
Institutionen för systemteknik
Department of Electrical Engineering

Examensarbete

Survey and Evaluation of Diagnostic Tools

Examensarbete utfört i Fordonssystem
av

Markus Hertzman
Rickard Nilsson

LITH-ISY-EX--08/4100--SE
Linköping 2008

Survey and Evaluation of Diagnostic Tools

Master Thesis
Department of Electrical Engineering

Linköping University

Markus Hertzman
Rickard Nilsson

LITH-ISY-EX--08/4100--SE

Supervisor: Markus Klein
 Anneli Crona

Examiner: Mattias Krysander

Linköping, 28 April 2008

III

Presentationsdatum

2008-03-17
Publiceringsdatum (elektronisk version)

 Institution och avdelning
Institutionen för systemteknik

Department of Electrical Engineering

URL för elektronisk version
http://www.ep.liu.se

Publikationens titel

Survey and Evaluation of Diagnostic Tools

Författare
Markus Hertzman & Rickard Nilsson

Sammanfattning

If a fault occurs in a technical system, for example in an airplane, it is important to be able to detect that there is a fault and
to find what in the system that is faulty. The procedure of determining, given certain observations, if faults are present and if
so the location of faults is called a diagnosis. For achieving diagnosis we can use computer software that takes observations
of a system as input and that generates a diagnosis as output. This is called a diagnostic system. To build a diagnostic
system we need another piece of computer software which is called a diagnostic tool. This thesis will present a market
survey for diagnostic tools as well as an analysis of three of the tools found in the survey. The analysis can be seen as
constituted by two different aspects, one focusing on the diagnostic methods with which each tool creates diagnostic
systems, the other focusing on practical details that determine the usability of each tool. The analysis found that the largest
differences were between the methods used in creating the diagnostic systems.

Nyckelord
Model based diagnostics, tool, TEAMS, eXpress, Raz’r.

Språk

 Svenska
X Annat (ange nedan)

Engelska
Antal sidor
99

Typ av publikation

 Licentiatavhandling
X Examensarbete
 C-uppsats
 D-uppsats
 Rapport
 Annat (ange nedan)

ISBN (licentiatavhandling)

ISRN LITH-ISY-EX--08/4100--SE

Serietitel (licentiatavhandling)

Serienummer/ISSN (licentiatavhandling)

III

Abstract

If a fault occurs in a technical system, for example in an airplane, it is important to be
able to detect that there is a fault and to find what in the system that is faulty. The
procedure of determining, given certain observations, if faults are present and if so the
location of faults is called a diagnosis. For achieving diagnosis we can use computer
software that takes observations of a system as input and that generates a diagnosis as
output. This is called a diagnostic system. To build a diagnostic system we need
another piece of computer software which is called a diagnostic tool. This thesis will
present a market survey for diagnostic tools as well as an analysis of three of the tools
found in the survey. The analysis can be seen as constituted by two different aspects,
one focusing on the diagnostic methods with which each tool creates diagnostic
systems, the other focusing on practical details that determine the usability of each
tool. The analysis found that the largest differences were between the methods used in
creating the diagnostic systems.

Acknowledgments

We would like to thank our supervisors at Saab, Markus Klein, Anneli Crona, and
Torbjörn Fransson. At Linköping University, Mattias Krysander and Erik Frisk
deserves a big thanks as well as Anna Axelsson and Lennart Andersson at Lund
University. The good people at OCC’M, Oskar Dressler and at DSI, Jim Lauffer and
Eric Gould have kindly aided us in our work. Thanks also to the people at TDCM for
the company around the coffee table. Finally big thanks to friends and family for
supporting us during this project.

IV

Table of contents

Abbreviations __7

1 Introduction ___9

1.1 Purpose__ 9

1.2 Problem ___ 9

1.3 Prerequisites ___ 9

1.4 Background __ 9

1.5 Method __ 9
1.5.1 Specification of Basic Desired Features of Tools______________________________ 10
1.5.2 Searching for Suitable Alternatives __ 10
1.5.3 Further Investigation of Remaining Alternatives ______________________________ 10
1.5.4 Comparative Analysis of Remaining Alternatives _____________________________ 11

1.6 Thesis Outline ___ 11

1.7 Contributions__ 11

2 Theory___13

2.1 Diagnostics __ 13
2.1.1 Model Based Diagnosis__ 14
2.1.2 Model Types __ 14
2.1.3 To Detect and Isolate Faults __ 17

2.2 XML ___ 24

2.3 Document Type Definition ___ 25

2.4 XML Schema __ 25

2.5 Relational Databases__ 26

2.6 AI-ESTATE Standard __ 26

3 Survey of Market for Diagnostic Tools _______________________________29

3.1 Non-diagnostic Desired Features____________________________________ 29

3.2 Basic Desired Features __ 29

3.3 The Chosen Tools __ 31
3.3.1 TEAMS from Qualtech Systems Inc _______________________________________ 31
3.3.2 eXpress from DSI __ 32
3.3.3 Raz’r from OCC’M ___ 32

3.4 Additional Motivations for Choices of Tools __________________________ 32
3.4.1 Scope of Use __ 32
3.4.2 Software Based __ 32
3.4.3 Available Information ___ 33
3.4.4 Named Product __ 33
3.4.5 Clear Overall Solution___ 33
3.4.6 Theoretical Foundation __ 33
3.4.7 Saab’s Current Knowledge ___ 33

3.5 Strong Candidates that did not make the Cut _________________________ 34
3.5.1 Rodon from Sörman __ 34
3.5.2 Numerous Different Tools from Impact Technologies _________________________ 34
3.5.3 Diagnostic Profiler & Diagnostician from VSE _______________________________ 34
3.5.4 Livingstone 2 __ 34

3.6 Summary ___ 34

V

4 Analysis of the Tools ___37

4.1 TEAMS __ 37
4.1.1 Representation of Knowledge ___ 38
4.1.2 Methods for Fault Detection and Isolation ___________________________________ 44
4.1.3 Test Sequencing Algorithms __ 48
4.1.4 Formats for Storing Data___ 49
4.1.5 Design for Testability Aids ___ 50
4.1.6 Modifiability __ 50
4.1.7 Compatibleness __ 51
4.1.8 Libraries__ 53
4.1.9 Disciplines of Modelling___ 53

4.2 eXpress ___ 54
4.2.1 Representation of Knowledge ___ 54
4.2.2 Methods for Fault Detection and Isolation ___________________________________ 58
4.2.3 Test Sequencing Algorithms __ 62
4.2.4 Formats for Storing Data___ 63
4.2.5 Design for Testability Aids ___ 65
4.2.6 Modifiability __ 65
4.2.7 Compatibleness __ 65
4.2.8 Libraries__ 67
4.2.9 Disciplines of Modelling___ 68

4.3 Raz’r___ 69
4.3.1 Representation of Knowledge ___ 69
4.3.2 Methods for Fault Detection and Isolation ___________________________________ 73
4.3.3 Formats for Storing Data___ 75
4.3.4 Design for Testability Aids ___ 75
4.3.5 Modifiability __ 75
4.3.6 Compatibleness __ 76
4.3.7 Libraries__ 77
4.3.8 Disciplines of Modelling___ 78

5 Comparison of tools __79

5.1 Modelling Effort ___ 79

5.2 Fault detection and Isolation Capabilities ____________________________ 80

5.3 Formats for Storing Data __ 81

5.4 Test Design Capabilities ___ 81

5.5 Compatibleness __ 82

5.6 Libraries__ 83

5.7 Disciplines of Modelling ___ 83

5.8 Modifiability __ 83

6 Conclusions __85

6.1 Discussion___ 85

6.2 Future Work __ 86

7 References ___87

Appendix A - Search word list __93

Appendix B - Found tools ___94

Appendix C - Sample Systems __96

Abbreviations

AI-ESTATE Artificial Intelligence Exchange and Service Tie to All Test
Environments

CAD Computer Aided Design

CAN Controller Area Network

DFT Design For Testability

Diag-ML Diagnostics Markup Language

ECU Electronic Control Unit

EDIF Electronic Design Interchange Format

FDI Fault Detection and Isolation
FDR Fault Detection Rate

FIR Fault Isolation Rate

FMEA Failure Mode and Effects Analysis

FMECA Failure Mode, Effects and Criticality Analysis

GDE General Diagnostics Engine

GUI Graphical User Interface

HDM Hybrid Diagnostic Modelling
HTML HyperText Markup Language

IETM Interactive Electronic Technical Manual

JPL Jet Propulsion Laboratory

MBD Model Based Diagnosis

MTTF Mean Time To Failure

ODBC Open Database Connectivity

PDF Portable Document Format
QSI Qualtech Systems Inc.

RTF Rich Text Format

RTML Reusable Test and Model Library

TEAMATE TEAM Automatic Test Equipment

TEAMS Testability, Engineering And Maintenance System

TEAMS-KB TEAMS Knowledge Base
TEAMS-RT TEAMS Real Time

UUT Unit Under Test

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

XML Extensible Markup Language

1 - Introduction

9

1 Introduction

1.1 Purpose
The purpose of this thesis is to examine the market for available tools and standards
for creating, maintaining, and developing systems used for diagnostics. The purpose is
also to select among the available tools the best suitable tools and to do a comparison
and evaluation of them from first of all a theoretical but also to some extent from a
practical perspective.

1.2 Problem
The problem intended to be solved in this thesis is to find the currently available best
suited tool for Saab. Best suited referring to capabilities such as modelling, updating
and developing systems, capabilities for detection and isolation of failures, Design For
Testability, DFT, aids, and generation of Failure Mode Effects and Critically
Analysis, FMECA. Included in the problem description is also to map available
standards within the field.

1.3 Prerequisites
The work is made under some prerequisites. Only tools with an expressed
specialization towards model-based diagnostics are considered, this sieved out tools
dealing with artificial intelligence, AI, not related to diagnostics and tools only
dealing with Bayesian probability.

Furthermore the intention was not to investigate Rodon although this tool represents
very much what Saab is looking for. This is because Saab already has made an
investigation about this tool [28].

Saab is only interested in pure software with no integrated hardware in the scope of
this thesis.

1.4 Background
Saab is increasing its focus on the civil aviation market. While the in-house tools that
are used today for developing diagnostic systems serves its purpose, Saab is interested
in exploring what diagnostic tools that are available on the market. It would ease the
work if, when working with future civilian customers, Saab could use a commercial
tool that would be compatible with the world outside Saab. For making work with
diagnostics and function monitoring even more effective, Saab is also interested in
knowing what standards that are supported by the different tools.

1.5 Method
The method used to find and evaluate the different standards and tools, which can be
suitable for Saab, consists of a number of steps. These steps are described in a
chronological order below. Also see Figure 1.

1 - Introduction

10

Figure 1. Schematic picture of the search method.

1.5.1 Specification of Basic Desired Features of Tools

To be able to have some basic rules of selection of the tools, a number of basic
desired features are formulated. These rules are very loosely formulated and are
supposed to give room for a wide variation of tools, although still provide a number of
functions or features of which at least one is required to be included for the tool to be
considered as an alternative.

1.5.2 Searching for Suitable Alternatives

In order to find available tools, brainstorming is done for possible search words and
search phrases that can be used when searching on the internet. These words and
phrases are listed in Appendix A. The list is consulted during the search phase and is
refined in the searching process as new words and phrases are discovered.

In another document, found in Appendix B internet pages with possible candidates are
noted along with description of the different tools.

The searching process results in a list with all the possible candidates that have been
found. These are explored in more detail by gathering as much information as
possible from internet pages and e-mailing contact. As information is gathered, the
candidates on the list are either rejected or accepted for further exploration. This
results in a shorter list consisting of a few candidates of tools.

1.5.3 Further Investigation of Remaining Alternatives

The remaining tools are explored more thoroughly by investigating the different pros
and cons, and if possible by using the tool. The differences and capabilities of the
different tools regarding choice of model types, methods for Fault Detection and
Isolation (FDI), compatibleness, formats for storing the data and aids for designing a
more testable system is examined for each program. Also some attention is paid to
softer values such as user friendliness and difficulty of implementing models in the
tool. Different aspects of the tools are considered by each author due to different
knowledge.

1 - Introduction

11

1.5.4 Comparative Analysis of Remaining Alternatives

In the comparison of the tools the different pros and cons are weighed up against each
other. Compatibility to other software commonly used in diagnostics is also taken into
account. Long term softer values such as for how long it has been on the market and
development possibilities are also investigated.

1.6 Thesis Outline
In Chapter 2 the theory needed to understand this thesis is described.
Chapter 3 describes how the search for tools was done and how the tools were
selected. Some of the found tools are listed and commented here. Also how the tools
finally chosen for further investigation were selected is described here. In Chapter 4
the chosen tools are analysed and in Chapter 5 the chosen tools are compared. Chapter
6 concludes the work. Finally appendixes are attached.

1.7 Contributions
The authors have with this thesis contributed with a market survey of diagnostic
software tools and performed a thorough evaluation of three of the tools that were
found in the survey. Some standards within the field have been found and described.
Markus has focused on the parts concerning data formats, model storing and
compatibilities. Rickard has focused on model types, inference algorithms and design
aids.

2 - Theory

13

2 Theory
This section starts off by presenting the concept of diagnosis and then goes on to
explain model based diagnosis, focusing on different model types. The section that
follows after that deals with two different methods for inferring diagnoses. Thereafter
different topics that are needed for understanding the remainder of the report are
explained. These topics are XML, Document Type Definition, XML Schema,
Relational databases, and finally the AI-ESTATE standard.

2.1 Diagnostics
For a technical system, there is a process for which there are variables which can be
observed either by sensors or by an actual observation made by a human being [60].
These variables could be properties such as the water level in a tank or the cylinder
pressure in an internal combustion engine. We know how these variables behave in a
fault free mode of operation and in some cases also how they behave in fault modes of
the system. The behaviour of the variables could refer to the value of the variable or
the value of the derivative of the variable. If we compare the observations with the
expected behaviours of the variables we might be able to determine if there is a fault
present in the system. We might also be able to identify the fault as well. A simple
example is that the water level in the tank should rise when more water is poured into
the tank, given that the tank is in its fault free behavioural mode. If the level sinks
even though no water is poured out of the tank we can suspect that the tank is in its
leakage behavioural mode. It is called a diagnosis when a behavioural mode is found
that could explain the current behaviours of the variables [60].

Performance of diagnostics can be divided into two kinds: Off-line or on-line, and the
difference of those is that on-line diagnosis is performed at a run time mode of the
system to be diagnosed. Off-line diagnostics on the other hand deals with already
collected data series and tries to detect and isolate faults in this data [60].

If the diagnostics and tests are done manually by an engineer, service technician, or
other person, the diagnosis system follows a diagnostic strategy. A diagnostic strategy
is an ordered sequence of specific tests. The order of these tests has been chosen to
optimize some criteria that can be selected by the person performing the tests
manually. The criteria could be for instance to isolate the fault with the fewest tests or
to first confirm that the fault is not in some specific subsystem. The strategy could
also be viewed as a tree where each test is a vertex and the binary outcome leads via
an edge to either a new test or to a leaf representing a diagnosis. This form of
representation is called a diagnostic tree [60].

One common analysis method in diagnostics is FMECA. FMECA stands for Failure
Mode, Effects, and Criticality Analysis and is an extension of FMEA, Failure Mode
and Effects Analysis. In FMEA a systems possible failure modes are analysed in
terms of what effects the failure modes have on the system. In FMECA the effects of
the failure modes are also weighed against the criticality of the failure modes. The
goal in an FMECA analysis is to find failure modes that have severe effects in the
system so that actions can take place that would prevent these failure modes to occur
[73].

2 - Theory

14

2.1.1 Model Based Diagnosis

Diagnosis that is based on an explicit formal model of a system is called model based
diagnosis [60]. In traditional diagnostics it is common to use what is called limit
checking which means that a sensor signal is given a range in which it may vary but
an alarm goes off if the signal goes either over or under the maximum respectively
minimum value of the range. Redundant sensors are also often used in traditional
diagnosis to make sure that the sensor itself is not faulty, e.g. one redundant sensor is
added to be able to detect if any of the sensors are faulty and a third sensor can be
added in order to isolate a faulty sensor [60].

In model based diagnosis, instead of comparing with two redundant sensors, we can
compare the signal from the one sensor with a prediction from a model and from that
comparison detect faults in the sensor [60].

Advantages of model based diagnosis, compared to limit checking, can be that it can
detect smaller faults with shorter detection time and that it is more likely that faults
can be isolated [60]. Compared to using redundant sensors, model based diagnosis has
the advantage of not needing extra hardware which is desirable from both a cost
perspective and a space perspective. The main disadvantage though is that the models
that are needed in the model based diagnosis system can be time consuming and
expensive to develop. In some cases a model with a high enough accuracy can not
even be constructed if the behaviour of the system is unknown.

2.1.2 Model Types

Models in model based diagnosis can be of different types and constructed in different
ways. These types infer pros and cons; a very detailed model gives the opportunity to
isolate failures very precisely since the exact fault effect can be traced from the test
points through the system. This does on the other hand require a fair amount of
computing power to execute and the bigger the system the more computational power
is required. A not so detailed model requires less computational power and can
generate a diagnosis faster but the relationship between the fault and its effect on the
test is less clear [16].

2.1.2.1 Structural Models

Parts of the spectrum of models will be described here starting with the most basic
one, the structural model given in [16]. This type of model merely states that there is a
relation between property one, P1, and property two, P2. The properties can be
signals, components, or a property of a component in the model. The model thus
consists of a set of ordered pairs, where each pair states that a fault in the first member
will affect member two. Take as an example a fault in a resistor, r , that affects the
current through it, i .

{ }{ }ir,

Notice that the model says nothing about how the faults affect the members, only that
a fault in r is modelled to always affect i .

2 - Theory

15

Figure 2. Illustration of a structural model.

The structural model of the system dependencies shown in Figure becomes

{ }{ }{ }{ }324121 ,PP,PP,,PP

From this we can see that only the first order dependencies are included, the
connection between 1P and 3P must be derived via 2P .

2.1.2.2 Dependency Models

If the structural model is extended to also contain different fault modes, where each
fault has its own set of properties, the model is said to be a dependency model. A fault

mode is denoted by
iPx , where x represents the component number and i represents

the current fault mode.

Figure 3. Illustration of a dependency model.

In this model type the sets of ordered pairs are component and fault mode specific,
meaning that the model in Figure 3 could be modelled as

{ } { } { }{ }baabaa PPPPPP 3,2,4,1,2,1

In this description all the dependencies have an index referring to the affecting or

affected failure mode of the specific components. Thus aP1 will affect 2P and make

this component behave according to its fault mode a .

2.1.2.3 Quantitative Models

A more refined model type is so called quantitative models [7,16]. This model type
specifies also the relation of how the components and signals affect each other. This
can be illustrated by a component 1P that has as input x and from this input it
generates an output y , as shown in Figure 4. The generation of the output is done by

a function. Usually this function is derived form a physical relation such as Ohms law.

Figure 4. Illustration of a quantitative model.

This form of modelling is also called physical modelling since it often uses relations
known from the physics of the systems. A problem with this model type is that many
times the exact relations of the physical variables are not known.

2 - Theory

16

A problem with the quantitative model type from a diagnostics perspective is that in
large models the computations of all the needed variables can be demanding. This
applies especially if the model contains stiff differential equations, i.e. differential
equations with a large difference in the time coefficients [75]. A way to reduce the
required computational power is to use qualitative models instead.

2.1.2.4 Qualitative Models

Qualitative models differ from quantitative models by not specifying or treating an
exact value of the model variables but rather using notations as for example “low”,
“middle”, and “high”. The number and spacing of possible outcomes of this
quantification (defining the granularity) is a matter of much research and no general
theory has been accepted. There are also different types of qualitative models, parted
by the different ways they interpret the time representation. Here we are mostly
interested in the type called naïve physics models. A more through description of this
model type and the other types of qualitative models are given in [20].

All the naïve physics models have in common that they represent the state of a
physical system in a very crude model, where the state variables only can assume one

of three values: { }+− ,0, . Sometimes the 0-state is considered only as a limit between

the negative and positive states and other times it is considered as a state of its own.
The reason for the blunt trisected division of states is that it in many times is relevant
only in what direction the magnitude of a force, motion or other physical entity is
changing. There are for instance applications where the exact magnitude of the
voltage is irrelevant from a diagnostic perspective [20].

Consider for instance the simple example shown in Figure 5. In this circuit it is
sufficient to know if the voltmeter indicates a voltage drop over the lamp or not. The
voltage can be divided into two domains, 0 and + . Setting the limit between the
domains in which the voltage is divided to a voltage corresponding to where it is
possible to detect if the light is lit or not, 1 and 0 . This gives enough information to
differentiate between the systems no fault mode and two of its fault modes. One of
these fault modes is “light broken”, when the light is not lit although there is a voltage
drop over its connectors. Another of these fault modes is “battery drained”, which is
when the battery no longer supplies a voltage difference between its connectors.

Figure 5. A schematic illustration of a very simple circuit.

If the voltmeter is showing + but the light is not lit, 0 , then it is presumably the light
that is broken. If the light is not lit, 0 , and the voltmeter shows 0 then, presumably
the battery is drained.

The method using the trisected variables is used by some while others employ a little
more sophisticated method and increases the granularity of the variables but still uses
the original ternary set for the derivates.

2 - Theory

17

2.1.3 To Detect and Isolate Faults

To be able to generate a diagnosis it is not enough to just have a model of the system.
There must also be some way to compare the observations of the system with the
observations we expect. A method to compare this and to from the comparison
generate a conclusion is called an inference algorithm. In this section two different
kinds of inference methods are described, fault detection and isolation, FDI and
general diagnostics engine, GDE.

The efficiency of the method could be measured by using the Fault Detection Rate,

FDR , or the Fault Isolation Rate for L failure modes, LFIR , as specified in [3]. The

first rate is the ratio between the number of times the fault have been detected, DN ,

and the times the fault has occurred during a specific time, N . The second rate is the

ratio between the number of diagnoses containing at most L failure states LN and the

number of detected failure modes under a specific time.

D

L
L

D

N

N
FIR

N

N
FDR ==

2.1.3.1 Fault Detection and Isolation

FDI for a system can be described as follows [60]. Let sys denote the system which is

made up by the components Nici ,...,2,1, = . Each component can have many ways in

which it behaves and all these ways can be portioned into groups which we call

component behavioural modes. If we consider a component ic that has a behavioural

mode bm we would write bmci = to describe that the component behaves according

to this certain behavioural mode. The fact that component ic has ik number of

behavioural modes we denote as

{ }
iki bmbmc ,...,1∈ .

The component
ic at each point of time behaves according to exactly one of its

component behavioural modes. The behavioural mode of the system is represented by

sys . To describe the behavioural mode of all the components, we write BM . The set

of all the component behavioural modes are the same as the system behavioural mode,

{ }
NjNjj bmcbmcbmcBMsys ===== ,...,, 221 1

,

where { }Nikj ii ,...,2,1,1 ∈∀≤≤ .

Let nf denote the component behaviour mode no fault and then for denoting that there

is no fault in the system we write

{ }nfcnfcnfcNFsys N ===== ,...,, 21 .

2 - Theory

18

If we let u denote control signals and y measurements of the system we can define

()yuz = as a vector of all known signals in the system. Considering a model, BMΘ is

defined as the set of all observations z that are consistent with BMsys = .

Let us say that the model and system have the system behavioural modes

{ }kBMBM ,...,1 , and then the set of all possible observations is

kBMBMZ Θ∪∪Θ= ...

1
.

Now we can define what a diagnosis is [28]: A system behavioural mode BM is a

diagnosis if and only if BMz Θ∈ for an observation Zz ∈ .

To be able to create a diagnosis, a number of hypothesis tests are created. A

hypothesis test is a test that can accept or reject a hypothesis, 0H . 0H is the

assumption that the system is behaving according to some 0
SBM ∈ . Here 0

S is a set

of behavioural modes of components that would make the test pass. If 0H is rejected

the system behaves according to some behavioural mode in 1
S . A test, T , provides

information if the null hypothesis, 0H can be rejected or not. 0H will not be rejected

if Tz Θ∈ and it will be rejected if C

Tz Θ∈ . A rejection of 0H will result in the

inference that the system is not behaving according to any of the behavioural modes

in 0
S . If the test is not able to reject 0H then a behavioural mode in 0

S can describe
the behaviour of the system.

This means that all behavioural modes in 0
S are included in the set TΘ . This in turn

means that a behavioural mode in 0
S explains the behaviour of the system.

This will be illustrated with an example from [28].

Assume a system sys that has four different system behavioural modes: NF (No

Fault), 1F , 2F , and 3F . A hypothesis test 1T has been created with the purpose to

detect and alarm for 1F and 2F . The rejection region of the test is C

T1
Θ and can be seen

in Figure 6 together with the behavioural mode sets. If C

T
z

1
Θ∈ this means that the test

have failed.

Since
1FΘ is a subset of C

T1
Θ and 2FΘ has a non empty intersection with C

T1
Θ , these

two system behavioural modes, 1F and 2F , will be included in 1
S . Analogous, since

NFΘ and 3FΘ are subsets of
1TΘ , and 2FΘ has a non empty intersection with

1TΘ ,

these three system behavioural modes will be included in 0
S . In summary the

rejection region of the test results in { }21
1 , FFS = and { }32

0 ,, FFNFS = .

If the system behaves according to 1F then C

TFz
11

Θ⊂Θ∈ and results in rejecting the

null hypothesis and the decision will be that { }21
1 , FFSsys =∈ .

2 - Theory

19

The null hypothesis will only be rejected for 2Fsys = when C

TFz
12

Θ∩Θ∈ . This

means that the test will fail to react and detect 2Fsys = when)\(
12

C

TFz ΘΘ∈ and as a

consequence alarms will be missed.

The test will never react when { }3, FNFsys ∈ and the null hypothesis will not be

rejected and the decision will be that { }32 ,, FFNFsys ∈ .

In summary this means that the following conclusions can be drawn from the test:

{ }21

10 ,,
1

FFSsysrejectedHz C

T =∈→Θ∈

{ }32

00 ,,,
1

FFNFSsysrejectednotHz C

T =∈→Θ∉

Figure 6. A system with four behavioural mode sets and the rejection region for

the test used in the diagnosis system in the above example [28].

As seen in the example, with the results of the different hypothesis tests we can derive
a set of possible behavioural modes that can explain the outcome of all tests. The
different sets of behavioural modes being rejected or not in each test could be
represented in a matrix form. This form is called a decision structure and each row in
this matrix represents a test and each column represents a behavioural mode. The
example shown in Figure 6 is represented in Table 1.

A “1” on row a and column b mean that test a, aT , will reject behavioural mode b,

bbm , if the test passes, that is if
aTz Θ∈ .If the test triggers an alarm, i.e. C

Ta
z Θ∈ ,

bbm explains the behaviour of the system.

If there is an “X” on the same position this would mean that no matter if the test

passed or failed bbm explains the behaviour of the system.

With “0” in the same place and the test failed, C

Tz Θ∈ , bbm can not explain the

behaviour. If the test passed bbm could explain the system behaviour.

2 - Theory

20

Table 1. The decision structure for the test T1.
 NF F1 F2 F3

T1 0 1 X 0

If there are more tests available the decision structure is expanded with more rows. If
a decision structure were to represent the sets derived from the tests in the example
from [28] it would look like Table 2.

Table 2. The decision structure of the tests and fault modes from the example in

[28].
 NF F1 F2 F3

T1 0 1 X 0
T2 0 0 X X
T3 0 X 0 X

When the information from each test now have been condensed into this compact
form the inference is done by the different tests that have reacted to what behavioural
modes they indicate, or do not indicate.

As an example, consider the test results,

() ()TT
failedpassedpassedTTT =321 .

This means since test 1T not has reacted that the system can not be in behavioural

mode 1F . 3T has reacted and this mean that the behavioural mode 1F or 3F will

explain the system behaviour. Since the 1F mode already have been ruled out by 1T

we now know that the system is in behavioural mode 3F .

If only the first test, 1T , would have reacted then we would not have been able to say

whether the system is in mode 1F or 2F . This is due to the fact that 1T is sensitive to

both these modes. If we are not able to fully isolate between behavioural modes given
certain test results we have a so called ambiguity group. The group consists of the
behavioural modes between which we can not isolate.

2.1.3.2 General Diagnostic Engine

GDE is presented within the field of AI and is one of the most well known algorithms
for fault diagnosis. The algorithm can be used to derive diagnoses and can also
suggest additional measurements for improving the diagnosis. The input to the
algorithm is a model of the system and observations, i.e. measurements made on the
system. In this section we will only give a brief description of the diagnosis
generation. The information in this section is taken from [60].

In GDE the components have only two modes of operation, i.e. behavioural modes.
Either they are functioning correctly, inferring that the component is in behavioural
mode OK or they are not functioning correctly, and the system is in mode NOK.

2 - Theory

21

Assumption based Truth Maintenance System (ATMS) are used together with local
propagation to derive a diagnosis. ATMS is an advanced data structure originally used
as a general problem solver within AI. Local propagation is used to calculate the
values of the variables in the model. A consequence of the local propagation is that
the model can not contain circular dependencies. A circular dependency is when e.g. x
depends on y, y depends on z and z in turn depends on x.

The ATMS consists of one assertion, A and one needed supporting environment,

{ }L,, 21 cscs , grouped together into an entity in the ATMS. The assertion contains a

statement about one or more variables in the model, e.g. 1=x .

The needed supporting environment state sets of what components that needs to be

functional for the linked assertion to hold, e.g. { } { } { }{ }96531 ,,,, ccccc . In [60] the

needed supporting environment is called only supporting environment.

An entity in the ATMS could thus be stated as

{ } { } { } { }{ }9653121 ,,,,,1,,, cccccxcscsA ==K

where A is a assertion 1=x and cs are sets of components needed to be functioning,

in this example { } { } { }{ }96531 ,,,, ccccc . The entity could also be stated in a logic

fashion as

1)()()()()(96531 =⇒∨∧∨∧ xcOKcOKcOKcOKcOK

The former notation is used in this section since it is more compact.

An entity with an empty supporting environment is called an ATMS-premise. This
means that this assertion will always hold, it does not need any supporting
environment. An assertion is called the datum and the needed supporting environment
the label in ATMS terminology.

The local propagation uses the entities in the ATMS to step by step propagate the
information fed into the algorithm. The propagation starts at the premises, the
assertions without needed supporting environments. From there the information is
propagated using related entities.

Figure 7. A schematic illustration of the multiplier system.

2 - Theory

22

If we have a simple system consisting only of a multiplier, M, with two inputs and
one output , as shown in Figure 7, this can be modelled by the entities,

{ }{ }

{ }{ }

{ }{ }Myxf

y

x

,*

Ø,4

Ø,1

=

=

=

The two first entities represent the premises of the known inputs. The last states that if

the multiplier is functioning correctly f will be the product of x and y . The

propagation will use the information in the given entities and derive a new one,

{ }Mf ,4=

This new entity states that given that the multiplier is fault free, f will be 4. Although

not obvious here, the needed supporting environment in the new entity is the union of
the needed supporting environments of the entities used to derive the new entity.

Using the procedure outlined above the algorithm propagates through the information.
When two contradictive assertions are found a so called nogood is created. A nogood
is the union of the two needed supporting environments from the contradicting
assertions. The nogoods are used to indicate that not all the members of the nogood
set can function at the same time. If we expand our example system with a new
component, I , the system will have the outline shown in Figure 8.

Figure 8. A schematic illustration of the extended multiplier system.

The function of the new component can be described by

gffI ==
−1)(.

The new set of entities in the ATMS would be,

{ }{ }

{ }{ }
{ }{ }

{ }{ }Ifg

Myxf

y

x

,

,*

Ø,4

Ø,1

1−
=

=

=

=

Measurement of the inputs and outputs of the system gives the premises

{ }{ }

{ }{ }

{ }{ }Ø,10

Ø,3

Ø,4

1−
=

=

=

g

y

x

2 - Theory

23

Having this information the GDE starts to propagate through the information deriving
the new entities

{ }{ }

{ }{ }IMg

Mf

,,4

,4

1−
=

=

When adding these new tests the GDE will detect the conflicting assertions of g and

create a nogood

{ }IM ,

This state that M and I both can not be functioning correctly. In this case it is fairly
easy to see that the diagnosis, the set of mode assignments of the components that
could explain the observations, are a fault in the multiplier or a fault in the inverter. In
cases were there are several nogoods, it is harder to derive a diagnosis. How this is
done is described further in [60].

Figure 9. A simple system consisting of three lights, a battery and six wires.

Also worth mentioning is that there are some drawbacks using the GDE, these
drawbacks are described in [26]. Consider the system shown in Figure 9. The system

is built up of three lights, 321 ,, lll , a battery, s , and six wires, 654321 ,,,,, wwwwww ,

connecting the lights and battery. The observations tell us that only light 3 is lit. GDE
would in this particular case generate about twenty possible diagnoses where

{ } { }513 ,,, wwls and { }21, ll are some of them. In these sets the components included are

merely indicated to be faulty, no information about the failure mode is available. The
first two sets illustrate the weakness of GDE. In the first candidate the engine
concluded that there is something wrong with the battery (it does not create a voltage
and thus light one and two does not light) and there is also something wrong with
light three since it is lit but there is no voltage. In the second candidate, wire one is

2 - Theory

24

presumed to be cut off and this explains why light one and two are off. Wire five on
the other hand is presumed to produce voltage and explains why light three is on. This
is from a strictly logical point of view a sound explanation. It explains the
observations that is light one and two are off and light three is on. Although it is not a
sound explanation from a physical point of view. A light cannot be on without a
voltage and a wire cannot produce voltage.

If the models are expanded with information on how the components behave when in
a fault mode and we use an inference engine that can utilize from the new
information, we can benefit from the knowledge on how a fault affects the
component. The inference engine GDE+ is able to utilize this failure mode
information. With it we can exclude a number of candidates and speed the diagnosis
up.

2.2 XML
Extensible Markup Language, (XML), is a free standard that is used to structure data
that can be spreadsheets, address lists, financial transactions, or blueprints. It is a
framework for how to construct textual formats with which the data is structured.
With XML data is easily generated and read and data structures are guaranteed to be
univocal. XML is platform independent and it is extensible, which means that it
allows for new formats to be created [12].

In XML there are elements, tags, and attributes. An element must be enclosed by an
opening tag and a closing tag. The opening tag is preceded by the character ‘<’ and
followed by the characther ‘>’. The same is true for the closing tag although the tag
name is preceded by the character ‘/’. I.e the syntax looks like this [13]:

<TagName> ElementContent </TagName>

An element can also have attributes, which have the syntax: AttributeName=”value”.
Elements can be nested so that they get a child/parent relationship [13].

A simple XML code example could look like this:

<carcollection>

 <car color="blue">

 <make>Toyota</make>

 <origin>Japan</origin>

 </car>

 <car color="red">

 <make>Ferrari</make>

 <origin>Italy</origin>

 </car>

</ carcollection >

2 - Theory

25

XML is used for [15]:

• Information identification

• Information storage

• Information structuring

• Publishing

• Messaging and data transferring

• Web services

2.3 Document Type Definition
A Document Type Definition (DTD) decides the structure of a class [19] of XML
documents by listing the allowed elements and attributes [18]. With a DTD an XML
file carries with it a description of its format and different users can exchange data
with this agreed format [18]. In order to give an example of a DTD we consider the
following XML file, which is taken from [72].

<?xml version="1.0"?>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

This XML file describes a note that is sent from Tove to Jani, has the heading
Reminder, and the message in the note is: Don't forget me this weekend!. A DTD for
describing such an XML file can look as follows. This DTD is also taken from [72].

<!ELEMENT note (to, from, heading, body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

In this DTD file we can se that on the first line defines the note element to have the
four child elements to, from, heading, and body. The remaining four lines define each
of these four to be of the type #PCDATA [72].

2.4 XML Schema
The XML Schema is an alternative to DTD, which was described in the above
section, for describing the structure of an XML document [70]. Schemas are, unlike
DTDs, XML based, i.e. the schemas are themselves written in XML. A Schema
defines what elements and attributes that are allowed to appear in an XML document
and also defines data types for elements and attributes. In an XML Schema we can
also specify numeric ranges for a certain element type or specify a list of possible
values for the element type.

2 - Theory

26

To show an example of an XML Schema we use the XML file note from Section 2.3.
Also this example of an XML Schema is taken from [72]:

<xs:element name="note">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="to" type="xs:string"/>
 <xs:element name="from" type="xs:string"/>
 <xs:element name="heading" type="xs:string"/>
 <xs:element name="body" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

In which we can se that the note element is a complex type because it contain other
elements whereas the elements to, from, heading, and body are elements of what is
called simple types as they do not contain other elements. We also can se in the
example that the four simple type elements are specified to be of the data type string.

2.5 Relational Databases
A relational database can be described as a collection of tables that relate to one
another. The horizontal rows are called records or tuples and the vertical columns are
called fields or attributes [30]. In Figure 10 a simple example can be seen.

Figure 10. Two tables in a relational database [30].

The two tables in Figure 10 relate to one another through the Code field in the Poet
table and the Poet field in the Poem table.

2.6 AI-ESTATE Standard
Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-
ESTATE) is IEEE standard 1232. This standard deals with the application of artificial
intelligence to system test and diagnosis [25]. It also describes how to exchange
diagnostic information between diagnostic reasoners by defining a set of formal data
and knowledge specifications consisting of the logical representation of devices, their
constituents, the failure modes of those constituents, and tests of those constituents.

2 - Theory

27

The specified goals in the standard are [25]:

• Incorporate domain specific terminology

• Facilitate portability of diagnostic knowledge

• Permit extensibility of diagnostic knowledge

• Enable the consistent exchange and integration of diagnostic capabilities

AI-ESTATE is extensible and allows for the user to include new diagnostic
technology, which is not specified within AI-ESTATE, in a controlled manner. The
intent of the standard is for diagnostic knowledge to be fully portable and not to be
host computer dependent. Two different AI-ESTATE implementations can
interchange diagnostic models by translating them into the AI-ESTATE interchange
format. Although an implementation can use the interchange format for its own
internal form, in which case the translation is not needed.

The diagnostic data and knowledge in an AI-ESTATE implementation is structured as
can be seen in Figure 11.

Figure 11. Hierarchical structure of AI-ESTATE models [25].

The top layer in Figure 11 is the Common Element Model that specifies elements
common to the AI-ESTATE domain of equipment test and diagnosis e.g.

diagnosis, repair_item, resource, and test [25]. The layer below
consists of application specific data and knowledge formats i.e. the Diagnostic
Inference Model, the Enhanced Diagnostic Inference Model, and the Fault Tree
Model. In [27] one can read that AI-ESTATE will be extended to include a model to
cover Bayesian diagnosis.

To the left in Figure 11 the Dynamic Context Model (DCM) can be seen. The DCM
enables important functions in a diagnostic reasoner that is conformant to AI-
ESTATE. These are functions that regard the state of the reasoning process and the
data in the DCM are developed during a diagnostic session [25]. The models in AI-
ESTATE, e.g. the Common Element Model in Figure 11, are defined with the
EXPRESS data modelling language which is ISO standard 10303-11 [25].

3 - Survey of Market for Diagnostic Tools

29

3 Survey of Market for Diagnostic Tools
This chapter presents the result of a survey of the market for tools for diagnostic
analysis and construction. The process of finding the tools that are to be evaluated is
described. For clarifying what is searched for, features not directly connected to
diagnostics are described in Section 3.1. In Section 3.2 features are listed, concerning
diagnostics desired for a tool in this thesis. The features in 3.2 serve as a guide in the
searching process; if a tool that is found possesses one or more of these features it is
of interest for further studies. With the desired features and non-diagnostic desired
features in mind during the search process, the search resulted in a list of tools which
is presented Appendix B. The tools that are finally chosen for evaluation in this thesis
are presented and motivations for made choices are explained. The chapter is rounded
off with a presentation of a few tools that were close to being selected but did not
make it.

3.1 Non-diagnostic Desired Features
When using a tool to design, develop, and maintain a diagnostic system there are
some aspects needed to be considered besides the technical capabilities. The users will
use the tool to formalize their knowledge about the system into a form specified by
the tool. To do this, it is preferable if the tool is similar to operate and is compatible
with the other tools they use. The tool is also going to be used by a number of persons
probably during an extended time. This causes aspects of user friendliness,
compatibility and the way to work with the tool to become important.

When dealing with a large system it is also preferable if the tool supports a
modularized system construction. If the subsystem codes could be used as modules in
the whole system, that would simplify the merging of different subsystems into a
whole product.

3.2 Basic Desired Features
To point the search for tools in the right direction, twelve features that are desired
were formulated. The tools should posses at least one of these features to qualify as an
alternative for further studies. The features are motivated and described below.

1) A tool that is used for building a model based diagnostic system must include a

representation, a model, of the system under consideration to be able to perform
diagnostics on that system. The tool must therefore be able to represent a
mechanical, electrical, logical or hydraulic system as a model.

2) To be able to design and modify the system eases the construction of a diagnostic

system. Compared to being forced to import new system designs this saves a lot of
time. It is therefore desirable if the tool also can be used to design a mechanical,
electrical, logical or hydraulic system.

3) In a scenario where different programs are needed to complete the construction of

a diagnostic system the need for programs able to convert between different
formats may arise. Different formats may for instance be needed for creating the

3 - Survey of Market for Diagnostic Tools

30

diagnostic system and running the diagnostic system online; thus a tool that can be
used to convert or transfer information between other programs which are
considered as alternatives might be wanted.

4) The usability of the diagnostic system can be increased if faults can be simulated

in the tool. Faults of great criticality or faults known to often occur can with this
feature be extensively examined. To simulate faults in the system at hand using
the tool is therefore desirable.

5) Tracing the effects of a fault; that is to be able to foresee what consequences a

particular fault might have on the system behaviour and sensor readings is a
necessity if one wishes to avoid testing every fault individually at its source. Also
to be able to use an inference algorithm in a model based diagnostic system the
ability to trace a fault is necessary. Thus automatically tracing the fault effects and
describe them using the tool is a desired feature.

6) The different effects upon tests of faults and failure modes in the system must be

mapped to be able to perform isolation of the fault. The program must therefore be
able to generate fault detection and fault isolation logics from the information fed
into the tool.

7) The diagnosability of a system can be increased in various amounts if more

sensors are added. The amount of increase is affected by where the sensors are
placed in the system. Thus it is preferable if the system could evaluate the degree
of diagnosability, the detectability and the isolation ability of the system. To
further increase the usability of the tool it is desired that the tool could suggest
places suitable for new sensors which maximizes the diagnosability.

8) In cases where the tool also can generate test formulas and procedures those tests

should be easily accessed. Thus a file which contains algorithms for calculating
test values should be generated with the tool upon request.

9) A generation of a representation of the detection and isolation of faults would ease

a transferral to another tool or an on board computer running diagnostics online.
The tool thus benefits from being able to generate a code or other file which
represents the fault detection and fault isolation logics.

10) To fully utilize the diagnostic system it is preferable to be able to attach

information related to the different faults. The information could include
limitations of operation modes or repair instructions related to the present fault.
This information should not necessarily be limited to text but could also include
e.g. video. Thus a desired feature is that the tool is able to generate a file which
represents the information concerning a detected fault.

11) It is a nontrivial task to generate suitable test quantities suitable for the best

diagnostic capabilities. Therefore it is desirable if the tool could automatically
suggest combinations of inputs and sensor values that would be suitable to use as
test quantities.

3 - Survey of Market for Diagnostic Tools

31

12) Using the same tool for improving the design of a system, running online and
offline diagnosis eases the ability to reach fast results. Although the main
objective here is to generate an as good diagnostic system as possible and if this
requires separate software solutions the diagnostic capabilities are prioritized
before speed. Thus the final desired feature is that at least one of online and
offline diagnostics and the design of the diagnostic system are treated.

3.3 The Chosen Tools
The tools found in this thesis are listed in Appendix B. After the demands and wishes
in Section 3.4 have been considered three tools were finally selected for further
investigation. None of these three tools fulfilled all the desired features in Section 3.2
but no tool on the list in Appendix B did. All of the selected tools missed the desired
features 8) and 11). This because none of the tools deals with modelling at such a
physical level that these demands could have been met. This slightly limits the
usability of the tool but it does also simplify modelling and thus compensates for the
loss of usability. The fact that these tools all lacked the same features would also
make them more comparable than other tools. The selected tools are briefly described
in the following sections.

3.3.1 TEAMS from Qualtech Systems Inc

The American company Qualtech´s product Testability, Engineering And
Maintenance System (TEAMS) is a program package that consists of several software
components compatible with each other and make up what they claim to be a
complete health management solution.

One of the components is TEAMS Designer which is used to model failures
dependencies in the system at hand, meaning what different failures affect which
different components. The failures can also be linked to tests, repair procedures and
troubleshooting steps. The model captures the interconnections between systems
failures, built in tests, and components. The tool can after a model has been given be
used to develop a diagnostic workflow optimized for e.g. fast isolation. The tool can
also for example suggest test points better suitable for isolation [35].

Another component in the software suite is TEAMS Real Time (TEAMS RT). Fed
with a simplified version of the model the TEAMS RT works on the systems on board
computer and examines built in test results. This makes TEAMS RT provide online
diagnostics for the system [36].

Also other components are available, such as TEAM Automatic Test Equipment
(TEAMATE) and Remote Diagnostic Server (RDS). TEAMATE generates a dynamic
response to data and test results entered by a service technician. The tool interact with
the service technician to aid him or her to perform the fastest sequence of test for
isolating the faulty component or components and it also provide test and repair
instructions as the technician goes along [38].

RDS is used to remotely health manage a fleet of vehicles or in support of an
aftermarket service contract. By sending sensor and test data to the server over the
internet or a local network it is automatically processed in the server and the server
returns a web page containing tests as help for isolating the fault and test procedures.

3 - Survey of Market for Diagnostic Tools

32

All the data and the process are stored in the server for future maintenance or further
analysis [37].

TEAMS is analysed in Section 4.1 where it will be clear that it fulfils the criteria
stated in Section 3.2 except 8) and 11) and also fits into the description of desired
tools in Section 3.4.

3.3.2 eXpress from DSI

eXpress made by the American company DSI International is an off-the-shelf tool
suite that encompasses diagnostics, testability, prognostics and systems engineering
and is the result of more than 30 years of experience of software development for the
company [40]. Rather than focusing on run-time aspects eXpress can be used in the
earliest phases of designing a system [41]. An important advantage for eXpress,
according to DSI, is that it uses Hybrid Diagnostic Modelling (HDM) [2]. HDM
allows for representation of relationships between tests and functions as well as
between tests and failure modes in the system.

The modelling is explained further in Section 4.2 together with other aspects of the
program that will show that eXpress has all of the desired features discussed in
Section 3.4 and the criteria in Section 3.2 except 8) and 11) were fulfilled.

3.3.3 Raz’r from OCC’M

Raz'r is a tool from the German company OCC'M for building diagnostics systems.
They base their tool on model based diagnostics and use qualitative models. Raz'r
provides a graphical interface for constructing the models and performing the analysis
of the system. Capability for increasing the testability of the current system and
generation of test trees for fault isolation is also offered. The tool also offers both on
board and off board diagnosis, FMEA and detectability analysis [29].

The analysis of Raz'r is found in Section 4.3 and will tell that the wanted attributes
listed in Section 3.4 and Section 3.2 except 8) and 11) is present in the tool.

3.4 Additional Motivations for Choices of Tools
The three tools in Section 3.3 that advanced from the list of tools in Appendix B to the
final evaluation did so based on a number of criteria that are listed below.

3.4.1 Scope of Use

The desired features in Section 3.2 are regarded for the final choices of tools. What
are the tools in Appendix B really capable of? It is important that a tool that is going
to be evaluated is capable of doing what is desired. Some of them turned out, at a
second review, not to do at all what was thought at first.

Examples of tools that are disqualified because of this criterion are Dexter from
Macsea that turned out to be specialised in marine use and Model Wizard from
Integrated Systems Diagnostics that turned out to focus more on finance.

3.4.2 Software Based

As can be seen in the prerequisites, Section 1.3, only pure software is of interest in
this thesis. Many systems that are found do what the sought after software is intended

3 - Survey of Market for Diagnostic Tools

33

to do, but are hardware with integrated software. These systems may be very
interesting but are sifted out. This is because Saab is not interested in new systems
with hardware. A hardware dependent solution would require a larger work load to
integrate into the already existing products.

Two found systems that include hardware are: HUMS from GE and IHUMS from
Meggit Avionics.

3.4.3 Available Information

One criterion is how easy it is to find information about the tool and if it is possible to
get hold of the tool itself. It is very important that there is enough information that can
serve as a good foundation for the evaluation.

For instance, SIDIS from Siemens did not fulfil this criterion.

3.4.4 Named Product

There also has to be a named product that is offered on the market. Some companies
describe that they are capable of supplying services that could be of interest but there
is not a specific tool to be evaluated. In order to be able to evaluate a tool it is
important that there is a clear tool that can be the subject of the evaluation.

One found company, Foster Miller, does not mention a named product which is why it
was sifted out.

3.4.5 Clear Overall Solution

It is desired that there is a clear overall solution to be evaluated. If a company
provides too many small modules that are specialized in specific parts of diagnostic
processes this company’s solution did not make it to the final evaluation. In line with
the previous section this is to make the evaluation feasible.

Impact Technologies, although mentioned in Section 3.5 below as a strong candidate,
did not make it due to this criterion.

3.4.6 Theoretical Foundation

Since there are a number of different approaches solving the diagnostic problem there
are also a number of different theories. The approach in this thesis is the model based
one, as can be seen in the prerequisites, Section 1.3.

Spotlight from Casebank is an example of a tool that is not model based why it did
not qualify for further exploration.

3.4.7 Saab’s Current Knowledge

The aim of this thesis is to widen Saab’s knowledge about available tools. If Saab
already is familiar with a tool [28], that one in particular may be put aside in favour of
another tool that Saab does not have as much knowledge about. Rodon from Sörman
was not chosen due to this criterion.

3 - Survey of Market for Diagnostic Tools

34

3.5 Strong Candidates that did not make the Cut
This section lists some candidates that were close to being in the final evaluation but
did not make it all the way. The tools listed here are regarded as strong candidates
because they fulfil the desired features in Section 3.2 to basically the same extent as
the chosen tools and are in the right scope of use. These tools could have been among
the ones that in the end were chosen, although there are reasons for them not being so
and those reasons are given for each individual tool below.

3.5.1 Rodon from Sörman

As shown in Section 1.3 Rodon is one tool that would be very interesting in this thesis
if it had not been for reasons given in Section 3.4.7. There already is a thesis written
on Rodon [28]. Therefore Rodon is not one of the tools that are researched further.

3.5.2 Numerous Different Tools from Impact Technologies

Impact Technologies is an interesting candidate but was not selected due to criteria
given in Section 3.4.5. They offer a range of products and it would have been difficult
to evaluate them as a whole solution. Impact Technologies’ Reason Pro is mentioned
though as a suitable complement to eXpress [1].

3.5.3 Diagnostic Profiler & Diagnostician from VSE

Diagnostic Profiler & Diagnostician from VSE was another strong candidate.
Diagnostic Profiler & Diagnostician is a model based diagnostic reasoning tool set
[34]. Diagnostic Profiler is a development tool used to develop a model base for the
Diagnostician which is a dynamic run-time expert system. There are also prognostic
features in a tool called Prognostic Framework. Diagnostic Profiler & Diagnostician
did not make it all the way due to Section 3.4.3; there was not that much information
to be found. However the tool have been mentioned in several papers e.g. [76].

3.5.4 Livingstone 2

Livingstone 2 is an implemented kernel for model based system. It is developed by
NASA Ames Research Center. With this kernel faults are not only detected and
isolated but are also automatically corrected. The kernel is given a model of the
system and then monitors the disparities between from the model calculated behaviour
and the observed behaviour of the actual system. From this comparison the
Livingstone software calculates recommended actions to be taken to isolate and
compensate for a failure in a system component if such is detected. Livingstone have
been successfully tested on the International Space Station (ISS), X-34 propulsion
system (PITEX) and participated in flight experiments on the Earth Observing
Satellite. Although a promising alternative, Livingstone 2 is only a research project
and not a product supported by a company. This means that no support or
development is available which is important to Saab [39].

3.6 Summary
The search for suitable tools revealed a much greater flora of software dealing with
diagnostics than expected. Although the approaches and areas of usage differed a lot
from manufacturer to manufacturer they all seemed suitable for their respective
intended tasks. The next step is to examine the three finally selected tools, TEAMS,
Raz’r, and eXpress, further and more in depth to see if their respective solutions

3 - Survey of Market for Diagnostic Tools

35

concerning choices of model types, data formats and inference algorithms results in
benefits or limitations to the diagnostic systems. In the next chapter the three
individual tools are presented more thoroughly and in Chapter 5 they are compared.

4 - Analysis of the Tools

37

4 Analysis of the Tools
In this chapter the three tools that in the previous chapter were chosen for evaluation
are analyzed and these are: TEAMS from Qualtech Systems Inc (QSI), eXpress from
DSI, and Raz’r from OCC’M.

Each tool is described in terms of eight sections which are the same for all three tools
and the headings of these sections are Representation of knowledge, Methods for fault
detection and isolation, Formats for storing data, Design for testability aids,
Modifiability, Compatibleness, Libraries, and Disciplines of modeling.

Representation of knowledge describe in what way knowledge about the system is
represented in models in the tools. In Methods for fault detection and isolation it is
described what kind of diagnostic techniques for detecting and isolating faults that are
used in the tools. Formats for storing data describe what kind of data formats that are
used in the tools to store knowledge of the models in the systems. Design for

testability aids describe if there are some kind of aids for evaluating and improving
the testability of a system. For a tool to be efficient to use, it is of interest that models
that are created in a tool can be changed and updated as easy as possible and this is
described in Modifiability. In Compatibleness the compatibleness to other software
and tools is discussed. What file formats can be imported and exported? With what
other software can the tool interact? In Libraries it is discussed what kind of facilities
there are for storing models. Do the tools come with some kind of basic library of
components or preconstructed models? Disciplines of modelling reports in which
disciplines modelling can be done in respective tool, i.e. if modelling can be done in
electrics, mechanics, hydraulics etc.

TEAMS and eXpress have in addition to these eight sections a ninth section called
Test sequencing algorithms. These sections describe options available in the tools that
allows the user to influence in what order tests are to be performed, depending on
what kind of results that are desired. There is not a chapter like this in the analysis of
Raz’r because no information about this matter has been found in the case of Raz’r.

In addition to what has been described above, three sample systems have been
assembled which were sent to the each of the three companies that are producing the
tools. These systems, as they were sent to the companies, can be seen in Appendix C.
The idea was that QSI, eXpress, and OCC’M would model these systems and show
how they are diagnosed with respective tool. Only eXpress and OCC’M did this and
what was received from them gave some insight to how eXpress and Raz’r work.
Since the material received from eXpress and the material received from Raz’r are
quite dissimilar and since no material was received from QSI no further analysis or
comparison is made.

4.1 TEAMS
In this section an analysis of TEAMS is made in terms of the items in the list above. It
is recommended to return to Section 3.3.1 for a short introduction of the tool.

4 - Analysis of the Tools

38

4.1.1 Representation of Knowledge

In this section the multi signal model is introduced by modelling a known benchmark
system called a polybox as a multi signal model. See Figure 12. The following section
expands the model by introducing general and functional failures in an amplifier and
filter circuit. The information in these sections originates from [16]. The complete
multi signal model also contains information about probabilities of failures, cost and
time for repair and replacement procedures. These parameters are left out in this
description though since they do not add to the detectability or the isolation ability of
the system. They will on the other hand be described more in detail in Section 4.1.3.

When QSI uses what they call multi signal models to represent the current knowledge
of a system they use the word signal in a somewhat confusing way. They do not refer
to signals in the usual sense but rather refer to properties of the system. As an example
we consider a gearbox; a property that could be used as a signal (in the multi signal
model sense) would be the exchange between momentum into the gearbox and out of
the gearbox. In a voltage divider the ratio between input voltage and output voltage
could, in QSI terminology, be a signal (again in the multi signal model sense). Thus
properties or parameters would have been a more appropriate name than signal.

Figure 12. The polybox example.

The polybox system, see Figure 12, is first introduced and then modelled to introduce
and illustrate the multi signal model type.

The polybox consists of three multipliers and two adders, connected as shown in
Figure 12. The multipliers all function in the same way. They multiply the input from
port “A”, the upper input port, and the input from port “B”, the lower port, and the
result is passed on to the multipliers output port to the right in each multiplier. The
outputs of the multipliers are the inputs to the adders. The adders have the function of
adding the inputs from their input ports “A” and “B” and sending the result to the
output port to the right in the adders.

The input to the system are the signals ,,,, dcba and e and the outputs are f and g .

In between there are three, to us unknown, internal variables, ,, yx and z .

4 - Analysis of the Tools

39

To model the polybox as a multi signal model we first create a set

{ }21321 ,,,, aammm=C

In this set the instances are the adders and multipliers the polybox consists of. Also
signals are defined; these are in this example rather abstract but can be listed as
follows:

1s = the signal “correct calculations in 1m ”

2s = the signal “correct calculations in 2m ”

3s = the signal “correct calculations in 3m ”

4s = the signal “correct calculations in 1a ”

5s = the signal “correct calculations in 2a ”

 The signals are collected in the set

{ }54321 ,,,, sssss=S .

The tests that are available in this example we can collect in the set

{ }1 2,t t=T ,

where 1t is the test if output f is correct (given the current input) and 2t is the test if

output g is correct. The tests can be expressed as,

cebdgtbdacft +=+= :: 21

Another test is also possible to construct,

cegacft −=−:3

but it is not made available to us in this example.

The tests are grouped together in test points which represent a point in the system
where the tests are performed. The test points are in turn all instances of the set

{ },
f g

TP TP=TP .

 In this example the test points contain the following tests,

() { }1tTPf =SP

and

() { }2tTPg =SP .

4 - Analysis of the Tools

40

Each test check certain signals, these sets of signals are denoted:

 () { }

() { }5322

4211

,,

,,

ssst

ssst

=

=

ST

ST
 Eq 4-I

The next step is to deduce which components that affect each signal. In this case it is
fairly simple to see what component that affects which signal since each component is
connected to one signal. Although the component also affects the signals connected to
components after it. Thus one must follow the signal path through the system. From
these connections a set for each component is constructed,

 () { }

() { }

() { }

() { }

() { }52

41

533

5422

411

,

,,

,

sa

sa

ssm

sssm

ssm

=

=

=

=

=

SC

SC

SC

SC

SC

 Eq 4-II

The interpretation of the first set is that the signals affected by component 1m is 1s and

4s .

A bipartite graph is constructed to formalize the relations between the components
and the test points,

{ }ETPCBG ,,=

The first two sets have been explained earlier. The new one, E , consists of the
directed edges specifying the structural connectivity of the system, i.e. for the
example

() () () () () (){ }
gfggff TPaTPaTPmTPmTPmTPm ,,,,,,,,,,, 213221=E

The edges specify at what test point failures in different components can be detected.
Thus each edge starts at a component and ends at a test point. Observe that failures in

some components are detectable at several test points. A failure in 2m for instance is

observable at both fTP and gTP .

From the bipartite graph we can now collocate the information about dependencies in
a dependency matrix, shown in Table 3. The dependency matrix is constructed from
the sets

() CSC ∈xx

where every row in the matrix corresponds to a component. If the component affects
the signal corresponding to a column there will be a “1” in that point in the matrix, if
not there will be a “0”. We can also derive the relation back to certain test points.

4 - Analysis of the Tools

41

Table 3. The dependency matrix for the polybox example.
TPf TPg
s1 s2 s4 s2 s3 s5

m1 1 0 1 0 0 0

m2 0 1 1 1 0 1

m3 0 0 0 0 1 1

a1 0 0 1 0 0 0

a2 0 0 0 0 0 1

After we have listed the components, the signals, the test points, and the tests and also
described the relations between them, we now have the fault detection and isolation
part of a multi signal model of the polybox [16].

To further exemplify the model type we now consider a less theoretical example, an
electrical circuit consisting of a number of resistors, operational amplifiers, and a
capacitor. The circuit can be divided into three parts, first an amplifier of gain 2
followed by a low pass filter and a buffer. See Figure 13 for a schematic picture of the
system. The amplifier starts at the left and ends after the first operational amplifier.
The resistor and capacitor make up the filter and the rest to the right is the buffer.
Each of the three parts is made up of components, in this case resistors, a capacitor,
and operational amplifiers.

To each of the components a number of signals (again in the multi signal model
sense) can be associated as we did in the first example. Signals that carry information
of different kind of how the component functions.

Figure 13. Schematic illustration of an amplifier/filter marked with test points

and affected signals [16].

In this example the signals concerned by each component are listed close to that
component. The signals are explained in Table 4, the components affecting them are
also listed.

4 - Analysis of the Tools

42

Table 4. Description of the signals and their dependencies.
Signal Description Concerned by components

s1 Gain R1, R2, A1, A2

s2 Linearity A1, A2
s3 Cut off frequency R4, C1

s4 Slew rate A1, A2

s5 DC offset R1, R2, R3, A1, A2

The information in Table 4 can be translated into the same sets as we used in the
polybox example:

{ }

{ }

() { } () { } () { } () { }

() { } () { } () { }

1 2 3 4 1 1 2

1 2 3 4 5

1 1 5 2 1 5 3 5 4 3

1 3 1 1 2 4 5 2 1 2 4 5

, , , , , ,

, , , ,

, ,

, , , , , ,

R R R R C A A

s s s s s

R s s R s s R s R s

C s A s s s s A s s s s

=

=

= = = =

= = =

C

S

SC SC SC SC

SC SC SC

For example the cut off frequency is set by the resistor R4 and the capacitance C1 and
these two components do thus affect the signal s3. The other signal dependencies are
deduced in the same manner. These methods for deriving tests are part of the physics
of the system and are not treated in the tool other than that the test procedures, which
are entered manually into the program, can be associated with the tests they describe.
The test procedures will thus not be produced by the program.

To each of the test points certain tests are connected. The test points for the sample
system are also marked in Figure 13. These points specify where in the system it is
possible to perform tests and which test we can perform at that point.

The sets concerning tests and test points are listed below:

{ }

{ }

() { } { }5,4,3,2,1

,,,,

,,,,

54321

12101

∈∀=

=

=

xst

ttttt

JTPTPTPP

xxST

T

TP

The last row specifies the somewhat simplified relation that each signal corresponds
only to one single test and that all signals are covered.

An example of a test is how to test 5s ; apply a known signal at 1P and measure the DC

voltage at 1TP , 2TP and 1J . This gives a connection between 5s and all the test points,

thus test 1 is to be associated to all the test points. The same pass for the signal 1s . To

test the slew rate, 4s , a high frequency and high amplitude sine signal, ()tS , have to be

applied at 1P and then we have to observe the derivative of sine when () 0=tS . This

test could be performed at all the test points.

4 - Analysis of the Tools

43

For the sake of simplicity we test only 3s at 2TP and the other signals at 1TP and 1J . This

gives the sets:

() { } () { } () { }542113254211 ,,,,,, ttttJSPtTPSPttttTPSP ===

If we would like to change the specifications of the systems behaviour we merely add
another signal specifying the new property and attach it to the concerned components
and test points.

The connections between components, test points and signals are summarized in
Table 5 where aij=1 symbolizes that there is a connection between component i and

signal j and aij=0 means that there is not. 1P and 0TP have been left out since the are

not associated with any tests.

Table 5. Dependency matrix for the sample system.
TP1 TP2 J1

s1 s2 s4 s5 s3 s1 s2 s4 s5

R1(G) 1 1 1 1 1 1 1 1 1
R1(F) 1 0 0 1 0 1 0 0 1

R2(G) 1 1 1 1 1 1 1 1 1

R2(F) 1 0 0 1 0 1 0 0 1

R3(G) 1 1 1 1 1 1 1 1 1

R3(F) 0 0 0 1 0 0 0 0 1

A1(G) 1 1 1 1 1 1 1 1 1

A1(F) 1 1 1 1 0 1 1 1 1
R4(G) 0 0 0 0 1 1 1 1 1

R4(F) 0 0 0 0 1 0 0 0 0

C1(G) 0 0 0 0 1 1 1 1 1

C1(F) 0 0 0 0 1 0 0 0 0

A2(G) 0 0 0 0 0 1 1 1 1

A2(F) 0 0 0 0 0 1 1 1 1

This is also where we see how the general and functional failures come into use. The
parenthesis after each of the components indicates whether the failure is a general,
(G), or a functional, (F), one. A general failure of a component makes it stop
performing its intended task completely whereas a functional failure limits the
function of the component but does not cancel it completely. A cut off in a resistor
would be considered as a general failure but a reduction of the resistance, e.g.

bisection, would be a functional failure. A functional fault in 4R would only affect 3s

while a general fault would affect all the signals affected by components behind 4R .

General failures can be said to affect the whole system behind the failed component
whilst a functional failure only affects the subset of signals affected by the failed
component. The components after the component with the functional failure will still
be able to perform their tasks although the input is faulty.

4 - Analysis of the Tools

44

4.1.2 Methods for Fault Detection and Isolation

After modelling the system we want to be able to automatically detect and isolate the
failed component. This is done with an inference algorithm. In this section we will go
through the algorithm used in TEAMS step by step. The description here is based on
information found in [17,74].

The algorithm has a number of inputs, the inputs are in this case test results.

gf TTT ∪=

where fT are the set of failed tests and gT are the set of passed tests. All, n , tests can

be written as

{ }ni ttt ,,,,1 LL=T .

The tests must all have been executed during a period in which the system does not
change its state. Otherwise the algorithm will not function correctly.

The fault sensitivity of it can be denoted as isT and is expressed as

() (){ }Ø| ≠∩∈= ii tccs STSCCT

The expression states that components affecting signals that are tested by test it are a

part of the test sensitivity of that particular test.

Each of the components can be in one of four states: unknown, suspected, bad, or
good. If a component is in state suspected it is suspected to be bad but there is not
enough evidence that it is bad. If there is enough evidence the component is
transferred to the bad state. Components known to be good are transferred to the good
state. If there is no knowledge available about a specific component that component is
in the unknown state.

The aim of the algorithm is to, from the given test results, gf TT ∪ , conclude in

which state each of the components are. Each of the components are in exactly one of
the states and this can be represented by,

GBSUC ∪∪∪=

In this representation the components in state unknown are members of the set U , the
ones in state suspected are members of set S , the ones in state bad are members of the

set B , and the ones known to be good are members of the set G .

Next we give a formal description of the fault isolation algorithm using the sets

just described. In the algorithm the cardinality of a set A will be denoted A .

4 - Analysis of the Tools

45

The algorithm begins with setting all the components in the unknown state U . It then
finds all the components that are affecting test that have passed. Since those tests have

passed, the found components must be good and are thus moved to G . The next step
is to find the components remaining in state U that are affecting tests that have failed.

These components are then moved to the suspected state S . Finally the components
moved to the bad state B are found. If a test is affected by only one component in the
suspected mode it is then moved to the bad state. The algorithm is repeated as new
test results are available or when the system changes state.

The algorithm will be illustrated with an example using the polybox model derived in

Section 4.1.1. Assume there is a fault in component 3m . This will generate an

indication (failure) in test 2t . This test is associated with { }532 ,, sss , as seen in Eq 4-I,

and thus { }232 ,, amm will be indicated, but the algorithm also utilizes the information

that test 1t not has failed.

First all components are set to unknown in step 1 of the algorithm:

{ }21321 ,,,, aammm=U

and the rest of the sets are empty:

Ø=== GSB

Algorithm I:

Inputs: A set of failed tests, fT , a set of passed tests, gT

Outputs: The sets ,,, BSU and G .

1. Initialization: Ø,Ø,Ø, ==== BSGCU

2. Compute the good components covered by the passed tests,

UUTG T =∪=
∈

,it s
gi

\G

3. Compute the suspected components covered by the failed tests,

() UUTUS T =∪∩=
∈

,it s
fi

\S

4. Compute the bad components,

{ } SSSTTCB ==∩∈∃∈= ,1:| ifi stc \ B

4 - Analysis of the Tools

46

To refresh our memory some sets belonging to the polybox model are listed:

 () { }4211 ,, ssst =ST

() { }5322 ,, ssst =ST

Eq 4-I

 () { }

() { }

() { }

() { }

() { }52

41

533

5422

411

,

,,

,

sa

sa

ssm

sssm

ssm

=

=

=

=

=

SC

SC

SC

SC

SC

Eq 4-II

The sets 1sT and 2sT are created:

{ }

{ }2322

1211

,,

,,

amms

amms

=

=

T

T

In this example { }1tf =T and { }2tg =T

The next step, 2, is performed to find the components associated with the passed test,

i.e. 1t . The condition

() ()








∈∀

∈∀
≠∩∈

g

jxjx
t

c
tcifsc

T

C
STSCT Ø

gives

{ }121 ,, amm=G

from

() () { } { } { }

() () { } { } { }

() () { } { }

() () { } { } { }

() () { } { } Ø,,

,,

Ø,,,

,,,,,

,,,,

421512

4421411

4215313

4242154212

414214111

=∩=∩

=∩=∩

=∩=∩

=∩=∩

=∩=∩

ssssta

sssssta

ssssstm

sssssssstm

ssssssstm

STSC

STSC

STSC

STSC

STSC

where the sets can be see in Eq 4-I and Eq 4-II.

With this new information we can update the sets:

{ } UUG == 121 ,, amm \ { }23 , am=G

In step 3 both 3m and 2a are covered by the condition for transferral to S by

{ } { } { }23232232 ,,,, amammams =∩=∩= TUS

4 - Analysis of the Tools

47

Here, if there would have been another component not covered by any test, that

component would have remained in U .

In the final step, step 4, the algorithm tries to identify bad components. Since a failure
in any single one of the components in suspected mode will explain the failed test,
none of them can be isolated. Using equations it appears as:

{ } { } { } 1,,,, 23232232 ≠=∩=∩ amammamsTS

We see that the condition is not satisfied and no bad component can be found. This
gives the following output from the algorithm,

{ } { } Ø,,,,,,Ø 23121 ==== BSGU amamm

From this we see that the algorithm can not isolate the faulty component, it merely
narrows the suspected components down to two. Although if only one failed
component would have explained the failed test this component would have been
included in the B set and the following components that also affect tests that have

failed would be included in the suspected set, S . This case will be illustrated in the
next section.

If we would like to upgrade the systems isolation ability we could add a test,
measurement of z , and update the different matrices and sets accordingly. The

addition of a sensor between 3m and 2a would increase the ability to isolate the fault

in the example above. This due to the fact that it would bring a new test,

eczt ∗=:4

The test would be performed at a new test point, zTP , and would be sensitive to faults

in 3m but not to faults in 2a . The new sets would be,

{ }421 ,, ttt=T

{ }
zgf TPTPTP ,,=TP

() 4tTPz =SP

() { }34 st =ST

{ }34 ms =T

() () () () ()() (){ }
gfzggff TPaTPaTPmTPmTPmTPmTPm ,,,,,,,,,,,, 2133221=E

All these new sets and information can be collapsed into a new dependency matrix
shown in Table 6.

4 - Analysis of the Tools

48

Table 6. The dependency matrix for the polybox with the additional test.
TPf TPz TPg

s1 s2 s4 s3 s2 s3 s5

m1 1 0 1 0 0 0 0

m2 0 1 1 0 1 0 1

m3 0 0 0 1 0 1 1

a1 0 0 1 0 0 0 0

a2 0 0 0 0 0 0 1

With this new test the last step in the algorithm is

{ } { } { } 1,,,, 23232232 ≠=∩=∩ amammamsTS

{ } { } { } 1, 33234 ==∩=∩ mmamsTS

Due to this the algorithm will set the state of 3m to B and the output is

{ } { } { }32121 m,,,,,Ø ==== BSGU aamm

The reason that 2a still is suspected is that there is no test affected by 2a that have

passed, only one that have failed, 2t .

From this the conclusion can be drawn that given the initial tests the algorithm
suspects two components, of which one is the faulty one. If the test set is extended
with a suitable test then the algorithm can isolate the faulty component.

4.1.3 Test Sequencing Algorithms

When performing diagnostics there might be different aspects that are considered
more interesting than others, sometimes the repair cost might be the most important
aspect; other times perhaps the time it takes to isolate the faulty component is the
most important aspect. TEAMS uses a test sequencing algorithm to order the tests in a
sequence were the different aspects of importance have been accounted for. The
algorithm is shown in [16] and will in this section be briefly described.

The algorithm takes as input a number of sets;

{ }maaa ,,, 10 L=A

lists the m failure sources in the system. It does also include a dummy failure source,

0a , that denotes the no fault state of the system. Related to this set is the vector

()T

mapapap)(,),(),(10 L=P

which denotes the probabilities of each of the faults in A . These probabilities are
based on a priori knowledge of the fault occurrences under a single fault assumption

4 - Analysis of the Tools

49

and are also related to the components Mean Time To Failure (MTTF). The set of
tests is

{ }nttt ,,, 21 L=T

where each test is associated with a cost. These costs are listed in,

()T

nbbb ,,, 21 L=B

where xb states the cost of test xt . The cost can be in money, estimated criticality of

the faults for which the specific test tests, time to perform the test, manpower
requirements, or some other factor specified by the user. These different costs can be
used to aim the optimization according to the wishes of the users.

The repair costs of a failure source is listed in

()mfff ,,, 21 L=F

where each failure source
xa has the repair cost

xf . To sequence the tests there must

also be connections between the tests and the failure sources. These connections are
stated in the dependency matrix, in TEAMS called a diagnostic dictionary. The

dictionary is denoted D and have dimension nm × .

The output is a sequence of ordered tests that minimizes the expected cost. For each
set the following criteria is minimized,

[] ()l

m

l

P

j

jPl apbfJ
l

l∑ ∑
= =











+=

0 1

where lP is a set of ordered indices representing the tests to be executed to isolate the

fault la and lP is the cardinality of the set. The optimization is made over different

sets of P , i.e. the different sets of ordered indices isolating the fault.

The problem of constructing the sets P is a binary identification problem. These
problems arise in many applications but are not treated in this report.

4.1.4 Formats for Storing Data

This section describes what kind of formats that are used for storing models in
TEAMS. For model storing TEAMS uses both XML files and relational databases.
TEAMS-KB, of which we can read more in Section 4.1.8, is an Oracle based database
application [63] which is used to manage relational databases. As mentioned, TEAMS
also uses XML files for representing TEAMS models and these follow the TEAMS
Document Type Definition [21] (DTD, see Section 2.3). To exemplify how such a file
can look like, Figure 14 displays an XML file containing a dependency model of an
aircraft engine that was modelled in the study in the paper [21]. In this XML file we

4 - Analysis of the Tools

50

can see different faults of a subsystem called Actuator Fuel Pump, for example the
fault “drive shaft shears”. There is information about these faults e.g. Mean Time To
Failure, (MTTF) repair time, and repair cost that were mentioned in Section 4.1.3.

Figure 14. XML file containing a dependency model in the study in the paper

Validation of a COTS EHM Solution for the JSF Program [21].

4.1.5 Design for Testability Aids

TEAMS comes with a number of different aids for evaluating and improving the
testability of a system. Tools for generating testability reports with information about
mean ambiguity group size, detection rate and isolation rate calculated from the model
and inference algorithm are incorporated into the tool. These reports can be used to
increase the testability of the system.

There is a special feature to investigate feedback loops detected in the model from the
dependencies and the loops affect on the testability. With this feature the tool can
suggest where to break the loop, indicate where ambiguity groups are located and
where it would be suitable to insert tests to decrease the size of the ambiguity groups
and thus increase the testability of the system [35, 43].

4.1.6 Modifiability

To fully benefit from a diagnostic system it must be simple and intuitive to update the
models used. QSI described in [45] that they were in the process of developing their
Reusable Test and Model Library (RTML) which now is known as TEAMS-KB
which will be further described in Section 4.1.8. In this RTML, it is described in [45],
entities of a model such as components are represented as objects and are thus
reusable. Such reusability reduces cost of model development since new components

4 - Analysis of the Tools

51

will easily be modeled starting at already modeled similar components. As
maintenance and repair data become available TEAMS-KB provides capabilities to
update component reliability, component failure rate, repair costs, and repair times
[42].

4.1.7 Compatibleness

In [21] it is described how data from a Microsoft Excel spreadsheet is automatically
imported into an XML file using a data import tool with a Graphical User Interface
(GUI). In this import tool the data elements in the Excel spreadsheet are mapped to
TEAMS data elements. The XML file complies with the TEAMS Document Type
Definition and an example can be seen in Figure 14. It is stated on the homepage of
QSI that for importing models they “have an XML import format and have experience
importing Matlab/Simulink data” [35]. Another feature is that structural models can
be automatically generated in TEAMS from structural models or netlists in VHDL
and EDIF [45]. EDIF stands for Electronic Design Interchange Format and is a neutral
format for storing and interchanging electronic netlists and schematics. VHDL stands
for VHSIC Hardware Description Language and is a language for construction and
simulation of electronic systems [71]. VHSIC is an abbreviation of Very High Speed
Integrated Circuits.

Compatibleness concerns exporting as well and besides TEAMATE and TEAMS-RT
models from TEAMS can also be exported to any database that is ODBC-compliant
[64]. ODBC is an abbreviation of Open DataBase Connectivity and is a standardized
method for accessing databases regardless of what database management system and
operating system is used. Furthermore, according to the TEAMS 9.x user manual
TEAMS can generate four kinds of different formatted text files which contain the
diagnostic strategy in form of a diagnostic tree and these are [24]:

• Diagnostic strategy in XML format

• Diagnostic strategy in HTML format

• Diagnostic strategy in PDF format

• AI-ESTATE fault tree model.

The AI-ESTATE standard in the list above, which is presented in Section 2.6, is
mentioned in papers written by QSI. In it is described that “the AI-ESTATE 1232.1
standard has been in full use and the 1232.2 standard will be a full use in the near
future” [23]. This paper was written in 2001 and AI-ESTATE 1232.1 was a trial
version, i.e. not the finished standard. Information about to what extent AI-ESTATE
is used today has not been found other than, as mentioned above, the fact that an AI-
ESTATE fault tree model can be exported from TEAMS.

Figure 15 below displays an example of how a diagnostic tree can look like in
TEAMS. The following description of the tree explains how it works when handled in
TEAMS.

4 - Analysis of the Tools

52

Figure 15. Part of a diagnostic tree in TEAMS [68].

In Figure 15 the circles are nodes, which are the points at which decisions are made in
the diagnostic tree. Within the circles are the numbers that are assigned to the nodes,
numbers that are listed in the text reports. The rectangles below circles are tests and
enclosed within the rectangles are the numbers of the tests. Tests were discussed in
Sections 4.1.1, 4.1.2, and 4.1.3. The text between a circle and a rectangle, e.g.
HiBeamSym between node 4 and test 43, is a shortened version of the name of the
test. The G and NG above the circles stand for Go and No Go respectively, i.e. G
stands for a passed test at the previous node and NG stands for a failed test at the
previous node, i.e. previous in the sense that we traverse the tree downwards. The
smaller rectangles at the bottom of the tree that have no numbers inside them
represent isolated faults. A question mark within one of these rectangles would
represent an ambiguity group, i.e. that there are two or more possible failures.
Ambiguity groups were discussed in Section 4.1.5. The dotted lines at the bottom row
indicate that the tree is continued and if for example node number 14 is clicked upon
there will be another display with another part of the tree in which node number 14 is
the root, i.e. at the top of the displayed tree.

There is also a detailed version of the diagnostic tree and an example of this is
displayed in Figure 16. This version also includes descriptions of the tests.

4 - Analysis of the Tools

53

Figure 16. Detailed version of a diagnostic tree in TEAMS [68].

4.1.8 Libraries

One part of the TEAMS software suite is TEAMS-KB (Knowledge Base) [22] which
is an Oracle Enterprise database of TEAMS models. System models and their
components can be created, modified and stored here along with parameters of the
model such as cost, time and failure rate [22]. It also stores media and text of repair
procedures, results of diagnostic sessions, and other information that is used by the
system to generate procedures and reports. The media mentioned can be photos,
videos, drawings etc. TEAMS-KB also stores fault lists and logistic data [42].

In TEAMS-KB online diagnostic and maintenance information that is collected by
TEAMATE can specify which components that have been repaired, cost and required
time for repair procedures and tests [54].

TEAMS also comes with an example model of an automobile.

4.1.9 Disciplines of Modelling

In TEAMS 9.X Manual it is described that modules can be labelled by different
technologies and the ones listed there are: electrical, mechanical, hydraulic and
chemical [44].

4 - Analysis of the Tools

54

4.2 eXpress
This chapter deals with eXpress which is analysed in terms of the topics listed in the
introduction to Chapter 4. A quick introduction to the tool was given in 3.3.2.

4.2.1 Representation of Knowledge

In eXpress the models are made up by sets of components where each component is
constituted by a number of failure modes. A schematic illustration is given in Figure
17. These failure modes represent the known failure modes of that specific
component. In each failure mode certain properties are assigned, such as what
functions that are affected in the specific failure mode and in what way the functions
are affected. Since eXpress does not handle physical modelling, only dependency
modelling, the impact of the failure mode on the functions is only modelled as either
“does not affect the function”, “does sometimes affect the function”, or “does always
affect the function”. The functions are often the starting point in the modelling work.
The system has a number of functions that are critical to the system and thus are
failure in these extra important to be able to detect and isolate. These functions are
specified and the components needed to provide the function as well. The functions
and the components are then connected through failure modes. This kind of
dependency models with failure modes and functions DSI calls hybrid models and are
described in [2].

In the later stages of the system development procedure, failure probabilities might
become available and these should also be incorporated into the failure mode to
enable calculations of e.g. mean time to isolation or mean time to failure. Where mean
time to isolation is the calculated mean time to isolate a fault based on the time it has
taken other times when the fault has occurred.

Figure 17. A schematic picture of a hybrid model.

4 - Analysis of the Tools

55

Given the above description we can try to formalize the model by introducing a

number of sets representing the entities in the model. Let C represent the l number of
components in the model. Each component, C∈c , is associated with its respective

set of failure modes,
jcFM . These failure modes are uniquely related to their

respective components;

{ }kc fmfmfmFM
j

,,, 21 L=

where
jcFM represents the set of all failure modes of component jc . Each failure

mode, fm , defines two sets of functions. One set,

{ }aiaafm fff ,,, 21 L=AA

whose functions are always affected by that fm . The other set of functions,

{ }snssfm fff ,,, 21 L=SA

contains the functions that are sometimes affected by the fm . This is illustrated in

Figure 18. In the figure the solid lines represents the always affects relation and the
dashed lines represents the sometimes affects relation. The function at the bottom is a
so called dummy function. A dummy function is a function designed to test for a
certain failure mode.

Figure 18. A schematic representation of a component and the relations between

failure modes and functions.

A function can be a member of sets belonging to different failure modes and different

components but can only belong to either AA or SA in each fm . The dependencies

can be expressed through the matrix in Table 7. The table represents both fmAA and

fmSA . A “1” at row x and column y indicates that failure mode y always affects

function x. A “0” and an “X” represent never affects and sometimes affects

respectively. Thus the ones in the table represents AA and the X’s represents SA .

4 - Analysis of the Tools

56

Table 7. A matrix depicting the relations between failure modes and functions.
 FMc1 FMc2 …

 fmcj1 fmcj2 … fmcjn fmck1 fmck2 … fmckm … …

f1 0 0 1 1 X 0
f2 1 X 0 1 1 1

f3 0 1 1 0 0 1

.

.

.

fn 0 0 1 0 0 1

The tests in the model are of two types, one that tests the functions in the system and
one that tests the failure modes of the system. Although the failure modes are
probably tested through dummy functions, i.e. functions designed specifically to
indicate if a component is in a certain failure mode. The dummy functions are then
treated as tests for the failure mode.

Tests focusing on functions are usually added in early stages of development when the
different failure modes of the components are unknown. Later on when test and
failure data are available, failure mode tests can be added.

There is also a matrix expressing the relationship between tests, functions, and failure
modes. Even though there is a relationship between functions and failure modes both
functions and failure modes must be represented in this matrix. This is because tests
can test both functions and failure modes. An example of this sort of matrix is shown
in Table 8. From the test results the mode of operation of the components can be
derived using relationships in the matrices. How this is done is described in Section
2.1.3.

Table 8. A matrix showing the dependencies between tests,
functions and failure modes.

 f1 f2 … fn fm1 fm2 … Fml

t1 1 0 0 0 0 0

t2 0 X 0 0 0 0

.

.

.

tm 0 0 0 0 1 1

To clarify the model structure the polybox system, see Figure 12, will be modeled
again but this time using a hybrid model. The list of components will naturally be the

same, { }21321 ,,,, aammm=C . Each of the components is now attached to a number of

failure modes. To better be able to illustrate the workings of the model the fault space

is extended to include for each component three different possible failures. csa is the

failure mode when there is a shortcut between input A, i.e. the upper input in each
component, and output. A shortcut between input B, i.e. the lower input in each

component and output, is called csb . Finally an intermittent fault is added by the

failure mode loose component, cl . The index refers to the affected component.

4 - Analysis of the Tools

57

We add some constraints to the inputs. It is assumed that each input to the system is
greater than one. This is because otherwise all the faults would be categorized as
sometimes affecting. Having only sometimes affecting fault would be a poor example
of the model type.
Due to the constraints of the input the loose component failure differs from the other
two failures since it is only sometimes affecting its function. The failure information
can thus be encapsulated into,

{ }, ,c c c csa sb l=FM

The functions of the system can be divided into two different functions, one
generating the output f and one generating the output g. There will also be a so called

dummy function, sensitive to only one failure mode, 3ml . These functions will be

affected by the different failure modes according to,

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

{ }

3

1 2

3

1 2

3

1 2

3

1 2

1 2

1 2

,

,

,

m

m m

m

m m

m

m m

m

a a

a a

a a

sa

sa sa

sb

sb sb

l

l l

l

sa sa

sb sb

l l

g
f f g

g
f f g

z
f f g

g

f g

f g

f g

= 
     = =

=          
= =     

=     
= =         =  

   = =
      

= =   
  

= =     

AA
AA AA

AA
AA AA

AA
SA SA

SA

AA AA

AA AA

SA SA



The first set, for example, means that the failure mode shortcut between input A and
the output of the component always will affect function f. The failure mode shortcut
between input B and the output of the component will also always affect function f
and the loose failure mode will sometimes affect the function f. In the description

above the empty sets such as the sometimes affected functions of 1msa ,
1msaSA , have

been left out. The dependency information can be presented also in a matrix form
which makes it more comprehensible, see Table 9.

Table 9. A matrix depicting the relations betweenfailure modes and the two
functions in the polybox example

 FMm1 FMm2 FMm3 FMa1 FMa2

 sam1 sbm1 lm1 sam2 sbm2 lm2 sam3 sbm3 lm3 saa1 sba1 la1 saa2 sba2 la2

f 1 1 X 1 1 X 0 0 0 1 1 X 0 0 0

g 0 0 0 1 1 X 1 1 X 0 0 0 1 1 X

z 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

4 - Analysis of the Tools

58

In the model there must be a connection between the tests, the failure modes and the

functions. In this example we test two functions, function f and function g , and one

test testing the failure mode lm3, i.e function z. The tests can be written as

(){ }

1

2

2 2 2

3 min () () () () () () () 0

t : ac bd f

t : bd ce g

t : c t e t z t , (c t z t) , (e t z t)

+ =

+ =

− − − ≠

In Table 10 the direct connections between the tests and their respective functions are
depicted.

Table 10. The matrix relating the tests to their directly affected failure modes
and functions.
 f g z

t1 1 0 0

t2 0 1 0

t3 0 0 1

There are also a number of parameters in the hybrid model such as component price,
component failure rate, and component repair time that should be entered into the
model if they are available. These parameters are used to generate different detection
or isolation procedures, optimized with different focuses such as “Detect
Malfunctions with Fewest Test” or “Prove Maximum Operation Before Detecting
Malfunction” which will be further described in Section 4.2.3. These parameters have
been left out in this theoretical example since they do not affect the capabilities of
detection and isolation. In the next section the detection and isolation algorithm will
be described.

4.2.2 Methods for Fault Detection and Isolation

In this section we have tried to describe an algorithm for detection and isolation that
mirrors the rules used in eXpress. The algorithm is first explained and then illustrated
with an example. The section is based on information found in [2] and from [1].

The algorithm used by DSI in eXpress is based on five rules and the input to the
algorithm is a number of test results. These test results are used to derive the state of
the system by the use of the five rules to conclude what mode each component is in.
The output of the algorithm consists of the possible states of each and everyone of the
components.

Each component c is associated with a set,
csP , listing the possible failure modes of

each component. From this set failure modes will be withdrawn when the algorithm
allows us to exclude them. All the failure modes no longer suspected are listed in

eFM . Since all the excluded failure modes of all the components are collected in

eFM all the failure mode names must be unique.

The test results, gf TTT ∪= , where fT is the set of failed tests and gT is the set of

passed tests, indicate whether the functions are functioning correctly or not. In the

4 - Analysis of the Tools

59

case of dummy functions, the test examines whether the component is in the particular
failure mode that the dummy function tests for. The information contained in the test

results can be translated using sT into two sets of functions, good functions gF which

consists of functions that are suspected to be fault free by passed tests, and bad

functions fF which consists of functions that are proven none functioning by the

failed tests. From fF and gF the rules are used to derive the current failure mode of

the components. g∆F contains good functions and is only used to easily see if the fifth

step generated any new good functions when doing the comparison in step six.

The first step initialises the algorithm by setting all known failure modes to suspected

by including them into the csP set. The second step derives which functions that can

Algorithm II:

Inputs: A set of failed tests, fT , a set of passed tests, gT

Outputs: The set of { }nifmci ,,1)(L∈∀ .

1. Initialization:

cs cc ∀= FMP

2. Derive the good and bad functions from the test results:

{ }
jtg sff

gj
TF T∈

∪∈= |

and

{ }g\| FTF T ktf sff
fk∈

∪∈=

3. Compute which fm that can be excluded due to passed tests for each

component c :

{ }Ø| ≠∩∈= gfmce sfm FAAPFM

ec \s FMPP =cs

4. When all functions that are sometimes affected by a common failure

mode are determined to be good that failure mode should be
eliminated from suspicion:

{ }e e e fm g
fm= ∪ ∉ ⊆FM FM FM SA F

5. When all failure modes affecting a function are inferred to be good,
that function is inferred to be good as well:

() { }{ }{ }e| . Ø fmg g fm fmf fm f∆ = ∪ ∀ ∪ ∩ ≠ → ∈F F AA SA FM

6. If g g≠ ∆F F go back to step 3.

7. The output of the algorithm is sP

4 - Analysis of the Tools

60

be inferred as good and what functions that can be inferred as suspected bad by
comparing the test signatures of passed tests and failed tests respectively. If a test is
included in the test signature of both a passed and a failed test the function will be

inferred as good. The functions inferred as good are all listed in gF and the bad

functions in fF . The third step examines if any always affected function of a failure

mode is included in the set of good functions. If so, that failure mode is excluded from
the set of possible failure modes. The fourth step eliminates the failure modes whose
all sometimes affected functions are inferred to be good. The fifth step concludes that
a function is a new good if all the failure modes affecting that function are excluded
from suspicion.

Now to illustrate this algorithm we are going to use the polybox example constructed
in the previous section. We again insert a fault in the system at multiplier three, and

the fault is of the type “short between input A and output”, 3msa . This fault makes

2t react since function g becomes faulty.

{ } { }231 , ttt fg == TT

The initialisation of the algorithm sets the possible failure modes as follows,

{ } { } { }
{ } { }

22221111

333322221111

,,,,,

,,,,,,,,,

aaaaaaaa

mmmmmmmmmmmm

lsbsaslsbsas

lsbsaslsbsaslsbsas

==

===

PP

PPP

The second step of the algorithm will create the sets

{ } { },g ff z g= =F F

which is used in the third step of the algorithm when concluding which failure modes
that can be eliminated,

{ }
1 1 2 2 1 1 3
, , , , , ,e m m m m a a msa sb sa sb sa sb l=FM

Using eFM to update sP gives

{ } { } { }

{ } { }
1 1 2 2 3 3 3

1 1 2 2 2 2

, , , ,

, , ,

m m m m m m m

a a a a a a

s l s l s sa sb

s l s sa sb l

= = =

= =

P P P

P P

When all functions that are sometimes affected by a failure mode are inferred to be
good, that failure mode is excluded from the suspected failure modes. This applies to

1ml and
1al since { }f

ml
=

1

SA and { }f
al

=
1

SA where f is known to be good.

Propagating in the algorithm, the next step is to find functions that now can be
inferred as good since all the failure modes affecting it are excluded. Although in this
example the excluded failure modes do not infer any new good functions.

4 - Analysis of the Tools

61

The output of the algorithm is thus

{ } { }

{ }
1 2 2 3 3 3

1 2 2 2 2

Ø, , , ,

Ø, , ,

m m m m m m

a a a a a

s s l s sa sb

s s sa sb l

= = =

= =

P P P

P P

Which is to be interpreted as component 1m and 1a are fault free, and the other

components are suspected.

The inference used when eliminating failure modes connected to 1m and 1a , that is

using the fact that tests have passed, can also be used in a hierarchical manner.
Consider the whole polybox as a system and the components as subsystems. If it is
known by some global test that the whole polybox is good, then each individual
subsystem, i.e. component, do not have to be tested since the whole system already
has passed. This can reduce the number of needed tests in systems where a lot of the
failure modes always affect functions.

Table 11. The updated matrix relating both the old tests and the new test to their

directly affected failure modes and functions.
 f g z g’

t1 1 0 0 0

t2 1 1 0 0
t3 0 0 1 0

t4 0 0 0 1

If the system is expanded with a sensor measuring y, another test 4t , can be added.

Observe that in the equation describing the test, z is not the function z but the signal z,

i.e. the output of 3m .

4 :t y z g+ =

This test makes it possible to monitor 2a and the table specifying the test sensitivity

must be updated to Table 11.

With this new test also failure modes connected to component 2a can be removed

from the set of suspected failure modes; this gives the remaining set:

{ } { }
1 2 2 3 3 3

1 2

Ø, , , ,

Ø, Ø

m m m m m m

a a

s s l s sa sb

s s

= = =

= =

P P P

P P

Thus not even with this new test the failure could be isolated to component 3m which

is where we introduced the fault. Although, three of the four suspected fault modes

are in 3m so it would probably be the first component to examine manually.

4 - Analysis of the Tools

62

4.2.3 Test Sequencing Algorithms

In eXpress there are a number of options available for which kind of algorithms to use
for fault detection and fault isolation [69]. There is something called test weightings
that define the order in which tests should be performed and depending on the choice
of algorithms these weightings are chosen differently. There are seven algorithms
concerning fault detection and seven algorithms concerning fault isolation and they
are all described below.

4.2.3.1 Fault Detection Algorithms

Detect Malfunctions with Fewest Tests is the algorithm that is used when there is a
desire to detect a fault with as few tests as possible. The test weightings are set so that
the tests that are more probable to fail are performed first. Also non-intrusive tests are
performed before intrusive ones. An intrusive test is explained as a test that is more
disruptive than a non-intrusive one.

The Detect Probable Malfunctions algorithm is almost identical to the Detect

Malfunctions with Fewest Tests algorithm only that the order of the non-intrusive tests
is different.

The Detect Critical Malfunctions algorithm focuses on finding the most critical
failures.

In the Prove Operation with Fewest Tests the tests that can prove the most number of
functions as good are prioritized.

Prove Maximum Operation Before Detecting Malfunction is an algorithm that will
prove as much as possible of the design as good before it detects a failure.

The Minimize Switches in Monitored Stimuli algorithm is used when there is a desire
to minimize wear and tear on test equipment, e.g. that positions of switches are
changed as little as possible. This algorithm can be combined with the other
algorithms.

The Detect Using Fault Codes algorithm prioritizes tests that usually can detect a fault
when it is present but that can not draw any conclusion about the eventual presence of
the fault if it is not observed.

4.2.3.2 Fault Isolation Algorithms

The Multiple Fault: Half-Split Failure Probs. (refinement postponed) algorithm
prioritizes tests that are certain to decrease the number of suspected functions
regardless of whether the test passes or fails over tests that would only decrease the
number of suspected functions for one of the outcomes pass or fail. In this algorithm
refinement tests, tests that only reduces ambiguity when they pass, are postponed until
after all isolation tests.

The Multiple Fault: Half-Split Failure Probs. (refine where appropriate) algorithm
differ from the last one only in the way that refinement tests are not postponed.

4 - Analysis of the Tools

63

The Multiple Fault: Half-Split Failure Probs. (no refinement) algorithm is the same as
Multiple Fault: Half-Split Failure Probs. (refinement postponed) except that there are
no refinement tests.

The algorithm Multiple Fault: Static Health Monitoring (Operational refinement not

postponed) is a mix of Multiple Fault: Half-Split Failure Probs. (refinement
postponed) and Multiple Fault: Half-Split Failure Probs. (refine where appropriate).

In the Multiple Fault: Maximize Functions Proven by Refinement algorithm the order
in which are performed are decided by the weighting criteria of the algorithm. These
weightings try to reduce the number of refinement by first performing other tests.

The Common Cause: Half-Split Failure Probs. algorithm uses common cause, which
means that there is an assumption that there can only be a single fault present. The
weightings of this algorithm prioritizes tests that, when they pass, halve the number of
suspected functions.

The Common Cause: Half-Split Failure Probs. (Max. Depth = 10) algorithm is the
same as Common Cause: Half-Split Failure Probs. only that no more than ten tests
can be performed in each isolation path.

4.2.4 Formats for Storing Data

In this section the format in which design data, maintenance data, test data, and
diagnostic data are stored in eXpress is presented. This format is called Diagnostics
Markup Language (Diag-ML) and is an XML schema that is used for capturing and
transferring diagnostic knowledge and was created in 2001 by a consortium of
companies. Today this consortium consists of two companies; DSI International and
TYX Corporation [5]. Being XML-based, Diag-ML is extensible and the user can
extend the format to meet the requirements of his or her specific application [9]. Diag-
ML is an open and non-proprietary language and companies/tools that support it are:

• Sörman’s Rodon, see 3.5.1, can import Diag-ML from eXpress for static or
run-time diagnostics via an IETM (Interactive Electronic Technical Manual)
[4]

• AIMSS’ Raytheon can import Diag-ML from eXpress for static or run-time
diagnostics via an IETM [4]

• Impact Technologies’ ReasonPro (see 3.5.2) can import Diag-ML from
eXpress for Prognostic Health Management Reasoning [4]

• Tyx’ TestBase uses Diag-ML natively [4]

• NASA’s Jet Propulsion Laboratory (JPL) used Diag-ML when they required a
diagnostic transfer format between eXpress and JPL's BEAM/SHINE tool [4]

• VSE Corporation’s Diagnostician (See 3.5.3) [10]

• Boeing Phantom Works’ IVHM Test Bench [10]

• DSI’s OSS [10]

The last three are only listed as supporters of Diag-ML on DSI’s homepage [10] why
no information about how they support Diag-ML is provided.

4 - Analysis of the Tools

64

A Diag-ML file contains the four main sections DesignData,

MaintenanceData, TestData, and DiagnosticData [46] which are
described below. Figure 19 displays the basic structure of a Diag-ML file.

Figure 19. Basic structure of a Diag-ML file.

In the DesignData section information is stored that relates to the model of the
Unit Under Test (UUT) which include UUT components, functions, and failure
modes, which were described in Section 4.2.1. In the polybox example in Section
4.1.1 a multiplier is an example of a component, an example of a function is that f is
correctly calculated given inputs in the polybox, and a shortcut between one of the
inputs and the output of a multiplier is an example of a failure mode.

MaintenanceData describes what should be adjusted or replaced depending on
what diagnostic results that are reached. In the polybox example, maintenance data

could be that a multiplier should be replaced if it is found faulty. In the TestData
section is where the tests are defined as to the location of the tests and test parameters.
The location can be specified by a numbered position in the model. In the

DiagnosticData section one or more DiagnosticStrategy elements can be
contained. A diagnostic strategy is an executable entity that is used to diagnose a
specific UUT. In each diagnostic strategy there are one or more

DiagnosticProcedure elements. Diagnostic procedures can invoke other

diagnostic procedures and each of them contains a number of DiagnosticStep

elements which in its turn is one of the operations TestExecution,

DiagnosticProcedureExecution,

MaintenanceProcedureExecution, or End. These four operations are
described below.

TestExecution is the execution of a test which is defined in the TestData

section. The DiagnosticProcedureExecution operation calls to another
diagnostic procedure which is defined within the same diagnostic strategy. A

MaintenanceProcedureExecution represents the execution of a maintenance

procedure which is defined in the MaintenanceData section and finally End is
the operation that terminates the diagnostic procedure

An example of an application of Diag-ML is described in [46]. In collaboration
between DSI and TYX a simple diagnostic application consisting of an electrical
circuit that models the operation of an amplifier is developed. The process from
designing the model in eXpress to testing the design in TYX’ software tool TestBase
is described as follows: First the model is built in eXpress for the UUT by defining
the ports of the UUT, its components, the interconnection between the components,
the components failure modes, and the functions that model the propagation of faults
through interconnections. Then a set of tests is defined in eXpress. For each test,
attributes are specified, and examples of these attributes are high and low limits for

4 - Analysis of the Tools

65

measured voltage in certain points. The attributes are transferred via Diag-ML to
TestBase. The experiment proceeded with generating a diagnostic strategy in eXpress
and evaluating the quality of the fault isolation which means that the size of the
ambiguity groups are checked not to be too large. The diagnostic strategy is then
exported to a Diag-ML file. After TestBase test procedures are developed the Diag-
ML file is imported in TestBase as a test strategy (corresponding to the diagnostic
strategy in eXpress). The test strategy is then compiled to be ready for run time
execution by the TestBase Diagnostic Controller.

4.2.5 Design for Testability Aids

This section describes what kind of aids that is present in eXpress that can help
evaluate and improve the testability of a system.

Reports that can be generated from eXpress can inform about the effectiveness of
current sensor placements and also the best placement for additional sensors can be
suggested [55]. There are also features that provide information for helping to make
decisions about system design alternatives, redundancies, and maintenance strategies
[56].

By adding expected or measured fault probabilities the software can calculate the
expected isolation and detection rate of the system given the current sensor
placements and other inputs. Also the average ambiguity group size can be calculated.
The number of tests needed to isolate and detect failures is also calculated. All these
features can be used to modify the system for better testability.

4.2.6 Modifiability

About modifiability of eXpress models the following can be said: As will be
described in Section 4.2.7 model topology can be exported from eXpress to a
Microsoft Excel spreadsheet with Spreadsheet Topology Export and the topology can
also be imported from an Excel spreadsheet into eXpress with Spreadsheet Topology
Import. If the user would like to change the model data it is preferable that this is done
in the Excel spreadsheet rather than manipulating the data directly in eXpress [48].
The reason of this being that it will save a lot of time since the database has to be
updated for each individual change if they are performed within eXpress. For a large
model it is consequently better to do the changes via an Excel spreadsheet and thus all
updates to the database are performed in one single update.

4.2.7 Compatibleness

The compatibleness of eXpress is here described and we will see that Microsoft Excel
spreadsheets as well as the XML schema Diag-ML (See Section 4.2.4) are two
important means to import and export data and communicate with other software.
Finally Computer Aided Design (CAD) tools and some other formats that are
supported by eXpress are listed.

Importing data into eXpress can be done from Microsoft Excel spreadsheets [47]. The
spreadsheet that is to be imported has to conform to a certain format in order to be
imported successfully. There can only be one table in each spreadsheet and the data
should start from row 2, column A. Two correctly formatted spreadsheets can be seen

4 - Analysis of the Tools

66

in Figure 20 and Figure 21. The different types of spreadsheet imports that eXpress
supports are [47]:

• Spreadsheet Attribute Import is used for importing characteristics for e.g. an
object such as those that can be seen in Figure 20, which are Object Name,
Cost, and Failure Rate.

• Spreadsheet Failure Mode Import is used for importing failure modes of
objects. Figure 21 displays a spreadsheet that can be imported with
Spreadsheet Failure Mode Import and this spreadsheet displays the columns
Object, Failure Mode, Percentage, and Functions. The Object column gives us
information about which object that is concerned. The Failure Mode column
describes what failure modes there are for respective object. The information
in the Percentage column tells us how large share of the total number of
failures of the object that is constituted by the failure mode at hand. In the
Functions column functions that are affected by the failure mode at hand are
listed.

• Spreadsheet Failure Effect Import is useful when FMECA data, such as
probabilities and consequences of failure modes, are imported from
spreadsheets. The FMECA features of eXpress were mentioned in Section
4.2.1.

• Spreadsheet Test Import is used for importing tests. Tests appeared both in
Section 4.2.1 and Section 4.2.2 and a test definition in eXpress describes the
diagnostic conclusions that can be reached after a passed or failed test [67].

• The Spreadsheet Topology Import option is used when model topology is to be
imported. The following entity types can be imported or updated [49]:

o Dependencies describe for each output signal of an object which of the
input signals the output signal depends on. For instance, if an object
has the inputs A, B, and C and the outputs D and E a dependency can
describe that output D depends on A and B.

o Components are the most basic type of design objects. In these
relationships between inputs and outputs are established in internal
dependencies. Components are non-hierarchical objects that can fail
e.g. a valve in a hydraulic system.

o Ports are the input and output points of an object e.g. the two points
were an electrical resistor is connected to the wire. The type of a port
defines the directional flow of the signal travelling through that port.

o Output functions specify the dependencies, described above, between a
given output port of an object and one or more of its inputs. If an
object has multiple capabilities that are possible to test separately,
these capabilities are represented with multiple output functions which
all have to be proven good by diagnostics for the object to be
considered as correctly functioning.

o Object states are groupings of output functions that are used to further
define an object.

o Nets are used to connect objects. Examples of signal paths that can be
represented by nets are wires in an electrical design and pipes in a
hydraulic design.

o An I/O flag is an object that marks the linking point where a signal
goes into or out of an entire design. An I/O flag is not a possible source
of failure.

4 - Analysis of the Tools

67

o Annotations are non-functional objects that only provide information
for example a title on a design sheet or a box around a number of
objects that indicates a group

Figure 20. A correctly formatted spreadsheet for importing attributes [49].

Figure 21. A correctly formatted spreadsheet for importing failure modes [49].

As well as importing data from an Excel spreadsheet eXpress can also export to an
Excel spreadsheet. In Spreadsheet Topology Export [48] the same kind data that was
described in Spreadsheet Topology Import can be exported to an Excel spreadsheet.
This can be used for passing topology information from eXpress to another tool. The
user can also export to Excel, modify the file to update the existing model and import
it again using the Spreadsheet Topology Import [48].

Diag-ML, described in 4.2.4, or XML can be used as export formats when exporting
eXpress models to run-time tools from eXpress [1]. Companies/tools that have
experience in exchanging diagnostic information with eXpress via Diag-ML are listed
in Section 4.2.4.

eXpress has a new feature that is called EDA Import Module which utilizes a new
standard called EDAXML [53]. EDAXML is an XML form of EDIF. EDIF can also
be imported. The CAD tools [53] that are supported by eXpress are Cadence, Mentor
DesignArchitect, Viewlogic/Innoveda, PADS, P-CAD, and OrCAD. Report formats
that can be generated from eXpress include: Pdf, Doc, Rich Text Format (RTF) [65],
and XML [66] Other formats that are listed as supported by eXpress are Tab-
delimited ASCII and Common Object Model (COM) Interface [52].

4.2.8 Libraries

Regarding libraries within eXpress there are a number of example designs [52] that
accompany eXpress and these include a 1553 data bus, an altimeter, an amplifier, and
a hydraulic flow example.

eXpress does not come with a library of components and this is motivated by the large
diversity in component usage within DSI’s customer base; e.g. the component failure
rates vary significantly based on their usage [1]. Failure rates are imported into
eXpress using XML or spreadsheets instead. As new data become available these

4 - Analysis of the Tools

68

failure rates must continually be updated for helping improve the correctness and
usability of the diagnostic system [2]. Although lacking conventional component
library there is a graphical library that assists in the development of model topology
[1].

4.2.9 Disciplines of Modelling

The disciplines, in which eXpress can be used for modelling, are electrical,
mechanical, hydraulic, software and also processes such as a chemical process [58].

4 - Analysis of the Tools

69

4.3 Raz’r
In this section Raz’r from OCC’M is examined. For a short introduction see section
3.3.3. This section differs from the sections describing the other two tools since it
lacks the Test Sequencing algorithm part, this is because no information has been
found concerning this matter in Raz’r.

4.3.1 Representation of Knowledge

Raz’r uses a model type called Qualitative models, see Section 2.1.2. This model type
will be described and exemplified in this section.

A benefit of using qualitative models is that the model can be based on the models
used for controlling the system. This makes the transition and integration between the
design process and the creation of a diagnosis system easier. The basic concept for the
integration is shown in Figure 22.

Figure 22. An integration of model based tools based on model transformation

[32].

The quantification makes qualitative models less computationally demanding than its
quantitative counterpart. A gain is also a more compact model. The quantification also
infers a loss of information which could degrade the diagnosability of the system if
the granularity is poorly chosen. There is currently research being done to optimize
and automate the choice of granularity [8].

4 - Analysis of the Tools

70

There are a number of different qualitative models which represents a system in
different ways. A thorough description can be found in Chapter 2. The models used in
Raz’r are a more sophisticated form of naïve physics models. They are not
constrained to merely three states but can be chosen to contain a suitable number of
states depending on what granularity is deemed to bring the highest usability of the
diagnostic system.

The model includes a set of components, representations of the connections between
them, the domains of the variables used in the model, and definitions for each of the
types of components present in the model. The connections are defined through the
terminals of the components that are the models connection points. The terminals are
often defined as belonging to a specific physical area, such as electrical or pneumatic,
and infers a number of associated constraints in the form of equations. If the terminals
are said to belong to the electric area then all the terminals must fulfil Kirchhoff
current law and the voltage into the terminal must equal the voltage out of it.

Also a number of modes of operation for the component are defined. The modes are
specific to each kind of component and define a number of equations and relations
between the component terminals that needs to be fulfilled for the component to be in
that mode. Together with the equations parameters and state variables are connected
to the components.

To model the polybox, illustrated in Figure 12, with this model type one needs to start
by listing the components and define the different component types. All the
components are listed in the set,

{ }21321 ,,,, aammm=C

The definitions for the multipliers, starts with the set of terminals,

{ }CBA ,,=T

where A and B are the input ports and C is the output port. None of the terminals are
specified to a certain physical field in this theoretical example. They are merely
submitted to one simple equation,

outin TT =

meaning that the value coming out of the terminal must be same as the one coming in.
If the terminal was of some other kind, e.g. electrical, then Kirchhoff’s current law
would have been applied.

4 - Analysis of the Tools

71

The modes of operation, MO , in the multiplier are, the first mode, OK , which
represents when the component is functioning correctly, the second mode, AS , and

the third mode, BS , represent when there is a short between the input A and the
output C and, the input B and the output C respectively. When the component is
functioning in an unknown way, the forth mode, UK , is used. All the three last modes
are considered to be fault modes.

{ }BSASUKOKMO m ,,,=∈ MO

Where each mode is described by the following equations,



























=

=→=

=→=

×=→=

UKMO

else

BCBSMO

ACASMO

BACOKMO

m

m

m

m

The adder type of component can be described in a similar way; the terminals
function in the exact same way and the modes are defined by,

{ }, , ,a OK UK AS BS=MO

These modes function in corresponding way as the modes for the multipliers although

the OK mode naturally adds instead of multiplies. The modes of operations are
described by



























=

=→=

=→=

+=→=

UKMO

else

BCBSMO

ACASMO

BACOKMO

a

a

a

a

There is no need for parameters or state variables in the adder component either.

Using qualitative models the signals need to be quantified. In this model the signals
are quantified in the somewhat untypical domain, all integers between zero and
fifteen, giving the set,

{ }0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15=D

When studying this theoretical example the importance of choosing the sets and
granularities of the signals correctly quickly becomes apparent if all the input signals
are chosen as 10. Already after the multipliers the chosen domains are incapable to
represent the system. A physical system comes with a number of built in constraints;
the maximum speed for a car or the maximum resolution of a sampled signal, both

4 - Analysis of the Tools

72

gives limits to the span and the granularity of the set representing the signal. To
illustrate this more thoroughly another system will be modelled.

This time an electrical circuit is modelled. The circuit is illustrated in Figure 23. The

components in this system are, a voltage source, s , three lights, 1 2,l l and 3l , and six

wires connecting them, 54321 ,,,, wwwww and 6w . They are all collected in the set of

components,

{ }654321321 ,,,,,,,,, wwwwwwllls=C

In the component set, observe that also the wires are modelled; this is due to the fact
that they as well can be in a failed state and thus can be the source of a failure.

Figure 23. A simple system with three lights connected to a battery through

parallel connections [26].

In the model the signals must be specified into domains; in this case only two
domains for each signal are needed.

{ } { } { }1,01,01,0 === lightcurrentvoltage DDD

The first signal represents the voltage in the circuit which can be either zero or higher.
The second signal states that also the current in the circuit is either zero or higher. The
lights are either on, 1, or off, 0. Assuming that the limit is selected so that zero current
is equivalent to no light and current is equivalent to light.

All the components has two terminals of the electrical type, IN and OUT where the
first is the component input port and the later is the output port. In each terminal there
is a port for each signal. For instance, if there is a voltage coming into a wire or light

that would be expressed as 1=voltageIN .

4 - Analysis of the Tools

73

The different modes of operation for the source are

{ },s OK D=MO

The OK mode is when the source is feeding the circuit with a voltage, and the D
mode is when the source is drained and thus does not feed the circuit with a voltage.
The equations describing this,









=↔=

=↔=

0

1

voltages

voltages

OUTDMO

OUTOKMO

The lights can be in either the OK mode and thus lit if a current is present, or they can
be broken, B , not lit at all.

{ }

















===→=




===

===
→=

=

000

000

111

,

voltagecurrentl

currentcurrent

currentcurrent

l

l

OUTOUTLightBMO

INifOUTLight

INifOUTLight
OKMO

BOKMO

The wires also have two modes of operation,

{ },w OK C=MO

If in the OK mode the output voltage is the same as the input voltage, if in the
C mode, the wire is cut and there will be no output voltage.









==↔=

==↔=

00 currentvoltagew

currentcurrentvoltagevoltagew

OUTOUTCMO

OUTINOUTINOKMO

The tests in this case are only whether the lights are on or not.

4.3.2 Methods for Fault Detection and Isolation

OCC’M uses a modified version of the extended General Diagnostic Engine, GDE+,
see Section 2.1.3.2, to perform their fault detection and isolation. How the
modifications are done or what the consequences of them are is unavailable to us
since OCC’M do not publish information about their software components [51]. In the
following section a description of how the GDE+ creates a diagnosis is shown.
Hopefully this is an accurate enough description to show the general workings of the
Raz’r algorithm.

GDE+ differs from GDE by also utilizing fault mode behaviour. This makes it
possible to get better fault isolation since we not only can detect when a component
isn’t working properly but also when it is functioning according to a predefined fault
mode behaviour. Usually we can make an educated guess about the fault mode
behaviours of a component, e.g. a wire can have a fault mode behaviour that can be
described as an infinite resistance, representing a cut off in the wire.

4 - Analysis of the Tools

74

One major drawback of the GDE+ is that it is in many cases hard or even impossible
to predict the faulty behaviour of a component and if we can not predict the behaviour
we can not model it. There is one way around this called focusing. This approach
solves the problem but limit the benefits of GDE+ severely, the algorithm then
behaves as GDE when no known fault mode can describe the behaviour [26]. It
functions by adding an unknown fault mode to the fault free mode and the fault
modes. First the focused algorithm assumes all components to be fault free. If this can
not explain the observations, known fault modes are tried as well. If also this fails, the
algorithm examine if any unknown fault mode could explain the observations.

To exemplify the GDE+, the polybox will be treated. We introduce the same fault as

in the other examples, i.e. the fault ASMOm =
3

 in 3m . In the polybox the

observations are the outputs in f and g , and the inputs dcba ,,, , and e . Assume that

the inputs are,

() ()TT
edcba 22322=

This would generate, in the fault free case,









=









10

10

g

f

 Instead the output is









=









7

10

g

f

The behaviour modes in which all components are functioning correctly,

{ }OKMOOKMOOKMOOKMOOKMO aammm =====
21321

,,,,

does not explain the observations and thus a fault has been detected.
The discovered nogoods are thus,

{ }OKMOOKMOOKMO amm ===
223

This in turn generates calls, 32 ,mm and 2a into suspicion. The combinations of the

failure modes for these components are called candidates. There are six minimal
candidates, i.e. candidates that not is a subset of another candidate. The minimal
candidates are listed in Eq 4-III.

4 - Analysis of the Tools

75

When we also use the information contained in the failure modes of the components
the following nogoods are detected

 { }
{ }
{ }
{ }
{ }
{ }BSMOOKMOOKMO

ASMOOKMOOKMO

OKMOBSMOOKMO

OKMOASMOOKMO

OKMOOKMOBSMO

OKMOOKMOASMO

amm

amm

amm

amm

amm

amm

===

===

===

===

===

===

232

232

232

232

232

232

,,

,,

,,

,

,,

,,

 Eq 4-III

Since all of the minimal conflicts but the third in Eq 4-III are nogoods the focused
inference algorithm concludes that the set

{ }OKMOOKMOASMOOKMOOKMO aammm =====
21321

,,,,

not generates any conflicts. The faulty component have thus been isolated and we
have also isolated in what fault mode it is.

4.3.3 Formats for Storing Data

In Raz’r the qualitative models, described Section 4.3.1, are stored in XML or
relational databases [29]. In the same section modelling concepts such as components,
their behaviour, and the interactions between them were described and for
representing this there is an XML Schema [32].

4.3.4 Design for Testability Aids

Raz’r has incorporated tools for help designing for testability (DFT) and automatic
generation of FMEA. The tools for DFT include a detectability analysis tool with
which the detectability of the failed model components can be evaluated and a
discriminability tool used to evaluate if a component, in case of a fault, can be pointed
out as the faulty component, i.e. if it is part of an ambiguity group. These tools can be
used together with a set of models where sensors are placed in different places among
the models to sieve out the model with the best accordance with the wanted
detectability and discriminability. In such a report, pairs of modes are listed along
with the probability that we can determine which of the two modes in respective pair
that is the current mode.

How the FMECA is generated is described more in detail in [50]. There it is also said
that the automatic generation of the failure mode effects and analysis in the program
is, under certain circumstances, more reliable then a traditional hand made generation.

4.3.5 Modifiability

Regarding modifiability in Raz’r it can be said that the fact that Raz’r uses qualitative
models affects the modifiability of the software models. The initial model is fairly
difficult to develop due to the importance of choosing a correct granularity and the
different fault modes which demand a comprehensive knowledge of the system, both
when it is working correctly and when it is working in some of its fault modes. Once
the different models have been created and the functionality of the systems is captured

4 - Analysis of the Tools

76

in the model it is no big issue to update the system. The update is made automatically
from the structural information of the model [31].

4.3.6 Compatibleness

This section deals with what kind of formats that can be imported to and exported
from Raz’r. Raz’r can take as input any qualitative model as long as it obeys the
defined XML schema and further semantic constraints that is checked by the software
[59]. The arrows in Figure 22 represent information flow in form of XML files. In this
figure one can see that Raz’r can interact with Matlab/Simulink. Under certain
circumstances Matlab/Simulink models can be abstracted to qualitative models and be
automatically imported into Raz’r. The circumstances are that where the Simulink
model contains an integration block the model has to be modified in the way that can
be seen in Figure 24.

Figure 24. Modification that is made to Matlab/Simulink model to make it

importable for Raz’r [8].

An integration block is eliminated from the subsystem at hand and its input, that is the
derivative, becomes an output of the first part of the modified subsystem and its
output, the integrated value, becomes an input to the rest of the subsystem [8].

In [6] it is described how Raz’r is capable of automatically generating C code based
on, in this case, signals from a CAN bus. The compiled C code was then run on an
Electronic Control Unit (ECU) that controlled the electric side windows and mirrors
of a car. In this case the generated C code, consisting of the signal pre-processing, the
compressed system model, and the diagnosis algorithm, when compiled required only
25 kB of memory.

4 - Analysis of the Tools

77

Fault trees can be generated from Raz’r as well and the possible output formats are
[33]:

• XML

• HTML

• ID3 (An algorithm for generating decision trees)

• C-code.

There is also an import function in Raz’r that makes it possible to import net lists [29],
that describe components and connectivity between them in an electronic design.

4.3.7 Libraries

A library in Raz’r consists of four different concepts: component types, constraint

types, domain types, and terminal types. These are described as follows [33]:

• Component types describe classes of physical objects. Objects within the same
component type are very similar in the way that they behave and are
constructed. An example is a resistor component type of which different
instances only differ in the parameter resistance. Each component type has
five functions:

o Local effects describe the consequences a fault in the component will
have at the same level in the hierarchy as the component itself.

o A Mode defines a behaviour that is common to every instance of the
component type. In the case of diagnosis the mode can be either ok or
faulty in some way. A default mode should be set in each component
type.

o A Parameter is a constant that describe the behaviour of an instance of
a component type. To exemplify by a resistor, the parameter would be
the resistance.

o State variables are similar to parameters but they can vary over time
and are dependent of previous values of their selves. An example is the
charge of a capacitor.

o Terminals are the entities through which a component interacts with
the rest of the model and as described in Section 4.3.1 each terminal
belong to a physical area such as electrical or pneumatic. A resistor
would have two electrical terminals transferring both potential and
current.

• A Constraint type defines a restriction on a set of variables and parameters.
There are predefined constraint types such as Ohm’s law but the user can
define his or her own.

4 - Analysis of the Tools

78

• A domain type specifies the possible values for a variable or parameter. Raz’r,
being based on qualitative modelling, uses finite domains. The predefined
domains in Raz’r are:

• Signs {-, 0, +}

• Positive {0, +}

• Boolean {True, False}

• Position {On, Off}

• Connectivity {0, Pos, Inf}

• Vqual {Ground, Between, Src}

Thus are the possible values in e.g. the domain of Booleans True and False.

• Terminal types describe what happens at the interaction points. A terminal
type specifies variables that concern not just one component. An electrical
terminal for example can have the variables delta_voltage and delta_current
which describe electrical connections.

OCC’M does have various component libraries developed in previous projects and
they are reused on a case by case basis. The software does not automatically come
with any basic library as it is not normally sold without consulting [31].

4.3.8 Disciplines of Modelling

In an e-mail conversation with a co-founder of OCC’M he explained that they have
experience from modelling in and have component libraries in the disciplines
electrics, pneumatics, and hydraulics [59].

5 - Comparison of tools

79

5 Comparison of tools
In this chapter we will compare the different tools presented in Chapter 4. The effort
to model a system is discussed and what pros and cons this does infer. A model that
requires a lot of information and knowledge to be available takes longer to complete.
This could also infer a better diagnostic capability in the form of better chances of
detection and isolation.

Furthermore, it is discussed what inference algorithm that are used in the tools. The
type of inference algorithm is of importance since this affects the detectability and
isolation capabilities of the tools. It also affects the amount of computing power
needed and the amount of time it takes to perform a search for one or more faulty
components.

The different formats that are used for storing data in the different tools are compared
as well as what has been presented in the Design for testability aids sections for the
respective tools. Furthermore comparisons are made for the sections Modifiability,
Compatibleness, Libraries, and Disciplines of modelling.

5.1 Modelling Effort
The tools all have different approaches to how the models are supposed to be
constructed and to what they are supposed to contain. What in TEAMS is called a
signal is very similar to what in eXpress is called a function. The tools both share a
common difficulty, that there can be some difficulties to identify what a
function/signal is. For example, in the polybox it was initially not obvious if the
whole path of the different inputs to the respective outputs should be a signal/function
or, if each single component was to be modelled as having its own signal/function.
Perhaps this becomes clearer when the experience of using the tools grow.

The biggest effort to create a model is demanded if we want to create a qualitative
model. This is due to the need for all relations to not only be formulated and
physically modelled but also the need to choose the granularity of the signals
correctly. A task that is not easily performed. There is currently research being done
to try to automate the process of choosing the granularity to preserve the diagnostic
capabilities without losing the benefits of the lower computational requirements
compared to quantitative modelling [8]. To be able to choose the correct granularity,
extensive knowledge is required about the system, not only about the system when it
is functioning as it should but also when a component is faulty. For example if a
sensor is fed with an insufficient voltage, will the output of this sensor be zero,
outside a possibly correct interval, inside such an interval, or something totally
random? This kind of knowledge must be available to be able to fully reap the gains
of the model type [62].

When comparing the different modelling examples in Chapter 4 attention must be
paid to the fact that although it is the polybox system modelled with each tool there
are some differences in the system fault modes in the different sections. In TEAMS
there are only two modes, one fault free and one failure mode in each of the
components of the system. In eXpress and Raz’r the components in the polybox have

5 - Comparison of tools

80

three respective two failure modes. Since we could not model the intermittent fault in
Raz’r this failure mode was included in the unknown fault mode.

As Raz’r uses physical models of the system the feature of being able to define and
use state variables is useful. This enables for dynamic systems to be modelled in the
tool. Also in this matter, Raz’r is alone amongst the three tools to be capable of as far
as what has been found in this examination.

5.2 Fault detection and Isolation Capabilities
Regarding the different fault detection and isolation capabilities of the tools there are
some differences. The types of models that the tools work with open for different
approaches. Once again the solutions presented in eXpress and TEAMS are quite
similar while the solution used in Raz’r is more advanced.

Although the same information was available to us in the polybox example the tools
reached different degrees of isolation. This is because the tools have differences in
how well suited they are to model the knowledge of the different fault modes.

TEAMS could not conclude whether 3m or 2a were faulty, eXpress could not isolate

between

and Raz’r came to the conclusion that the faulty component was 3m , and that it was

now functioning according to the description given for fault state AS . This is where
the benefits from the more extensive modelling come in. Since the fault states also
have been modelled it is easy to test if any of those modes of operation can explain
the sensor readings and behaviour of the system.

Raz’r also has the benefit of being able to use state variables. In the sample systems
sent to the companies the only one who returned a usable model of the dynamic air
intake system was Raz’r.

Another advantage with Raz’r is that there is no need to define the tests. The inference
works with the observations of the system. These observations can be obtained from
sensors. In both eXpress and TEAMS the tests must be constructed before we are able
to use the diagnostic systems created with these tools. Constructing the tests is not a
simple task since the tools assume that the tests are perfect. This means that if a test
has not reacted it is guaranteed that none of the behavioural modes the test is sensitive
to correctly describes the behaviour of the system. This is very hard to accomplish due
to noise in sensor values and model errors [60]. A test reacts if a test quantity exceeds
a certain limit value. The test quantity is calculated from sensor values and these
values always include some amount of noise. If the limit is set too close to the normal
value of the variable, i.e. the expected value in the fault free mode, the risk of the
noise making the value exceed the limit is big. If the limit is set too far away from the
normal value there is a risk that there is a fault present in the system but the test has
not reacted.

2223332
,,,,,, aaammmm lsbsalsbsal

5 - Comparison of tools

81

Since eXpress and TEAMS use quite similar model types and inference algorithms
there are probably more comparisons that we could make to further examine the
differences and the pros and cons that those differences infer on the diagnostic
systems created with the tools. For example better examine the use of fault modes in
the tools.

A questionable aspect of the eXpress algorithm is whether it really is correct to
exclude a failure mode, known to only sometimes affect a function, just because it at
the present do not affect any function. This makes the design of the tests very
important for the quality of the diagnostic system. The tests must be sensitive enough
to always detect a fault and insensitive enough to not generate false alarms.

Regarding aspects such as computational speed and requirements of the inference
algorithm no investigation has been done since comparable data have not been
accessible. Due to the lack of access to the tools, test data could not be generated
either.

5.3 Formats for Storing Data
In all the three tools XML files are used for representing models and in TEAMS as
well as in Raz’r also relational databases are used. Raz’r and eXpress use XML
Schema for setting the rules to which their XML files must conform while TEAMS on
the other hand uses Document Type Definition (DTD). DTD is generally considered
out of date and the XML Schema is favoured over the DTD. In DTD we can only
specify the element structure, i.e. the allowed names of elements and attributes in an
XML file, whereas in the XML Schema we can also specify numeric ranges for a
certain element type or specify a list of possible values for the element type to have.
Even though QSI, the producer of TEAMS, writes in [63] from 2001 that they will
move on from DTD to the then newly developed XML Schema, we were not able to
find any trace of it today. In [21] from 2006 we can read that the Document Type
Definition is still used.

Of the three solutions for using XML files for model storing the one that we have
been able to find a somewhat widespread support for in the industry is eXpress’ Diag-
ML. The other two solutions seem more to be natively used formats.

5.4 Test Design Capabilities
When it comes to Design For Testability (DFT) it is hard to get comparable data and
hard to evaluate the quality of the services provided. Even if the different tools claim
to have the same services such as detection rate and FMEA generation, the quality of
these services is hard to evaluate. If a sample system was modelled with all the tools
and the tools themselves were available a comparison could have been made of e.g.
what the calculated isolation ability, mean time to failure and maximum ambiguity
group size would have been calculated to in the different tools. Also a comparison of
where new sensors are recommended to be placed and the contents of the
automatically generated FMEAs could be performed. Now only which aids that are
available can be compared and not the quality of them.

5 - Comparison of tools

82

The aids described above are provided by all the tools. However, one aid that has only
been found in TEAMS is the feedback loop, described in Section 4.1.5.

5.5 Compatibleness
A comparison of the compatibleness of the three tools is here presented in Table 12.
The table lists items that one or more tools are compatible with in the topmost row
and the three tools are found in the first column. An X in a box means that the tool at
hand offer support. An empty box represents that no information has been found
regarding the support in that case.

Table 12. Compliance for the three tools
 XML Diagnostic

reports
Matlab/Simulink Excel CAD

tools
OBDC C code Net

lists

TEAMS X X X X X X

eXpress X X X X X

Raz’r X X X X X

As can be seen in Table 12 all three tools use XML for information exchange. XML
support is important since XML is a commonly used format for information storage
and information exchange. All three tools are also able to generate diagnostic reports
and the formats in which diagnostic reports can be generated in respective tool can be
seen in Table 13.

Table 13. Formats in which diagnostic reports can be generated for the three
tools

 XML HTML PDF AI-ESTATE RTF Doc ID3 C code

TEAMS X X X X

eXpress X X X X

Raz’r X X X X

Further on in Table 12 we can se that both QSI (TEAMS) and OCC’M (Raz’r) have
capability of importing models from Matlab/Simulink. This capability is good since
the use of Simulink is widespread in the engineering community. Another format,
which especially eXpress use as the key types of external data sources, is the
Microsoft Excel spreadsheet. The use of Excel is also widespread. In Section 4.1.7 it
was described that Excel spreadsheets were imported into TEAMS using an import
tool in a study.

eXpress uses the standard EDAXML and the following CAD tools are listed as
compatible with eXpress: Cadence, Mentor DesignArchitect, Viewlogic/Innoveda,
PADS, P-CAD, and OrCAD. The support of a CAD tool is important if there are
existing designs that preferably could be imported into the tool of interest.

TEAMS models can be exported to databases that are ODBC-compliant. This feature
makes it possible to access data bases regardless of what data base management
system or operating system that is used. Raz’r can generate diagnosis algorithms in C
code which is a plus if there is a desire to run C code on an on board computer.
Finally in Table 12 we can see that all three tools have import functions for importing
netlists. An import function like this would ease the design process if there are such
netlists available and hence they would not have to be remodelled.

5 - Comparison of tools

83

5.6 Libraries
eXpress and TEAMS come with some preconstructed example models which can
provide information and tips about how to use these tools. In TEAMS there is an
automobile that has been modelled and in eXpress the examples include a 1553 data
bus, an altimeter, an amplifier, and a hydraulic flow example. Raz’r does not
automatically come with any basic library as it is not normally sold without
consulting, however OCC’M does have various component libraries developed in
previous projects and they are reused on a case by case basis [31].

5.7 Disciplines of Modelling
The disciplines of modelling that are supported by each tool are displayed in Table 14.

Table 14. Disciplines in which can be modelled in the three tools
 Electrical Mechanical Hydraulic Chemical

processes
Software Pneumatics

TEAMS X X X X

eXpress X X X X X

Raz’r X X X

In this table we can see that all three tools support electrical and hydraulic modelling.
eXpress is the tool that supports the most disciplines.

5.8 Modifiability
Modification of a model in eXpress is done by exporting the model topology to Excel
spreadsheets, modify the model there, and then importing it into eXpress again. This
seems to be a good solution for making updates of models effective. Updates in Raz’r
are, according to the producer, made automatically from structural information stored
in the tool. In TEAMS, TEAMS-KB provides capabilities to update component
reliability, component failure rate, repair costs, and repair times as maintenance and
repair data become available.

6 - Conclusions

85

6 Conclusions
In this chapter the work presented in the preceding chapters are summarized and the
conclusions are stated together with ideas for future work.

6.1 Discussion
The aim of this thesis was to find and evaluate diagnostic tools. In Chapter 3 it was
described how the search for such tools was done. The search revealed that no tool on
the market had a dominating position. From the found tools three of them were
selected for further evaluation. These were selected since they were expected to
provide the diagnostic systems that best utilize the available information about the
system. In Chapter 4 these three tools were analysed. The analysis can be seen as
constituted by two different aspects, one focusing on the diagnostic methods with
which each tool creates diagnostic systems, the other focusing on practical details that
determine the usability of each tool. Chapter 5 provides a comparison of the three
tools in terms of the topics analysed in Chapter 4.

The analysis revealed both similarities and differences amongst the tools. For example
TEAMS and eXpress use a dependency based model type, whilst Raz’r uses
qualitative modelling. Also the inference algorithms offer differences where once
again Raz’r differs from the other two. The inference algorithm in Raz’r has the
capability to utilize information from models of failure modes. The other two utilize
only information about dependencies between components for each failure mode.
eXpress here benefits from having the capability to define several fault modes while
TEAMS have only two.

The different programs each have its strengths. TEAMS seems built on a solid
theoretical foundation and papers from QSI often appear in conference proceedings.
QSI also offer a number of different software to cover large parts of the diagnostic
needs. DSI often emphasise the possibilities to use eXpress in an early stage of the
development of the system to be diagnosed. The advantage of this is to consider
diagnostic aspects when designing the system and by this enabling for better
diagnostic capabilities. OCC’M also has contributed with several papers in
conferences. Raz’r benefits from the capabilities to handle state variables and using
the information available about failure modes to further enhance the isolation.

A similarity is that all three tools use XML for storing models although the methods
used for defining the allowed elements and attributes of the XML files differ. eXpress
and Raz’r use XML Schema while TEAMS uses DTD. The DTD format only
specifies the names of elements and attributes whereas in the XML Schema we can
also control values of attributes. This extra control makes the XML Schema more
powerful. The fact that XML Schemas are written themselves in XML, unlike DTDs,
eases work since another language is not needed. The XML Schema used in eXpress,
Diag-ML, is a somewhat widespread standard for diagnostics capture and has some
support within the industry. Rodon for example supports Diag-ML.

On a note on customer relations for the companies providing the evaluated tools we
can conclude that the provider of eXpress, DSI, as well as the provider of Raz’r,

6 - Conclusions

86

OCC’M, have been of great assistance to this project. They both have answered
questions and provided us with information which has been very useful.

A final conclusion that can be drawn is that the information available concerning the
system that is to be diagnosed should guide the choice of tool. Raz’r has better fault
isolation capability if there is knowledge available about the behaviour of a system
when it is in a failure mode. TEAMS and eXpress on the other hand require less
knowledge of the system and thus the creation of the diagnostic system can begin
earlier. They are also more intended to handle information gained from built in self
tests of components. From this information the tool recommended to use is TEAMS
or eXpress for systems built up mainly of components with built in self tests or Raz’r
for systems where the components do not have built in self tests.

6.2 Future Work
Future work following after this thesis might be to further explore one or more of the
three evaluated tools that is of further interest. A comparison of TEAMS and eXpress
could be useful since these tools seem to be more similar to each other compared to
Raz’r. The effect of the limited number of failure modes in TEAMS compared to the
larger number of failure modes in eXpress could be studied. In such a study a more
practical approach can be used where a system is modelled and studied diagnostically
in the tool. The same study could be made with Raz’r and Rodon since they seem
more similar. A system that is to be modelled in such a study could be of the kind that
would be representative of what the tool would be used for in an everyday use. Such a
study, concentrating at only one tool at a time, might give a more complete picture of
how the tool works, since this has been somewhat of an introduction to the three tools
TEAMS, eXpress, and Raz’r.

Another suggestion for possible future work could lie in examining the strong
candidates that did not make the cut described in Section 3.5.

In the problem description it was also included to map standards within the diagnostic
field. The study revealed no widely accepted standard within the diagnostic field. One
standard that was found in TEAMS is AI-ESTATE which was presented in Section
2.6. AI-ESTATE is a standard from IEEE that is used for storing and exchanging
diagnostic knowledge and could certainly be of interest for further exploration.

Yet another interesting issue to further explore is how the computational requirements
correlate to the size of a system for different modelling types and inference
algorithms.

Finally one important aspect when choosing a tool is to secure that the tool has the
ability to meet future requirements. This makes it important to insure that the
company providing the tool has the prerequisites to develop the tool so it meets those
demands. This could be done in a corresponding study.

7 - References

87

7 References
[1] Personal reference at DSI

[2] Eric Gould, Modelling it both ways: Hybrid diagnostic modelling and its

application to hierarchical system designs, DSI International, 2004 IEEE

[3] B Long et al, System Testability Analysis for Complex Electronic Devices

Based on Multisignal Model, Journal of Physics: Conference Series 48, 2006

[4] http://www.diag-ml.com/, Accessible: 2007-11-13

[5] http://www.diag-ml.com/Detail.aspx?Detail=Consortium,

 Accessible: 2007-11-13

[6] Oskar Dressler, Peter Struss, Generating instead of programming

Diagnostics, http://www.occm.de/GeneratingOnBoardDiagnostics.pdf,
Accessible: 2007-11-13

[7] P. Struss, A. Malik, M. Sachenbacher, Qualitative modelling is the key to

automated diagnosis, 6th International Workshop on Principles of Diagnosis
(DX-95), Goslar, Germany, pp. 99-106, 1995

[8] P. Struss, Automated Abstraction of Numerical Simulation Models- Theory

and Practical Experience, Proceedings of the Workshop on Algebraic
Models of Reasoning, Ki-2003 Hamburg, Germany, Sept. 16, 2003

[9] http://www.diag-ml.com/Detail.aspx?Detail=Extensible, Accessible: 2007-

11-13

[10] DSI Homepage,

 http://www.dsiintl.com/WebLogic/Products.aspx?Page=Interoperability/Dia
gML.ascx, Accessible: 2007-11-19

[11] www.ne.se, XML.Nationalencyklopedin, 2007, Nationalencyklopedins

internettjänst. http://www.ne.se.jsp/search/article.jsp?i_art_id=348461 (In
Swedish) Accessible: 2007-11-19

[12] http://www.w3c.se/resources/office/translations/XML-in-10-points_sw.html,

Accessible: 2007-11-19

[13] http://www.w3schools.com/xml/xml_syntax.asp

[14] Jianhui Luo, Haiying Tu, Krishna Pattipati, Liu Qiao, Shunsuke Chigusa,

Graphical models for diagnosis knowledge representation and inference,

Autotestcon, 2005. IEEE, 26-29 Sept. 2005, Page(s): 483- 489

[15] http://xml.silmaril.ie/basics/whatfor/, Accessible: 2007-11-22

7 - References

88

[16] Somnath Deb, Krishna R. Pattipati, Vijay Raghavan, Mojdeh Shakeri,
Roshan Shrestha, Multi-Signal Flow Graphs: A Novel Approach for System

Testabiblity Analysis and Fault Diagnosis, AUTOTESTCON '94. IEEE
Systems Readiness Technology Conference. 'Cost Effective Support Into the
Next Century', Conference Proceedings, 20-22 Sep 1994, Page(s): 361-373

[17] S. Deb, A. Mathur, P.K. Willett, K.R. Pattipati, Decentralized real-time

monitoring and diagnosis,Systems, Man, and Cybernetics, 1998 IEEE
International Conference on, Volume: 3, 11-14 Oct 1998, Page(s): 2998-
3003 vol.3

[18] http://www.w3schools.com/dtd/default.asp, Accessible: 2007-11-26

[19] http://www.w3.org/TR/2000/REC-xml-20001006, Accessible: 2007-11-26

[20] François E. Cellier, Qualitative modelling and simulation: promise or

illusion Winter Simulation Conference archive, Proceedings of the 23rd
conference on, Phoenix, Arizona, United States, Pages: 1086 – 1090, Year of
Publication: 1991, ISBN:0-7803-0181-1

[21] Somnath Deb, Venkata N. Malepati, Michel D. Paquet, Baban Baliga,

Validation of a COTS EHM Solution for the JSF Program, Aerospace
Conference, IEEE 2006, ISBN: 0-7803-9546-8

[22] TEAMS Hompage, http://www.teamqsi.com/KB.html, Accessible: 2007-11-

28

[23] Kevin Cavanaugh, An Integrated Diagnostics Virtual Test Bench for Life

Cycle Support, Proceedings of IEEE Aerospace Conference, Big Sky,
Montana, 2001

[24] TEAMS 9.x Manual, Section 2.3.3

[25] IEEE Std 1232-2002, IEEE Standard for Artificial Intelligence Exchange

and Service Tie to All Test Environments (AI-ESTATE), 2002

[26] Peter Struss, Oskar Dressler, ”Physical negation”- Integrating Fault Models

into the General Diagnostic Engine, in Readings in model-based diagnosis,

editors Walter Hamscher, Luca Console, Johan de Kleer, pages 153-158,
1992

[27] John W. Sheppard, Timothy J. Wilmering, Recent Advances in IEEE

Standards for Diagnosis and Diagnostic Maturation, 2006 IEEE Aerospace
Conference, 2006

[28] Daniel Andersson, Patrik Sköld, Evaluation of a diagnostic tool for use

during system development and operation, 2007 Linköping University,
Department of Electrical Engineering, Master thesis number: 2007-3916

[29] E-mail conversation with Oskar Dressler, OCC’M, 2007-10-16

7 - References

89

[30] Ian Gilfillan, Introduction to Relational Databases, 2002 DatabaseJournal,

http://www.databasejournal.com/sqletc/article.php/26861_1469521_1,
Accessible 2007-01-14

[31] E-mail conversation with Oskar Dressler, OCC’M 2007-10-24

[32] Peter Struss, Oskar Dressler, A toolbox integrating model-based

diagnosability analysis and automated generation of diagnostics,
Proceedings of the 14th International Workshop on Principles of Diagnosis
(DX'03) 2003

[33] Srdan Bjelic, Sofie Lindberg, Model Based Reasoning from a Vehicle

Perspective - Evaluation of the Software Tools Raz’r and Rodon, 2007
Chalmers University of Technology, Department of Signals and Systems,
Master thesis number: Ex007/2007

[34] http://diagnostician.vsecorp.com/VSE%20Corporation%20-

%20Diagnostician%20Introduction.htm
 Accessible 2008-01-21

[35] TEAMS Homepage, http://www.teamqsi.com/TEAMS.html, Accessible

2008-01-22

[36] TEAMS Homepage, http://www.teamqsi.com/RT.html, Accessible 2008-01-

22

[37] TEAMS Homepage, http://www.teamqsi.com/RDS.html, Accessible 2008-

01-22

[38] TEAMS Homepage, http://www.teamqsi.com/TEAMATE.html, Accessible

2008-01-22

[39] http://ic.arc.nasa.gov/projects/L2/doc//, Accessible 2008-01-22

[40] DSI Homepage,

 http://www.dsiintl.com/WebLogic/Products.aspx?Page=eXpress/WhatIsExp
ress.ascx, Accessible 2008-01-23

[41] DSI Homepage,

 http://www.dsiintl.com/WebLogic/Products.aspx?Page=eXpress/HowDoesIt
Work.ascx, Accessible 2008-01-23

7 - References

90

[42]
 http://www.aerospaceonline.com/Content/ProductShowcase/product.asp?Do
cID=c97261c5-d115-11d4-8c88-009027de0829&VNETCOOKIE=NO,
 Accessible 2008-01-25

[43] Animated tutorial: DFT Feedback on Model,

http://www.teamqsi.com/teams/demopage/DFT_Feedback_On_Model_view
let/DFT_Feedback_On_Model_viewlet_swf.html

 Accessible 2008-01-25.

[44] TEAMS 9.X Manual, Section 2.2.1

[45] Somnath Deb, Sudipto Ghoshal, Amit Mathur, Roshan Shrestha and Krishna

R. Pattipati, Multisignal Modelling for Diagnosis, FMECA, and Reliability,
Proceedings of IEEE SMC 1998

[46] Eric Gould, Danver Hartop, Erick Lee, Ion A. Neag, Mark Wilson, DiagML

- An Interoperability Platform for Test and Diagnostics Software,
AUTOTESTCON Proceedings, 2002

[47] eXpress Online Help, Section: Importing: Overview

[48] eXpress Online Help, Section: Design Reports – Spreadsheet Topology

Export

[49] eXpress Online Help, Section: Data Source Administration - Spreadsheet

Topology Import

[50] Claudia Picardi, Luca Console, Frederic Berger, Jan Breeman, Tony

Kanakis, Jeroen Moelands,, Stephan Collas, Emmanuel Arbaretier, Nino De
Domenico, Ermanno Girardelli, Oskar Dressler, Peter Struss, Benjamin
Zilbermann, AUTAS: a tool for supporting FMECA generation in aeronautic

systems, Proceeding of the 16th European Conference on Artificial
Intelligence 2004

[51] E-mail conversation with Oskar Dressler, OCC’M, 2007-12-03

[52] DSI Homepage, http://www.dsiintl.com/kb/default.aspx, Accessible 2008-

01-31

[53] DSI Homepage,

 http://www.dsiintl.com/WebLogic/Products.aspx?Page=EDAImportModule
_new.ascx, Accessible 2008-01-31

[54] Amit Mathur, Sudipto Ghoshal, Deepak Haste, Charles Domagala, Roshan

Shrestha, Venkatesulu Malepati, Krishna Pattipati, An Integrated Support

System for Rotorcraft Health Management and Maintenance, IEEE
Aerospace Conference Proceedings 2000

7 - References

91

[55] DSI Homepage,
 http://www.dsiintl.com/WebLogic/Products.aspx?Page=eXpress/SensorOpti
mization.ascx, Accessible 2008-02-10

[56] DSI Homepage,

 http://www.dsiintl.com/WebLogic/Products.aspx?Page=DiagnosticModule.a
scx, Accessible 2008-02-10

[57] Personal reference at DSI

[58] DSI Homepage,

 http://www.dsiintl.com/WebLogic/Products.aspx?Page=eXpress/MultiDisci
plineSupport.ascx, Accessible 2008-02-10

[59] Personal reference at OCC’M

[60] Mattias Nyberg, Erik Frisk, Model Based Diagnosis of Technical Processes,

Linköping, 2006

[61] E-mail conversation with Oskar Dressler, 2007-10-22

[62] E-mail conversation with Oskar Dressler, 2007-11-13

[63] Sudipto Ghoshal, Somnath Deb, Implementation Strategy for AI-ESTATE

compliance in the Remote Diagnosis Server (RDS) framework,
AUTOTESTCON Proceedings, 2001. IEEE Systems Readiness Technology
Conference, 2001

[64] TEAMS 9.x Manual, Section 1.4

[65] http://www.dsiintl.com/Resources/Brochures/eXpressFeatures.pdf,

 Accessible 2008-02-18

[66] eXpress Online Help, Section: Fault Isolation Report : Options Dialog

[67] eXpress Online Help, Section: Tests - Overview

[68] QSI Homepage,

 http://www.teamqsi.com/teams/demopage/Diagnostic_Tree_viewlet/Diagno
stic_Tree_viewlet_swf.html, Accessible 2008-02-22

[69] eXpress Online Help, Section: Diagnostic Test Selection Criteria -

Diagnostic Algorithms

[70] http://www.w3schools.com/schema/default.asp, Accessible 2008-02-25

[71] www.ne.se, VHDL. Nationalencyklopedin. 2007. Nationalencyklopedins

internettjänst, http://www.ne.se/jsp/search/article.jsp?i_art_id=342037 (In
Swedish) Accessible: 2008-02-27

7 - References

92

[72] http://www.w3schools.com/schema/schema_howto.asp, Accessible 2008-03-
05

[73] Military Standard, Procedures for Performing a Failure Mode, Effects and

Criticality Analysis, MIL-STD-1629A, 24 NOVEMBER 1980

[74] Amit Mathur, Somnath Deb, and Krishna R Pattipati, Modeling and Real-

Time Diagnostics in TEAMS-RT, Proceedings of the American Control
Conference, Philadelphia, Pennsylvania, June 1998

[75] Lennart Ljung, Torkel Glad, Modellbygge och simulering, Lund 2004

[76] Nolan, M., Giordano, J.P., Use of adaptive model-based reasoning for

embedded diagnostics andredundancy management for fault tolerant

systems, AUTOTESTCON '97 IEEE Autotestcon Proceedings, 1997

93

Appendix A - Search word list

To ease and structure the search for suitable alternatives a list of search words was
constructed:

AI
aircraft
aviation
Bayesian networks
Diagnostics
failure
fault
FDI (Fault detection and isolation)
FMEA
FMECA
health management system
health monitoring
isolation
logic
Model based diagnostics
Model Based Reasoning
on-board diagnostics
prognostics
real-time diagnostics
Software
Tool

94

Appendix B - Found tools

Here follows a list of the tools found in the search. First the name of the product is
listed, then the name of the company supplying the software, next the foremost
demand in 3.4.X which was not met and last a short comment of the tools is supplied.

Product name Company name Foremost
demand
not met
3.4.X

Comment

ACAMS Arinc 3 Not enough information.
Adams MCS Software 1 No direct affiliation with

diagnostics.
AirMan Airbus 1 Focused on air lines operating

airbus planes
Autosoft Mecel 3 Did not answer e-mail enquiry.

BayesiaLab Bayesia 1 Not specialized in diagnostics.

CDG Boeing 1 Not a diagnostics tool

Dexter Macsea 1 Specialized in marine use.

Diagnostic
Profiler/Diagnostician

VSE 3 Not enough information.

DSI Express DSI Chosen

DTOOL/CNETS Adnan
Darwiche/Rockwell

3 Not enough information. The
tools had been sold and their
whereabouts were not known by
previous owner.

FOCA Simauthor 3 Program to simulate flights from
recorded data. Mostly usable to
evaluate pilots.

G2 Gensym 5 No clear overall solution.

Goodrich Vehicle Health
Management System

3 Demands hardware and other
software from Goodrich to
operate

Hugin Expert Hugin Expert 1 Not specialized in diagnostics.

HUMS GE 2 Includes hardware.
IHUMS Meggit Avionics 2 Hardware based

i-Trend / i.Predict /
ICEMS

Scientific Monitoring inc 1 Provides only web based tools
for diagnostics.

Livingstone 2 NASA 4 A research project rather than a
product.

Maintenix Mxi Technologies 3 Handles the logistics connected
to maintenance.

Matlab/Simulink Mathworks 1 Not specialized in diagnostics.

Model Wizard Integrated systems
diagnostics

1 Deals with finance.

Numerous products Vector 4 Do not mention a specific
product.

Numerous products Impact technology 5 No clear overall solution.

95

Numerous products IAC 2 Includes hardware.

PM2TM Prime Photonics 3 Not enough information.

Raz'r OCC'M Chosen

Rodon Sörman 7 There already is a report written
on Rodon.

SCORE DDC-I 1 Is a software development tool
rather than a diagnostic tool.

Sentient Situation
Awareness

Management Sciences Inc. 3 Shortage of information and they
did also have some hardware.

SFIM ACMS GSE
& AGS

Sagem Avionics 3 Not enough information

Shield mm Smartsignal 1 Deals with data mining rather
then diagnostics

SIDIS Siemens 3 Did not reply to e-mail enquiry.

Spotlight Casebank 6 Stores cases and searches
through a data base of them to
recognize symptoms.

TEAMS Qualtech Systems Chosen
Unspecified name MTC Technologies 4 Do not mention a specific

product.
Unspecified name Foster Miller 4 Do not mention a specific

product.
Unspecified name Interface & Control

Systems Inc
5 No clear overall solution.

Unspecified name TechnoSciences 4 Works with predictive
maintenance operations
scheduling, modelling, and
control design of engineering
systems but does not mention a
specific product.

VPS-Micro VEXTEC 1 Diagnostics for fatigue in
materials.

96

Appendix C - Sample Systems

Electric circuit

A light circuit with the observations:
Light 1 is lit, light 2 is lit, measured voltage, measured current, and wanted switch
position.

Possible faults:

• One or both lights are broken

• Bias fault in the voltage meter

• The resistance is short-circuited or cut

• Switch stuck open or closed

Hidden faults (e.g. one can’t tell if L2 is broken when the switch is stuck open) should
be indicated if possible. Multiple faults should be detected and isolated if possible.

Air intake : Continuous system with feedback

Modified model of an air intake where one measures p2 and controls alpha. We want

to control p1 trough the feedback)(1 αFm =& where)(αF is known and 





∈

2
,0
π

α

where 0=α represents a completely closed intake. The sensor has a white noise
disturbance.

Possible faults:

• Leakage in V1,)(21 ppKml −=& where lm& is the mass flow through the

leakage hole

• Sensor fault, yfpy += 2 where yf is a constant

• Actuator fault, the throttle can get stuck in some position

97

Polybox

”Classic” polybox, should be modelled both with c known and c unknown. a, b, d, e,
f and g are known. Faults can occur in the multipliers and in the adders but are either
working or A-short-circuit (output = port A of the inputs) or B-short-circuit (output =
port B of the inputs). Multiple faults should be handled if possible.

