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Abstract 
 
If a fault occurs in a technical system, for example in an airplane, it is important to be 
able to detect that there is a fault and to find what in the system that is faulty. The 
procedure of determining, given certain observations, if faults are present and if so the 
location of faults is called a diagnosis. For achieving diagnosis we can use computer 
software that takes observations of a system as input and that generates a diagnosis as 
output. This is called a diagnostic system. To build a diagnostic system we need 
another piece of computer software which is called a diagnostic tool. This thesis will 
present a market survey for diagnostic tools as well as an analysis of three of the tools 
found in the survey. The analysis can be seen as constituted by two different aspects, 
one focusing on the diagnostic methods with which each tool creates diagnostic 
systems, the other focusing on practical details that determine the usability of each 
tool. The analysis found that the largest differences were between the methods used in 
creating the diagnostic systems. 
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Environments 

CAD Computer Aided Design 

CAN Controller Area Network 
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1 Introduction 

1.1 Purpose 
The purpose of this thesis is to examine the market for available tools and standards 
for creating, maintaining, and developing systems used for diagnostics. The purpose is 
also to select among the available tools the best suitable tools and to do a comparison 
and evaluation of them from first of all a theoretical but also to some extent from a 
practical perspective. 

1.2 Problem 
The problem intended to be solved in this thesis is to find the currently available best 
suited tool for Saab. Best suited referring to capabilities such as modelling, updating 
and developing systems, capabilities for detection and isolation of failures, Design For 
Testability, DFT, aids, and generation of Failure Mode Effects and Critically 
Analysis, FMECA. Included in the problem description is also to map available 
standards within the field. 

1.3 Prerequisites 
The work is made under some prerequisites. Only tools with an expressed 
specialization towards model-based diagnostics are considered, this sieved out tools 
dealing with artificial intelligence, AI, not related to diagnostics and tools only 
dealing with Bayesian probability. 
 
Furthermore the intention was not to investigate Rodon although this tool represents 
very much what Saab is looking for. This is because Saab already has made an 
investigation about this tool [28]. 
 
Saab is only interested in pure software with no integrated hardware in the scope of 
this thesis. 

1.4 Background 
Saab is increasing its focus on the civil aviation market. While the in-house tools that 
are used today for developing diagnostic systems serves its purpose, Saab is interested 
in exploring what diagnostic tools that are available on the market. It would ease the 
work if, when working with future civilian customers, Saab could use a commercial 
tool that would be compatible with the world outside Saab. For making work with 
diagnostics and function monitoring even more effective, Saab is also interested in 
knowing what standards that are supported by the different tools. 

1.5 Method  
The method used to find and evaluate the different standards and tools, which can be 
suitable for Saab, consists of a number of steps. These steps are described in a 
chronological order below. Also see Figure 1.  
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Figure 1. Schematic picture of the search method. 

 

1.5.1 Specification of Basic Desired Features of Tools 

To be able to have some basic rules of selection of the tools, a number of basic 
desired features are formulated. These rules are very loosely formulated and are 
supposed to give room for a wide variation of tools, although still provide a number of 
functions or features of which at least one is required to be included for the tool to be 
considered as an alternative. 

1.5.2 Searching for Suitable Alternatives 

In order to find available tools, brainstorming is done for possible search words and 
search phrases that can be used when searching on the internet. These words and 
phrases are listed in Appendix A. The list is consulted during the search phase and is 
refined in the searching process as new words and phrases are discovered. 
 
In another document, found in Appendix B internet pages with possible candidates are 
noted along with description of the different tools.  
 
The searching process results in a list with all the possible candidates that have been 
found. These are explored in more detail by gathering as much information as 
possible from internet pages and e-mailing contact. As information is gathered, the 
candidates on the list are either rejected or accepted for further exploration. This 
results in a shorter list consisting of a few candidates of tools.  

1.5.3 Further Investigation of Remaining Alternatives 

The remaining tools are explored more thoroughly by investigating the different pros 
and cons, and if possible by using the tool. The differences and capabilities of the 
different tools regarding choice of model types, methods for Fault Detection and 
Isolation (FDI), compatibleness, formats for storing the data and aids for designing a 
more testable system is examined for each program. Also some attention is paid to 
softer values such as user friendliness and difficulty of implementing models in the 
tool. Different aspects of the tools are considered by each author due to different 
knowledge. 
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1.5.4 Comparative Analysis of Remaining Alternatives  

In the comparison of the tools the different pros and cons are weighed up against each 
other. Compatibility to other software commonly used in diagnostics is also taken into 
account. Long term softer values such as for how long it has been on the market and 
development possibilities are also investigated.  

1.6 Thesis Outline 
In Chapter 2 the theory needed to understand this thesis is described.  
Chapter 3 describes how the search for tools was done and how the tools were 
selected. Some of the found tools are listed and commented here. Also how the tools 
finally chosen for further investigation were selected is described here. In Chapter 4 
the chosen tools are analysed and in Chapter 5 the chosen tools are compared. Chapter 
6 concludes the work. Finally appendixes are attached.   

1.7 Contributions 
The authors have with this thesis contributed with a market survey of diagnostic 
software tools and performed a thorough evaluation of three of the tools that were 
found in the survey. Some standards within the field have been found and described. 
Markus has focused on the parts concerning data formats, model storing and 
compatibilities. Rickard has focused on model types, inference algorithms and design 
aids. 
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2 Theory 
This section starts off by presenting the concept of diagnosis and then goes on to 
explain model based diagnosis, focusing on different model types. The section that 
follows after that deals with two different methods for inferring diagnoses. Thereafter 
different topics that are needed for understanding the remainder of the report are 
explained. These topics are XML, Document Type Definition, XML Schema, 
Relational databases, and finally the AI-ESTATE standard. 

2.1 Diagnostics 
For a technical system, there is a process for which there are variables which can be 
observed either by sensors or by an actual observation made by a human being [60]. 
These variables could be properties such as the water level in a tank or the cylinder 
pressure in an internal combustion engine. We know how these variables behave in a 
fault free mode of operation and in some cases also how they behave in fault modes of 
the system. The behaviour of the variables could refer to the value of the variable or 
the value of the derivative of the variable. If we compare the observations with the 
expected behaviours of the variables we might be able to determine if there is a fault 
present in the system. We might also be able to identify the fault as well. A simple 
example is that the water level in the tank should rise when more water is poured into 
the tank, given that the tank is in its fault free behavioural mode. If the level sinks 
even though no water is poured out of the tank we can suspect that the tank is in its 
leakage behavioural mode. It is called a diagnosis when a behavioural mode is found 
that could explain the current behaviours of the variables [60].  
 
Performance of diagnostics can be divided into two kinds: Off-line or on-line, and the 
difference of those is that on-line diagnosis is performed at a run time mode of the 
system to be diagnosed. Off-line diagnostics on the other hand deals with already 
collected data series and tries to detect and isolate faults in this data [60]. 
 
If the diagnostics and tests are done manually by an engineer, service technician, or 
other person, the diagnosis system follows a diagnostic strategy. A diagnostic strategy 
is an ordered sequence of specific tests. The order of these tests has been chosen to 
optimize some criteria that can be selected by the person performing the tests 
manually. The criteria could be for instance to isolate the fault with the fewest tests or 
to first confirm that the fault is not in some specific subsystem. The strategy could 
also be viewed as a tree where each test is a vertex and the binary outcome leads via 
an edge to either a new test or to a leaf representing a diagnosis. This form of 
representation is called a diagnostic tree [60]. 
 
One common analysis method in diagnostics is FMECA. FMECA stands for Failure 
Mode, Effects, and Criticality Analysis and is an extension of FMEA, Failure Mode 
and Effects Analysis. In FMEA a systems possible failure modes are analysed in 
terms of what effects the failure modes have on the system. In FMECA the effects of 
the failure modes are also weighed against the criticality of the failure modes. The 
goal in an FMECA analysis is to find failure modes that have severe effects in the 
system so that actions can take place that would prevent these failure modes to occur 
[73]. 
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2.1.1 Model Based Diagnosis 

Diagnosis that is based on an explicit formal model of a system is called model based 
diagnosis [60]. In traditional diagnostics it is common to use what is called limit 
checking which means that a sensor signal is given a range in which it may vary but 
an alarm goes off if the signal goes either over or under the maximum respectively 
minimum value of the range. Redundant sensors are also often used in traditional 
diagnosis to make sure that the sensor itself is not faulty, e.g. one redundant sensor is 
added to be able to detect if any of the sensors are faulty and a third sensor can be 
added in order to isolate a faulty sensor [60]. 
 
In model based diagnosis, instead of comparing with two redundant sensors, we can 
compare the signal from the one sensor with a prediction from a model and from that 
comparison detect faults in the sensor [60].  
 
Advantages of model based diagnosis, compared to limit checking, can be that it can 
detect smaller faults with shorter detection time and that it is more likely that faults 
can be isolated [60]. Compared to using redundant sensors, model based diagnosis has 
the advantage of not needing extra hardware which is desirable from both a cost 
perspective and a space perspective. The main disadvantage though is that the models 
that are needed in the model based diagnosis system can be time consuming and 
expensive to develop. In some cases a model with a high enough accuracy can not 
even be constructed if the behaviour of the system is unknown.  

2.1.2 Model Types 

Models in model based diagnosis can be of different types and constructed in different 
ways. These types infer pros and cons; a very detailed model gives the opportunity to 
isolate failures very precisely since the exact fault effect can be traced from the test 
points through the system. This does on the other hand require a fair amount of 
computing power to execute and the bigger the system the more computational power 
is required. A not so detailed model requires less computational power and can 
generate a diagnosis faster but the relationship between the fault and its effect on the 
test is less clear [16].  

2.1.2.1 Structural Models 

Parts of the spectrum of models will be described here starting with the most basic 
one, the structural model given in [16]. This type of model merely states that there is a 
relation between property one, P1, and property two, P2. The properties can be 
signals, components, or a property of a component in the model. The model thus 
consists of a set of ordered pairs, where each pair states that a fault in the first member 
will affect member two. Take as an example a fault in a resistor, r , that affects the 
current through it, i . 
 

{ }{ }ir,  

 
Notice that the model says nothing about how the faults affect the members, only that 
a fault in r  is modelled to always affect i . 
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Figure 2. Illustration of a structural model. 

 
The structural model of the system dependencies shown in Figure  becomes 
 

{ }{ }{ }{ }324121 ,PP,PP,,PP  

 
From this we can see that only the first order dependencies are included, the 
connection between 1P  and 3P must be derived via 2P .  

2.1.2.2 Dependency Models 

If the structural model is extended to also contain different fault modes, where each 
fault has its own set of properties, the model is said to be a dependency model. A fault 

mode is denoted by 
iPx , where x  represents the component number and i  represents 

the current fault mode. 
 

 
Figure 3. Illustration of a dependency model.  

 
In this model type the sets of ordered pairs are component and fault mode specific, 
meaning that the model in Figure 3 could be modelled as 
 

{ } { } { }{ }baabaa PPPPPP 3,2,4,1,2,1  

 
In this description all the dependencies have an index referring to the affecting or 

affected failure mode of the specific components. Thus aP1  will affect 2P  and make 

this component behave according to its fault mode a . 

2.1.2.3 Quantitative Models 

A more refined model type is so called quantitative models [7,16]. This model type 
specifies also the relation of how the components and signals affect each other. This 
can be illustrated by a component 1P  that has as input x  and from this input it 
generates an output y , as shown in Figure 4. The generation of the output is done by 

a function. Usually this function is derived form a physical relation such as Ohms law.  
 

 
Figure 4. Illustration of a quantitative model. 

 
This form of modelling is also called physical modelling since it often uses relations 
known from the physics of the systems. A problem with this model type is that many 
times the exact relations of the physical variables are not known.  
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A problem with the quantitative model type from a diagnostics perspective is that in 
large models the computations of all the needed variables can be demanding. This 
applies especially if the model contains stiff differential equations, i.e. differential 
equations with a large difference in the time coefficients [75]. A way to reduce the 
required computational power is to use qualitative models instead. 

2.1.2.4 Qualitative Models 

Qualitative models differ from quantitative models by not specifying or treating an 
exact value of the model variables but rather using notations as for example “low”, 
“middle”, and “high”. The number and spacing of possible outcomes of this 
quantification (defining the granularity) is a matter of much research and no general 
theory has been accepted. There are also different types of qualitative models, parted 
by the different ways they interpret the time representation. Here we are mostly 
interested in the type called naïve physics models. A more through description of this 
model type and the other types of qualitative models are given in [20].  
 
All the naïve physics models have in common that they represent the state of a 
physical system in a very crude model, where the state variables only can assume one 

of three values: { }+− ,0, . Sometimes the 0-state is considered only as a limit between 

the negative and positive states and other times it is considered as a state of its own. 
The reason for the blunt trisected division of states is that it in many times is relevant 
only in what direction the magnitude of a force, motion or other physical entity is 
changing. There are for instance applications where the exact magnitude of the 
voltage is irrelevant from a diagnostic perspective [20]. 
 
Consider for instance the simple example shown in Figure 5. In this circuit it is 
sufficient to know if the voltmeter indicates a voltage drop over the lamp or not. The 
voltage can be divided into two domains, 0 and + . Setting the limit between the 
domains in which the voltage is divided to a voltage corresponding to where it is 
possible to detect if the light is lit or not, 1 and 0 . This gives enough information to 
differentiate between the systems no fault mode and two of its fault modes. One of 
these fault modes is “light broken”, when the light is not lit although there is a voltage 
drop over its connectors. Another of these fault modes is “battery drained”, which is 
when the battery no longer supplies a voltage difference between its connectors. 
 

 
Figure 5. A schematic illustration of a very simple circuit. 

 
If the voltmeter is showing +  but the light is not lit, 0 , then it is presumably the light 
that is broken. If the light is not lit, 0 , and the voltmeter shows 0 then, presumably 
the battery is drained.  
 
The method using the trisected variables is used by some while others employ a little 
more sophisticated method and increases the granularity of the variables but still uses 
the original ternary set for the derivates. 
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2.1.3 To Detect and Isolate Faults 

To be able to generate a diagnosis it is not enough to just have a model of the system. 
There must also be some way to compare the observations of the system with the 
observations we expect. A method to compare this and to from the comparison 
generate a conclusion is called an inference algorithm. In this section two different 
kinds of inference methods are described, fault detection and isolation, FDI and 
general diagnostics engine, GDE. 
 
The efficiency of the method could be measured by using the Fault Detection Rate, 

FDR , or the Fault Isolation Rate for L  failure modes, LFIR , as specified in [3]. The 

first rate is the ratio between the number of times the fault have been detected, DN , 

and the times the fault has occurred during a specific time, N . The second rate is the 

ratio between the number of diagnoses containing at most L  failure states LN and the 

number of detected failure modes under a specific time. 
 

D

L
L

D

N

N
FIR

N

N
FDR ==  

 

2.1.3.1 Fault Detection and Isolation 

FDI for a system can be described as follows [60]. Let sys denote the system which is 

made up by the components Nici ,...,2,1, = . Each component can have many ways in 

which it behaves and all these ways can be portioned into groups which we call 

component behavioural modes. If we consider a component ic  that has a behavioural 

mode bm  we would write bmci =  to describe that the component behaves according 

to this certain behavioural mode. The fact that component ic  has ik  number of 

behavioural modes we denote as 
 

{ }
iki bmbmc ,...,1∈ . 

 

The component 
ic  at each point of time behaves according to exactly one of its 

component behavioural modes. The behavioural mode of the system is represented by 

sys . To describe the behavioural mode of all the components, we write BM . The set 

of all the component behavioural modes are the same as the system behavioural mode, 
 

{ }
NjNjj bmcbmcbmcBMsys ===== ,...,, 221 1

, 

where { }Nikj ii ,...,2,1,1 ∈∀≤≤ . 

 
Let nf denote the component behaviour mode no fault and then for denoting that there 

is no fault in the system we write  
 

{ }nfcnfcnfcNFsys N ===== ,...,, 21 . 
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If we let u  denote control signals and y  measurements of the system we can define 

( )yuz =  as a vector of all known signals in the system. Considering a model, BMΘ  is 

defined as the set of all observations z  that are consistent with BMsys = .  

 
Let us say that the model and system have the system behavioural modes 

{ }kBMBM ,...,1 , and then the set of all possible observations is 

 

 
kBMBMZ Θ∪∪Θ= ...

1
. 

 
Now we can define what a diagnosis is [28]: A system behavioural mode BM  is a 

diagnosis if and only if BMz Θ∈ for an observation Zz ∈ . 

 
To be able to create a diagnosis, a number of hypothesis tests are created. A 

hypothesis test is a test that can accept or reject a hypothesis, 0H . 0H is the 

assumption that the system is behaving according to some 0
SBM ∈ . Here 0

S is a set 

of behavioural modes of components that would make the test pass. If 0H  is rejected 

the system behaves according to some behavioural mode in 1
S . A test, T , provides 

information if the null hypothesis, 0H can be rejected or not. 0H will not be rejected 

if Tz Θ∈  and it will be rejected if C

Tz Θ∈ . A rejection of 0H will result in the 

inference that the system is not behaving according to any of the behavioural modes 

in 0
S . If the test is not able to reject 0H then a behavioural mode in 0

S  can describe 
the behaviour of the system.  
 

This means that all behavioural modes in 0
S  are included in the set TΘ . This in turn 

means that a behavioural mode in 0
S explains the behaviour of the system.  

 
This will be illustrated with an example from [28]. 
 
Assume a system sys  that has four different system behavioural modes: NF  (No 

Fault), 1F , 2F , and 3F . A hypothesis test 1T  has been created with the purpose to 

detect and alarm for 1F  and 2F . The rejection region of the test is C

T1
Θ  and can be seen 

in Figure 6 together with the behavioural mode sets. If C

T
z

1
Θ∈  this means that the test 

have failed.  
 

Since 
1FΘ  is a subset of C

T1
Θ  and 2FΘ has a non empty intersection with C

T1
Θ , these 

two system behavioural modes, 1F  and 2F , will be included in 1
S . Analogous, since 

NFΘ  and 3FΘ  are subsets of 
1TΘ , and 2FΘ  has a non empty intersection with 

1TΘ , 

these three system behavioural modes will be included in 0
S . In summary the 

rejection region of the test results in { }21
1 , FFS =  and { }32

0 ,, FFNFS = . 

 

If the system behaves according to 1F  then C

TFz
11

Θ⊂Θ∈  and results in rejecting the 

null hypothesis and the decision will be that { }21
1 , FFSsys =∈ .  
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The null hypothesis will only be rejected for 2Fsys =  when C

TFz
12

Θ∩Θ∈ . This 

means that the test will fail to react and detect 2Fsys =  when )\(
12

C

TFz ΘΘ∈  and as a 

consequence alarms will be missed. 
 

The test will never react when { }3, FNFsys ∈  and the null hypothesis will not be 

rejected and the decision will be that { }32 ,, FFNFsys ∈ . 

 
In summary this means that the following conclusions can be drawn from the test: 
 

{ }21

10 ,,
1

FFSsysrejectedHz C

T =∈→Θ∈  

{ }32

00 ,,,
1

FFNFSsysrejectednotHz C

T =∈→Θ∉  

 

 
Figure 6. A system with four behavioural mode sets and the rejection region for 

the test used in the diagnosis system in the above example [28]. 
 
As seen in the example, with the results of the different hypothesis tests we can derive 
a set of possible behavioural modes that can explain the outcome of all tests. The 
different sets of behavioural modes being rejected or not in each test could be 
represented in a matrix form. This form is called a decision structure and each row in 
this matrix represents a test and each column represents a behavioural mode. The 
example shown in Figure 6 is represented in Table 1.  
 

A “1” on row a and column b mean that test a, aT , will reject behavioural mode b, 

bbm , if the test passes, that is if 
aTz Θ∈ .If the test triggers an alarm, i.e. C

Ta
z Θ∈ , 

bbm explains the behaviour of the system. 

 
If there is an “X” on the same position this would mean that no matter if the test 

passed or failed bbm  explains the behaviour of the system.  

 

With “0” in the same place and the test failed, C

Tz Θ∈ , bbm can not explain the 

behaviour. If the test passed bbm could explain the system behaviour.   
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Table 1. The decision structure for the test T1. 
 NF F1 F2 F3 

T1 0 1 X 0 
 
If there are more tests available the decision structure is expanded with more rows. If 
a decision structure were to represent the sets derived from the tests in the example 
from [28] it would look like Table 2. 
 
Table 2. The decision structure of the tests and fault modes from the example in 

[28]. 
 NF F1 F2 F3 

T1 0 1 X 0 
T2 0 0 X X 
T3 0 X 0 X 

 
When the information from each test now have been condensed into this compact 
form the inference is done by the different tests that have reacted to what behavioural 
modes they indicate, or do not indicate.  
 
As an example, consider the test results, 
 

( ) ( )TT
failedpassedpassedTTT =321 . 

 

This means since test 1T  not has reacted that the system can not be in behavioural 

mode 1F . 3T  has reacted and this mean that the behavioural mode 1F  or 3F  will 

explain the system behaviour. Since the 1F  mode already have been ruled out by 1T  

we now know that the system is in behavioural mode 3F .  

 

If only the first test, 1T , would have reacted then we would not have been able to say 

whether the system is in mode 1F  or 2F . This is due to the fact that 1T  is sensitive to 

both these modes. If we are not able to fully isolate between behavioural modes given 
certain test results we have a so called ambiguity group. The group consists of the 
behavioural modes between which we can not isolate.  
 

2.1.3.2 General Diagnostic Engine 

GDE is presented within the field of AI and is one of the most well known algorithms 
for fault diagnosis. The algorithm can be used to derive diagnoses and can also 
suggest additional measurements for improving the diagnosis. The input to the 
algorithm is a model of the system and observations, i.e. measurements made on the 
system. In this section we will only give a brief description of the diagnosis 
generation. The information in this section is taken from [60]. 
 
In GDE the components have only two modes of operation, i.e. behavioural modes. 
Either they are functioning correctly, inferring that the component is in behavioural 
mode OK or they are not functioning correctly, and the system is in mode NOK.  
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Assumption based Truth Maintenance System (ATMS) are used together with local 
propagation to derive a diagnosis. ATMS is an advanced data structure originally used 
as a general problem solver within AI. Local propagation is used to calculate the 
values of the variables in the model. A consequence of the local propagation is that 
the model can not contain circular dependencies. A circular dependency is when e.g. x 
depends on y, y depends on z and z in turn depends on x.  
 
The ATMS consists of one assertion, A  and one needed supporting environment, 

{ }L,, 21 cscs , grouped together into an entity in the ATMS. The assertion contains a 

statement about one or more variables in the model, e.g. 1=x . 
 
The needed supporting environment state sets of what components that needs to be 

functional for the linked assertion to hold, e.g. { } { } { }{ }96531 ,,,, ccccc . In [60] the 

needed supporting environment is called only supporting environment. 
  
An entity in the ATMS could thus be stated as 
 

{ } { } { } { }{ }9653121 ,,,,,1,,, cccccxcscsA ==K  

 
where A is a assertion 1=x  and cs are sets of components needed to be functioning, 

in this example { } { } { }{ }96531 ,,,, ccccc . The entity could also be stated in a logic 

fashion as 
 

1)()()()()( 96531 =⇒∨∧∨∧ xcOKcOKcOKcOKcOK  

 
The former notation is used in this section since it is more compact. 
 
An entity with an empty supporting environment is called an ATMS-premise. This 
means that this assertion will always hold, it does not need any supporting 
environment. An assertion is called the datum and the needed supporting environment 
the label in ATMS terminology.  
 
The local propagation uses the entities in the ATMS to step by step propagate the 
information fed into the algorithm. The propagation starts at the premises, the 
assertions without needed supporting environments. From there the information is 
propagated using related entities.  
 

 
Figure 7. A schematic illustration of the multiplier system. 
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If we have a simple system consisting only of a multiplier, M, with two inputs and 
one output , as shown in  Figure 7, this can be modelled by the entities, 
 

{ }{ }

{ }{ }

{ }{ }Myxf

y

x

,*

Ø,4

Ø,1

=

=

=

 

 
The two first entities represent the premises of the known inputs. The last states that if 

the multiplier is functioning correctly f will be the product of x  and y .  The 

propagation will use the information in the given entities and derive a new one,  
 

{ }Mf ,4=  

 

This new entity states that given that the multiplier is fault free, f will be 4. Although 

not obvious here, the needed supporting environment in the new entity is the union of 
the needed supporting environments of the entities used to derive the new entity. 
 
Using the procedure outlined above the algorithm propagates through the information. 
When two contradictive assertions are found a so called nogood is created. A nogood 
is the union of the two needed supporting environments from the contradicting 
assertions. The nogoods are used to indicate that not all the members of the nogood 
set can function at the same time. If we expand our example system with a new 
component, I , the system will have the outline shown in Figure 8. 
 

 
Figure 8. A schematic illustration of the extended multiplier system. 

 
The function of the new component can be described by 
 

gffI ==
−1)( . 

 
The new set of entities in the ATMS would be,  
 

{ }{ }

{ }{ }
{ }{ }

{ }{ }Ifg

Myxf
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Measurement of the inputs and outputs of the system gives the premises 
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Having this information the GDE starts to propagate through the information deriving 
the new entities 
 

{ }{ }

{ }{ }IMg

Mf

,,4

,4

1−
=

=
 

 

When adding these new tests the GDE will detect the conflicting assertions of g  and 

create a nogood 
 

{ }IM ,  

 
This state that M  and I  both can not be functioning correctly. In this case it is fairly 
easy to see that the diagnosis, the set of mode assignments of the components that 
could explain the observations, are a fault in the multiplier or a fault in the inverter. In 
cases were there are several nogoods, it is harder to derive a diagnosis. How this is 
done is described further in [60].  
 

 
Figure 9. A simple system consisting of three lights, a battery and six wires. 

 
Also worth mentioning is that there are some drawbacks using the GDE, these 
drawbacks are described in [26]. Consider the system shown in Figure 9. The system 

is built up of three lights, 321 ,, lll , a battery, s , and six wires, 654321 ,,,,, wwwwww , 

connecting the lights and battery. The observations tell us that only light 3 is lit. GDE 
would in this particular case generate about twenty possible diagnoses where 

{ } { }513 ,,, wwls  and { }21, ll  are some of them. In these sets the components included are 

merely indicated to be faulty, no information about the failure mode is available. The 
first two sets illustrate the weakness of GDE. In the first candidate the engine 
concluded that there is something wrong with the battery (it does not create a voltage 
and thus light one and two does not light) and there is also something wrong with 
light three since it is lit but there is no voltage. In the second candidate, wire one is 
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presumed to be cut off and this explains why light one and two are off. Wire five on 
the other hand is presumed to produce voltage and explains why light three is on. This 
is from a strictly logical point of view a sound explanation. It explains the 
observations that is light one and two are off and light three is on. Although it is not a 
sound explanation from a physical point of view. A light cannot be on without a 
voltage and a wire cannot produce voltage.  
 
If the models are expanded with information on how the components behave when in 
a fault mode and we use an inference engine that can utilize from the new 
information, we can benefit from the knowledge on how a fault affects the 
component. The inference engine GDE+ is able to utilize this failure mode 
information. With it we can exclude a number of candidates and speed the diagnosis 
up.  

2.2 XML 
Extensible Markup Language, (XML), is a free standard that is used to structure data 
that can be spreadsheets, address lists, financial transactions, or blueprints. It is a 
framework for how to construct textual formats with which the data is structured. 
With XML data is easily generated and read and data structures are guaranteed to be 
univocal. XML is platform independent and it is extensible, which means that it 
allows for new formats to be created [12]. 
 
In XML there are elements, tags, and attributes. An element must be enclosed by an 
opening tag and a closing tag. The opening tag is preceded by the character ‘<’ and 
followed by the characther ‘>’. The same is true for the closing tag although the tag 
name is preceded by the character ‘/’. I.e the syntax looks like this [13]: 
 
<TagName> ElementContent </TagName> 
 
An element can also have attributes, which have the syntax: AttributeName=”value”. 
Elements can be nested so that they get a child/parent relationship [13]. 
 
A simple XML code example could look like this: 
 
<carcollection> 

     <car color="blue"> 

          <make>Toyota</make> 

          <origin>Japan</origin> 

     </car> 

     <car color="red"> 

          <make>Ferrari</make> 

          <origin>Italy</origin> 

     </car> 

</ carcollection > 
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XML is used for [15]: 

• Information identification  

• Information storage  

• Information structuring 

• Publishing  

• Messaging and data transferring 

• Web services 

2.3 Document Type Definition 
A Document Type Definition (DTD) decides the structure of a class [19] of XML 
documents by listing the allowed elements and attributes [18]. With a DTD an XML 
file carries with it a description of its format and different users can exchange data 
with this agreed format [18]. In order to give an example of a DTD we consider the 
following XML file, which is taken from [72]. 
 
<?xml version="1.0"?> 
<note> 
<to>Tove</to> 
<from>Jani</from> 
<heading>Reminder</heading> 
<body>Don't forget me this weekend!</body> 
</note> 
 
This XML file describes a note that is sent from Tove to Jani, has the heading 
Reminder, and the message in the note is: Don't forget me this weekend!. A DTD for 
describing such an XML file can look as follows. This DTD is also taken from [72]. 
 
<!ELEMENT note (to, from, heading, body)> 
<!ELEMENT to (#PCDATA)> 
<!ELEMENT from (#PCDATA)> 
<!ELEMENT heading (#PCDATA)> 
<!ELEMENT body (#PCDATA)> 
 
In this DTD file we can se that on the first line defines the note element to have the 
four child elements to, from, heading, and body. The remaining four lines define each 
of these four to be of the type #PCDATA [72]. 

2.4 XML Schema 
The XML Schema is an alternative to DTD, which was described in the above 
section, for describing the structure of an XML document [70]. Schemas are, unlike 
DTDs, XML based, i.e. the schemas are themselves written in XML. A Schema 
defines what elements and attributes that are allowed to appear in an XML document 
and also defines data types for elements and attributes. In an XML Schema we can 
also specify numeric ranges for a certain element type or specify a list of possible 
values for the element type. 
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To show an example of an XML Schema we use the XML file note from Section 2.3. 
Also this example of an XML Schema is taken from [72]: 
 
<xs:element name="note"> 
     <xs:complexType> 
          <xs:sequence> 
               <xs:element name="to" type="xs:string"/> 
               <xs:element name="from" type="xs:string"/> 
               <xs:element name="heading" type="xs:string"/> 
               <xs:element name="body" type="xs:string"/> 
          </xs:sequence> 
     </xs:complexType> 
</xs:element> 
 
In which we can se that the note element is a complex type because it contain other 
elements whereas the elements to, from, heading, and body are elements of what is 
called simple types as they do not contain other elements. We also can se in the 
example that the four simple type elements are specified to be of the data type string. 
 
 

2.5 Relational Databases 
A relational database can be described as a collection of tables that relate to one 
another. The horizontal rows are called records or tuples and the vertical columns are 
called fields or attributes [30]. In Figure 10 a simple example can be seen. 
 

 
Figure 10. Two tables in a relational database [30]. 

 
The two tables in Figure 10 relate to one another through the Code field in the Poet 
table and the Poet field in the Poem table. 
 

2.6 AI-ESTATE Standard 
Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-
ESTATE) is IEEE standard 1232. This standard deals with the application of artificial 
intelligence to system test and diagnosis [25]. It also describes how to exchange 
diagnostic information between diagnostic reasoners by defining a set of formal data 
and knowledge specifications consisting of the logical representation of devices, their 
constituents, the failure modes of those constituents, and tests of those constituents. 
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The specified goals in the standard are [25]: 

• Incorporate domain specific terminology 

• Facilitate portability of diagnostic knowledge 

• Permit extensibility of diagnostic knowledge 

• Enable the consistent exchange and integration of diagnostic capabilities 
 
AI-ESTATE is extensible and allows for the user to include new diagnostic 
technology, which is not specified within AI-ESTATE, in a controlled manner. The 
intent of the standard is for diagnostic knowledge to be fully portable and not to be 
host computer dependent. Two different AI-ESTATE implementations can 
interchange diagnostic models by translating them into the AI-ESTATE interchange 
format. Although an implementation can use the interchange format for its own 
internal form, in which case the translation is not needed. 
 
The diagnostic data and knowledge in an AI-ESTATE implementation is structured as 
can be seen in Figure 11. 
 

 
Figure 11. Hierarchical structure of AI-ESTATE models [25]. 

 
The top layer in Figure 11 is the Common Element Model that specifies elements 
common to the AI-ESTATE domain of equipment test and diagnosis e.g. 

diagnosis, repair_item, resource, and test [25]. The layer below 
consists of application specific data and knowledge formats i.e. the Diagnostic 
Inference Model, the Enhanced Diagnostic Inference Model, and the Fault Tree 
Model. In [27] one can read that AI-ESTATE will be extended to include a model to 
cover Bayesian diagnosis. 
 
To the left in Figure 11 the Dynamic Context Model (DCM) can be seen. The DCM 
enables important functions in a diagnostic reasoner that is conformant to AI-
ESTATE. These are functions that regard the state of the reasoning process and the 
data in the DCM are developed during a diagnostic session [25]. The models in AI-
ESTATE, e.g. the Common Element Model in Figure 11, are defined with the 
EXPRESS data modelling language which is ISO standard 10303-11 [25]. 
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3 Survey of Market for Diagnostic Tools 
This chapter presents the result of a survey of the market for tools for diagnostic 
analysis and construction. The process of finding the tools that are to be evaluated is 
described. For clarifying what is searched for, features not directly connected to 
diagnostics are described in Section 3.1. In Section 3.2 features are listed, concerning 
diagnostics desired for a tool in this thesis. The features in 3.2 serve as a guide in the 
searching process; if a tool that is found possesses one or more of these features it is 
of interest for further studies. With the desired features and non-diagnostic desired 
features in mind during the search process, the search resulted in a list of tools which 
is presented Appendix B. The tools that are finally chosen for evaluation in this thesis 
are presented and motivations for made choices are explained. The chapter is rounded 
off with a presentation of a few tools that were close to being selected but did not 
make it. 

3.1 Non-diagnostic Desired Features 
When using a tool to design, develop, and maintain a diagnostic system there are 
some aspects needed to be considered besides the technical capabilities. The users will 
use the tool to formalize their knowledge about the system into a form specified by 
the tool. To do this, it is preferable if the tool is similar to operate and is compatible 
with the other tools they use. The tool is also going to be used by a number of persons 
probably during an extended time. This causes aspects of user friendliness, 
compatibility and the way to work with the tool to become important.  
 
When dealing with a large system it is also preferable if the tool supports a 
modularized system construction. If the subsystem codes could be used as modules in 
the whole system, that would simplify the merging of different subsystems into a 
whole product. 

3.2 Basic Desired Features 
To point the search for tools in the right direction, twelve features that are desired 
were formulated. The tools should posses at least one of these features to qualify as an 
alternative for further studies. The features are motivated and described below. 
 
1) A tool that is used for building a model based diagnostic system must include a 

representation, a model, of the system under consideration to be able to perform 
diagnostics on that system. The tool must therefore be able to represent a 
mechanical, electrical, logical or hydraulic system as a model.  

 
2) To be able to design and modify the system eases the construction of a diagnostic 

system. Compared to being forced to import new system designs this saves a lot of 
time. It is therefore desirable if the tool also can be used to design a mechanical, 
electrical, logical or hydraulic system.  

 
3) In a scenario where different programs are needed to complete the construction of 

a diagnostic system the need for programs able to convert between different 
formats may arise. Different formats may for instance be needed for creating the 
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diagnostic system and running the diagnostic system online; thus a tool that can be 
used to convert or transfer information between other programs which are 
considered as alternatives might be wanted.  

 
4) The usability of the diagnostic system can be increased if faults can be simulated 

in the tool. Faults of great criticality or faults known to often occur can with this 
feature be extensively examined. To simulate faults in the system at hand using 
the tool is therefore desirable.  

 
5) Tracing the effects of a fault; that is to be able to foresee what consequences a 

particular fault might have on the system behaviour and sensor readings is a 
necessity if one wishes to avoid testing every fault individually at its source. Also 
to be able to use an inference algorithm in a model based diagnostic system the 
ability to trace a fault is necessary. Thus automatically tracing the fault effects and 
describe them using the tool is a desired feature.  

 
6) The different effects upon tests of faults and failure modes in the system must be 

mapped to be able to perform isolation of the fault. The program must therefore be 
able to generate fault detection and fault isolation logics from the information fed 
into the tool.  

 
7) The diagnosability of a system can be increased in various amounts if more 

sensors are added. The amount of increase is affected by where the sensors are 
placed in the system. Thus it is preferable if the system could evaluate the degree 
of diagnosability, the detectability and the isolation ability of the system. To 
further increase the usability of the tool it is desired that the tool could suggest 
places suitable for new sensors which maximizes the diagnosability.  

 
8) In cases where the tool also can generate test formulas and procedures those tests 

should be easily accessed. Thus a file which contains algorithms for calculating 
test values should be generated with the tool upon request.  

 
9) A generation of a representation of the detection and isolation of faults would ease 

a transferral to another tool or an on board computer running diagnostics online. 
The tool thus benefits from being able to generate a code or other file which 
represents the fault detection and fault isolation logics.  

 
10) To fully utilize the diagnostic system it is preferable to be able to attach 

information related to the different faults. The information could include 
limitations of operation modes or repair instructions related to the present fault. 
This information should not necessarily be limited to text but could also include 
e.g. video. Thus a desired feature is that the tool is able to generate a file which 
represents the information concerning a detected fault.  

 
11) It is a nontrivial task to generate suitable test quantities suitable for the best 

diagnostic capabilities. Therefore it is desirable if the tool could automatically 
suggest combinations of inputs and sensor values that would be suitable to use as 
test quantities.  
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12) Using the same tool for improving the design of a system, running online and 
offline diagnosis eases the ability to reach fast results. Although the main 
objective here is to generate an as good diagnostic system as possible and if this 
requires separate software solutions the diagnostic capabilities are prioritized 
before speed. Thus the final desired feature is that at least one of online and 
offline diagnostics and the design of the diagnostic system are treated. 

3.3 The Chosen Tools 
The tools found in this thesis are listed in Appendix B. After the demands and wishes 
in Section 3.4 have been considered three tools were finally selected for further 
investigation. None of these three tools fulfilled all the desired features in Section 3.2 
but no tool on the list in Appendix B did. All of the selected tools missed the desired 
features 8) and 11). This because none of the tools deals with modelling at such a 
physical level that these demands could have been met. This slightly limits the 
usability of the tool but it does also simplify modelling and thus compensates for the 
loss of usability. The fact that these tools all lacked the same features would also 
make them more comparable than other tools. The selected tools are briefly described 
in the following sections. 

3.3.1 TEAMS from Qualtech Systems Inc 

The American company Qualtech´s product Testability, Engineering And 
Maintenance System (TEAMS) is a program package that consists of several software 
components compatible with each other and make up what they claim to be a 
complete health management solution. 
 
One of the components is TEAMS Designer which is used to model failures 
dependencies in the system at hand, meaning what different failures affect which 
different components. The failures can also be linked to tests, repair procedures and 
troubleshooting steps. The model captures the interconnections between systems 
failures, built in tests, and components. The tool can after a model has been given be 
used to develop a diagnostic workflow optimized for e.g. fast isolation. The tool can 
also for example suggest test points better suitable for isolation [35]. 
 
Another component in the software suite is TEAMS Real Time (TEAMS RT). Fed 
with a simplified version of the model the TEAMS RT works on the systems on board 
computer and examines built in test results. This makes TEAMS RT provide online 
diagnostics for the system [36]. 
 
Also other components are available, such as TEAM Automatic Test Equipment 
(TEAMATE) and Remote Diagnostic Server (RDS). TEAMATE generates a dynamic 
response to data and test results entered by a service technician. The tool interact with 
the service technician to aid him or her to perform the fastest sequence of test for 
isolating the faulty component or components and it also provide test and repair 
instructions as the technician goes along [38].  
 
RDS is used to remotely health manage a fleet of vehicles or in support of an 
aftermarket service contract. By sending sensor and test data to the server over the 
internet or a local network it is automatically processed in the server and the server 
returns a web page containing tests as help for isolating the fault and test procedures. 
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All the data and the process are stored in the server for future maintenance or further 
analysis [37]. 
 
TEAMS is analysed in Section 4.1 where it will be clear that it fulfils the criteria 
stated in Section 3.2 except 8) and 11) and also fits into the description of desired 
tools in Section 3.4. 

3.3.2 eXpress from DSI 

eXpress made by the American company DSI International is an off-the-shelf tool 
suite that encompasses diagnostics, testability, prognostics and systems engineering 
and is the result of more than 30 years of experience of software development for the 
company [40]. Rather than focusing on run-time aspects eXpress can be used in the 
earliest phases of designing a system [41]. An important advantage for eXpress, 
according to DSI, is that it uses Hybrid Diagnostic Modelling (HDM) [2]. HDM 
allows for representation of relationships between tests and functions as well as 
between tests and failure modes in the system. 
 
The modelling is explained further in Section 4.2 together with other aspects of the 
program that will show that eXpress has all of the desired features discussed in 
Section 3.4 and the criteria in Section 3.2 except 8) and 11) were fulfilled. 

3.3.3 Raz’r from OCC’M 

Raz'r is a tool from the German company OCC'M for building diagnostics systems. 
They base their tool on model based diagnostics and use qualitative models. Raz'r 
provides a graphical interface for constructing the models and performing the analysis 
of the system. Capability for increasing the testability of the current system and 
generation of test trees for fault isolation is also offered. The tool also offers both on 
board and off board diagnosis, FMEA and detectability analysis [29]. 
 
The analysis of Raz'r is found in Section 4.3 and will tell that the wanted attributes 
listed in Section 3.4 and Section 3.2 except 8) and 11) is present in the tool. 

3.4 Additional Motivations for Choices of Tools 
The three tools in Section 3.3 that advanced from the list of tools in Appendix B to the 
final evaluation did so based on a number of criteria that are listed below. 

3.4.1 Scope of Use 

The desired features in Section 3.2 are regarded for the final choices of tools. What 
are the tools in Appendix B really capable of? It is important that a tool that is going 
to be evaluated is capable of doing what is desired. Some of them turned out, at a 
second review, not to do at all what was thought at first. 
 
Examples of tools that are disqualified because of this criterion are Dexter from 
Macsea that turned out to be specialised in marine use and Model Wizard from 
Integrated Systems Diagnostics that turned out to focus more on finance. 

3.4.2 Software Based 

As can be seen in the prerequisites, Section 1.3, only pure software is of interest in 
this thesis. Many systems that are found do what the sought after software is intended 
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to do, but are hardware with integrated software. These systems may be very 
interesting but are sifted out. This is because Saab is not interested in new systems 
with hardware. A hardware dependent solution would require a larger work load to 
integrate into the already existing products. 
 
Two found systems that include hardware are: HUMS from GE and IHUMS from 
Meggit Avionics. 

3.4.3 Available Information 

One criterion is how easy it is to find information about the tool and if it is possible to 
get hold of the tool itself. It is very important that there is enough information that can 
serve as a good foundation for the evaluation. 
 
For instance, SIDIS from Siemens did not fulfil this criterion. 

3.4.4 Named Product 

There also has to be a named product that is offered on the market. Some companies 
describe that they are capable of supplying services that could be of interest but there 
is not a specific tool to be evaluated. In order to be able to evaluate a tool it is 
important that there is a clear tool that can be the subject of the evaluation. 
 
One found company, Foster Miller, does not mention a named product which is why it 
was sifted out. 

3.4.5 Clear Overall Solution 

It is desired that there is a clear overall solution to be evaluated. If a company 
provides too many small modules that are specialized in specific parts of diagnostic 
processes this company’s solution did not make it to the final evaluation. In line with 
the previous section this is to make the evaluation feasible. 
 
Impact Technologies, although mentioned in Section 3.5 below as a strong candidate, 
did not make it due to this criterion. 
 

3.4.6 Theoretical Foundation 

Since there are a number of different approaches solving the diagnostic problem there 
are also a number of different theories. The approach in this thesis is the model based 
one, as can be seen in the prerequisites, Section 1.3. 
 
Spotlight from Casebank is an example of a tool that is not model based why it did 
not qualify for further exploration. 

3.4.7 Saab’s Current Knowledge 

The aim of this thesis is to widen Saab’s knowledge about available tools. If Saab 
already is familiar with a tool [28], that one in particular may be put aside in favour of 
another tool that Saab does not have as much knowledge about. Rodon from Sörman  
was not chosen due to this criterion. 
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3.5 Strong Candidates that did not make the Cut 
This section lists some candidates that were close to being in the final evaluation but 
did not make it all the way. The tools listed here are regarded as strong candidates 
because they fulfil the desired features in Section 3.2 to basically the same extent as 
the chosen tools and are in the right scope of use. These tools could have been among 
the ones that in the end were chosen, although there are reasons for them not being so 
and those reasons are given for each individual tool below. 

3.5.1 Rodon from Sörman 

As shown in Section 1.3 Rodon is one tool that would be very interesting in this thesis 
if it had not been for reasons given in Section 3.4.7. There already is a thesis written 
on Rodon [28]. Therefore Rodon is not one of the tools that are researched further.  

3.5.2 Numerous Different Tools from Impact Technologies 

Impact Technologies is an interesting candidate but was not selected due to criteria 
given in Section 3.4.5. They offer a range of products and it would have been difficult 
to evaluate them as a whole solution. Impact Technologies’ Reason Pro is mentioned 
though as a suitable complement to eXpress [1]. 

3.5.3 Diagnostic Profiler & Diagnostician from VSE 

Diagnostic Profiler & Diagnostician from VSE was another strong candidate. 
Diagnostic Profiler & Diagnostician is a model based diagnostic reasoning tool set 
[34]. Diagnostic Profiler is a development tool used to develop a model base for the 
Diagnostician which is a dynamic run-time expert system. There are also prognostic 
features in a tool called Prognostic Framework. Diagnostic Profiler & Diagnostician 
did not make it all the way due to Section 3.4.3; there was not that much information 
to be found. However the tool have been mentioned in several papers e.g. [76]. 

3.5.4 Livingstone 2 

Livingstone 2 is an implemented kernel for model based system. It is developed by 
NASA Ames Research Center. With this kernel faults are not only detected and 
isolated but are also automatically corrected. The kernel is given a model of the 
system and then monitors the disparities between from the model calculated behaviour 
and the observed behaviour of the actual system. From this comparison the 
Livingstone software calculates recommended actions to be taken to isolate and 
compensate for a failure in a system component if such is detected. Livingstone have 
been successfully tested on the International Space Station (ISS), X-34 propulsion 
system (PITEX) and participated in flight experiments on the Earth Observing 
Satellite. Although a promising alternative, Livingstone 2 is only a research project 
and not a product supported by a company. This means that no support or 
development is available which is important to Saab [39]. 

3.6 Summary 
The search for suitable tools revealed a much greater flora of software dealing with 
diagnostics than expected. Although the approaches and areas of usage differed a lot 
from manufacturer to manufacturer they all seemed suitable for their respective 
intended tasks. The next step is to examine the three finally selected tools, TEAMS, 
Raz’r, and eXpress, further and more in depth to see if their respective solutions 
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concerning choices of model types, data formats and inference algorithms results in 
benefits or limitations to the diagnostic systems. In the next chapter the three 
individual tools are presented more thoroughly and in Chapter 5 they are compared.  
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4 Analysis of the Tools 
In this chapter the three tools that in the previous chapter were chosen for evaluation 
are analyzed and these are: TEAMS from Qualtech Systems Inc (QSI), eXpress from 
DSI, and Raz’r from OCC’M. 
 
Each tool is described in terms of eight sections which are the same for all three tools 
and the headings of these sections are Representation of knowledge, Methods for fault 
detection and isolation, Formats for storing data, Design for testability aids, 
Modifiability, Compatibleness, Libraries, and Disciplines of modeling.  
 
Representation of knowledge describe in what way knowledge about the system is 
represented in models in the tools. In Methods for fault detection and isolation it is 
described what kind of diagnostic techniques for detecting and isolating faults that are 
used in the tools. Formats for storing data describe what kind of data formats that are 
used in the tools to store knowledge of the models in the systems. Design for 

testability aids describe if there are some kind of aids for evaluating and improving 
the testability of a system. For a tool to be efficient to use, it is of interest that models 
that are created in a tool can be changed and updated as easy as possible and this is 
described in Modifiability. In Compatibleness the compatibleness to other software 
and tools is discussed. What file formats can be imported and exported? With what 
other software can the tool interact? In Libraries it is discussed what kind of facilities 
there are for storing models. Do the tools come with some kind of basic library of 
components or preconstructed models? Disciplines of modelling reports in which 
disciplines modelling can be done in respective tool, i.e. if modelling can be done in 
electrics, mechanics, hydraulics etc. 
 
TEAMS and eXpress have in addition to these eight sections a ninth section called 
Test sequencing algorithms. These sections describe options available in the tools that 
allows the user to influence in what order tests are to be performed, depending on 
what kind of results that are desired. There is not a chapter like this in the analysis of 
Raz’r because no information about this matter has been found in the case of Raz’r. 
 
In addition to what has been described above, three sample systems have been 
assembled which were sent to the each of the three companies that are producing the 
tools. These systems, as they were sent to the companies, can be seen in Appendix C. 
The idea was that QSI, eXpress, and OCC’M would model these systems and show 
how they are diagnosed with respective tool. Only eXpress and OCC’M did this and 
what was received from them gave some insight to how eXpress and Raz’r work. 
Since the material received from eXpress and the material received from Raz’r are 
quite dissimilar and since no material was received from QSI no further analysis or 
comparison is made. 

4.1 TEAMS 
In this section an analysis of TEAMS is made in terms of the items in the list above. It 
is recommended to return to Section 3.3.1 for a short introduction of the tool. 
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4.1.1 Representation of Knowledge 

In this section the multi signal model is introduced by modelling a known benchmark 
system called a polybox as a multi signal model. See Figure 12. The following section 
expands the model by introducing general and functional failures in an amplifier and 
filter circuit. The information in these sections originates from [16]. The complete 
multi signal model also contains information about probabilities of failures, cost and 
time for repair and replacement procedures. These parameters are left out in this 
description though since they do not add to the detectability or the isolation ability of 
the system. They will on the other hand be described more in detail in Section 4.1.3.  
 
When QSI uses what they call multi signal models to represent the current knowledge 
of a system they use the word signal in a somewhat confusing way. They do not refer 
to signals in the usual sense but rather refer to properties of the system. As an example 
we consider a gearbox; a property that could be used as a signal (in the multi signal 
model sense) would be the exchange between momentum into the gearbox and out of 
the gearbox. In a voltage divider the ratio between input voltage and output voltage 
could, in QSI terminology, be a signal (again in the multi signal model sense). Thus 
properties or parameters would have been a more appropriate name than signal.  
 

 
Figure 12. The polybox example. 

 
The polybox system, see Figure 12, is first introduced and then modelled to introduce 
and illustrate the multi signal model type.  
 
The polybox consists of three multipliers and two adders, connected as shown in 
Figure 12. The multipliers all function in the same way. They multiply the input from 
port “A”, the upper input port, and the input from port “B”, the lower port, and the 
result is passed on to the multipliers output port to the right in each multiplier. The 
outputs of the multipliers are the inputs to the adders. The adders have the function of 
adding the inputs from their input ports “A” and “B” and sending the result to the 
output port to the right in the adders.  
 

The input to the system are the signals ,,,, dcba and e  and the outputs are f and g . 

In between there are three, to us unknown, internal variables, ,, yx and z .  

 



4 - Analysis of the Tools 

 

 

39 

To model the polybox as a multi signal model we first create a set 
 

{ }21321 ,,,, aammm=C  

 
In this set the instances are the adders and multipliers the polybox consists of. Also 
signals are defined; these are in this example rather abstract but can be listed as 
follows: 
 

1s = the signal “correct calculations in 1m ” 

2s = the signal “correct calculations in 2m ” 

3s = the signal “correct calculations in 3m ” 

4s = the signal “correct calculations in 1a ” 

5s = the signal “correct calculations in 2a ” 

 
 The signals are collected in the set 
 

{ }54321 ,,,, sssss=S . 

 
The tests that are available in this example we can collect in the set 
 

{ }1 2,t t=T , 

 

where 1t  is the test if output f  is correct (given the current input) and 2t is the test if 

output g  is correct. The tests can be expressed as,  

 

cebdgtbdacft +=+= :: 21  

 
Another test is also possible to construct,  
 

cegacft −=−:3  

 
but it is not made available to us in this example.  
  
The tests are grouped together in test points which represent a point in the system 
where the tests are performed. The test points are in turn all instances of the set  
 

{ },
f g

TP TP=TP . 

 
 In this example the test points contain the following tests,   
 

( ) { }1tTPf =SP  

 
and  
 

( ) { }2tTPg =SP . 
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Each test check certain signals, these sets of signals are denoted: 
 

 ( ) { }

( ) { }5322

4211

,,

,,

ssst

ssst

=

=

ST

ST
 Eq 4-I 

 
 
The next step is to deduce which components that affect each signal. In this case it is 
fairly simple to see what component that affects which signal since each component is 
connected to one signal. Although the component also affects the signals connected to 
components after it. Thus one must follow the signal path through the system.  From 
these connections a set for each component is constructed,  
 

 ( ) { }

( ) { }

( ) { }

( ) { }

( ) { }52

41

533

5422

411

,

,,

,

sa

sa

ssm

sssm

ssm

=

=

=

=

=

SC

SC

SC

SC

SC

 Eq 4-II 
 

 

The interpretation of the first set is that the signals affected by component 1m is 1s and 

4s .   

A bipartite graph is constructed to formalize the relations between the components 
and the test points, 
 

{ }ETPCBG ,,=  

 
The first two sets have been explained earlier. The new one, E , consists of the 
directed edges specifying the structural connectivity of the system, i.e. for the 
example 
 

( ) ( ) ( ) ( ) ( ) ( ){ }
gfggff TPaTPaTPmTPmTPmTPm ,,,,,,,,,,, 213221=E  

 
The edges specify at what test point failures in different components can be detected. 
Thus each edge starts at a component and ends at a test point. Observe that failures in 

some components are detectable at several test points. A failure in 2m  for instance is 

observable at both  fTP and gTP . 

 
From the bipartite graph we can now collocate the information about dependencies in 
a dependency matrix, shown in Table 3. The dependency matrix is constructed from 
the sets 
 

( ) CSC ∈xx  

 
where every row in the matrix corresponds to a component. If the component affects 
the signal corresponding to a column there will be a “1” in that point in the matrix, if 
not there will be a “0”. We can also derive the relation back to certain test points. 
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Table 3. The dependency matrix for the polybox example. 
TPf TPg  
s1 s2 s4 s2 s3 s5 

m1 1 0 1 0 0 0 

m2 0 1 1 1 0 1 

m3 0 0 0 0 1 1 

a1 0 0 1 0 0 0 

a2 0 0 0 0 0 1 

 
After we have listed the components, the signals, the test points, and the tests and also 
described the relations between them, we now have the fault detection and isolation 
part of a multi signal model of the polybox [16]. 
 
To further exemplify the model type we now consider a less theoretical example, an 
electrical circuit consisting of a number of resistors, operational amplifiers, and a 
capacitor. The circuit can be divided into three parts, first an amplifier of gain 2 
followed by a low pass filter and a buffer. See Figure 13 for a schematic picture of the 
system. The amplifier starts at the left and ends after the first operational amplifier. 
The resistor and capacitor make up the filter and the rest to the right is the buffer. 
Each of the three parts is made up of components, in this case resistors, a capacitor, 
and operational amplifiers.  
 
To each of the components a number of signals (again in the multi signal model 
sense) can be associated as we did in the first example. Signals that carry information 
of different kind of how the component functions.  
 

 
Figure 13. Schematic illustration of an amplifier/filter marked with test points 

and affected signals [16]. 
 
In this example the signals concerned by each component are listed close to that 
component. The signals are explained in Table 4, the components affecting them are 
also listed. 
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Table 4. Description of the signals and their dependencies. 
Signal Description Concerned by components 

s1 Gain R1, R2, A1, A2 

s2 Linearity A1, A2 
s3 Cut off frequency R4, C1 

s4 Slew rate A1, A2 

s5 DC offset R1, R2, R3, A1, A2 
 
The information in Table 4 can be translated into the same sets as we used in the 
polybox example: 
 

{ }

{ }

( ) { } ( ) { } ( ) { } ( ) { }

( ) { } ( ) { } ( ) { }

1 2 3 4 1 1 2

1 2 3 4 5

1 1 5 2 1 5 3 5 4 3

1 3 1 1 2 4 5 2 1 2 4 5

, , , , , ,

, , , ,

, ,

, , , , , ,

R R R R C A A

s s s s s

R s s R s s R s R s

C s A s s s s A s s s s

=

=

= = = =

= = =

C

S

SC SC SC SC

SC SC SC

 

 
For example the cut off frequency is set by the resistor R4 and the capacitance C1 and 
these two components do thus affect the signal s3. The other signal dependencies are 
deduced in the same manner. These methods for deriving tests are part of the physics 
of the system and are not treated in the tool other than that the test procedures, which 
are entered manually into the program, can be associated with the tests they describe. 
The test procedures will thus not be produced by the program.  
 
To each of the test points certain tests are connected. The test points for the sample 
system are also marked in Figure 13. These points specify where in the system it is 
possible to perform tests and which test we can perform at that point.  
 
The sets concerning tests and test points are listed below:  
 

{ }

{ }

( ) { } { }5,4,3,2,1

,,,,

,,,,

54321

12101

∈∀=

=

=

xst

ttttt

JTPTPTPP

xxST

T

TP

 

 
The last row specifies the somewhat simplified relation that each signal corresponds 
only to one single test and that all signals are covered. 
 

An example of a test is how to test 5s ; apply a known signal at 1P and measure the DC 

voltage at 1TP , 2TP and 1J . This gives a connection between 5s  and all the test points, 

thus test 1 is to be associated to all the test points. The same pass for the signal 1s . To 

test the slew rate, 4s , a high frequency and high amplitude sine signal, ( )tS , have to be 

applied at 1P and then we have to observe the derivative of sine when  ( ) 0=tS . This 

test could be performed at all the test points.  
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For the sake of simplicity we test only 3s at 2TP and the other signals at 1TP and 1J . This 

gives the sets: 
 

( ) { } ( ) { } ( ) { }542113254211 ,,,,,, ttttJSPtTPSPttttTPSP ===  

 
If we would like to change the specifications of the systems behaviour we merely add 
another signal specifying the new property and attach it to the concerned components 
and test points.  
 
The connections between components, test points and signals are summarized in 
Table 5 where aij=1 symbolizes that there is a connection between component i and 

signal j and aij=0 means that there is not. 1P  and 0TP  have been left out since the are 

not associated with any tests. 
 

Table 5. Dependency matrix for the sample system. 
TP1 TP2 J1  

s1 s2 s4 s5 s3 s1 s2 s4 s5 

R1(G) 1 1 1 1 1 1 1 1 1 
R1(F) 1 0 0 1 0 1 0 0 1 

R2(G) 1 1 1 1 1 1 1 1 1 

R2(F) 1 0 0 1 0 1 0 0 1 

R3(G) 1 1 1 1 1 1 1 1 1 

R3(F) 0 0 0 1 0 0 0 0 1 

A1(G) 1 1 1 1 1 1 1 1 1 

A1(F) 1 1 1 1 0 1 1 1 1 
R4(G) 0 0 0 0 1 1 1 1 1 

R4(F) 0 0 0 0 1 0 0 0 0 

C1(G) 0 0 0 0 1 1 1 1 1 

C1(F) 0 0 0 0 1 0 0 0 0 

A2(G) 0 0 0 0 0 1 1 1 1 

A2(F) 0 0 0 0 0 1 1 1 1 
 

This is also where we see how the general and functional failures come into use. The 
parenthesis after each of the components indicates whether the failure is a general, 
(G), or a functional, (F), one. A general failure of a component makes it stop 
performing its intended task completely whereas a functional failure limits the 
function of the component but does not cancel it completely. A cut off in a resistor 
would be considered as a general failure but a reduction of the resistance, e.g. 

bisection, would be a functional failure. A functional fault in 4R would only affect 3s  

while a general fault would affect all the signals affected by components behind 4R .  

 
General failures can be said to affect the whole system behind the failed component 
whilst a functional failure only affects the subset of signals affected by the failed 
component. The components after the component with the functional failure will still 
be able to perform their tasks although the input is faulty. 
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4.1.2 Methods for Fault Detection and Isolation 

After modelling the system we want to be able to automatically detect and isolate the 
failed component. This is done with an inference algorithm. In this section we will go 
through the algorithm used in TEAMS step by step. The description here is based on 
information found in [17,74]. 
 
The algorithm has a number of inputs, the inputs are in this case test results.  
 

gf TTT ∪=  

 

where fT are the set of failed tests and gT are the set of passed tests. All, n , tests can 

be written as 
 

{ }ni ttt ,,,,1 LL=T . 
 

The tests must all have been executed during a period in which the system does not 
change its state. Otherwise the algorithm will not function correctly.  
 

The fault sensitivity of it can be denoted as isT  and is expressed as 

 

( ) ( ){ }Ø| ≠∩∈= ii tccs STSCCT  

 

The expression states that components affecting signals that are tested by test it  are a 

part of the test sensitivity of that particular test.   
 
Each of the components can be in one of four states: unknown, suspected, bad, or 
good. If a component is in state suspected it is suspected to be bad but there is not 
enough evidence that it is bad. If there is enough evidence the component is 
transferred to the bad state. Components known to be good are transferred to the good 
state. If there is no knowledge available about a specific component that component is 
in the unknown state.  
 

The aim of the algorithm is to, from the given test results, gf TT ∪ , conclude in 

which state each of the components are. Each of the components are in exactly one of 
the states and this can be represented by, 
 

GBSUC ∪∪∪=  
 

In this representation the components in state unknown are members of the set U , the 
ones in state suspected are members of set S , the ones in state bad are members of the 

set B , and the ones known to be good are members of the set G . 
 
Next we give a formal description of the fault isolation algorithm using the sets 

just described. In the algorithm the cardinality of a set A will be denoted A . 
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The algorithm begins with setting all the components in the unknown state U . It then 
finds all the components that are affecting test that have passed. Since those tests have 

passed, the found components must be good and are thus moved to G . The next step 
is to find the components remaining in state U that are affecting tests that have failed. 

These components are then moved to the suspected state S . Finally the components 
moved to the bad state B are found. If a test is affected by only one component in the 
suspected mode it is then moved to the bad state. The algorithm is repeated as new 
test results are available or when the system changes state.  
 
The algorithm will be illustrated with an example using the polybox model derived  in 

Section 4.1.1. Assume there is a fault in component 3m . This will generate an 

indication (failure) in test 2t . This test is associated with { }532 ,, sss , as seen in Eq 4-I, 

and thus { }232 ,, amm  will be indicated, but the algorithm also utilizes the information 

that test 1t not has failed.  

 
First all components are set to unknown in step 1 of the algorithm: 
 

{ }21321 ,,,, aammm=U  

 
and the rest of the sets are empty: 
 

Ø=== GSB  
 

Algorithm I: 

Inputs: A set of failed tests, fT , a set of passed tests, gT  

Outputs: The sets ,,, BSU and G . 

1. Initialization: Ø,Ø,Ø, ==== BSGCU  

2. Compute the good components covered by the passed tests, 

UUTG T =∪=
∈

,it s
gi

\G  

3. Compute the suspected components covered by the failed tests, 

( ) UUTUS T =∪∩=
∈

,it s
fi

\S  

4. Compute the bad components, 

{ } SSSTTCB ==∩∈∃∈= ,1:| ifi stc \ B  
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To refresh our memory some sets belonging to the polybox model are listed: 
 

 ( ) { }4211 ,, ssst =ST  

( ) { }5322 ,, ssst =ST  

 

Eq 4-I 

 ( ) { }

( ) { }

( ) { }

( ) { }

( ) { }52

41

533

5422

411

,

,,

,

sa

sa

ssm

sssm

ssm

=

=

=

=

=

SC

SC

SC

SC

SC

 
Eq 4-II 
 

 

The sets 1sT  and 2sT  are created:  

 

{ }

{ }2322

1211

,,

,,

amms

amms

=

=

T

T
 

 

In this example { }1tf =T and { }2tg =T  

The next step, 2, is performed to find the components associated with the passed test, 

i.e. 1t . The condition  

 

( ) ( )








∈∀

∈∀
≠∩∈

g

jxjx
t

c
tcifsc

T

C
STSCT Ø  

gives  
 

{ }121 ,, amm=G  

from 
 

( ) ( ) { } { } { }

( ) ( ) { } { } { }

( ) ( ) { } { }

( ) ( ) { } { } { }

( ) ( ) { } { } Ø,,

,,

Ø,,,

,,,,,

,,,,

421512

4421411

4215313

4242154212

414214111

=∩=∩

=∩=∩

=∩=∩

=∩=∩

=∩=∩

ssssta

sssssta

ssssstm

sssssssstm

ssssssstm

STSC

STSC

STSC

STSC

STSC

 

 
where the sets can be see in Eq 4-I and Eq 4-II. 
 
With this new information we can update the sets: 
 

{ } UUG == 121 ,, amm \ { }23 , am=G  

 

In step 3 both 3m and 2a are covered by the condition for transferral to S  by  

 

{ } { } { }23232232 ,,,, amammams =∩=∩= TUS  
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Here, if there would have been another component not covered by any test, that 

component would have remained in U . 
 
In the final step, step 4, the algorithm tries to identify bad components. Since a failure 
in any single one of the components in suspected mode will explain the failed test, 
none of them can be isolated. Using equations it appears as: 
 

{ } { } { } 1,,,, 23232232 ≠=∩=∩ amammamsTS  

 
We see that the condition is not satisfied and no bad component can be found. This 
gives the following output from the algorithm,  
 

{ } { } Ø,,,,,,Ø 23121 ==== BSGU amamm  

 
From this we see that the algorithm can not isolate the faulty component, it merely 
narrows the suspected components down to two. Although if only one failed 
component would have explained the failed test this component would have been 
included in the B set and the following components that also affect tests that have 

failed would be included in the suspected set, S . This case will be illustrated in the 
next section.  
 
If we would like to upgrade the systems isolation ability we could add a test, 
measurement of z , and update the different matrices and sets accordingly. The 

addition of a sensor between 3m  and 2a would increase the ability to isolate the fault 

in the example above. This due to the fact that it would bring a new test, 
 

eczt ∗=:4  

 

The test would be performed at a new test point, zTP , and would be sensitive to faults 

in 3m  but not to faults in 2a . The new sets would be, 

 

{ }421 ,, ttt=T  

{ }
zgf TPTPTP ,,=TP  

( ) 4tTPz =SP  

( ) { }34 st =ST  

{ }34 ms =T  

 

( ) ( ) ( ) ( ) ( )( ) ( ){ }
gfzggff TPaTPaTPmTPmTPmTPmTPm ,,,,,,,,,,,, 2133221=E  

 
All these new sets and information can be collapsed into a new dependency matrix 
shown in Table 6. 
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Table 6. The dependency matrix for the polybox with the additional test. 
TPf TPz TPg  

s1 s2 s4 s3 s2 s3 s5 

m1 1 0 1 0 0 0 0 

m2 0 1 1 0 1 0 1 

m3 0 0 0 1 0 1 1 

a1 0 0 1 0 0 0 0 

a2 0 0 0 0 0 0 1 

 
With this new test the last step in the algorithm is 
 

{ } { } { } 1,,,, 23232232 ≠=∩=∩ amammamsTS  

{ } { } { } 1, 33234 ==∩=∩ mmamsTS  

 

Due to this the algorithm will set the state of 3m to B and the output is 

 

{ } { } { }32121 m,,,,,Ø ==== BSGU aamm  

 

The reason that 2a still is suspected is that there is no test affected by 2a  that have 

passed, only one that have failed, 2t .  

 
From this the conclusion can be drawn that given the initial tests the algorithm 
suspects two components, of which one is the faulty one. If the test set is extended 
with a suitable test then the algorithm can isolate the faulty component.  
 

4.1.3 Test Sequencing Algorithms 

When performing diagnostics there might be different aspects that are considered 
more interesting than others, sometimes the repair cost might be the most important 
aspect; other times perhaps the time it takes to isolate the faulty component is the 
most important aspect. TEAMS uses a test sequencing algorithm to order the tests in a 
sequence were the different aspects of importance have been accounted for. The 
algorithm is shown in [16] and will in this section be briefly described.  
 
The algorithm takes as input a number of sets; 
 

{ }maaa ,,, 10 L=A  

 

lists the m  failure sources in the system. It does also include a dummy failure source, 

0a , that denotes the no fault state of the system. Related to this set is the vector  

 

( )T

mapapap )(,),(),( 10 L=P  

 
which denotes the probabilities of each of the faults in A . These probabilities are 
based on a priori knowledge of the fault occurrences under a single fault assumption 
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and are also related to the components Mean Time To Failure (MTTF). The set of 
tests is  
 

{ }nttt ,,, 21 L=T  

 
where each test is associated with a cost. These costs are listed in,  
 

( )T

nbbb ,,, 21 L=B  

 

where xb states the cost of test xt . The cost can be in money, estimated criticality of 

the faults for which the specific test tests, time to perform the test, manpower 
requirements, or some other factor specified by the user. These different costs can be 
used to aim the optimization according to the wishes of the users. 
 
The repair costs of a failure source is listed in 
 

( )mfff ,,, 21 L=F  

 

where each failure source 
xa  has the repair cost 

xf . To sequence the tests there must 

also be connections between the tests and the failure sources. These connections are 
stated in the dependency matrix, in TEAMS called a diagnostic dictionary. The 

dictionary is denoted D  and have dimension nm × . 
 
The output is a sequence of ordered tests that minimizes the expected cost. For each 
set the following criteria is minimized, 
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where lP  is a set of ordered indices representing the tests to be executed to isolate the 

fault la  and lP  is the cardinality of the set. The optimization is made over different 

sets of P , i.e. the different sets of ordered indices isolating the fault.  
 
The problem of constructing the sets P  is a binary identification problem. These 
problems arise in many applications but are not treated in this report.  
 

4.1.4 Formats for Storing Data 

This section describes what kind of formats that are used for storing models in 
TEAMS. For model storing TEAMS uses both XML files and relational databases. 
TEAMS-KB, of which we can read more in Section 4.1.8, is an Oracle based database 
application [63] which is used to manage relational databases. As mentioned, TEAMS 
also uses XML files for representing TEAMS models and these follow the TEAMS 
Document Type Definition [21] (DTD, see Section 2.3). To exemplify how such a file 
can look like, Figure 14 displays an XML file containing a dependency model of an 
aircraft engine that was modelled in the study in the paper [21]. In this XML file we 
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can see different faults of a subsystem called Actuator Fuel Pump, for example the 
fault “drive shaft shears”. There is information about these faults e.g. Mean Time To 
Failure, (MTTF) repair time, and repair cost that were mentioned in Section 4.1.3. 
 

 
Figure 14. XML file containing a dependency model in the study in the paper 

Validation of a COTS EHM Solution for the JSF Program [21]. 
 

4.1.5 Design for Testability Aids 

TEAMS comes with a number of different aids for evaluating and improving the 
testability of a system. Tools for generating testability reports with information about 
mean ambiguity group size, detection rate and isolation rate calculated from the model 
and inference algorithm are incorporated into the tool. These reports can be used to 
increase the testability of the system.  
 
There is a special feature to investigate feedback loops detected in the model from the 
dependencies and the loops affect on the testability. With this feature the tool can 
suggest where to break the loop, indicate where ambiguity groups are located and 
where it would be suitable to insert tests to decrease the size of the ambiguity groups 
and thus increase the testability of the system [35, 43]. 

4.1.6 Modifiability 

To fully benefit from a diagnostic system it must be simple and intuitive to update the 
models used. QSI described in [45] that they were in the process of developing their 
Reusable Test and Model Library (RTML) which now is known as TEAMS-KB 
which will be further described in Section 4.1.8. In this RTML, it is described in [45], 
entities of a model such as components are represented as objects and are thus 
reusable. Such reusability reduces cost of model development since new components 
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will easily be modeled starting at already modeled similar components. As 
maintenance and repair data become available TEAMS-KB provides capabilities to 
update component reliability, component failure rate, repair costs, and repair times 
[42]. 

4.1.7 Compatibleness 

In [21] it is described how data from a Microsoft Excel spreadsheet is automatically 
imported into an XML file using a data import tool with a Graphical User Interface 
(GUI). In this import tool the data elements in the Excel spreadsheet are mapped to 
TEAMS data elements. The XML file complies with the TEAMS Document Type 
Definition and an example can be seen in Figure 14. It is stated on the homepage of 
QSI that for importing models they “have an XML import format and have experience 
importing Matlab/Simulink data” [35]. Another feature is that structural models can 
be automatically generated in TEAMS from structural models or netlists in VHDL 
and EDIF [45]. EDIF stands for Electronic Design Interchange Format and is a neutral 
format for storing and interchanging electronic netlists and schematics. VHDL stands 
for VHSIC Hardware Description Language and is a language for construction and 
simulation of electronic systems [71]. VHSIC is an abbreviation of Very High Speed 
Integrated Circuits. 
 
Compatibleness concerns exporting as well and besides TEAMATE and TEAMS-RT 
models from TEAMS can also be exported to any database that is ODBC-compliant 
[64]. ODBC is an abbreviation of Open DataBase Connectivity and is a standardized 
method for accessing databases regardless of what database management system and 
operating system is used. Furthermore, according to the TEAMS 9.x user manual 
TEAMS can generate four kinds of different formatted text files which contain the 
diagnostic strategy in form of a diagnostic tree and these are [24]: 
 

• Diagnostic strategy in XML format 

• Diagnostic strategy in HTML format 

• Diagnostic strategy in PDF format 

• AI-ESTATE fault tree model. 
 
The AI-ESTATE standard in the list above, which is presented in Section 2.6, is 
mentioned in papers written by QSI. In it is described that “the AI-ESTATE 1232.1 
standard has been in full use and the 1232.2 standard will be a full use in the near 
future” [23]. This paper was written in 2001 and AI-ESTATE 1232.1 was a trial 
version, i.e. not the finished standard. Information about to what extent AI-ESTATE 
is used today has not been found other than, as mentioned above, the fact that an AI-
ESTATE fault tree model can be exported from TEAMS. 
 
Figure 15 below displays an example of how a diagnostic tree can look like in 
TEAMS. The following description of the tree explains how it works when handled in 
TEAMS. 
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Figure 15. Part of a diagnostic tree in TEAMS [68]. 

 
In Figure 15 the circles are nodes, which are the points at which decisions are made in 
the diagnostic tree. Within the circles are the numbers that are assigned to the nodes, 
numbers that are listed in the text reports. The rectangles below circles are tests and 
enclosed within the rectangles are the numbers of the tests. Tests were discussed in 
Sections 4.1.1, 4.1.2, and 4.1.3. The text between a circle and a rectangle, e.g. 
HiBeamSym between node 4 and test 43, is a shortened version of the name of the 
test. The G and NG above the circles stand for Go and No Go respectively, i.e. G 
stands for a passed test at the previous node and NG stands for a failed test at the 
previous node, i.e. previous in the sense that we traverse the tree downwards. The 
smaller rectangles at the bottom of the tree that have no numbers inside them 
represent isolated faults. A question mark within one of these rectangles would 
represent an ambiguity group, i.e. that there are two or more possible failures. 
Ambiguity groups were discussed in Section 4.1.5. The dotted lines at the bottom row 
indicate that the tree is continued and if for example node number 14 is clicked upon 
there will be another display with another part of the tree in which node number 14 is 
the root, i.e. at the top of the displayed tree. 
 
There is also a detailed version of the diagnostic tree and an example of this is 
displayed in Figure 16. This version also includes descriptions of the tests. 
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Figure 16. Detailed version of a diagnostic tree in TEAMS [68]. 

 

4.1.8 Libraries 

One part of the TEAMS software suite is TEAMS-KB (Knowledge Base) [22] which 
is an Oracle Enterprise database of TEAMS models. System models and their 
components can be created, modified and stored here along with parameters of the 
model such as cost, time and failure rate [22]. It also stores media and text of repair 
procedures, results of diagnostic sessions, and other information that is used by the 
system to generate procedures and reports. The media mentioned can be photos, 
videos, drawings etc. TEAMS-KB also stores fault lists and logistic data [42]. 
 
In TEAMS-KB online diagnostic and maintenance information that is collected by 
TEAMATE can specify which components that have been repaired, cost and required 
time for repair procedures and tests [54]. 
 
TEAMS also comes with an example model of an automobile. 

4.1.9 Disciplines of Modelling 

In TEAMS 9.X Manual it is described that modules can be labelled by different 
technologies and the ones listed there are: electrical, mechanical, hydraulic and 
chemical [44]. 
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4.2 eXpress 
This chapter deals with eXpress which is analysed in terms of the topics listed in the 
introduction to Chapter 4. A quick introduction to the tool was given in 3.3.2.  

4.2.1 Representation of Knowledge 

In eXpress the models are made up by sets of components where each component is 
constituted by a number of failure modes. A schematic illustration is given in Figure 
17. These failure modes represent the known failure modes of that specific 
component. In each failure mode certain properties are assigned, such as what 
functions that are affected in the specific failure mode and in what way the functions 
are affected. Since eXpress does not handle physical modelling, only dependency 
modelling, the impact of the failure mode on the functions is only modelled as either 
“does not affect the function”, “does sometimes affect the function”, or “does always 
affect the function”. The functions are often the starting point in the modelling work. 
The system has a number of functions that are critical to the system and thus are 
failure in these extra important to be able to detect and isolate. These functions are 
specified and the components needed to provide the function as well. The functions 
and the components are then connected through failure modes. This kind of 
dependency models with failure modes and functions DSI calls hybrid models and are 
described in [2].    
 
In the later stages of the system development procedure, failure probabilities might 
become available and these should also be incorporated into the failure mode to 
enable calculations of e.g. mean time to isolation or mean time to failure. Where mean 
time to isolation is the calculated mean time to isolate a fault based on the time it has 
taken other times when the fault has occurred. 
 

 
Figure 17. A schematic picture of a hybrid model. 
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Given the above description we can try to formalize the model by introducing a 

number of sets representing the entities in the model. Let C  represent the l number of 
components in the model. Each component, C∈c , is associated with its respective 

set of failure modes, 
jcFM . These failure modes are uniquely related to their 

respective components;  
 

{ }kc fmfmfmFM
j

,,, 21 L=  

 

where 
jcFM represents the set of all failure modes of component jc . Each failure 

mode, fm , defines two sets of functions. One set,  

 

{ }aiaafm fff ,,, 21 L=AA  

 

whose functions are always affected by that fm . The other set of functions,  

 

{ }snssfm fff ,,, 21 L=SA  

 

contains the functions that are sometimes affected by the fm . This is illustrated in 

Figure 18. In the figure the solid lines represents the always affects relation and the 
dashed lines represents the sometimes affects relation. The function at the bottom is a 
so called dummy function. A dummy function is a function designed to test for a 
certain failure mode.  
 

 
Figure 18. A schematic representation of a component and the relations between 

failure modes and functions. 
 

A function can be a member of sets belonging to different failure modes and different 

components but can only belong to either AA  or SA in each fm . The dependencies 

can be expressed through the matrix in Table 7. The table represents both fmAA and 

fmSA . A “1” at row x and column y indicates that failure mode y always affects 

function x. A “0” and an “X” represent never affects and sometimes affects 

respectively. Thus the ones in the table represents AA and the X’s represents SA . 
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Table 7. A matrix depicting the relations between failure modes and functions. 
 FMc1 FMc2 … 

 fmcj1 fmcj2 … fmcjn fmck1 fmck2 … fmckm … … 

f1 0 0  1 1 X  0   
f2 1 X  0 1 1  1   

f3 0 1  1 0 0  1   

. 

. 

. 

          

fn 0 0  1 0 0  1   
 
The tests in the model are of two types, one that tests the functions in the system and 
one that tests the failure modes of the system. Although the failure modes are 
probably tested through dummy functions, i.e. functions designed specifically to 
indicate if a component is in a certain failure mode. The dummy functions are then 
treated as tests for the failure mode. 
 
Tests focusing on functions are usually added in early stages of development when the 
different failure modes of the components are unknown. Later on when test and 
failure data are available, failure mode tests can be added. 
 
There is also a matrix expressing the relationship between tests, functions, and failure 
modes. Even though there is a relationship between functions and failure modes both 
functions and failure modes must be represented in this matrix. This is because tests 
can test both functions and failure modes. An example of this sort of matrix is shown 
in Table 8. From the test results the mode of operation of the components can be 
derived using relationships in the matrices. How this is done is described in Section 
2.1.3. 
 

Table 8. A matrix showing the dependencies between tests, 
functions and failure modes. 

 f1 f2 … fn fm1 fm2 … Fml 

t1 1 0  0 0 0  0 

t2 0 X  0 0 0  0 

. 

. 

. 

        

tm 0 0  0 0 1  1 
 
To clarify the model structure the polybox system, see Figure 12, will be modeled 
again but this time using a hybrid model. The list of components will naturally be the 

same, { }21321 ,,,, aammm=C . Each of the components is now attached to a number of 

failure modes. To better be able to illustrate the workings of the model the fault space 

is extended to include for each component three different possible failures. csa  is the 

failure mode when there is a shortcut between input A, i.e. the upper input in each 
component, and output. A shortcut between input B, i.e. the lower input in each 

component and output, is called csb . Finally an intermittent fault is added by the 

failure mode loose component, cl . The index refers to the affected component.  
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We add some constraints to the inputs. It is assumed that each input to the system is 
greater than one. This is because otherwise all the faults would be categorized as 
sometimes affecting. Having only sometimes affecting fault would be a poor example 
of the model type. 
Due to the constraints of the input the loose component failure differs from the other 
two failures since it is only sometimes affecting its function. The failure information 
can thus be encapsulated into,  
 

{ }, ,c c c csa sb l=FM  

 
The functions of the system can be divided into two different functions, one 
generating the output f and one generating the output g. There will also be a so called 

dummy function, sensitive to only one failure mode, 3ml . These functions will be 

affected by the different failure modes according to,  
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The first set, for example, means that the failure mode shortcut between input A and 
the output of the component always will affect function f. The failure mode shortcut 
between input B and the output of the component will also always affect function f 
and the loose failure mode will sometimes affect the function f. In the description 

above the empty sets such as the sometimes affected functions of 1msa , 
1msaSA , have 

been left out. The dependency information can be presented also in a matrix form 
which makes it more comprehensible, see Table 9. 
 

Table 9. A matrix depicting the relations betweenfailure modes and the two 
functions in the polybox example 

 FMm1 FMm2 FMm3 FMa1 FMa2 

 sam1 sbm1 lm1 sam2 sbm2 lm2 sam3 sbm3 lm3 saa1 sba1 la1 saa2 sba2 la2 

f 1 1 X 1 1 X 0 0 0 1 1 X 0 0 0 

g 0 0 0 1 1 X 1 1 X 0 0 0 1 1 X 

z 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
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In the model there must be a connection between the tests, the failure modes and the 

functions. In this example we test two functions, function f and function g , and one 

test testing the failure mode lm3, i.e function z. The tests can be written as 
 

( ){ }

1

2

2 2 2

3 min ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

t : ac bd f

t : bd ce g

t : c t e t z t , (c t z t ) , (e t z t )

+ =

+ =

− − − ≠

 

 
In Table 10 the direct connections between the tests and their respective functions are 
depicted.  
 

Table 10. The matrix relating the tests to their directly affected failure modes 
and functions. 
 f g z 

t1 1 0 0 

t2 0 1 0 

t3 0 0 1 

 
There are also a number of parameters in the hybrid model such as component price, 
component failure rate, and component repair time that should be entered into the 
model if they are available. These parameters are used to generate different detection 
or isolation procedures, optimized with different focuses such as “Detect 
Malfunctions with Fewest Test” or “Prove Maximum Operation Before Detecting 
Malfunction” which will be further described in Section 4.2.3. These parameters have 
been left out in this theoretical example since they do not affect the capabilities of 
detection and isolation. In the next section the detection and isolation algorithm will 
be described. 

4.2.2 Methods for Fault Detection and Isolation 

In this section we have tried to describe an algorithm for detection and isolation that 
mirrors the rules used in eXpress. The algorithm is first explained and then illustrated 
with an example. The section is based on information found in [2] and from [1].  
 
The algorithm used by DSI in eXpress is based on five rules and the input to the 
algorithm is a number of test results. These test results are used to derive the state of 
the system by the use of the five rules to conclude what mode each component is in. 
The output of the algorithm consists of the possible states of each and everyone of the 
components.  
 

Each component c  is associated with a set, 
csP , listing the possible failure modes of 

each component. From this set failure modes will be withdrawn when the algorithm 
allows us to exclude them. All the failure modes no longer suspected are listed in 

eFM . Since all the excluded failure modes of all the components are collected in 

eFM  all the failure mode names must be unique.  

 

The test results, gf TTT ∪= , where fT  is the set of failed tests and gT  is the set of 

passed tests, indicate whether the functions are functioning correctly or not. In the 
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case of dummy functions, the test examines whether the component is in the particular 
failure mode that the dummy function tests for. The information contained in the test 

results can be translated using sT  into two sets of functions, good functions gF which 

consists of functions that are suspected to be fault free by passed tests, and bad 

functions fF which consists of functions that are proven none functioning by the 

failed tests. From fF and gF the rules are used to derive the current failure mode of 

the components. g∆F  contains good functions and is only used to easily see if the fifth 

step generated any new good functions when doing the comparison in step six. 
 

 
 
The first step initialises the algorithm by setting all known failure modes to suspected 

by including them into the csP set. The second step derives which functions that can 

Algorithm II: 

Inputs: A set of failed tests, fT , a set of passed tests, gT  

Outputs: The set of { }nifmci ,,1)( L∈∀ . 

1. Initialization: 

 
cs cc ∀= FMP

 
 

2. Derive the good and bad functions from the test results: 
 

{ }
jtg sff

gj
TF T∈

∪∈= |
 

and 
 

{ }g\| FTF T ktf sff
fk∈

∪∈=   

 

3. Compute which fm  that can be excluded due to passed tests for each 

component c : 
 

{ }Ø| ≠∩∈= gfmce sfm FAAPFM
 

ec \s FMPP =cs   

 
4. When all functions that are sometimes affected by a common failure 

mode are determined to be good that failure mode should be 
eliminated from suspicion: 

{ }e e e fm g
fm= ∪ ∉ ⊆FM FM FM SA F

 
 

5. When all failure modes affecting a function are inferred to be good, 
that function is inferred to be good as well: 

( ) { }{ }{ }e| . Ø fmg g fm fmf fm f∆ = ∪ ∀ ∪ ∩ ≠ → ∈F F AA SA FM
 

 

6. If  g g≠ ∆F F  go back to step 3. 

 

7. The output of the algorithm is sP  
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be inferred as good and what functions that can be inferred as suspected bad by 
comparing the test signatures of passed tests and failed tests respectively. If a test is 
included in the test signature of both a passed and a failed test the function will be 

inferred as good. The functions inferred as good are all listed in gF and the bad 

functions in fF . The third step examines if any always affected function of a failure 

mode is included in the set of good functions. If so, that failure mode is excluded from 
the set of possible failure modes. The fourth step eliminates the failure modes whose 
all sometimes affected functions are inferred to be good. The fifth step concludes that 
a function is a new good if all the failure modes affecting that function are excluded 
from suspicion. 
 
Now to illustrate this algorithm we are going to use the polybox example constructed 
in the previous section. We again insert a fault in the system at multiplier three, and 

the fault is of the type “short between input A and output”, 3msa . This fault makes 

2t react since function g becomes faulty.  

 

{ } { }231 , ttt fg == TT  

 
The initialisation of the algorithm sets the possible failure modes as follows,  
 

{ } { } { }
{ } { }
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The second step of the algorithm will create the sets  
 

{ } { },g ff z g= =F F  

 
which is used in the third step of the algorithm when concluding which failure modes 
that can be eliminated,  
 

{ }
1 1 2 2 1 1 3
, , , , , ,e m m m m a a msa sb sa sb sa sb l=FM  

 

Using eFM  to update sP gives  

 

{ } { } { }

{ } { }
1 1 2 2 3 3 3

1 1 2 2 2 2

, , , ,

, , ,

m m m m m m m

a a a a a a

s l s l s sa sb

s l s sa sb l

= = =

= =

P P P

P P
 

 
When all functions that are sometimes affected by a failure mode are inferred to be 
good, that failure mode is excluded from the suspected failure modes. This applies to 

1ml and 
1al since { }f

ml
=

1

SA  and { }f
al

=
1

SA  where f is known to be good.  

Propagating in the algorithm, the next step is to find functions that now can be 
inferred as good since all the failure modes affecting it are excluded. Although in this 
example the excluded failure modes do not infer any new good functions.  
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The output of the algorithm is thus 
 

{ } { }

{ }
1 2 2 3 3 3

1 2 2 2 2

Ø, , , ,

Ø, , ,

m m m m m m

a a a a a

s s l s sa sb

s s sa sb l

= = =

= =

P P P

P P
 

 

Which is to be interpreted as component 1m and 1a  are fault free, and the other 

components are suspected.  
 

The inference used when eliminating failure modes connected to 1m  and 1a , that is 

using the fact that tests have passed, can also be used in a hierarchical manner. 
Consider the whole polybox as a system and the components as subsystems. If it is 
known by some global test that the whole polybox is good, then each individual 
subsystem, i.e. component, do not have to be tested since the whole system already 
has passed. This can reduce the number of needed tests in systems where a lot of the 
failure modes always affect functions.  
 
Table 11. The updated matrix relating both the old tests and the new test to their 

directly affected failure modes and functions. 
 f g z g’ 

t1 1 0 0 0 

t2 1 1 0 0 
t3 0 0 1 0 

t4 0 0 0 1 

 

If the system is expanded with a sensor measuring y, another test 4t , can be added. 

Observe that in the equation describing the test, z is not the function z but the signal z, 

i.e. the output of 3m . 

 

4 :t y z g+ =  

 

This test makes it possible to monitor 2a  and the table specifying the test sensitivity 

must be updated to Table 11. 
 

With this new test also failure modes connected to component 2a can be removed 

from the set of suspected failure modes; this gives the remaining set:  
 

{ } { }
1 2 2 3 3 3

1 2

Ø, , , ,

Ø, Ø

m m m m m m

a a

s s l s sa sb

s s

= = =

= =

P P P

P P
 

 

Thus not even with this new test the failure could be isolated to component 3m  which 

is where we introduced the fault. Although, three of the four suspected fault modes 

are in 3m  so it would probably be the first component to examine manually. 
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4.2.3 Test Sequencing Algorithms 

In eXpress there are a number of options available for which kind of algorithms to use 
for fault detection and fault isolation [69]. There is something called test weightings 
that define the order in which tests should be performed and depending on the choice 
of algorithms these weightings are chosen differently. There are seven algorithms 
concerning fault detection and seven algorithms concerning fault isolation and they 
are all described below. 
 

4.2.3.1 Fault Detection Algorithms 

Detect Malfunctions with Fewest Tests is the algorithm that is used when there is a 
desire to detect a fault with as few tests as possible. The test weightings are set so that 
the tests that are more probable to fail are performed first. Also non-intrusive tests are 
performed before intrusive ones. An intrusive test is explained as a test that is more 
disruptive than a non-intrusive one. 
 
The Detect Probable Malfunctions algorithm is almost identical to the Detect 

Malfunctions with Fewest Tests algorithm only that the order of the non-intrusive tests 
is different. 
 
The Detect Critical Malfunctions algorithm focuses on finding the most critical 
failures. 
 
In the Prove Operation with Fewest Tests the tests that can prove the most number of 
functions as good are prioritized.  
 
Prove Maximum Operation Before Detecting Malfunction is an algorithm that will 
prove as much as possible of the design as good before it detects a failure. 
 
The Minimize Switches in Monitored Stimuli algorithm is used when there is a desire 
to minimize wear and tear on test equipment, e.g. that positions of switches are 
changed as little as possible. This algorithm can be combined with the other 
algorithms. 
 
The Detect Using Fault Codes algorithm prioritizes tests that usually can detect a fault 
when it is present but that can not draw any conclusion about the eventual presence of 
the fault if it is not observed. 
 

4.2.3.2 Fault Isolation Algorithms 

The Multiple Fault: Half-Split Failure Probs. (refinement postponed) algorithm 
prioritizes tests that are certain to decrease the number of suspected functions 
regardless of whether the test passes or fails over tests that would only decrease the 
number of suspected functions for one of the outcomes pass or fail. In this algorithm 
refinement tests, tests that only reduces ambiguity when they pass, are postponed until 
after all isolation tests. 
 
The Multiple Fault: Half-Split Failure Probs. (refine where appropriate) algorithm 
differ from the last one only in the way that refinement tests are not postponed. 
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The Multiple Fault: Half-Split Failure Probs. (no refinement) algorithm is the same as 
Multiple Fault: Half-Split Failure Probs. (refinement postponed) except that there are 
no refinement tests. 
 
The algorithm Multiple Fault: Static Health Monitoring (Operational refinement not 

postponed) is a mix of Multiple Fault: Half-Split Failure Probs. (refinement 
postponed) and Multiple Fault: Half-Split Failure Probs. (refine where appropriate). 
 
In the Multiple Fault: Maximize Functions Proven by Refinement algorithm the order 
in which are performed are decided by the weighting criteria of the algorithm. These 
weightings try to reduce the number of refinement by first performing other tests. 
 
The Common Cause: Half-Split Failure Probs. algorithm uses common cause, which 
means that there is an assumption that there can only be a single fault present. The 
weightings of this algorithm prioritizes tests that, when they pass, halve the number of 
suspected functions. 
 
The Common Cause: Half-Split Failure Probs. (Max. Depth = 10) algorithm is the 
same as Common Cause: Half-Split Failure Probs. only that no more than ten tests 
can be performed in each isolation path. 

4.2.4 Formats for Storing Data 

In this section the format in which design data, maintenance data, test data, and 
diagnostic data are stored in eXpress is presented. This format is called Diagnostics 
Markup Language (Diag-ML) and is an XML schema that is used for capturing and 
transferring diagnostic knowledge and was created in 2001 by a consortium of 
companies. Today this consortium consists of two companies; DSI International and 
TYX Corporation [5]. Being XML-based, Diag-ML is extensible and the user can 
extend the format to meet the requirements of his or her specific application [9]. Diag-
ML is an open and non-proprietary language and companies/tools that support it are: 
 

• Sörman’s Rodon, see 3.5.1, can import Diag-ML from eXpress for static or 
run-time diagnostics via an IETM (Interactive Electronic Technical Manual) 
[4] 

• AIMSS’ Raytheon can import Diag-ML from eXpress for static or run-time 
diagnostics via an IETM [4] 

• Impact Technologies’ ReasonPro (see 3.5.2) can import Diag-ML from 
eXpress for Prognostic Health Management Reasoning [4] 

• Tyx’ TestBase uses Diag-ML natively [4] 

• NASA’s Jet Propulsion Laboratory (JPL) used Diag-ML when they required a 
diagnostic transfer format between eXpress and JPL's BEAM/SHINE tool [4] 

• VSE Corporation’s Diagnostician (See 3.5.3) [10] 

• Boeing Phantom Works’ IVHM Test Bench [10] 

• DSI’s OSS [10] 
 
The last three are only listed as supporters of Diag-ML on DSI’s homepage [10] why 
no information about how they support Diag-ML is provided. 
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A Diag-ML file contains the four main sections DesignData, 

MaintenanceData, TestData, and DiagnosticData [46] which are 
described below. Figure 19 displays the basic structure of a Diag-ML file. 
 

 
Figure 19. Basic structure of a Diag-ML file. 

 

In the DesignData section information is stored that relates to the model of the 
Unit Under Test (UUT) which include UUT components, functions, and failure 
modes, which were described in Section 4.2.1. In the polybox example in Section 
4.1.1 a multiplier is an example of a component, an example of a function is that f is 
correctly calculated given inputs in the polybox, and a shortcut between one of the 
inputs and the output of a multiplier is an example of a failure mode. 

MaintenanceData describes what should be adjusted or replaced depending on 
what diagnostic results that are reached. In the polybox example, maintenance data 

could be that a multiplier should be replaced if it is found faulty. In the TestData 
section is where the tests are defined as to the location of the tests and test parameters. 
The location can be specified by a numbered position in the model. In the 

DiagnosticData section one or more DiagnosticStrategy elements can be 
contained. A diagnostic strategy is an executable entity that is used to diagnose a 
specific UUT. In each diagnostic strategy there are one or more 

DiagnosticProcedure elements. Diagnostic procedures can invoke other 

diagnostic procedures and each of them contains a number of DiagnosticStep 

elements which in its turn is one of the operations TestExecution, 

DiagnosticProcedureExecution, 

MaintenanceProcedureExecution, or End. These four operations are 
described below. 
 

TestExecution is the execution of a test which is defined in the TestData 

section. The DiagnosticProcedureExecution operation calls to another 
diagnostic procedure which is defined within the same diagnostic strategy. A 

MaintenanceProcedureExecution represents the execution of a maintenance 

procedure which is defined in the MaintenanceData section and finally End is 
the operation that terminates the diagnostic procedure 
 
An example of an application of Diag-ML is described in [46]. In collaboration 
between DSI and TYX a simple diagnostic application consisting of an electrical 
circuit that models the operation of an amplifier is developed. The process from 
designing the model in eXpress to testing the design in TYX’ software tool TestBase 
is described as follows: First the model is built in eXpress for the UUT by defining 
the ports of the UUT, its components, the interconnection between the components, 
the components failure modes, and the functions that model the propagation of faults 
through interconnections. Then a set of tests is defined in eXpress. For each test, 
attributes are specified, and examples of these attributes are high and low limits for 
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measured voltage in certain points. The attributes are transferred via Diag-ML to 
TestBase. The experiment proceeded with generating a diagnostic strategy in eXpress 
and evaluating the quality of the fault isolation which means that the size of the 
ambiguity groups are checked not to be too large. The diagnostic strategy is then 
exported to a Diag-ML file. After TestBase test procedures are developed the Diag-
ML file is imported in TestBase as a test strategy (corresponding to the diagnostic 
strategy in eXpress). The test strategy is then compiled to be ready for run time 
execution by the TestBase Diagnostic Controller. 

4.2.5 Design for Testability Aids 

This section describes what kind of aids that is present in eXpress that can help 
evaluate and improve the testability of a system. 
 
Reports that can be generated from eXpress can inform about the effectiveness of 
current sensor placements and also the best placement for additional sensors can be 
suggested [55]. There are also features that provide information for helping to make 
decisions about system design alternatives, redundancies, and maintenance strategies 
[56]. 
 
By adding expected or measured fault probabilities the software can calculate the 
expected isolation and detection rate of the system given the current sensor 
placements and other inputs. Also the average ambiguity group size can be calculated. 
The number of tests needed to isolate and detect failures is also calculated. All these 
features can be used to modify the system for better testability. 

4.2.6 Modifiability 

About modifiability of eXpress models the following can be said: As will be 
described in Section 4.2.7 model topology can be exported from eXpress to a 
Microsoft Excel spreadsheet with Spreadsheet Topology Export and the topology can 
also be imported from an Excel spreadsheet into eXpress with Spreadsheet Topology 
Import. If the user would like to change the model data it is preferable that this is done 
in the Excel spreadsheet rather than manipulating the data directly in eXpress [48]. 
The reason of this being that it will save a lot of time since the database has to be 
updated for each individual change if they are performed within eXpress. For a large 
model it is consequently better to do the changes via an Excel spreadsheet and thus all 
updates to the database are performed in one single update. 

4.2.7 Compatibleness 

The compatibleness of eXpress is here described and we will see that Microsoft Excel 
spreadsheets as well as the XML schema Diag-ML (See Section 4.2.4) are two 
important means to import and export data and communicate with other software. 
Finally Computer Aided Design (CAD) tools and some other formats that are 
supported by eXpress are listed. 
 
Importing data into eXpress can be done from Microsoft Excel spreadsheets [47]. The 
spreadsheet that is to be imported has to conform to a certain format in order to be 
imported successfully. There can only be one table in each spreadsheet and the data 
should start from row 2, column A. Two correctly formatted spreadsheets can be seen 
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in Figure 20 and Figure 21. The different types of spreadsheet imports that eXpress 
supports are [47]: 
 

• Spreadsheet Attribute Import is used for importing characteristics for e.g. an 
object such as those that can be seen in Figure 20, which are Object Name, 
Cost, and Failure Rate.  

• Spreadsheet Failure Mode Import is used for importing failure modes of 
objects. Figure 21 displays a spreadsheet that can be imported with 
Spreadsheet Failure Mode Import and this spreadsheet displays the columns 
Object, Failure Mode, Percentage, and Functions. The Object column gives us 
information about which object that is concerned. The Failure Mode column 
describes what failure modes there are for respective object. The information 
in the Percentage column tells us how large share of the total number of 
failures of the object that is constituted by the failure mode at hand. In the 
Functions column functions that are affected by the failure mode at hand are 
listed. 

• Spreadsheet Failure Effect Import is useful when FMECA data, such as 
probabilities and consequences of failure modes, are imported from 
spreadsheets. The FMECA features of eXpress were mentioned in Section 
4.2.1. 

• Spreadsheet Test Import is used for importing tests. Tests appeared both in 
Section 4.2.1 and Section 4.2.2 and a test definition in eXpress describes the 
diagnostic conclusions that can be reached after a passed or failed test [67]. 

• The Spreadsheet Topology Import option is used when model topology is to be 
imported. The following entity types can be imported or updated [49]: 

o Dependencies describe for each output signal of an object which of the 
input signals the output signal depends on. For instance, if an object 
has the inputs A, B, and C and the outputs D and E a dependency can 
describe that output D depends on A and B. 

o Components are the most basic type of design objects. In these 
relationships between inputs and outputs are established in internal 
dependencies. Components are non-hierarchical objects that can fail 
e.g. a valve in a hydraulic system. 

o Ports are the input and output points of an object e.g. the two points 
were an electrical resistor is connected to the wire. The type of a port 
defines the directional flow of the signal travelling through that port. 

o Output functions specify the dependencies, described above, between a 
given output port of an object and one or more of its inputs. If an 
object has multiple capabilities that are possible to test separately, 
these capabilities are represented with multiple output functions which 
all have to be proven good by diagnostics for the object to be 
considered as correctly functioning.  

o Object states are groupings of output functions that are used to further 
define an object. 

o Nets are used to connect objects. Examples of signal paths that can be 
represented by nets are wires in an electrical design and pipes in a 
hydraulic design. 

o An I/O flag is an object that marks the linking point where a signal 
goes into or out of an entire design. An I/O flag is not a possible source 
of failure. 
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o Annotations are non-functional objects that only provide information 
for example a title on a design sheet or a box around a number of 
objects that indicates a group 

 

 
Figure 20. A correctly formatted spreadsheet for importing attributes [49]. 

 
 

 
Figure 21. A correctly formatted spreadsheet for importing failure modes [49]. 

 
As well as importing data from an Excel spreadsheet eXpress can also export to an 
Excel spreadsheet. In Spreadsheet Topology Export [48] the same kind data that was 
described in Spreadsheet Topology Import can be exported to an Excel spreadsheet. 
This can be used for passing topology information from eXpress to another tool. The 
user can also export to Excel, modify the file to update the existing model and import 
it again using the Spreadsheet Topology Import [48].  
 
Diag-ML, described in 4.2.4, or XML can be used as export formats when exporting 
eXpress models to run-time tools from eXpress [1]. Companies/tools that have 
experience in exchanging diagnostic information with eXpress via Diag-ML are listed 
in Section 4.2.4. 
 
eXpress has a new feature that is called EDA Import Module which utilizes a new 
standard called EDAXML [53]. EDAXML is an XML form of EDIF. EDIF can also 
be imported. The CAD tools [53] that are supported by eXpress are Cadence, Mentor 
DesignArchitect, Viewlogic/Innoveda, PADS, P-CAD, and OrCAD. Report formats 
that can be generated from eXpress include: Pdf, Doc, Rich Text Format (RTF) [65], 
and XML [66] Other formats that are listed as supported by eXpress are Tab-
delimited ASCII and Common Object Model (COM) Interface [52]. 

4.2.8 Libraries 

Regarding libraries within eXpress there are a number of example designs [52] that 
accompany eXpress and these include a 1553 data bus, an altimeter, an amplifier, and 
a hydraulic flow example. 
 
eXpress does not come with a library of components and this is motivated by the large 
diversity in component usage within DSI’s customer base; e.g. the component failure 
rates vary significantly based on their usage [1]. Failure rates are imported into 
eXpress using XML or spreadsheets instead. As new data become available these 
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failure rates must continually be updated for helping improve the correctness and 
usability of the diagnostic system [2]. Although lacking conventional component 
library there is a graphical library that assists in the development of model topology 
[1]. 

4.2.9 Disciplines of Modelling 

The disciplines, in which eXpress can be used for modelling, are electrical, 
mechanical, hydraulic, software and also processes such as a chemical process [58]. 
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4.3 Raz’r 
In this section Raz’r from OCC’M is examined. For a short introduction see section 
3.3.3. This section differs from the sections describing the other two tools since it 
lacks the Test Sequencing algorithm part, this is because no information has been 
found concerning this matter in Raz’r. 

4.3.1 Representation of Knowledge 

Raz’r uses a model type called Qualitative models, see Section 2.1.2. This model type 
will be described and exemplified in this section.  
 
A benefit of using qualitative models is that the model can be based on the models 
used for controlling the system. This makes the transition and integration between the 
design process and the creation of a diagnosis system easier. The basic concept for the 
integration is shown in Figure 22. 
 

 

 

 
Figure 22. An integration of model based tools based on model transformation 

[32]. 
 
The quantification makes qualitative models less computationally demanding than its 
quantitative counterpart. A gain is also a more compact model. The quantification also 
infers a loss of information which could degrade the diagnosability of the system if 
the granularity is poorly chosen. There is currently research being done to optimize 
and automate the choice of granularity [8]. 
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There are a number of different qualitative models which represents a system in 
different ways. A thorough description can be found in Chapter 2. The models used in 
Raz’r are a more sophisticated form of naïve physics models. They are not 
constrained to merely three states but can be chosen to contain a suitable number of 
states depending on what granularity is deemed to bring the highest usability of the 
diagnostic system.  
 
The model includes a set of components, representations of the connections between 
them, the domains of the variables used in the model, and definitions for each of the 
types of components present in the model. The connections are defined through the 
terminals of the components that are the models connection points. The terminals are 
often defined as belonging to a specific physical area, such as electrical or pneumatic, 
and infers a number of associated constraints in the form of equations. If the terminals 
are said to belong to the electric area then all the terminals must fulfil Kirchhoff 
current law and the voltage into the terminal must equal the voltage out of it.   
 
Also a number of modes of operation for the component are defined. The modes are 
specific to each kind of component and define a number of equations and relations 
between the component terminals that needs to be fulfilled for the component to be in 
that mode. Together with the equations parameters and state variables are connected 
to the components.  
 
To model the polybox, illustrated in Figure 12, with this model type one needs to start 
by listing the components and define the different component types. All the 
components are listed in the set, 
 

{ }21321 ,,,, aammm=C  

 
The definitions for the multipliers, starts with the set of terminals, 
 

{ }CBA ,,=T  

 

where A and B are the input ports and C is the output port. None of the terminals are 
specified to a certain physical field in this theoretical example. They are merely 
submitted to one simple equation,  
 

outin TT =  

 
meaning that the value coming out of the terminal must be same as the one coming in. 
If the terminal was of some other kind, e.g. electrical, then Kirchhoff’s current law 
would have been applied. 
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The modes of operation, MO , in the multiplier are, the first mode, OK , which 
represents when the component is functioning correctly, the second mode, AS , and 

the third mode, BS , represent when there is a short between the input A  and the 
output C and, the input B and the output C respectively. When the component is 
functioning in an unknown way, the forth mode, UK , is used. All the three last modes 
are considered to be fault modes.  
 

{ }BSASUKOKMO m ,,,=∈ MO  

 
Where each mode is described by the following equations, 
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The adder type of component can be described in a similar way; the terminals 
function in the exact same way and the modes are defined by, 
 

{ }, , ,a OK UK AS BS=MO  

 
These modes function in corresponding way as the modes for the multipliers although 

the OK mode naturally adds instead of multiplies. The modes of operations are 
described by  
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There is no need for parameters or state variables in the adder component either. 
 
Using qualitative models the signals need to be quantified. In this model the signals 
are quantified in the somewhat untypical domain, all integers between zero and 
fifteen, giving the set,  
 

{ }0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15=D  

 
When studying this theoretical example the importance of choosing the sets and 
granularities of the signals correctly quickly becomes apparent if all the input signals 
are chosen as 10. Already after the multipliers the chosen domains are incapable to 
represent the system. A physical system comes with a number of built in constraints; 
the maximum speed for a car or the maximum resolution of a sampled signal, both 
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gives limits to the span and the granularity of the set representing the signal. To 
illustrate this more thoroughly another system will be modelled. 
 
This time an electrical circuit is modelled. The circuit is illustrated in Figure 23. The 

components in this system are, a voltage source, s , three lights, 1 2,l l  and 3l , and six 

wires connecting them, 54321 ,,,, wwwww  and 6w . They are all collected in the set of 

components,  
 

{ }654321321 ,,,,,,,,, wwwwwwllls=C  

In the component set, observe that also the wires are modelled; this is due to the fact 
that they as well can be in a failed state and thus can be the source of a failure. 
 

 
Figure 23. A simple system with three lights connected to a battery through 

parallel connections [26]. 
 
 
In the model the signals must be specified into domains; in this case only two 
domains for each signal are needed.  
 

{ } { } { }1,01,01,0 === lightcurrentvoltage DDD  

 
The first signal represents the voltage in the circuit which can be either zero or higher. 
The second signal states that also the current in the circuit is either zero or higher. The 
lights are either on, 1, or off, 0. Assuming that the limit is selected so that zero current 
is equivalent to no light and current is equivalent to light. 
 

All the components has two terminals of the electrical type, IN and OUT  where the 
first is the component input port and the later is the output port. In each terminal there 
is a port for each signal. For instance, if there is a voltage coming into a wire or light 

that would be expressed as 1=voltageIN . 
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The different modes of operation for the source are  
 

{ },s OK D=MO  

 

The OK  mode is when the source is feeding the circuit with a voltage, and the D  
mode is when the source is drained and thus does not feed the circuit with a voltage. 
The equations describing this, 
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The lights can be in either the OK mode and thus lit if a current is present, or they can 
be broken, B , not lit at all.  
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The wires also have two modes of operation,  
 

{ },w OK C=MO  

 

If in the OK mode the output voltage is the same as the input voltage, if in the 
C mode, the wire is cut and there will be no output voltage. 
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The tests in this case are only whether the lights are on or not.  

4.3.2 Methods for Fault Detection and Isolation 

OCC’M uses a modified version of the extended General Diagnostic Engine, GDE+, 
see Section 2.1.3.2, to perform their fault detection and isolation. How the 
modifications are done or what the consequences of them are is unavailable to us 
since OCC’M do not publish information about their software components [51]. In the 
following section a description of how the GDE+ creates a diagnosis is shown. 
Hopefully this is an accurate enough description to show the general workings of the 
Raz’r algorithm. 
 
GDE+ differs from GDE by also utilizing fault mode behaviour. This makes it 
possible to get better fault isolation since we not only can detect when a component 
isn’t working properly but also when it is functioning according to a predefined fault 
mode behaviour. Usually we can make an educated guess about the fault mode 
behaviours of a component, e.g. a wire can have a fault mode behaviour that can be 
described as an infinite resistance, representing a cut off in the wire.  
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One major drawback of the GDE+ is that it is in many cases hard or even impossible 
to predict the faulty behaviour of a component and if we can not predict the behaviour 
we can not model it. There is one way around this called focusing. This approach 
solves the problem but limit the benefits of GDE+ severely, the algorithm then 
behaves as GDE when no known fault mode can describe the behaviour [26]. It 
functions by adding an unknown fault mode to the fault free mode and the fault 
modes. First the focused algorithm assumes all components to be fault free. If this can 
not explain the observations, known fault modes are tried as well. If also this fails, the 
algorithm examine if any unknown fault mode could explain the observations. 
 
To exemplify the GDE+, the polybox will be treated. We introduce the same fault as 

in the other examples, i.e. the fault ASMOm =
3

 in 3m . In the polybox the 

observations are the outputs in f and g , and the inputs dcba ,,, , and e . Assume that 

the inputs are, 
 

( ) ( )TT
edcba 22322=  

 
This would generate, in the fault free case, 
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 Instead the output is 
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The behaviour modes in which all components are functioning correctly, 
 

{ }OKMOOKMOOKMOOKMOOKMO aammm =====
21321

,,,,  

 
does not explain the observations and thus a fault has been detected. 
The discovered nogoods are thus, 
 

{ }OKMOOKMOOKMO amm ===
223

 

 

This in turn generates calls, 32 ,mm  and 2a into suspicion. The combinations of the 

failure modes for these components are called candidates. There are six minimal 
candidates, i.e. candidates that not is a subset of another candidate. The minimal 
candidates are listed in Eq 4-III. 
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When we also use the information contained in the failure modes of the components 
the following nogoods are detected 
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 Eq 4-III 

 

 
Since all of the minimal conflicts but the third in Eq 4-III are nogoods the focused 
inference algorithm concludes that the set  
 

{ }OKMOOKMOASMOOKMOOKMO aammm =====
21321

,,,,  

 
not generates any conflicts. The faulty component have thus been isolated and we 
have also isolated in what fault mode it is.  

4.3.3 Formats for Storing Data 

In Raz’r the qualitative models, described Section 4.3.1, are stored in XML or 
relational databases [29]. In the same section modelling concepts such as components, 
their behaviour, and the interactions between them were described and for 
representing this there is an XML Schema [32]. 

4.3.4 Design for Testability Aids 

Raz’r has incorporated tools for help designing for testability (DFT) and automatic 
generation of FMEA. The tools for DFT include a detectability analysis tool with 
which the detectability of the failed model components can be evaluated and a 
discriminability tool used to evaluate if a component, in case of a fault, can be pointed 
out as the faulty component, i.e. if it is part of an ambiguity group. These tools can be 
used together with a set of models where sensors are placed in different places among 
the models to sieve out the model with the best accordance with the wanted 
detectability and discriminability. In such a report, pairs of modes are listed along 
with the probability that we can determine which of the two modes in respective pair 
that is the current mode.  
 
How the FMECA is generated is described more in detail in [50]. There it is also said 
that the automatic generation of the failure mode effects and analysis in the program 
is, under certain circumstances, more reliable then a traditional hand made generation.  

4.3.5 Modifiability 

Regarding modifiability in Raz’r it can be said that the fact that Raz’r uses qualitative 
models affects the modifiability of the software models. The initial model is fairly 
difficult to develop due to the importance of choosing a correct granularity and the 
different fault modes which demand a comprehensive knowledge of the system, both 
when it is working correctly and when it is working in some of its fault modes. Once 
the different models have been created and the functionality of the systems is captured 
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in the model it is no big issue to update the system. The update is made automatically 
from the structural information of the model [31]. 

4.3.6 Compatibleness 

This section deals with what kind of formats that can be imported to and exported 
from Raz’r. Raz’r can take as input any qualitative model as long as it obeys the 
defined XML schema and further semantic constraints that is checked by the software 
[59]. The arrows in Figure 22 represent information flow in form of XML files. In this 
figure one can see that Raz’r can interact with Matlab/Simulink. Under certain 
circumstances Matlab/Simulink models can be abstracted to qualitative models and be 
automatically imported into Raz’r. The circumstances are that where the Simulink 
model contains an integration block the model has to be modified in the way that can 
be seen in Figure 24. 
 

 
Figure 24. Modification that is made to Matlab/Simulink model to make it 

importable for Raz’r [8]. 
 
An integration block is eliminated from the subsystem at hand and its input, that is the 
derivative, becomes an output of the first part of the modified subsystem and its 
output, the integrated value, becomes an input to the rest of the subsystem [8]. 
 
In [6] it is described how Raz’r is capable of automatically generating C code based 
on, in this case, signals from a CAN bus. The compiled C code was then run on an 
Electronic Control Unit (ECU) that controlled the electric side windows and mirrors 
of a car. In this case the generated C code, consisting of the signal pre-processing, the 
compressed system model, and the diagnosis algorithm, when compiled required only 
25 kB of memory. 
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Fault trees can be generated from Raz’r as well and the possible output formats are 
[33]: 

• XML 

• HTML 

• ID3 (An algorithm for generating decision trees) 

• C-code. 
 
There is also an import function in Raz’r that makes it possible to import net lists [29], 
that describe components and connectivity between them in an electronic design.  

4.3.7 Libraries 

A library in Raz’r consists of four different concepts: component types, constraint 

types, domain types, and terminal types. These are described as follows [33]: 
 

• Component types describe classes of physical objects. Objects within the same 
component type are very similar in the way that they behave and are 
constructed. An example is a resistor component type of which different 
instances only differ in the parameter resistance. Each component type has 
five functions: 

o Local effects describe the consequences a fault in the component will 
have at the same level in the hierarchy as the component itself. 

o A Mode defines a behaviour that is common to every instance of the 
component type. In the case of diagnosis the mode can be either ok or 
faulty in some way. A default mode should be set in each component 
type. 

o A Parameter is a constant that describe the behaviour of an instance of 
a component type. To exemplify by a resistor, the parameter would be 
the resistance. 

o State variables are similar to parameters but they can vary over time 
and are dependent of previous values of their selves. An example is the 
charge of a capacitor. 

o Terminals are the entities through which a component interacts with 
the rest of the model and as described in Section 4.3.1 each terminal 
belong to a physical area such as electrical or pneumatic. A resistor 
would have two electrical terminals transferring both potential and 
current. 

 

• A Constraint type defines a restriction on a set of variables and parameters. 
There are predefined constraint types such as Ohm’s law but the user can 
define his or her own. 
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• A domain type specifies the possible values for a variable or parameter. Raz’r, 
being based on qualitative modelling, uses finite domains. The predefined 
domains in Raz’r are: 

 

• Signs {-, 0, +} 

• Positive {0, +} 

• Boolean {True, False} 

• Position {On, Off} 

• Connectivity {0, Pos, Inf} 

• Vqual {Ground, Between, Src} 
 

Thus are the possible values in e.g. the domain of Booleans True and False. 
 

• Terminal types describe what happens at the interaction points. A terminal 
type specifies variables that concern not just one component. An electrical 
terminal for example can have the variables delta_voltage and delta_current 
which describe electrical connections. 

 
OCC’M does have various component libraries developed in previous projects and 
they are reused on a case by case basis. The software does not automatically come 
with any basic library as it is not normally sold without consulting [31]. 

4.3.8 Disciplines of Modelling 

In an e-mail conversation with a co-founder of OCC’M he explained that they have 
experience from modelling in and have component libraries in the disciplines 
electrics, pneumatics, and hydraulics [59]. 
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5 Comparison of tools 
In this chapter we will compare the different tools presented in Chapter 4. The effort 
to model a system is discussed and what pros and cons this does infer. A model that 
requires a lot of information and knowledge to be available takes longer to complete. 
This could also infer a better diagnostic capability in the form of better chances of 
detection and isolation.  
 
Furthermore, it is discussed what inference algorithm that are used in the tools. The 
type of inference algorithm is of importance since this affects the detectability and 
isolation capabilities of the tools. It also affects the amount of computing power 
needed and the amount of time it takes to perform a search for one or more faulty 
components.  
 
The different formats that are used for storing data in the different tools are compared 
as well as what has been presented in the Design for testability aids sections for the 
respective tools. Furthermore comparisons are made for the sections Modifiability, 
Compatibleness, Libraries, and Disciplines of modelling. 

5.1 Modelling Effort 
The tools all have different approaches to how the models are supposed to be 
constructed and to what they are supposed to contain. What in TEAMS is called a 
signal is very similar to what in eXpress is called a function. The tools both share a 
common difficulty, that there can be some difficulties to identify what a 
function/signal is. For example, in the polybox it was initially not obvious if the 
whole path of the different inputs to the respective outputs should be a signal/function 
or, if each single component was to be modelled as having its own signal/function. 
Perhaps this becomes clearer when the experience of using the tools grow.  
 
The biggest effort to create a model is demanded if we want to create a qualitative 
model. This is due to the need for all relations to not only be formulated and 
physically modelled but also the need to choose the granularity of the signals 
correctly. A task that is not easily performed. There is currently research being done 
to try to automate the process of choosing the granularity to preserve the diagnostic 
capabilities without losing the benefits of the lower computational requirements 
compared to quantitative modelling [8]. To be able to choose the correct granularity, 
extensive knowledge is required about the system, not only about the system when it 
is functioning as it should but also when a component is faulty. For example if a 
sensor is fed with an insufficient voltage, will the output of this sensor be zero, 
outside a possibly correct interval, inside such an interval, or something totally 
random? This kind of knowledge must be available to be able to fully reap the gains 
of the model type [62]. 
 
When comparing the different modelling examples in Chapter 4 attention must be 
paid to the fact that although it is the polybox system modelled with each tool there 
are some differences in the system fault modes in the different sections. In TEAMS 
there are only two modes, one fault free and one failure mode in each of the 
components of the system. In eXpress and Raz’r the components in the polybox have 
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three respective two failure modes. Since we could not model the intermittent fault in 
Raz’r this failure mode was included in the unknown fault mode. 
 
As Raz’r uses physical models of the system the feature of being able to define and 
use state variables is useful. This enables for dynamic systems to be modelled in the 
tool. Also in this matter, Raz’r is alone amongst the three tools to be capable of as far 
as what has been found in this examination. 

5.2 Fault detection and Isolation Capabilities 
Regarding the different fault detection and isolation capabilities of the tools there are 
some differences. The types of models that the tools work with open for different 
approaches. Once again the solutions presented in eXpress and TEAMS are quite 
similar while the solution used in Raz’r is more advanced.  
 
Although the same information was available to us in the polybox example the tools 
reached different degrees of isolation. This is because the tools have differences in 
how well suited they are to model the knowledge of the different fault modes. 

TEAMS could not conclude whether 3m or 2a were faulty, eXpress could not isolate 

between  
 

 

 

and Raz’r came to the conclusion that the faulty component was 3m , and that it was 

now functioning according to the description given for fault state AS . This is where 
the benefits from the more extensive modelling come in. Since the fault states also 
have been modelled it is easy to test if any of those modes of operation can explain 
the sensor readings and behaviour of the system.  
 
Raz’r also has the benefit of being able to use state variables. In the sample systems 
sent to the companies the only one who returned a usable model of the dynamic air 
intake system was Raz’r. 
 
Another advantage with Raz’r is that there is no need to define the tests. The inference 
works with the observations of the system. These observations can be obtained from 
sensors. In both eXpress and TEAMS the tests must be constructed before we are able 
to use the diagnostic systems created with these tools. Constructing the tests is not a 
simple task since the tools assume that the tests are perfect. This means that if a test 
has not reacted it is guaranteed that none of the behavioural modes the test is sensitive 
to correctly describes the behaviour of the system. This is very hard to accomplish due 
to noise in sensor values and model errors [60]. A test reacts if a test quantity exceeds 
a certain limit value. The test quantity is calculated from sensor values and these 
values always include some amount of noise. If the limit is set too close to the normal 
value of the variable, i.e. the expected value in the fault free mode, the risk of the 
noise making the value exceed the limit is big. If the limit is set too far away from the 
normal value there is a risk that there is a fault present in the system but the test has 
not reacted. 
 
 

2223332
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Since eXpress and TEAMS use quite similar model types and inference algorithms 
there are probably more comparisons that we could make to further examine the 
differences and the pros and cons that those differences infer on the diagnostic 
systems created with the tools. For example better examine the use of fault modes in 
the tools.  
 
A questionable aspect of the eXpress algorithm is whether it really is correct to 
exclude a failure mode, known to only sometimes affect a function, just because it at 
the present do not affect any function. This makes the design of the tests very 
important for the quality of the diagnostic system. The tests must be sensitive enough 
to always detect a fault and insensitive enough to not generate false alarms. 
 
 
Regarding aspects such as computational speed and requirements of the inference 
algorithm no investigation has been done since comparable data have not been 
accessible. Due to the lack of access to the tools, test data could not be generated 
either. 

5.3 Formats for Storing Data 
In all the three tools XML files are used for representing models and in TEAMS as 
well as in Raz’r also relational databases are used. Raz’r and eXpress use XML 
Schema for setting the rules to which their XML files must conform while TEAMS on 
the other hand uses Document Type Definition (DTD). DTD is generally considered 
out of date and the XML Schema is favoured over the DTD. In DTD we can only 
specify the element structure, i.e. the allowed names of elements and attributes in an 
XML file, whereas in the XML Schema we can also specify numeric ranges for a 
certain element type or specify a list of possible values for the element type to have. 
Even though QSI, the producer of TEAMS, writes in [63] from 2001 that they will 
move on from DTD to the then newly developed XML Schema, we were not able to 
find any trace of it today. In [21] from 2006 we can read that the Document Type 
Definition is still used. 
 
Of the three solutions for using XML files for model storing the one that we have 
been able to find a somewhat widespread support for in the industry is eXpress’ Diag-
ML. The other two solutions seem more to be natively used formats. 

5.4 Test Design Capabilities 
When it comes to Design For Testability (DFT) it is hard to get comparable data and 
hard to evaluate the quality of the services provided. Even if the different tools claim 
to have the same services such as detection rate and FMEA generation, the quality of 
these services is hard to evaluate. If a sample system was modelled with all the tools 
and the tools themselves were available a comparison could have been made of e.g. 
what the calculated isolation ability, mean time to failure and maximum ambiguity 
group size would have been calculated to in the different tools. Also a comparison of 
where new sensors are recommended to be placed and the contents of the 
automatically generated FMEAs could be performed. Now only which aids that are 
available can be compared and not the quality of them.  
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The aids described above are provided by all the tools. However, one aid that has only 
been found in TEAMS is the feedback loop, described in Section 4.1.5. 

5.5 Compatibleness 
A comparison of the compatibleness of the three tools is here presented in Table 12. 
The table lists items that one or more tools are compatible with in the topmost row 
and the three tools are found in the first column. An X in a box means that the tool at 
hand offer support. An empty box represents that no information has been found 
regarding the support in that case. 
 

Table 12. Compliance for the three tools 
 XML Diagnostic 

reports 
Matlab/Simulink Excel CAD 

tools 
OBDC C code Net 

lists 

TEAMS X X X X  X  X 

eXpress X X  X X   X 

Raz’r X X X    X X 

 
As can be seen in Table 12 all three tools use XML for information exchange. XML 
support is important since XML is a commonly used format for information storage 
and information exchange. All three tools are also able to generate diagnostic reports 
and the formats in which diagnostic reports can be generated in respective tool can be 
seen in Table 13. 
 

Table 13. Formats in which diagnostic reports can be generated for the three 
tools 

 XML HTML PDF AI-ESTATE RTF Doc ID3 C code 

TEAMS X X X X     

eXpress X  X  X X   

Raz’r X X     X X 

 
Further on in Table 12 we can se that both QSI (TEAMS) and OCC’M (Raz’r) have 
capability of importing models from Matlab/Simulink. This capability is good since 
the use of Simulink is widespread in the engineering community. Another format, 
which especially eXpress use as the key types of external data sources, is the 
Microsoft Excel spreadsheet. The use of Excel is also widespread. In Section 4.1.7 it 
was described that Excel spreadsheets were imported into TEAMS using an import 
tool in a study. 
 
eXpress uses the standard EDAXML and the following CAD tools are listed as 
compatible with eXpress: Cadence, Mentor DesignArchitect, Viewlogic/Innoveda, 
PADS, P-CAD, and OrCAD. The support of a CAD tool is important if there are 
existing designs that preferably could be imported into the tool of interest.  
 
TEAMS models can be exported to databases that are ODBC-compliant. This feature 
makes it possible to access data bases regardless of what data base management 
system or operating system that is used. Raz’r can generate diagnosis algorithms in C 
code which is a plus if there is a desire to run C code on an on board computer. 
Finally in Table 12 we can see that all three tools have import functions for importing 
netlists. An import function like this would ease the design process if there are such 
netlists available and hence they would not have to be remodelled. 
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5.6 Libraries 
eXpress and TEAMS come with some preconstructed example models which can 
provide information and tips about how to use these tools. In TEAMS there is an 
automobile that has been modelled and in eXpress the examples include a 1553 data 
bus, an altimeter, an amplifier, and a hydraulic flow example. Raz’r does not 
automatically come with any basic library as it is not normally sold without 
consulting, however OCC’M does have various component libraries developed in 
previous projects and they are reused on a case by case basis [31]. 

5.7 Disciplines of Modelling 
The disciplines of modelling that are supported by each tool are displayed in Table 14. 
 

Table 14. Disciplines in which can be modelled in the three tools 
 Electrical Mechanical Hydraulic Chemical 

processes 
Software Pneumatics 

TEAMS X X X X   

eXpress X X X X X  

Raz’r X  X   X 

 
In this table we can see that all three tools support electrical and hydraulic modelling. 
eXpress is the tool that supports the most disciplines. 

5.8 Modifiability 
Modification of a model in eXpress is done by exporting the model topology to Excel 
spreadsheets, modify the model there, and then importing it into eXpress again. This 
seems to be a good solution for making updates of models effective. Updates in Raz’r 
are, according to the producer, made automatically from structural information stored 
in the tool. In TEAMS, TEAMS-KB provides capabilities to update component 
reliability, component failure rate, repair costs, and repair times as maintenance and 
repair data become available. 
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6 Conclusions  
In this chapter the work presented in the preceding chapters are summarized and the 
conclusions are stated together with ideas for future work. 

6.1 Discussion 
The aim of this thesis was to find and evaluate diagnostic tools. In Chapter 3 it was 
described how the search for such tools was done. The search revealed that no tool on 
the market had a dominating position. From the found tools three of them were 
selected for further evaluation. These were selected since they were expected to 
provide the diagnostic systems that best utilize the available information about the 
system. In Chapter 4 these three tools were analysed. The analysis can be seen as 
constituted by two different aspects, one focusing on the diagnostic methods with 
which each tool creates diagnostic systems, the other focusing on practical details that 
determine the usability of each tool. Chapter 5 provides a comparison of the three 
tools in terms of the topics analysed in Chapter 4. 
 
The analysis revealed both similarities and differences amongst the tools. For example 
TEAMS and eXpress use a dependency based model type, whilst Raz’r uses 
qualitative modelling. Also the inference algorithms offer differences where once 
again Raz’r differs from the other two. The inference algorithm in Raz’r has the 
capability to utilize information from models of failure modes. The other two utilize 
only information about dependencies between components for each failure mode. 
eXpress here benefits from having the capability to define several fault modes while 
TEAMS have only two.  
 
The different programs each have its strengths. TEAMS seems built on a solid 
theoretical foundation and papers from QSI often appear in conference proceedings. 
QSI also offer a number of different software to cover large parts of the diagnostic 
needs. DSI often emphasise the possibilities to use eXpress in an early stage of the 
development of the system to be diagnosed. The advantage of this is to consider 
diagnostic aspects when designing the system and by this enabling for better 
diagnostic capabilities. OCC’M also has contributed with several papers in 
conferences. Raz’r benefits from the capabilities to handle state variables and using 
the information available about failure modes to further enhance the isolation.  
 
A similarity is that all three tools use XML for storing models although the methods 
used for defining the allowed elements and attributes of the XML files differ. eXpress 
and Raz’r use XML Schema while TEAMS uses DTD. The DTD format only 
specifies the names of elements and attributes whereas in the XML Schema we can 
also control values of attributes. This extra control makes the XML Schema more 
powerful. The fact that XML Schemas are written themselves in XML, unlike DTDs, 
eases work since another language is not needed. The XML Schema used in eXpress, 
Diag-ML, is a somewhat widespread standard for diagnostics capture and has some 
support within the industry. Rodon for example supports Diag-ML.  
 
On a note on customer relations for the companies providing the evaluated tools we 
can conclude that the provider of eXpress, DSI, as well as the provider of Raz’r, 
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OCC’M, have been of great assistance to this project. They both have answered 
questions and provided us with information which has been very useful.  
 
A final conclusion that can be drawn is that the information available concerning the 
system that is to be diagnosed should guide the choice of tool. Raz’r has better fault 
isolation capability if there is knowledge available about the behaviour of a system 
when it is in a failure mode. TEAMS and eXpress on the other hand require less 
knowledge of the system and thus the creation of the diagnostic system can begin 
earlier. They are also more intended to handle information gained from built in self 
tests of components. From this information the tool recommended to use is TEAMS 
or eXpress for systems built up mainly of components with built in self tests or Raz’r 
for systems where the components do not have built in self tests. 

6.2 Future Work 
Future work following after this thesis might be to further explore one or more of the 
three evaluated tools that is of further interest. A comparison of TEAMS and eXpress 
could be useful since these tools seem to be more similar to each other compared to 
Raz’r. The effect of the limited number of failure modes in TEAMS compared to the 
larger number of failure modes in eXpress could be studied. In such a study a more 
practical approach can be used where a system is modelled and studied diagnostically 
in the tool. The same study could be made with Raz’r and Rodon since they seem 
more similar. A system that is to be modelled in such a study could be of the kind that 
would be representative of what the tool would be used for in an everyday use. Such a 
study, concentrating at only one tool at a time, might give a more complete picture of 
how the tool works, since this has been somewhat of an introduction to the three tools 
TEAMS, eXpress, and Raz’r. 
 
Another suggestion for possible future work could lie in examining the strong 
candidates that did not make the cut described in Section 3.5. 
 
In the problem description it was also included to map standards within the diagnostic 
field. The study revealed no widely accepted standard within the diagnostic field. One 
standard that was found in TEAMS is AI-ESTATE which was presented in Section 
2.6. AI-ESTATE is a standard from IEEE that is used for storing and exchanging 
diagnostic knowledge and could certainly be of interest for further exploration. 
 
Yet another interesting issue to further explore is how the computational requirements 
correlate to the size of a system for different modelling types and inference 
algorithms. 
 
Finally one important aspect when choosing a tool is to secure that the tool has the 
ability to meet future requirements. This makes it important to insure that the 
company providing the tool has the prerequisites to develop the tool so it meets those 
demands. This could be done in a corresponding study. 



7 - References 

 

 

87 

7 References 
[1] Personal reference at DSI 
 
[2] Eric Gould, Modelling it both ways: Hybrid diagnostic modelling and its 

application to hierarchical system designs, DSI International, 2004 IEEE 
 
[3] B Long et al, System Testability Analysis for Complex Electronic Devices 

Based on Multisignal Model, Journal of Physics: Conference Series 48, 2006 
 
[4] http://www.diag-ml.com/, Accessible: 2007-11-13 
 
[5] http://www.diag-ml.com/Detail.aspx?Detail=Consortium,  

 Accessible: 2007-11-13 
 
[6] Oskar Dressler, Peter Struss, Generating instead of programming 

Diagnostics, http://www.occm.de/GeneratingOnBoardDiagnostics.pdf, 
Accessible: 2007-11-13 

 
[7] P. Struss, A. Malik, M. Sachenbacher, Qualitative modelling is the key to 

automated diagnosis, 6th International Workshop on Principles of Diagnosis 
(DX-95), Goslar, Germany, pp. 99-106, 1995 

 
[8] P. Struss, Automated Abstraction of Numerical Simulation Models- Theory 

and Practical Experience, Proceedings of the Workshop on Algebraic 
Models of Reasoning, Ki-2003 Hamburg, Germany, Sept. 16, 2003  

 
[9] http://www.diag-ml.com/Detail.aspx?Detail=Extensible, Accessible: 2007-

11-13 
 
[10] DSI Homepage,

 http://www.dsiintl.com/WebLogic/Products.aspx?Page=Interoperability/Dia
gML.ascx, Accessible: 2007-11-19 

 
[11] www.ne.se, XML.Nationalencyklopedin, 2007, Nationalencyklopedins 

internettjänst. http://www.ne.se.jsp/search/article.jsp?i_art_id=348461 (In 
Swedish) Accessible: 2007-11-19 

 
[12] http://www.w3c.se/resources/office/translations/XML-in-10-points_sw.html, 

Accessible: 2007-11-19 
 
[13] http://www.w3schools.com/xml/xml_syntax.asp  
 
[14] Jianhui Luo, Haiying Tu, Krishna Pattipati, Liu Qiao, Shunsuke Chigusa, 

Graphical models for diagnosis knowledge representation and inference, 

Autotestcon, 2005. IEEE, 26-29 Sept. 2005, Page(s): 483- 489 

 
[15] http://xml.silmaril.ie/basics/whatfor/, Accessible: 2007-11-22  
 



7 - References 

 

 

88 

[16] Somnath Deb, Krishna R. Pattipati, Vijay Raghavan, Mojdeh Shakeri, 
Roshan Shrestha, Multi-Signal Flow Graphs: A Novel Approach for System 

Testabiblity Analysis and Fault Diagnosis, AUTOTESTCON '94. IEEE 
Systems Readiness Technology Conference. 'Cost Effective Support Into the 
Next Century', Conference Proceedings, 20-22 Sep 1994, Page(s): 361-373 

 
[17] S. Deb, A. Mathur, P.K. Willett, K.R. Pattipati, Decentralized real-time 

monitoring and diagnosis,Systems, Man, and Cybernetics, 1998 IEEE 
International Conference on, Volume: 3, 11-14 Oct 1998, Page(s): 2998-
3003 vol.3 

 
[18] http://www.w3schools.com/dtd/default.asp, Accessible: 2007-11-26 
 
[19] http://www.w3.org/TR/2000/REC-xml-20001006, Accessible: 2007-11-26 
 
[20] François E. Cellier, Qualitative modelling and simulation: promise or 

illusion Winter Simulation Conference archive, Proceedings of the 23rd 
conference on, Phoenix, Arizona, United States, Pages: 1086 – 1090, Year of 
Publication: 1991, ISBN:0-7803-0181-1 

 
[21] Somnath Deb, Venkata N. Malepati, Michel D. Paquet, Baban Baliga, 

Validation of a COTS EHM Solution for the JSF Program, Aerospace 
Conference, IEEE 2006, ISBN: 0-7803-9546-8 

 
[22] TEAMS Hompage, http://www.teamqsi.com/KB.html, Accessible: 2007-11-

28 
 
[23] Kevin Cavanaugh, An Integrated Diagnostics Virtual Test Bench for Life 

Cycle Support, Proceedings of IEEE Aerospace Conference, Big Sky, 
Montana, 2001 

 
[24] TEAMS 9.x Manual, Section 2.3.3 
 
[25] IEEE Std 1232-2002, IEEE Standard for Artificial Intelligence Exchange 

and Service Tie to All Test Environments (AI-ESTATE), 2002 
 
[26] Peter Struss, Oskar Dressler, ”Physical negation”- Integrating Fault Models 

into the General Diagnostic Engine, in Readings in model-based diagnosis, 

editors Walter Hamscher, Luca Console, Johan de Kleer, pages 153-158, 
1992 

 
[27] John W. Sheppard, Timothy J. Wilmering, Recent Advances in IEEE 

Standards for Diagnosis and Diagnostic Maturation, 2006 IEEE Aerospace 
Conference, 2006 

 
[28] Daniel Andersson, Patrik Sköld, Evaluation of a diagnostic tool for use 

during system development and operation, 2007 Linköping University, 
Department of Electrical Engineering, Master thesis number: 2007-3916 

 
[29] E-mail conversation with Oskar Dressler, OCC’M, 2007-10-16 



7 - References 

 

 

89 

 
[30] Ian Gilfillan, Introduction to Relational Databases, 2002 DatabaseJournal, 

http://www.databasejournal.com/sqletc/article.php/26861_1469521_1, 
Accessible 2007-01-14 

 
[31] E-mail conversation with Oskar Dressler, OCC’M 2007-10-24 
 
[32] Peter Struss, Oskar Dressler, A toolbox integrating model-based 

diagnosability analysis and automated generation of diagnostics, 
Proceedings of the 14th International Workshop on Principles of Diagnosis 
(DX'03) 2003 

 
[33] Srdan Bjelic, Sofie Lindberg, Model Based Reasoning from a Vehicle 

Perspective - Evaluation of the Software Tools Raz’r and Rodon, 2007 
Chalmers University of Technology, Department of Signals and Systems, 
Master thesis number: Ex007/2007 

 
[34] http://diagnostician.vsecorp.com/VSE%20Corporation%20-

%20Diagnostician%20Introduction.htm 
 Accessible 2008-01-21 
 
[35] TEAMS Homepage, http://www.teamqsi.com/TEAMS.html, Accessible 

2008-01-22 
 
[36] TEAMS Homepage, http://www.teamqsi.com/RT.html, Accessible 2008-01-

22  
 
[37] TEAMS Homepage, http://www.teamqsi.com/RDS.html, Accessible 2008-

01-22 
 
[38] TEAMS Homepage, http://www.teamqsi.com/TEAMATE.html, Accessible 

2008-01-22 
 
[39] http://ic.arc.nasa.gov/projects/L2/doc//, Accessible 2008-01-22 
 
[40] DSI Homepage, 

 http://www.dsiintl.com/WebLogic/Products.aspx?Page=eXpress/WhatIsExp
ress.ascx, Accessible 2008-01-23 

 
[41] DSI Homepage, 

 http://www.dsiintl.com/WebLogic/Products.aspx?Page=eXpress/HowDoesIt
Work.ascx, Accessible 2008-01-23 

 



7 - References 

 

 

90 

[42]
 http://www.aerospaceonline.com/Content/ProductShowcase/product.asp?Do
cID=c97261c5-d115-11d4-8c88-009027de0829&VNETCOOKIE=NO, 
 Accessible 2008-01-25 

 
[43] Animated tutorial: DFT Feedback on Model, 

http://www.teamqsi.com/teams/demopage/DFT_Feedback_On_Model_view
let/DFT_Feedback_On_Model_viewlet_swf.html 

 Accessible 2008-01-25. 
 
[44] TEAMS 9.X Manual, Section 2.2.1 
 
[45] Somnath Deb, Sudipto Ghoshal, Amit Mathur, Roshan Shrestha and Krishna 

R. Pattipati, Multisignal Modelling for Diagnosis, FMECA, and Reliability, 
Proceedings of IEEE SMC 1998 

 
[46] Eric Gould, Danver Hartop, Erick Lee, Ion A. Neag, Mark Wilson, DiagML 

- An Interoperability Platform for Test and Diagnostics Software, 
AUTOTESTCON Proceedings, 2002 

 
[47] eXpress Online Help, Section: Importing: Overview 
 
[48] eXpress Online Help, Section: Design Reports – Spreadsheet Topology 

Export 
 
[49] eXpress Online Help, Section: Data Source Administration  - Spreadsheet 

Topology Import 
 
[50] Claudia Picardi, Luca Console, Frederic Berger, Jan Breeman, Tony 

Kanakis, Jeroen Moelands,, Stephan Collas, Emmanuel Arbaretier, Nino De 
Domenico, Ermanno Girardelli, Oskar Dressler, Peter Struss, Benjamin 
Zilbermann, AUTAS: a tool for supporting FMECA generation in aeronautic 

systems, Proceeding of the 16th European Conference on Artificial 
Intelligence 2004 

 
[51] E-mail conversation with Oskar Dressler, OCC’M, 2007-12-03 
 
[52] DSI Homepage, http://www.dsiintl.com/kb/default.aspx, Accessible 2008-

01-31 
 
[53] DSI Homepage, 

 http://www.dsiintl.com/WebLogic/Products.aspx?Page=EDAImportModule
_new.ascx, Accessible 2008-01-31 

 
[54] Amit Mathur, Sudipto Ghoshal, Deepak Haste, Charles Domagala, Roshan 

Shrestha, Venkatesulu Malepati, Krishna Pattipati, An Integrated Support 

System for Rotorcraft Health Management and Maintenance, IEEE 
Aerospace Conference Proceedings 2000 

 



7 - References 

 

 

91 

[55] DSI Homepage,
 http://www.dsiintl.com/WebLogic/Products.aspx?Page=eXpress/SensorOpti
mization.ascx, Accessible 2008-02-10 

 
[56] DSI Homepage,

 http://www.dsiintl.com/WebLogic/Products.aspx?Page=DiagnosticModule.a
scx, Accessible 2008-02-10 

 
[57] Personal reference at DSI 
 
[58] DSI Homepage,

 http://www.dsiintl.com/WebLogic/Products.aspx?Page=eXpress/MultiDisci
plineSupport.ascx,  Accessible 2008-02-10 

 
[59] Personal reference at OCC’M 
 
[60] Mattias Nyberg, Erik Frisk, Model Based Diagnosis of Technical Processes, 

Linköping, 2006 

 
[61] E-mail conversation with Oskar Dressler, 2007-10-22 
 
[62] E-mail conversation with Oskar Dressler, 2007-11-13 
 
[63] Sudipto Ghoshal, Somnath Deb, Implementation Strategy for AI-ESTATE 

compliance in the Remote Diagnosis Server (RDS) framework, 
AUTOTESTCON Proceedings, 2001. IEEE Systems Readiness Technology 
Conference, 2001 

 
[64] TEAMS 9.x Manual, Section 1.4 
 
[65] http://www.dsiintl.com/Resources/Brochures/eXpressFeatures.pdf, 

 Accessible 2008-02-18 
 
[66] eXpress Online Help, Section: Fault Isolation Report : Options Dialog 
 
[67] eXpress Online Help, Section: Tests - Overview 
 
[68] QSI Homepage, 

 http://www.teamqsi.com/teams/demopage/Diagnostic_Tree_viewlet/Diagno
stic_Tree_viewlet_swf.html, Accessible 2008-02-22 

 
[69] eXpress Online Help, Section: Diagnostic Test Selection Criteria - 

Diagnostic Algorithms 
 
[70] http://www.w3schools.com/schema/default.asp, Accessible 2008-02-25 
 
[71] www.ne.se, VHDL. Nationalencyklopedin. 2007. Nationalencyklopedins 

internettjänst, http://www.ne.se/jsp/search/article.jsp?i_art_id=342037 (In 
Swedish) Accessible: 2008-02-27 

 



7 - References 

 

 

92 

[72] http://www.w3schools.com/schema/schema_howto.asp, Accessible 2008-03-
05 

 
[73] Military Standard, Procedures for Performing a Failure Mode, Effects and 

Criticality Analysis, MIL-STD-1629A, 24 NOVEMBER 1980 
 
[74] Amit Mathur, Somnath Deb, and Krishna R Pattipati, Modeling and Real-

Time Diagnostics in TEAMS-RT, Proceedings of the American Control 
Conference, Philadelphia, Pennsylvania, June 1998  

 

[75]  Lennart Ljung, Torkel Glad, Modellbygge och simulering, Lund 2004 
 

[76]  Nolan, M., Giordano, J.P., Use of adaptive model-based reasoning for 

embedded diagnostics andredundancy management for fault tolerant 

systems, AUTOTESTCON '97 IEEE Autotestcon Proceedings, 1997



 

93 

Appendix A - Search word list 

To ease and structure the search for suitable alternatives a list of search words was 
constructed: 
 
AI 
aircraft  
aviation 
Bayesian networks 
Diagnostics 
failure 
fault 
FDI (Fault detection and isolation) 
FMEA 
FMECA 
health management system 
health monitoring 
isolation 
logic 
Model based diagnostics 
Model Based Reasoning 
on-board diagnostics 
prognostics 
real-time diagnostics 
Software 
Tool 
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Appendix B - Found tools 

 
Here follows a list of the tools found in the search. First the name of the product is 
listed, then the name of the company supplying the software, next the foremost 
demand in 3.4.X which was not met and last a short comment of the tools is supplied. 
 

Product name Company name Foremost 
demand 
not met 
3.4.X 

Comment 

ACAMS Arinc 3 Not enough information. 
Adams MCS Software 1 No direct affiliation with 

diagnostics. 
AirMan Airbus 1 Focused on air lines operating 

airbus planes 
Autosoft Mecel 3 Did not answer e-mail enquiry. 

BayesiaLab Bayesia 1 Not specialized in diagnostics. 

CDG Boeing 1 Not a diagnostics tool 

Dexter Macsea 1 Specialized in marine use. 

Diagnostic 
Profiler/Diagnostician 

VSE 3 Not enough information. 

DSI Express DSI Chosen  

DTOOL/CNETS Adnan 
Darwiche/Rockwell 

3 Not enough information. The 
tools had been sold and their 
whereabouts were not known by 
previous owner. 

FOCA Simauthor 3 Program to simulate flights from 
recorded data. Mostly usable to 
evaluate pilots. 

G2 Gensym 5 No clear overall solution. 

Goodrich Vehicle Health 
Management System 

3 Demands hardware and other 
software from Goodrich to 
operate 

Hugin Expert Hugin Expert 1 Not specialized in diagnostics. 

HUMS GE 2 Includes hardware. 
IHUMS Meggit Avionics 2 Hardware based 

i-Trend / i.Predict / 
ICEMS 

Scientific Monitoring inc 1 Provides only web based tools 
for diagnostics.  

Livingstone 2 NASA 4 A research project rather than a 
product. 

Maintenix Mxi Technologies 3 Handles the logistics connected 
to maintenance.  

Matlab/Simulink Mathworks 1 Not specialized in diagnostics. 

Model Wizard Integrated systems 
diagnostics 

1 Deals with finance. 

Numerous products Vector 4 Do not mention a specific 
product. 

Numerous products Impact technology 5 No clear overall solution. 



 

95 

Numerous products IAC 2 Includes hardware. 

PM2TM Prime Photonics 3 Not enough information. 

Raz'r OCC'M Chosen  

Rodon Sörman 7 There already is a report written 
on Rodon. 

SCORE DDC-I 1 Is a software development tool 
rather than a diagnostic tool. 

Sentient Situation 
Awareness  

Management Sciences Inc. 3 Shortage of information and they 
did also have some hardware. 

SFIM ACMS GSE   
&   AGS 

Sagem Avionics 3 Not enough information 

Shield mm Smartsignal 1 Deals with data mining rather 
then diagnostics 

SIDIS Siemens 3 Did not reply to e-mail enquiry. 

Spotlight Casebank 6 Stores cases and searches 
through a data base of them to 
recognize symptoms. 

TEAMS Qualtech Systems Chosen  
Unspecified name MTC Technologies 4 Do not mention a specific 

product. 
Unspecified name Foster Miller 4 Do not mention a specific 

product. 
Unspecified name Interface & Control 

Systems Inc 
5 No clear overall solution. 

Unspecified name TechnoSciences 4 Works with predictive 
maintenance operations 
scheduling, modelling, and 
control design of engineering 
systems but does not mention a 
specific product. 

VPS-Micro VEXTEC 1 Diagnostics for fatigue in 
materials. 



 

96 

Appendix C - Sample Systems 

 
Electric circuit 
 

 
 
A light circuit with the observations: 
Light 1 is lit, light 2 is lit, measured voltage, measured current, and wanted switch 
position. 
 
Possible faults:  

• One or both lights are broken 

• Bias fault in the voltage meter 

• The resistance is short-circuited  or cut 

• Switch stuck open or closed 
 
Hidden faults (e.g. one can’t tell if L2 is broken when the switch is stuck open) should 
be indicated if possible. Multiple faults should be detected and isolated if possible. 
 
Air intake : Continuous system with feedback  

 
 
Modified model of an air intake where one measures p2 and controls alpha. We want 

to control p1 trough the feedback )(1 αFm =&  where )(αF is known and 





∈

2
,0
π

α  

where 0=α  represents a completely closed intake. The sensor has a white noise 
disturbance.  
 
Possible faults: 

• Leakage in V1, )( 21 ppKml −=&  where lm& is the mass flow through the 

leakage hole 

• Sensor fault, yfpy += 2  where yf  is a constant 

• Actuator fault, the throttle can get stuck in some position 
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Polybox 
 

 
 
”Classic” polybox, should be modelled both with c known and c unknown.  a, b, d, e, 
f and g are known. Faults can occur in the multipliers and in the adders but are either 
working or A-short-circuit (output = port A of the inputs) or B-short-circuit (output = 
port B of the inputs). Multiple faults should be handled if possible. 


