb

ηc = ηcmax −XTQcX

X =

[

Wc −Wcopt

πc − πcopt

]

πc = (Πc − 1)powπ

Qc =

[

a1 a3

a3 a2

]

.
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Last, the mass flow through the compressor Wc (which is mapped in the 6-state
model), is computed as

Wc =
pambπR

3
cωt

RaTamb
Φc

Φc =

√

1− cΨ1(Ψa − cΨ2)2

cΦ1
+ cΦ2

Ψc =
2cpaTamb

(

Π
1−1/γa
c − 1

)

R2
cω

2
t

cΨ1 = cωΨ1ω
2
t + cωΨ2ωt + cωΨ3

cΦ1 = cωΦ1ω
2
t + cωΦ2ωt + cωΦ3.





Chapter 5

Diagnosis Systems Design

This chapter presents how to apply the PF and the EKF to a model of a truck
engine to perform diagnosis. The 3-state model is chosen from Chapter 4 and the
PF and the EKF is tuned in Section 5.4 for that specific model. The information
provided by the filters are used in Section 5.2 to design four different diagnosis
systems, two based on the PF and two based on the EKF, that are capable of
detecting and isolating each of the considered faults. See Figure 1.1 for a system
overview. Some of the constructed tests used by the diagnosis systems require
the engine model to be extended with models of the considered faults. The fault
models are implemented differently depending on which signal the fault affects, this
is discussed in Section 5.3. This chapter is concluded with a couple of additional
methods for improving the diagnosis systems performance.

The tests and the diagnosis systems are evaluated with fault free and faulty
data from an actual truck engine. The evaluation and discussion take place in
Chapter 6.

5.1 Considered Faults

In this thesis six faults are considered for isolation, three sensor and three actuator
faults. All other possible faults and deviations from the nominal system behavior
that do not disappear in the model error are still detectable, but not isolable.
This depends on the system architecture, see Figure 4.1, where the three states
are observable from each of the sensors because of the feedbacks due to the EGR
and VGT. The stated system observability is merely based on observing the system
architecture and no formal proof of observability is made.

There is no knowledge about the behavior of the sensors and actuators under
faulty conditions. There are therefore many possible types of faults that can
be used to evaluate the tests, but they are restricted to gain faults because the
evaluation of all types faults would be very time consuming. Gain faults are chosen
over additive faults because Scania already has methods for detecting and dealing
with additive sensor faults.

33
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Gain faults are here represented by a parameter θ, affecting an arbitrary mea-
surement or actuator signal s according to

sfaulty = (1 + θ)s. (5.1)

The faults considered for isolation are denoted as in Table 5.1 and presented along
the physical signal they affect (defined in Table 4.1).

Table 5.1. The name of the considered faults along with a short explanation and which
parameter is affected by the fault.

Fault name Affect signal Description

FSpim pim Fault in intake manifold pressure sensor
FSpem pem Fault in Exhaust manifold pressure sensor
FSvgt nvgt Fault in compressor speed sensor
FUegr uegr Faulty EGR actuator
FUvgt uvgt Faulty VGT actuator
FUδ uδ Faulty amount of fuel injected

None of the considered faults are tested on a actual engine for generating new
data which is desirable if the possibility existed. For the evaluation of the diagnosis
systems in Chapter 6, the faults in Table 5.1 are set to affect the already existing
measurement and input data as gain faults according to (5.1).

5.2 Diagnosis Systems

In this section two different types of test quantities are constructed, resulting in
two independent diagnosis systems. All test quantities are constructed for both
the PF and the EKF, resulting in four systems in total. One type of test quantity
is residual based and the other is likelihood based and they are constructed based
on the same hypotheses. The two resulting types of diagnosis systems, one residual
based and one likelihood based, are both able of isolating all faults in Table 5.1.

Test quantities for both the residual and likelihood based systems are con-
structed based on the following hypotheses

H0
0 : F ∈ S0 = {NF} H1

0 : F /∈ S0

H0
1 : F ∈ S1 = {NF,FSpim} H1

1 : F /∈ S1

H0
2 : F ∈ S2 = {NF,FSpem} H1

2 : F /∈ S2

H0
3 : F ∈ S3 = {NF,FSvgt} H1

3 : F /∈ S3

H0
4 : F ∈ S4 = {NF,FUegr} H1

4 : F /∈ S4

H0
5 : F ∈ S5 = {NF,FUvgt} H1

5 : F /∈ S5

H0
6 : F ∈ S6 = {NF,FUδ} H1

6 : F /∈ S6

(5.2)

where the hypothesis H0 represent the 3-state model without fault models. The
faults in the other hypotheses 1–6 are modeled according to Section 5.3 or decou-
pled in another way, e.g. by a disconnected sensor. The thresholds used for each
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test quantity are set separately based on the model errors and noise in the fault
free case.

Observing the hypotheses in (5.2), one can see that no null hypothesis include
more then one fault. To have a test quantity, insensitive to more than one fault,
more than one fault has to be modeled (decoupled). A disadvantage with having
several modeled faults integrated with the engine model,is that they together may
be able to explain another non-modeled fault as illustrated in Figure 5.1. An
advantage is that fault isolation becomes easier when only a few test quantities
have to respond.

F3

F4

Ω

F1

Figure 5.1. A system with the set of N possible faults represented by Ω as the behavior
of {NF,F1, . . . , FN}, where NF is the no fault state. Fault F1 and F4 together, can
explain the behavior of fault F3. Therefore if F1 and F4 are modeled, the system will
also be insensitive to F3.

5.2.1 Residual Based

The residual based test quantities, denoted TR
i where i = {0, . . . , 6}, are based on

the hypotheses in (5.2) with the same index. The diagnosis system in this section
has the following decision structure:

FSpim FSpem FSvgt FUegr FUvgt FUδ
TR

0 X X X X X X
TR

1 0 X X X X X
TR

2 X 0 X X X X
TR

3 X X 0 X X X
TR

4 X X X 0 X X
TR

5 X X X X 0 X
TR

6 X X X X X 0

(5.3)

The test quantity T0 is based on the 3-state model without any fault models,
therefore it is sensitive to any measurement deviation, i.e. sensitive to all faults in
Table 5.1. The test quantity T0 is not contributing to the isolation and are simply
used for detection of an arbitrary fault. Test quantities TR

4 , TR
5 and TR

6 have fault
models constructed according to Section 5.3. Instead of modeling the sensor faults



36 Diagnosis Systems Design

in test quantities TR
1 , TR

2 and TR
3 , one sensor for each test quantity, is disconnected

from the system, leaving the system decoupled to that sensor whatever it does.
Test quantities 1–3 are still based on the hypotheses in (5.2). An advantage with
this type of decoupling compared to modeling faults is that the problem seen in
Figure 5.1 can not occur. A disadvantage is that the system loses one measurement
signal used for state estimation. This alone does not need to be a problem but
if the model is poor, all measurement signals are needed for obtaining a good
estimate.

The diagnosis statement from test quantities 0, and 4–6 are each made by using
the residuals

rpim = ypim − ŷpim = ypim − x̂pim, (5.4a)

rpem = ypem − ŷpem = ypem − x̂pem, (5.4b)

rvgt = yvgt − ŷvgt = yvgt − x̂vgt, (5.4c)

where y is a sensor measurement and ŷ = x̂ its estimate. The test quantities are
said to respond whenever one of the three residuals, filtered with GR(·), exceeds
one of its thresholds JR. In the fault free case, or in the case where the fault test
quantities 4–6 are insensitive to happens, the filtered residuals should be between
the thresholds as

JR
lower, pim < G

R
pim(rpim) < JR

upper, pim, (5.5a)

JR
lower, pem < G

R
pem(rpem) < JR

upper, pem, (5.5b)

JR
lower, vgt < G

R
vgt(rvgt) < J

R
upper, vgt. (5.5c)

For each test quantity 1–3, only two of the residuals are used whereas the third,
the one based on the decoupled sensor, are sensitive to all faults and therefore not
contributing to the isolation. Each of the test quantities in this section together
with the filter GR(·) and the thresholds J denotes a cusum test as described in
Section 3.3.3.

5.2.2 Likelihood Based

The likelihood based test quantities are denoted TL
i where i = {1, . . . , 6} and

together they represent a likelihood based diagnosis system. The test quantities
compares the likelihood for each hypothesisHi against the hypothesisH0 according
to

TL
i = GL

i

(

log

(

L(Hi)

L(H0)

))

> JL
i,upper, (5.6)

where the GL
i (·) is a filter. The likelihoods are obtained directly from the PF or

the EKF according to (2.10) and (2.15), respectively. If one of the test quantities
TL
i respond, it means that it is more likely that hypothesis Hi is true than H0.

If more than one test quantity respond, the likelihoods of the responding test
quantities are compared between each other to decide the most likely hypothesis.
The likelihoods are generated as

TL
1 TL

2 TL
3 TL

4 TL
5 TL

6

F L(H1) L(H2) L(H3) L(H4) L(H5) L(H6)
(5.7)
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where F can be any fault or the no fault state NF . If e.g. F = FSpim leads to that
TL

1 and TL
3 respond, then L(H1) is compared with L(H3) to decide the most likely

hypothesis. A decision structure can not be presented because the test quantities
can not be guarantied to be insensitive to the non-modeled faults which is due to
the problem illustrated in Figure 5.1.

As well as for the likelihood based diagnosis system, the test quantities in this
section together with the filter GL(·) and the threshold J denotes a cusum test as
described in Section 3.3.3.

5.2.3 Tuning the Cusum Parameters

For the residual based tests, the drifting parameter η and the threshold J are set
based on fault free data and have to be set separately for each test used by the PF
or the EKF. The model errors increase with increasing state values, and if η is set to
the largest model error during stationarity, the tests will have better performance
when the system is in those states. States with large errors will thereby contribute
to the detection and η is then reflecting the size of largest positive and negative
model errors during stationarity. Ways to compensate for the performance loss in
states without those errors are presented in Section 5.5.

The threshold J is used to compensate for noise and non-stationary model
errors that are often obtained during transients. Larger errors during transients
in the fault free case leads to a larger J and therefore the ability to detect small
faults during a limited time window decreases. This last effect is, especially when
using the PF, observed in the power function, see Section 6.1.1. The upper and
lower threshold Jupper and Jlower, respectively, are set equal in magnitude, i.e.
|Jupper| = |Jlower|, which may not give the best performance. This is done anyway
for robustness because of the limited availability of real fault free measurement
data.

The drifting parameter η and the threshold J are for the likelihood based
systems are set based on a similar discussion.

The parameters heavily affects the performance of the tests and they are set
on the same basis for both the PF based diagnosis systems and the EKF diagnosis
systems, see Section 3.3.3 for more information about how the parameters are
tuned. The values of the cusum parameters are presented Appendix A.

5.2.4 Discussion

When constructing the tests in this chapter, the assumption of single faults is
made, i.e. that it is not possible for more than one fault to occur at the same
time. This is, under the condition that the faults are independent and based
on information from Scania that the considered faults are not likely to occur, a
reasonable assumption to make. It is of course a problem if more then one fault
actually occurs and the same problem also exist for non-modeled faults.

For making the best possible diagnosis system, the best residual based tests
along with the best likelihood tests can be combined. This is however not done,
due to lack of time and because the focus lies on evaluating the properties of the
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PF against the EKF for FDI. This is also why there are only two types of test
quantities used. Other tests than the cusum test can also be used, but it is a time
consuming task to find the best suited test for the application in this thesis, and
there is really no need for this because the cusum test has the desired properties.
The desired properties for a test quantity in this thesis are the possibility to
compensate for model errors and noise which in the cusum test corresponds to the
parameter η and the sum gk with the threshold j, respectively.

5.3 Modeling Faults

Decoupling faults can be done by e.g. modeling the fault dynamics, which is done
for several test quantities as a stochastic process according to

θk+1 = θk + νk, (5.8)

where νk is a stochastic variable with a known Gaussian distribution with mean 0
and variance D. The fault θ is set to affect the signal subjected to the fault, as a
gain fault according to (5.1).

5.3.1 Particle Filter

The faults FSpim, FSpem, FSvgt and FUδ are modeled as in (5.8). The variance
D of νk is preferably set large for adaption to fast changes in the fault. If the
variance is set too large, the particles will be spread across a large space and the
PDF estimate will lose its significance. The variance D is for the fault models set
to

FSpim FSpem FSvgt FSδ
D 4.1 · 10−5 7.2 · 10−4 5.1 · 10−5 1 · 10−2 (5.9)

The faults FUegr and FUvgt affects the control signal to the EGR and the VGT
which has the limited range [0, 100]. This gives the opportunity to spread the
particles uniformly in that interval with no extra state that (5.8) otherwise implies.
Doing this, the signals uegr and uvgt will be completely decoupled and any fault
affecting these signals as well.

5.3.2 Extended Kalman Filter

The faults FSpim, FSpem, FSvgt and FUδ are modeled as described in Section 5.3.1
with the variances according to (5.9), and with the exception that (5.1) has to be
linearized.

The idea of modeling FUegr and FUvgt are also the same as in Section 5.3.1
except that a uniform distribution can not be implemented together with the KF
equations. Instead, with the fault model

θk+1 = νk, (5.10)

a large variance D is used. Paying no attention to the previous state θk, θk+1 can
still end up outside the range of [0, 100]. KF estimates of θ̂k outside the interval
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are truncated up/down to 0/100 to not exceed the physical boundaries the 3-state
model is based on, i.e. the signals uegr and uvgt are physically confined to the
values in [1, 100]. Using this large variance for a normal distribution is motivated
with that all input values in the interval [0, 100] should have the same probability,
and therefore be decoupled. The variance D are in fault models of FUegr and
FUvgt set to

FUegr FUvgt

D 1 · 103 1 · 103 (5.11)

which are relatively large compared to the values in (5.9). With the variances in
(5.11), the same effect as using the uniform distribution with the PF is obtained.

5.3.3 Discussion

The fault models are of the same type as the faults used for the evaluation of the
diagnosis systems in Chapter 6. This may not be appropriate when in Section 5.1,
saying that there is no knowledge of the actual behavior of a faulty sensor. But
when setting the fault variance D, it is set as high as possible and therefore giving
the ability to compensate for other types of faults affecting the system. The fault
model (5.8), with a high variance could also handle constant bias faults.

When using a stochastic fault model, as described in Section 5.3, on a model
with errors, the errors are to some extent compensated for, i.e. the problem il-
lustrated in Figure 5.1 is imminent. This is because the modeled fault is a free
variable in the system, and the filter estimates this variable to best fit the measure-
ment. In fact, due to the EGR and VGT, all faults considered in this thesis can
be explained to some extent by another modeled fault. The problem just stated
indicates the effectiveness of excluding a sensor for decoupling when possible.

Stochastic modeling in this thesis either increases the number of states or
directly affects the system signal as noise. This leads to that the number of
particles needed by the PF to maintain the quality of the PDF estimate increases.
The result of the modeling is discussed more in detail during the evaluation of the
diagnosis systems in Chapter 6.

5.4 Tuning the Filters

This section explains how the parameters in the PF and the EKF are adjusted for
the engine model. The Bootstrap PF introduced in Chapter 2 does not need many
modifications to work with the used 3-state model. There are however a number
of parameters that need to be tuned:

• Initial distribution of the states, p(x0).

• The distribution of the system noise, p(vk).

• The distribution of the measurement noise, p(nk).

• The number of particles used, N .
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These parameters, except N , are also needed for the EKF but have the restriction
that the distributions have to be Gaussian.

5.4.1 Particle Filter

The initial distribution of the state p(x0) only represent the knowledge of the
state in the first time step and therefore the type of distribution is not of great
importance, but it still has to be set in the vicinity of the real state for not
losing the estimates completely. The distribution is out of simplicity set to be
Gaussian, N(m0,Π0), where m0 is the initial value of the measurement and Π0

is the covariance matrix with elements of the same size as in the system noise
covariance matrix Q.

It is difficult to approximate the distribution of the system noise and a straight-
forward way is to assume that the noise has a Gaussian distribution with mean
0 and a constant covariance matrix with only diagonal elements, which is done
here. This assumption may cause that unnecessary many particles are needed
for obtaining a good PDF estimate. Spreading the particles over a wide space
leads to less belief in the model and in that way, decreasing the diagnosis systems
performance. The covariance matrix Q reflects the size of the model errors and
therefore it has to be adequately large to handle those. The model errors are highly
dependent on the system state which in general, for the 3-state model, gives more
inaccurate estimates for larger values of xpim, xpem and xvgt. This indicates that
it would be appropriate to use a p(vk) = N(m(xk), Q) or p(vk) = N(0, Q(xk))
dependent on the looks of the model errors. There are though problems to decide
the magnitude ofm(xk) and Q(xk) for different operating points and for simplicity
a constant Q and m are used, but this is still discussed further in Section 5.5.3.

The measurement noise, i.e. the sensor noise, are often considered to be Gaus-
sian when the sensors work correctly. There are indications from measurement
data that the variance changes with the state as seen in Figure 5.2 where the mea-
surement yvgt is presented from two different operating points. Still, a constant
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(a) yvgt for a low operating point.
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(b) yvgt for a high operating point.

Figure 5.2. The measurement yvgt is in plot (a) shown for a low operating point and
in plot (b) for a high operating point.
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Figure 5.3. The same measurement data used in Figure 5.2(a) from the measurement
signal yvgt, with the linear trend removed, is here plotted as a histogram with an example
of a Gaussian distribution of the same variance.

covariance matrix R is used for simplicity. No information about the sensor prop-
erties from the manufacturer is available and therefore the distribution p(nk) is set
to be Gaussian with mean 0 and constant covariance R. In Figure 5.3 the same
measurement data used in Figure 5.2(a) are here used to support the assumption
of a Gaussian distribution.

The elements in Q and R are, in lack of better knowledge about the actual
noise and errors in the system, in a way considered as design parameters, i.e.
parameters to be tuned for satisfactory performance. A couple of assumptions
about the sensors can be made on good grounds, e.g. the sensor measuring the
compressor speed uses a highly accurate method and therefore the variance should
be set low. The sensors measuring the pressure are of the same type and knowledge
of the variance could be obtained from measurement data.

Considering the 3-state model accuracy and the above discussion, the elements
in Q are set as low as possible still obtaining a reasonable accurate state estimate.
The distributions are based on above arguments set to

p(x0) = N(m0,Π0), p(vk) = N(0, Q), p(nk) = N(0, R), (5.12)

where

Q =





Q1 0 0
0 Q2 0
0 0 Q3



 , R =





R1 0 0
0 R2 0
0 0 R3



 , (5.13)

and Π0 = Q. The elements Q1 and Q2 are set lower than R1 and R2, respectively.
Because of the accuracy of the sensor measuring the turbine speed, element R3 is
lower than Q3. This gives more belief in the dynamic equations that represent the
states xpim and xpem than their respective measurement signal, which is good for
the diagnosis systems performance because of its reliance to the model. With the
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numerical values inserted, the matrices in (5.13) are presented as

Q =





4 · 106 0 0
0 1.6 · 107 0
0 0 1 · 104



 , R =





2.5 · 107 0 0
0 2.5 · 107 0
0 0 1 · 102



 .

(5.14)
The number of particles N is important for the PF performance and should be set
as high as possible. With too few particles the representation of the system noise,
the state PDF and the likelihood will be bad. The number of particles is set to

N = 200, (5.15)

so that the execution of the filtered model can be done real time on a ordinary com-
puter1. This however, may not give the wanted performance and is a compromise
due to the execution time.

5.4.2 Extended Kalman Filter

The distribution of the initial state along with the assumed distributions for the
system and measurement noise, is set equal to those for the PF in Section 5.4.1.
This is done based on the same motivations as there, but also for the reason that
the PF and EKF should be evaluated under the same conditions. This may not
be the best case for getting good performance out of the EKF but makes the
comparison between the two filters easier. The FDI performance when using the
EKF are here neglected for easier evaluation of the differences.

If the linearization is done according to Section 2.2.3, it is necessary to calculate
the matrices (2.17) and (2.18). This can either be done analytically or by using
a numerical method. The preferred way to do this would be analytically which
gives an exact calculation of the matrices and also saves CPU time. Because of
the complex model equations, presented in Section 4.3.4, this is however not done.
Instead various different numerical methods were tested, including Euler forward
presented in Section 4.2. There were no clear performance enhancements with
some of the more complex methods and Euler forward are therefore used.

The linearization together with the time discretization of the model require that
Euler forward is used twice. The following calculations are made for computing
the system matrix Ak at every time step,

ẋ(t) = g(x(t), u(t))⇒ /Euler Forward/⇒
xk+1 = Tdg(xk, uk) + xk := f(xk, uk)⇒

Ak =
∂f(xk, uk)

∂xk
= Td
∂g(xk, uk)

∂xk
+
∂xk
∂xk

leading to

Ak = Td
∂g(xk, uk)

∂xk
+ I, (5.16)

12 GHz Centrino with 1 GB memory.
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where I is the unit matrix. The Euler forward method is here used (again) to
approximate the derivative according to

∂g(xk,i, uk)

∂xk,i
≈ g(xk,i + hei, uk)− g(xk,i, uk)

h
, (5.17)

where ei = {(1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T} and the step length h was set to 0.001.
Other step lengths was tried with no apparent performance enhancements.

The matrix Bk is in this case not needed for the KF equations, because the
prediction of the state x̂k+1|k in (2.14a) is obtained directly by using (4.3a).

5.4.3 Discussion

Using only Gaussian distributions, the PF loses some of its theoretical advantage
against the EKF. Another setback for the PF is the limitation of the number
of particles used. With the number of particles chosen, which is set for as short
execution time as possible without losing the significance of the PDF estimate, the
EKF execution still runs faster. This is because the PF runs the 3-state model N
times and the EKF only does that (due to the linearization) 4–5 times, dependent
if there is a fault modeled. The execution time for the PF based systems, tPF, and
the execution time of the EKF based systems, tEKF are dependent on the 3-state
model execution time tmodel according to

tPF : Ntmodel, and tEKF : (n+ 1)tmodel (5.18)

where n is the number of states. This leads to that the only performance advan-
tages for the PF, if there is any, is due to the nonlinearities. The nonlinearities
are though expected to be a matter for the estimation performance of the filters,
see the model equations in Section 4.3.4.

5.5 Compensating for Model Errors

In Section 5.4 it is mentioned that there are model errors affecting both the filter
performance and the diagnostics. The model errors are highly dependent on the
state and on the engine speed, and therefore it is relatively easy to approximate
the model errors as a function of the state and the engine speed.

Two methods of dealing with this problem is described in this section, but only
one method for one test quantity is actually implemented. The implementation
is done with an adaptive threshold for the test quantity TR0 presented in Sec-
tion 5.2. This is because the methods described in this section are time consuming
to implement and the FDI performance is considered as a secondary objective.
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5.5.1 Estimating the Model Errors

Let the model errors be defined as the residuals in (5.4) according to

∆xpim = rpim, (5.19a)

∆xpem = rpem, (5.19b)

∆xvgt = rvgt. (5.19c)

The model error dependence on the state and the engine speed, is seen by observing
the model error for a number of simulations. The model error ∆xpim is in Figure 5.4
plotted against yvgt for neng = 800 rpm. The mean error is clearly dependent on
the VGT speed.
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Figure 5.4. The model error ∆xpim plotted against yvgt with neng = 800 rpm for
approximately 3.2 · 105 samples.

The least square method is used to approximate the mean value of the model
error as a function of the state. The data used for the approximation is only
from a couple of different engine speeds, where many points from the entire range
of stationary operating points are used. The only state that has been used in
the approximation is xvgt which is the VGT speed. This is because x̂vgt is the
most accurate state estimate. Other state estimates can also be used but are not
expected improve the model error estimates much in comparison to the added
complexity.

In fault free simulations, ∆xvgt mostly look like noise and the piecewise mean
value, over a time window, is always close to zero. In Figure 5.5, ∆xvgt is pre-
sented as a histogram for approximately 1.8 · 105 samples from an ETC cycle.
Therefore the model errors estimations are only done for ∆xpim and ∆xpem. The
approximated mean model errors ∆x̃ are for each available engine speed value r
computed as

∆rx̃pim ≈ ar0 + ar1x̂vgt + ar2x̂
2
vgt + . . .+ ar9x̂

9
vgt, (5.20a)

∆rx̃pem ≈ br0 + br1x̂vgt + br2x̂
2
vgt + . . .+ br9x̂

9
vgt, (5.20b)
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Figure 5.5. A histogram of ∆xvgt for approximately 1.8 · 105 samples from an ETC
cycle.

where {ari}9i=0 and {bri}9i=0 are different constants for each available speed r =
{600, 800, 1100, 1300, 1500}. The model error ∆x̃ is set to a linear interpolation
between the five functions ∆rx̃ for the engine speeds not represented by r.

5.5.2 Adaptive Thresholds

In Section 3.3.3, the drifting parameter η used to compensate for model errors
is set to a constant. If this is done for a system with model errors as seen in
Figure 3.5, the diagnosis system could lose detection performance.

For a two-sided cusum test the drifting parameters ηupper and ηlower can be set
as a function of the mean model error ∆x̃ according to

ηupper = ∆x̃+ λupper, (5.21a)

ηlower = ∆x̃− λlower. (5.21b)

Here λ could be chosen as a constant or a function. Either way, λ should represent
the uncertainty in the model error approximation and are set based on how much
∆x deviate from ∆x̃, i.e. based on the variance of ∆x−∆x̃. For the implementation
of the adaptive threshold, λ is chosen to be a function of the estimated state x̂vgt

as

λupper(x̂vgt) = c1,upperx̂vgt + c2,upper, (5.22a)

λlower(x̂vgt) = c1,lowerx̂vgt + c2,lower. (5.22b)

Setting λ as a function is done ad hoc and the constants c in the linear function are
set entirely based on observations from simulations, e.g. as from the observation
seen in Figure 5.4.
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5.5.3 Adaptive Noise Distribution

Instead of compensating for the model errors when making the diagnostic tests,
the errors could be compensated for already when making the PF and the EKF. It
is already said in Section 5.4.1 that the size of the elements in Q should reflect the
model errors, but a constant covariance matrix might not always turn out well,
e.g. if the model errors have a constant bias, it would be better to give an offset
to the distribution rather than increasing the magnitude of the separate elements
in Q. This method implies that the system noise distribution p(vk) = N(0, Q)
instead should be defined as

p(vk) = N(m,Q), (5.23)

where the mean value m could be set to m = ∆x̃. If the problem is not a offset and
instead an changing variance, the separate elements in Q could be set as function
of the model error.

5.5.4 Discussion

The implementation of the methods described is only done for an adaptive thresh-
old accordingly, and for the test quantity TR

0 presented in Section 5.2 using the
PF. Using a residual based test rather than a likelihood based test for the imple-
mentation is because the likelihood tests use the ratio between two models that
are both affected by the model errors, and therefore the model errors should not
be as clear as in the residual tests.

The model errors can be almost linear in the states for lose neng, and therefore,
instead of making a tenth order least square approximation a smaller order can be
used. The performance will decrease lose, but will still increase compared to the
use of a constant η. A tenth order is used in first place just to be sure that the
nonlinear tendencies are captured in the approximation.

There is also the possibility to use an adaptive Jk that is used with the sum
gk in the cusum test. This could give lose performance enhancements because the
noise variance also increases with large state values. This increase in variance is
however not as legible as the constant model errors that η compensates for.

An adaptive noise distribution also solves another problem with the PF. The
number of particles used is not always enough to represent Q when the model
errors is large, particles do not always end up in the tails of the distribution Q
and therefore loses the state PDF estimate.



Chapter 6

Diagnosis Systems

Evaluation

The tests and diagnosis systems constructed in Section 5.2 are evaluated with real
fault free measurement data and faulty measurement data with the faults defined
in Section 5.1. The systems are compared and discussed based on their properties
for FDI. The discussion focuses on the difference between the residual based tests
and the likelihood based tests as well as the difference between the use of the PF
and the EKF.

6.1 Fault Detection

In this section, some of the differences between PF based and EKF based tests are
presented. Remember that it is stated in Section 5.4 that both the PF and the
EKF have the covariance matrices Q and R of same magnitude. Lets first consider
the residual based diagnosis systems, and further, let the systems be subjected to
a gain fault FSpim according to Figure 6.1. The PF and EKF diagnosis systems
residuals for test quantity TR

0 during the fault FSpim are seen in Figure 6.2. The
residuals are plotted along with their drifting parameters. By observing Figure 6.2
one can see a couple of differences. First, the variance of the residuals are larger
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Figure 6.1. A gain fault that has magnitude θ = 0 up to time 2400, and after that
time, a magnitude of θ = 0.15.
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(a) Using the PF based diagnosis system.
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(b) Using the EKF based diagnosis system.

Figure 6.2. Plot (a) and (b) shows the residuals in test quantity TR
0 when the PF based

and EKF based diagnosis system in subjected to a gain fault, FSpim of size θ = 0.15
at time 2400. The residuals are plotted with its drifting parameters ηupper and ηlower

marked as a dashed line.

when using the PF which is an effect of using a limited number of particles for the
estimation. Second, the EKF residual rpim reacts weaker than the respective PF
based residual which is an effect of the EKF linearization. Due to the linearization,
some of the fault effect manifest itself in the other residuals which is not seen clearly
in Figure 6.2(b), but however clear for larger faults. Because of the model error
differences between the two systems (not explicitly presented here), the parameters
ηpim and ηpem are set larger for the PF based system. In this case when the PF
reacts stronger, it leads to that the PF based system and the EKF based system
detects faults seen in rpim and rpem of approximately the same magnitude.

It is however possible to set the drifting parameter ηvgt for the PF closer to
zero in comparison with the same parameter for the EKF based system. This is a
general effect for all the tests and indicates that the PF based diagnosis system is
better at detecting small turbine related faults, e.g. a small FSvgt.

Just because the PF based system and the EKF based system can detect the
fault FSpim of the same magnitude, the detection time, i.e. the time from the
occurrence of the fault to the time of detection, is not the same. Observing the
the sums gk from the cusum test with the respective thresholds J in Figure 6.3,
one can see that gk increases in magnitude with approximately the same speed
but the detection time is longer for the PF based system mainly due to the lower
value of Jlower,pim.

When subjecting the PF and EKF based system to the sensor fault FSpem,
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(a) The sum gk, using the PF based diagnosis
system.
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(b) The sum gk, using the EKF based diagnosis
system.

Figure 6.3. Plot (a) and (b) shows the sum gk from the cusum test GR(·) when the
PF based and EKF based diagnosis system in subjected to a gain fault, FSpim of size
θ = 0.15 at time 2400. The sums are plotted with its threshold J marked as a dashed
line. A fault is said to be detected when gk crosses J .

the result is similar to those presented for FSpim. The appearance in the residuals
in test quantity T0 is also similar during the faults FUegr, FSpem and FSpem

for the two systems. But when subjecting the system to fault FSvgt according
to Figure 6.1, still considering T0, an interesting observation is made which is
presented in Figure 6.4. In Figure 6.4 it is seen that all residuals using the PF
crosses its η and for the EKF, the fault is only detectable in rpim. This result for
the EKF is understandable because that Q3 > R3, leading to that yvgt is often
considered to be correct even under faulty conditions which gives that the fault
may be visible in another way. Due to the strong connection between the states
xpim and xvgt (see Chapter 4), the residual rpim is the most affected. Note that
Q1 < R1.

This behavior just stated for the EKF is not the same for the PF, but explain-
able. The PF representation of Q3 is due to the finite number of particles and the
small magnitude of Q3, quite limited in space. The particles ending up too far
away from the measurement give numerical problems in computing the weights,
and therefore the track of xvgt is lost. If the track of xvgt is lost, x̂vgt will only
depend on the modeled dynamics and the measurements ypim and ypem, which
results in the effect seen in Figure 6.4. With more particles, the representation
of Q3 should be better. Using 1000 particles instead of 200 still gives this effect
but the increased N is at least clearly seen in the decreasing variance for the state
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(a) Using the PF based diagnosis system.
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(b) Using the EKF based diagnosis system.

Figure 6.4. Plot (a) and (b) shows the residuals in test quantity TR
0 when the PF based

and EKF based diagnosis system in subjected to a gain fault, FSvgt of size θ = 0.15 at
time 2400. The residuals is plotted with its drifting parameters ηupper and ηlower marked
as a dashed line.

estimates. The EKF still has lower variance in its estimates though, and the ques-
tion of how many particles that is needed for approximately equal variance, which
relates to the representation of the noise distribution, is not answered here. Using
a larger number of particles leading to a decreasing variance can of course be used
to lower, especially J , which decreases the detection time.

This effect (just discussed) is due to the limited number of particles used and
can explain the stronger reaction seen in Figure 6.2 if it is not due to the EKF
linearization, which is not bad in that particular case. The detection time and
therefore the robustness of the PF based system is however decreased when the
number of particles is low, which is noticed already when setting the cusum pa-
rameters.

An interesting note can be made from observing Figure 6.2, especially from
Plot (a) with the PF, where almost the entire fault manifest itself in rpim. This
leads to that the fault can be approximated with the residual. The fault size is
θ = 0.15 leading to an absolute value of 3 · 105, and the residual jumps 2 · 105

which is a decent approximation. These observation are not explored further in
this thesis.

In general, the residual based diagnosis systems respond quite similar with the
largest difference that there are problems for the PF due to the variance in the
estimates. Therefore, J is able to be set lower when using the EKF which result
in faster detection.

Now considering the likelihood based systems subjected to the gain fault FSpim

according to Figure 6.1. Observing the likelihood L(H0) in Figure 6.5 it is easy
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(a) Using the PF based diagnosis system.
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(b) Using the EKF based diagnosis system.

Figure 6.5. Plot (a) and (b) shows the likelihoods L(H0) when the PF based and EKF
based diagnosis system in subjected to a gain fault, FSpim of size θ = 0.15 at time 2400.

to see that the larger variance observed for the residual based system using the
PF, due to limited number of particles, is also seen here. This gives a hint that
the likelihood based test quantities have a shorter detection time when using the
EKF because of the threshold J , which can be set low compared to when using the
PF. Using more particles decrease the likelihood variance and J can therefore be
lowered. Observing the likelihood closer during the fault free period, one can see
that mean likelihood for the time 2390-2400 seems to be higher for the PF based
system than for the EKF based system. This indicates that using the PF provides
an advantage due to the nonlinearities in the system compared to use of the EKF
(the likelihood represent the significance in the estimation).

The log-likelihood ratio log(L(H1)/L(H0)), used by the test quantity TL
1 , for

fault FSpim is presented with the drifting parameter η in Figure 6.6. Observing the
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(a) Using the PF based diagnosis system.
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(b) Using the EKF based diagnosis system.

Figure 6.6. Plot (a) and (b) shows the log-likelihood ratio L(H1/H0) using the PF and
the EKF based diagnosis system, respectively. The systems are subjected to a gain fault,
FSpim, of size θ = 0.15 at time 2400. The dashed line is the systems respective drifting
parameter.
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(a) Using the PF based diagnosis system.
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(b) Using the EKF based diagnosis system.

Figure 6.7. Plot (a) and (b) shows the sum gk for the log-likelihood ratio using when
the PF based and EKF based diagnosis system in subjected to a gain fault, FSpim of size
θ = 0.15 at time 2400. The sums are plotted with its threshold J marked as a dashed
line. A fault is said to be detected when gk crosses J .

figure it is seen that the likelihood during the fault free period is slightly above zero
indicating that hypothesis H1 is more likely than hypothesis H0. When modeling
a fault as discussed in Chapter 5.3, the fault model will compensate for the model
errors and therefore give this result. Here it is also indicated, as in the residual
plots during the fault FSvgt, that the PF based system can detect smaller faults.
The threshold J is set lower for the likelihood based system using the EKF, which
therefore gives a shorter detection time as seen in Figure 6.7.

In Figure 6.7 it is seen, with the current settings of the parameters, that it will
take a long time for the PF based system to make the statement that a fault has
occurred. The observation of the likelihood based system gives in general similar
differences between the use of the PF and the EKF, as when observing the residual
based system.

6.1.1 Power Functions

Here another measurement is used to determine fault detectability. Using an ETC
cycle divided into 27 parts, each part about 30–100 seconds long, and using the
diagnosis systems on each part separately, a power function (defined in Section 3.4)
can be made. This power function are used to determine the detectability of faults
during an ETC cycle and should only be used as a comparison between the tests
constructed in this thesis.

The power functions for the tests used in the previous section, i.e. test quan-
tities TR

0 and TL
1 for the fault FSpim using both the PF and the EKF, are seen

in Figure 6.8. Observing the figure, it is clear that the diagnostic tests using the
EKF provides better detection then using the PF for this type of measurement
with an ETC cycle. This is explained by what was said in the previous section,
that the detection time is longer for the PF based tests, which leads to that the
PF based tests do not have time to react using these short intervals. In general,
this is an effect of the noisy estimates using the PF which affects the thresholds.
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Figure 6.8. The power function for the test quantities TR
0 and TL

1 using both the PF and
the EKF for the positive fault FSpim. The fault detection probability has a resolution of
1/27 ≈ 3.7%.

The thresholds is then affecting the detection time and therefore the probability
of missed detection during small faults. The tests must react in the time 30–100
seconds, which is less likely for small faults and a large J .

In the previous section the residual based systems are also subjected to the
fault FSvgt and the power functions for test quantities TR

0 and TL
1 for both the

PF and EKF are presented in Figure 6.9.
In the figure it is seen that the PF based tests may able to detect a smaller

fault than the EKF based tests. This possibility to detect a smaller fault using
the PF, stated in the previous section, is not seen in Figure 6.8 and depends on
the longer detection time for the PF with this type of measurement.

Observing the likelihood tests in Figure 6.9, the effect of a fault model explain-
ing another non-modeled fault is seen. Test quantity TL

1 includes the model of
FSpim and still responds to fault FSvgt. How this affects the isolation is discussed
in the next section.
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Figure 6.9. The power function for the test quantities TR
0 and TL

1 using both the PF
and the EKF for the positive fault FSvgt. The fault detection probability has a resolution
of 1/27 ≈ 3.7%.
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6.2 Fault Isolation

For isolation of faults using the residual based diagnosis systems, at least five
of the test quantities 1–6 has to respond. If less than five tests respond, there
will be a conclusion that more than one specific fault can be responsible for the
system behavior. The same problem when isolation is not possible, happens for
the likelihood based diagnosis system when more than one test quantity responds.
Using the likelihood based systems in the case where multiple tests respond, which
is shown in Section 6.1 to be a common problem, the likelihood comparison

L(Hi)
∑

j∈S L(Hj)
, (6.1)

can be useful. The set S are the set of test quantities that has responded. Using
(6.1), a decision which fault corresponding to the more likely hypothesis i can be
made.

Consider the residual based diagnosis systems for both the PF the EKF, and
let the systems be subjected to the fault FSpim for θ = 0.1 during an entire
ETC cycle. The result of which test quantities that respond are presented in
Figure 6.10. With the decision structure (5.3) in mind, the isolation result is
presented in Figure 6.11. Observing Figure 6.10 and Figure 6.11, one can see that
the result for the PF based system and the EKF based system are quite similar.
Overall for other faults (not presented here) the PF diagnosis system has slightly
better isolation, but in general the systems have the same detection capabilities
for a fault whose size is detectable for both systems.

Now consider the isolation for the likelihood based diagnosis system for both the
PF and the EKF. Which test quantities that respond are presented in Figure 6.12
and which responding test quantity that has the highest likelihood, computed
according to (6.1), can be seen in Figure 6.13. The first test quantity, TL

1 , for both
the PF based and the EKF based system is plotted separately in Figure 6.14 for
a better view.

The likelihood based test quantities, except TL
5 , almost all reacts to the fault

FSpim which indicates that the fault modeled in hypothesis H5 can not explain
fault FSpim well. According to Figure 6.12 this seems to be more clear for the test
quantities using the EKF which is explained by size of the cusum parameters. The
drifting parameters and the thresholds can be set to compensate for this effect,
but the diagnosis system are then losing detection performance (detection of small
faults are going to be harder) which is seen in the power functions in the previous
chapter for the PF based tests. This is however only a problem for small faults,
i.e. faults of those sizes that can be explained by another modeled fault and large
faults are generally harder for another modeled fault to compensate for. This
problem can to some extent be evaded because the likelihood of each responded
test can be compared as in Figure 6.13 and an idea of which hypothesis is more
likely is obtained.
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(a) The test quantities using the PF.
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(b) The test quantities using the EKF.

Figure 6.10. The test quantities TR
i where i = {1, . . . , 6} for the PF in plot (a) and for

the EKF in plot (b), that has responded to a gain fault FSpim of size θ = 0.10 during
an ETC cycle. A one means that the test quantity is responding and a zero that is not
responding. The diagnosis systems is subjected to the fault during the entire cycle.
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(a) The isolation using the PF.
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(b) The isolation using the EKF.

Figure 6.11. With the isolation structure (5.3) the isolation, in plot (a) for the PF and
in plot (b) for the EKF, are presented. A one means that the fault could be responsible
for the system behavior. The isolation is presented for the test quantities in Figure 6.10
for the gain fault FSpim of size θ = 0.10.
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(a) The test quantities using the PF.
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(b) The test quantities using the EKF.

Figure 6.12. The likelihood based test quantities TL
i where i = {1, . . . , 6} for the PF

in plot (a) and for the EKF in plot (b), that has responded to a gain fault FSpim of size
θ = 0.10 during an ETC cycle. A one means that the test quantity is responding and a
zero that is not responding. The diagnosis systems is subjected to the fault during the
entire cycle.
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(a) The isolation using the PF.
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(b) The isolation using the EKF.

Figure 6.13. With the isolation structure (5.7) the isolation, in plot (a) for the PF
and in plot (b) for the EKF, are presented. The plotted value 0–1 means that the fault
is 0–100 % responsible for the system behavior. The isolation is presented for the test
quantities in Figure 6.12 for the gain fault FSpim of size θ = 0.10.
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(a) Isolation of FSpim for the PF.
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(b) Isolation of FSpim for the EKF.

Figure 6.14. A zoomed view of the isolation plots FSpim presented in Figure 6.13 for
the PF in plot (a) and for the EKF in plot (b).

Computing the mean of the values in Figure 6.13 with the formula (6.1), a
general ides of which fault that is more likely over time is obtained, presented in
Table 6.1. The values in Table 6.1 are in favor of the PF, but the probability of
fault FSpim → 100 % as θ increases for both systems. The values favor the PF
based system due to the larger drifting parameters and the larger thresholds.

The problem of a fault model explaining another fault, is not affecting the
likelihood based systems in the same way as it affects the residual based systems.
Using the residuals, a fault model capable of partially explaining another fault
only gives the system worse detection performance. But if the thresholds are set
tight in the likelihood case, it will be easy for the test quantities to respond. This
is because when a fault model can explain another fault, the likelihood of the
respective hypothesis Hi will be greater then the hypothesis H0.

It is noted, by looking in Table 6.1, that both systems are able to isolate FSpim

as the most likely cause for the system behavior.

Table 6.1. The mean values of the likelihoods for the test quantities presented in
Figure 6.13 in percentage. Both filters estimate the probability for each fault according
to (6.1).

FSpim FSpem FSvgt FUegr FUvgt FUδ

PF 87 0 9 5 0 0
EKF 57 7 19 12 0 5
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6.3 Performance Enhancements with an Adaptive

Threshold

An adaptive threshold is constructed according to Section 5.5.2 for test quantity
TR

0 using the PF and the effect is illustrated in Figure 6.15. Since making a
diagnosis system with as good performance as possible is considered as a secondary
objective, this adaptive threshold is only implemented for one test quantity to
prove that it works. Observing Figure 6.15 it is not hard to see that using an
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Figure 6.15. The residual rpim for test quantity TR
0 plotted with an adaptive drift ηk

parameter and a constant drift parameter η.

adaptive drifting parameter, the diagnosis systems performance can be increased.
The power function, using the same data as explained in Section 6.1.1, for TR

0

with an adaptive and a constant drifting parameter is presented in Figure 6.16.
The performance improvement is clear.
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Figure 6.16. The power function for test quantity TR
0 using the PF with both a constant

and an adaptive drifting parameter for the positive fault FSpim. The fault detection
probability has a resolution of 1/27 ≈ 3.7%.
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6.4 Estimation Problems for High Engine Speed

When evaluating the systems for very high state values, including high engine
speed, the PF and the EKF lose estimation performance. This means that the
model errors are imminent and for the PF in some cases, devastating, i.e. the PF
loses the state estimate totally. This is because the 3-state model is tuned for an
ETC cycle which does not contain those high speed revolutions.

This problem happens even for lower engine speed when a fault is modeled using
the PF. Here the limitation due to the number of particles is seen. Expanding the
system with en extra state usually requires more particles to maintain the state
estimate. Generally, these problems are seen using the EKF also but not so severe.

It is important to say that the parameters set for the diagnostic tests in this
thesis, is not based on information for these data containing high engine speed, if
so, the diagnosis performance would not be as good as the result presented in this
chapter.

6.5 Performance Limiting Factors

A couple of factors that effect the presented result are here summarized to:

• The 3-state model is tuned based on data from an ETC cycle made in year
2004, and the data that the diagnosis system are evaluated for in this thesis
are from 2006. The problem here is that the engine used by Scania in their
trucks may have changed during this time, and therefore the 3-state model
may not be as accurate as it could be. The model can of course be re-
parameterized for the available data from 2006, but this is not really in
scope of this thesis but it would hopefully increase the diagnosis systems
performance.

• All the data used are made in engine test cells1, and therefore if the diagnosis
systems are used in a truck, their performance may not be the same as
presented here.

• There are no data obtained especially for the diagnosis systems in this thesis.
The data used for the setting of the parameters in the PF and EKF are from
an engine test cell. There are a total of seven data sets, where one of them
is an ETC cycle and the others are from stationary states for six different
constant engine rpm values.

• The EKF is tuned with same parameters (when possible) as the PF, which
may not be appropriate, and therefore EKF diagnosis systems may have
performance enhancements to gain.

1The engine is separately run indoors without the actual truck. Several parameters affecting
the engine mounted inside a truck, e.g. the exhaust system, are not seen here.
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6.6 Summary and Discussion

First of all, there are only a couple of tests presented in this section and the results,
e.g. power functions, can have worse performance for other test quantities, but all
faults are detectable in some manner during an ETC cycle for less than 20 % gain
faults. Faults FUvgt and FUegr are hardest to detect.

Fault isolation is hard for both residual based systems for small faults, and
somewhat more complicated for the likelihood based systems, especially using the
EKF. Isolation for large faults works rather well for all systems.

Due to the larger J for the PF based systems, the power functions indicate
better performance for using the EKF. This is however not fully correct because
the intervals used when making the power functions might for some faults be to
short for the PF. The general effect of this is that the EKF based systems has a
shorter detection time but the PF might still detect smaller faults.

When observing the likelihoods, it is indicated that the use of the PF has
advantages compared to the EKF due to the nonlinearities in the system. This is
clear when using more particles which is needed for the same robustness that the
EKF provides.

Finally, the performance result presented in this chapter, is not for the entire
state space. If the time where at hand, the 3-state model should have been re-
parameterized and hopefully with performance improvements.



Chapter 7

Conclusions

The main objective in this Master’s thesis is to, by using the Particle Filter (PF)
and the Extended Kalman Filter (EKF), construct a diagnosis system for a Scania
diesel truck engine and evaluate the properties for Fault Detection and Isolation
(FDI).

Using the PF as the primary method and the using EKF for comparison, two
residual based system and two likelihood based system are created. Each system
able to detect and in some way isolate the considered faults. Some of the faults
are harder to detect and/or isolate than others, but they are so for both the PF
systems and the EKF systems.

The FDI performance of the PF systems and the EKF systems compared to
each other are too similar to justify the use of the more computer power demanding
PF. The PF systems with 200 particles need approximately 20 times more CPU
time than the EKF systems, and this can not be considered to be enough for the
same robustness and accuracy that the EKF provides. However, some stronger
detection capabilities are seen using the PF due to the nonlinearities in the system
and the method is recognized to be useful if CPU time is not a problem. When
using only 200 particles the EKF has a shorter detection time in almost all cases.

The general FDI performance of the PF systems and the EKF systems are quite
good but there are also more to gain from improvements such as using an adaptive
threshold, tuning the engine model and using a more advanced PF algorithm than
the Bootstrap algorithm. Improvements when using the EKF can also be expected
when tuning the EKF parameters independently of the PF parameters, for the
result presented in this report, the same parameter values are used in both filters.

The use of the likelihood based tests/systems are, compared to the use of the
residuals, shown to be an useful and a competitive method. If one diagnosis system
is implemented in a real On Board Diagnosis (OBD) system, both the residuals
and the likelihoods can be made from the same filtered model, and therefore the
residuals and the likelihoods should preferably be combined for a better result.

The EKF based systems, and especially the PF based systems, will be difficult
to install in the Engine Control Units (ECU) used today mainly due to the ex-
ecution time of the model. But for a possible installation, the execution time of
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the diagnosis systems should be evaluated more closely, e.g. the implementation
in another software language than Matlab can have a considerable positive effect
on the execution time. Exploring the possibilities to use a model with less CPU
expensive computations is of course also an option. Another suggestion that can
improve the FDI performance is the use of a more specific fault model than the
used stochastic model. This, however implies that there has to be knowledge of
the fault behavior available.

Finally, the most important statements concerning the PF based diagnosis
systems and the EKF based diagnosis systems are summarized:

• The EKF systems has the shorter detection time in almost all cases when
using 200 particles for the PF systems.

• The PF systems can detect smaller faults than the EKF systems, even with
only 200 particles.

• The use of the PF provides some improvements due to the system nonlin-
earities compared to the use of the EKF.

• More than 200 particles is needed for the PF if the same robustness as with
the EKF should be obtained.

• The PF system approximately needs 20 times more CPU time than the EKF
systems which make a possible implementation difficult for the PF systems.

• The EKF systems are also CPU demanding due to the complexity of the
engine model.
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Appendix A

Appendix: Cusum

Parameters

Table A.1 and Table A.2 contains the cusum parameters for the likelihood based
diagnosis systems and the residual based diagnosis systems, respectively.

Table A.1. The cusum parameters for the likelihood based diagnosis systems.

Filter Ratio Jupper ηupper

PF

TL
1 L(H1)/L(H0) 2.0 · 104 1.0
TL

2 L(H2)/L(H0) 1.2 · 104 3.0
TL

3 L(H3)/L(H0) 2.5 · 104 2.0
TL

4 L(H4)/L(H0) 1.5 · 104 4.0
TL

5 L(H5)/L(H0) 1.7 · 104 4.0
TL

6 L(H6)/L(H0) 1.5 · 104 4.0

EKF

TL
1 L(H1)/L(H0) 1.0 · 103 1.2
TL

2 L(H2)/L(H0) 1.0 · 103 0.5
TL

3 L(H3)/L(H0) 0.8 · 103 1.0
TL

4 L(H4)/L(H0) 1.0 · 103 0.7
TL

5 L(H5)/L(H0) 0.9 · 103 0.5
TL

6 L(H6)/L(H0) 0.6 · 103 0.5
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Table A.2. The cusum parameters for the residual based diagnosis systems.

Filter Residual Jupper Jlower ηupper ηlower

PF

TR
0 rpim 2.2 · 106 −2.2 · 106 1349.1 -12645

rpem 5.5 · 106 −5.5 · 106 9672.4 -8434.1
rvgt 2.0 · 104 −2.0 · 104 14.230 -6.6504

TR
1 rpem 6.0 · 106 −6.0 · 106 8889.2 -9288.7

rvgt 2.0 · 104 −2.0 · 104 14.516 -5.3759
TR

2 rpim 1.0 · 106 −1.0 · 106 1808.3 -12711
rvgt 6.0 · 104 −6.0 · 104 25.872 -50.721

TR
3 rpim 3.5 · 106 −3.5 · 106 3753.2 -7953.5

rpem 2.0 · 106 −2.0 · 106 6570.5 -4108.8
TR

4 rpim 3.0 · 106 −3.0 · 106 2080.7 -9071.6
rpem 6.0 · 106 −6.0 · 106 4946.9 -8004.7
rvgt 2.0 · 104 −2.0 · 104 12.935 -5.1246

TR
4 rpim 2.2 · 106 −2.2 · 106 1380.8 -16985

rpem 6.0 · 106 −6.0 · 106 4181.3 -4078.9
rvgt 4.0 · 104 −4.0 · 104 30.762 -4.0309

TR
4 rpim 5.5 · 106 −5.5 · 106 1380.1 -12296

rpem 1.7 · 107 −1.7 · 107 20464 -2498.8
rvgt 1.7 · 105 −1.7 · 105 167.82 -7.4334

EKF

TR
0 rpim 7.0 · 105 −7.0 · 105 2136.2 -9383.3

rpem 2.0 · 106 −2.0 · 106 6129.5 -4595.4
rvgt 5.0 · 104 −5.0 · 104 129.83 -32.505

TR
1 rpem 2.0 · 106 −2.0 · 106 5515.3 -4877.6

rvgt 6.0 · 104 −6.0 · 104 115.77 -53.565
TR

2 rpim 6.0 · 105 −6.0 · 105 2464.3 -8907.3
rvgt 3.0 · 104 −3.0 · 104 99.385 -27.651

TR
3 rpim 3.0 · 106 −3.0 · 106 2869.4 -4741.2

rpem 1.6 · 106 −1.6 · 106 6202.2 -4123.1
TR

4 rpim 1.5 · 106 −1.5 · 106 1872.5 -6590.2
rpem 1.3 · 106 −1.3 · 106 3597.5 -4621.6
rvgt 5.0 · 104 −5.0 · 104 131.21 -32.635

TR
5 rpim 7.0 · 105 −7.0 · 105 2140.8 -9059.3

rpem 3.0 · 105 −3.0 · 105 1331.1 -72.114
rvgt 2.5 · 104 −2.5 · 104 85.162 -32.340

TR
6 rpim 1.2 · 106 −1.2 · 106 2137.4 -9259.0

rpem 3.0 · 106 −3.0 · 106 1892.4 14420
rvgt 4.0 · 104 −4.0 · 104 78.789 -32.134


