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Abstract
The automotive industry is required to deal with increasingly stringent legislation
for greenhouse gases. Hybrid Electric Vehicles, HEV, are gaining acceptance as the
future path of lower emissions and fuel consumption. The increased complexity
of multiple prime movers demand more advanced control systems, where future
driving conditions also becomes interesting. For a plug-in Hybrid Electric Vehicle,
PIHEV, it is important to utilize the comparatively inexpensive electric energy
before the driving cycle is complete, this for minimize the cost of the driving cycle,
since the battery in a PIHEV can be charged from the grid. A strategy with length
information of the driving cycle from a global positioning system, GPS, could
reduce the cost of driving. This by starting to blend the electric energy with fuel
earlier, a strategy called blended driving accomplish this by distribute the electric
energy, that is charged externally, with fuel over the driving cycle, and also ensure
that the battery’s minimum level reaches before the driving cycle is finished. A
strategy called Charge Depleting Charge Sustaining, CDCS, does not need length
information. This strategy first depletes the battery to a minimum State of Charge,
SOC, and after this engages the engine to maintain the SOC at this level. In this
thesis, a variable SOC reference is developed, which is dependent on knowledge
about the cycle’s length and the current length the vehicle has driven in the cycle.
With assistance of a variable SOC reference, is a blended strategy realized. This
is used to minimize the cost of a driving cycle. A comparison between the blended
strategy and the CDCS strategy was done, where the CDCS strategy uses a fixed
SOC reference. During simulation is the usage of fuel minimized; and the blended
strategy decreases the cost of the driving missions compared to the CDCS strategy.
To solve the energy management problem is a model predictive control used. The
designed control system follows the driving cycles, is charge sustaining and solves
the energy management problem during simulation. The system also handles
moderate model errors.

Sammanfattning
Fordonsindustrin måste hantera allt strängare lagkrav mot utsläpp av emissio-
ner och växthusgaser. Hybridfordon har börjat betraktas som den framtida vägen
för att ytterligare minska utsläpp och användning av fossila bränslen. Den ökade
komplexiteten från flera olika motorer kräver mera avancerade styrsystem. Be-
gränsningar från motorernas energikällor gör att framtida förhållanden är viktiga
att estimera. För plug-in hybridfordon, PIHEV, är det viktigt att använda den
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jämförelsevis billiga elektriska energin innan fordonet har nått fram till slutdes-
tinationen. Batteriets nuvarande energimängd mäts i dess State of Charge, SOC.
Genom att utnyttja information om hur långt det är till slutdestinationen från ett
Global Positioning System, GPS, blandar styrsystemet den elektriska energin med
bränsle från början, detta kallas för blandad körning. En strategi som inte har
tillgång till hur långt fordonet ska köras kallas Charge Depleting Charge Sustai-
ning, CDCS. Denna strategi använder först energin från batteriet, för att sedan
börja använda förbränningsmotorn när SOC:s miniminivå har nåtts. Strategin att
använda GPS informationen är jämförd med en strategi som inte har tillgång till
information om körcykelns längd. Blandad körning använder en variabel SOC re-
ferens, till skillnad från CDCS strategin som använder sig av en konstant referens
på SOC:s miniminivå. Den variabla SOC referensen beror på hur långt fordonet
har kört av den totala körsträckan, med hjälp av denna realiseras en blandad kör-
ning. Från simuleringarna visade det sig att blandad körning gav minskad kostnad
för de simulerade körcyklerna jämfört med en CDCS strategi. En modellbaserad
prediktionsreglering används för att lösa energifördelningsproblemet. Styrsystemet
följer körcykler och löser energifördelningsproblemet för de olika drivkällorna un-
der simuleringarna. Styrsystemet hanterar även måttliga modellfel.
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Chapter 1

Introduction

This master thesis project was carried out at Infineon Automotive Electronics Joint
Lab, State Key Lab of Engines, Tianjin University. The objective of the thesis is
to design a control strategy, that aims to handle the energy management problem
for a series-parallel plug-in hybrid electric vehicle. The controller are assisted with
a global positioning system.

1.1 Background
Environmental impact from vehicles has recently been under strong debate, de-
mands from customers and politicians urge the automotive industry to take respon-
sibility for pollutions and greenhouse gases. Sustainable and less energy consuming
methods of travel are going to be important for the future automotive manufac-
turers. A hybridization of an electrical and a conventional vehicle increases pos-
sibilities of a higher overall efficiency, compared to a conventional vehicle. The
hybrid electric vehicle is called HEV, and the plug-in HEV, PIHEV. The PIHEV
can charge the battery from the grid. The extra energy source provides electric
energy, which compared with energy from fuel is considered relatively inexpensive
and localy lower emissions. To fully utilize the benefits of the PIHEV, the control
system is required to:

• Optimize use of cheap energy.

• Optimize drive-train, motor, generator, engine and batteries overall effi-
ciency.

• Minimize the use of fuel.

Conventional gasoline engines have a peak efficiency ≈ 37%. In regular driving,
most driving is made at part-load, this contributes to a low overall efficiency ≈
17%, see [6]. The electric motor has a higher part-load efficiency, ≈ 90%, and
also a higher peak efficiency, ≈ 94%. Through hybridization, this provides a great
potential of improving the overall efficiency of a vehicle.

1



2 Introduction

1.2 Outline
In chapter 2 related research is discussed and the problem formulation is defined
in chapter 3. Aspects of using a model predictive control system; as well aspects
of utilizing a global positioning system, GPS, are also discussed. The chapter 4
describes the architecture of different hybrid electric vehicle systems. A system
model and supervisory control system is designed in chapters 5 and 6, the results
and conclusions is presented in chapters 7 and 8, where ideas of future work also
is presented.



Chapter 2

Related Research

Control system for HEV’s can be divided into two main groups, one is called op-
timal controller, and the other is rule-based controller. The rule-based controller
uses rules that are based on experience and engineering judgement. In this thesis
a controller that is based on an optimal control strategy is developed.

The optimal controller is based on finding the optimal control law based on a
certain criterion. For HEV’s, the control law will depend on the driving cycle.
Therefore to find the optimal control for a driving cycle, the entire cycle needs to
be known. This is referred to as finding the global optimum. The equation (2.1)
describes the cost function that are minimized, and ~u denotes the control variable.
The end-time of the driving cycle is denoted tend and the function f(q) is the
cost associated with the electric energy usage. The energy level of the battery is
described by its state of charge, denoted as q~(u(t)), where one is full and zero is a
battery that is completely depleted.

Jcost = min
~u

tend∫
0

[
ṁfuel

(
~u(t)

)
+ f

(
q(~u(t))

)]
dt (2.1)

The equation requires that information about the future driving mission is avail-
able; naturally this causes issues with implementation, due to difficulties of predict-
ing the future driving conditions. The more frequent use of a GPS, can overcome
some of these shortcomings. Further it provides the possibility to come closer to
the global optimum of the entire driving cycle. By using GPS to predict the future
route, future power demands can be estimated and utilized to improve the fuel
economy.

3



4 Related Research

Figure 2.1. All possible costs over a finite time are evaluated to find the sequence that
have the smallest total cost. Jn is representing the cost at time step n, depending on
what the control variable is selected to, where ~un is the control variable at time step n.

2.1 Dynamic Programming
This section only presents the main ideas of Dynamic Programming, called DP.
In [6] two types are presented, stochastic and deterministic. A discretization of
equation (2.1) is used for both of the strategies. The equation (2.1) is first made
discrete where the optimal solution is accurate to grid resolution.

2.1.1 Deterministic Dynamic Programming
Deterministic Dynamic Programming, called DDP, assumes that the disturbance
is known in advance. Usage of this algorithm requires that the whole driving cycle
is known, and all conditions for the whole cycle is known. This can then give
a solution that is finding the global optimum, with a accuracy to discretization
resolution. This method is often used as benchmark to compare other developed
controllers because it possibilities of finding the global optimum, [2] and [8]. The
constraints are enforced by assigning all violations with an infinite cost. In figure
2.1 a multistage decision problem and the optimal sequence of control variables,
~u, is shown. This algorithm is based on that all possible combination is tested to
find the minimal cost that an optimal control gives.

2.1.2 Stochastic Dynamic Programming
The Stochastic Dynamic Programming, SPD, assumes that the disturbance is a
Markov process, i.e. the probability distribution of the disturbance is not depend-
ing on the previous sample. For SDP the probability function for the stochastic
variables is required to be known, this variable could be the required torque or
power that is needed to follow the driver’s demand, velocity or acceleration. This
requires information about the future driving conditions. In [7] SDP is used to
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investigate what kind of information that is important. The topography showed
to be most important, and for vehicles with higher hybridization, the position
in the driving cycle is more important than for a vehicle with lower degree of
hybridization.

2.2 ECMS and A-ECMS
Equivalent consumption minimization strategy, ECMS, is based on that a cost
function consisting of fuel and the fuel equivalent of battery energy is minimized.
The weighting variable, σ, is used to compare energy from fuel with energy from
battery. The algorithm is using a cost function similar to equation (2.2).

Jcost = Pe

(
~u(t)

)
+ σPbatt

(
~u(t)

)
(2.2)

In [2] and [8] a developed ECMS controller where using adaption of the weighting
factor to maintain charge sustenance for the battery. The adaption uses a variable
weighting factor that are between a factor that is favoring charging the battery and
a factor that is favoring discharging the battery. This is called adaptive equivalent
consumption minimization strategy, A-ECMS, and solved the problem when an
ECMS strategy is not charge sustaining.

2.3 MPC
Model predictive control, MPC, can utilize different methods of solving the opti-
mization problem. By using a model of the system, future states can be predicted.
In [4] Quadratic Programming, QP, is used for solving the optimization problem.

Figure 2.2. The plant model is used to predict future states as a function of the control
variable with assumption of future torque’s demands from the driver. The control variable
is denoted ~u and the states as ~x. The variables T 1

d and T 2
d is showing different assumption

of future torque’s demands.

Discretization and linearization is made to be able to minimize the nonlinear and
continuous fuel consumption function. In the article it is assumed that the driver’s
torque’s demands decreases during the prediction time. The figure 2.2 is illustrat-
ing two different assumption of the driver’s torque demands. T 1

d assumes that
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the driver’s demanded torque is constant during the prediction horizon, and T 2
d

assumes that it is decreasing. In this article rules depending on the magnitude
of the torque’s demands from the driver is used to modeling the driver’s torque
demands over the prediction horizon. A substantial amount of the ideas in this
thesis originates from this article.

DP as optimization algorithm, with model predictive control, is used in [1]. In
this article, conversion from a model’s time-dependent to route-dependent is pre-
sented. A GPS is used to predict future driving conditions; this could lead to
improved fuel economy compared to not using any information from a GPS. In
the article knowledge of topography is known, and assumption of a constant vehi-
cle speed during the prediction horizon, is used to predict future torque’s demands
from the driver.

2.4 Blended Vs. CDCS

Figure 2.3. Blended driving is the dashed line and the Charge Depleting Charge Sus-
taining, CDCS, is the solid line. The grey area is representing the All Electric Range,
AER.

The relative inexpensive energy from the battery is required to be used as much
as possible to minimize the cost to driving the vehicle. The batteries energy level
is described by its state of charge, SOC. This can be accomplished with two strate-
gies, both is shown in figure 2.3. The gray area shows the All Electric Range, AER,
which is the length that vehicle can drive on exclusively using electric energy. A
strategy that is called Charge Depleting Charge Sustaining strategy, called CDCS
strategy, uses all the electrical energy until the battery reaches the minimum level
of SOC, before it begins to utilize energy from the fuel. The other strategy has
knowledge about the mission’s length and is using energy from fuel earlier than the
CDCS strategy. This strategy is called blended driving and has slower depletion
of energy in the battery. In [10] is it shown, that from the start of a driving cycle,
blending the use of energy from the battery, with the energy from the fuel, can
decrease the total cost of a driving cycle. Blended strategy requires knowledge of
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the cycle’s length, which can be realized with a GPS. The developed strategy in
[10], is using SDP to find the optimal control sequence. Length information of the
cycle is modeled as a stochastic variable and the knowledge of the cycle’s length
resulted in that the SOC depletes slower. It is also shown that a shorter cycle’s
length than the actual cycle length did not cause a higher cost.

2.5 Ideas for this thesis
In [7] and [1] is it shown that knowledge of position in a driving cycle can decrease
the fuel consumption, therefore knowledge of the total length and the current po-
sition of the driving cycle is known in this work. In [2], issues of robustness for
an ECMS strategy require an adaptive weighting factor to maintain charge suste-
nances. In [1] the weighting factor is adjusted depending on the torque’s demands
from the driver. In this thesis a constant weighting factor for all conditions is used,
but an adaptive weighting factor would probably give better charge sustenances
properties. Due to time limitation, this is not to consider. As in this article, this
thesis also use QP as optimization algorithm. According to [10], the blended strat-
egy gives a slower depletion of the SOC, to accomplish this, a variable reference
SOC are developed in this thesis. By using information of the cycle’s length and
current position, the variable reference SOC is linearly decreasing from the initial
value to the minimum SOC. This reference is used in the controller that penalizes
the deviation from the current SOC and the variable reference SOC.





Chapter 3

Problem formulation

The focus of this master thesis is to develop a supervisory control system that
solves the energy management problem and minimize the cost of a drive mission
with usage of GPS. The strategy used for control is called model predictive control,
MPC. The strategy should be charge sustaining and consider constraints. Charge
sustaining is defined as the batteries energy is maintained above a predefined
minimum level during the drive cycle. The strategy is evaluated with and without
information from a GPS. In this thesis no analysis of the emissions is done, nor is
it considered to be minimized in the control system.

3.1 Supervisory Control System

Figure 3.1. Demanded torque from the driver and the estimated states, if one exist,
are input signals to the controller.

The concept of a general MPC is illustrated in figure 3.1, the strategy can be
divided into four stages:

1. Sampling the estimated or measured states from the system.

2. The optimizer minimizing the cost function with constrains over a time pe-
riod. The optimization is made with an internal model, known as a plant
model.

9



10 Problem formulation

3. The first optimal control signal is applied on the system until new inputs are
available from the state estimator.

4. Return to step 1.

Future input signal from the state estimator and torque demands from the driver
are unknown, therefore a plant model is required. The complexity of this model
could be reduced to reduce computational efforts. The equation (3.1) describe a
discrete cost function over a time window Nc with the weighting factors w1 and
w2. The state of charge is denoted as q.

Jcost =
T0+Nc∑
k=T0

(
w1

∣∣∣∣∣∣∆mfuel[k]
∣∣∣∣∣∣2 + w2

∣∣∣∣∣∣q[k]− qref
∣∣∣∣∣∣2) (3.1)

Issues arising with an MPC controller are; selection of optimization algorithm,
sampling time, control horizon and predictive horizon. Note that the predicted
horizon can be longer than the horizon where the control output is calculated.

3.2 Utilization of GPS
A Global Positioning System assist the controller with information of the drive
mission. In [10] it is shown that blended driving might reduce the cost of the
driving if blended driving is encouraged by the controller. In the beginning of
the drive cycle the controller needs to restrict electric energy usage, otherwise the
motor will use all the availably energy from the battery. When the battery then
reaches the minimum level, it engages the engine and starts to run in CDCS mode.
Consequently there will not be any driving in blended mode, the solution will al-
most become trivial and no information from the GPS is required.

GPS systems already have functionality of duration and length of the driving
mission implemented, this information can then be provided to the controller.
The future demands from the driver and information of topography is, in this
thesis, considered unknown. The length of the mission can be regarded as reliable.
The influence of speed limitations, weather and traffic condition influence the time
information, time information is consequently regarded as uncertain.

3.3 Drive cycles and driver
A drive cycle is a standardized velocity profile used to objectively compare vehicles
fuel consumption and emission. Here the Federal Test Procedure - U.S standard
drive cycle, called FTP-75, the supplement drivecycle, SFTP-US06, and New Eu-
ropean Drive Cycle, called NEDC, are used to simulate a driving mission. The
figure 3.2 illustrate all the cycles. The SFTP-US06 is used to complement the
lack of highway driving in the FTP-75 cycle. Extending the presented cycles is
necessary, otherwise the electric range of the studied vehicle cover a significant
part of the the drive cycles, for FTP-75 ≈ 40% and NEDC ≈ 80%. Extensions
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Figure 3.2. The top illustrate the FTP-75 cycle, middle SFTP-US06 and the bottom
the NEDC drive cycle.

are made by repeating the cycles in arbitrary order. The extended cycles are
addressed in chapter 7. Various extensions will reflect the performance of the
controller in different circumstances, consequently those extended drive cycles can
provide insight on the controllers robustness and when blended driving is preferred.

Through a feedback signal the velocity profile is translated to a desired torque
out from the vehicle. From nonlinearities in the vehicles dynamic equation, large
velocity changes can with a linear PI-controller translate the required torque in-
correct. In the presented cycles, acceleration and deceleration should not impose
any issues, due to the relative slow velocity changes.





Chapter 4

Hybrid Electric Vehicles

The different HEV configurations are briefly presented in this chapter. Since there
are several variations of the presented configurations, the chapter aim is only to
give the reader a short overview. The text focus on full hybrids, less hybridized
vehicles is not considered in this chapter. The main advantages, that do not need
to apply for all configurations, are considered as:

1. Possibilities to recuperate kinetic energy.

2. Extra degree of freedom, due to the multiple prime movers, enables part-load
to be shifted to more efficient regions.

3. Downsized engine and motors co-operate to fulfill the maximum power de-
mands.

4. Reduce engines idle time, by only engaging the engine when necessary.

The PIHEV’s battery can be charged from the grid. For a HEV, the energy is
derived from fuel. Amount of energy in the battery is often measured with its
state of charge, SOC, which are dimensionless and is one for a full battery and
zero for empty battery.

4.1 Series Hybrid Electric Vehicles

Figure 4.1. The motor in this configuration is also working as an alternator, which
enables it to recuperate kinetic energy.

13
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A series HEV utilize the engine to extend the vehicles range, this enables
the engine to be designed for average power requirements. Since the engine is
decoupled from the drive-train, it can be utilized at a high efficiency region and
with low emissions. Minimized idle time is also possible by turning off and on
the engine. Series configuration demands that the motor is designed to fulfill
maximum power demands. The added weight and multiple energy conversions
might lead to lower overall efficiency of the drive train, in particular at highway
drive. In general the series architecture has advantages in urban and city driving.
Figure 4.1 illustrates the basic power path in a series HEV.

4.2 Parallel Hybrid Electric Vehicles

Figure 4.2. The figure is showing a full parallel hybrid architecture, where the engine
can provide traction power to the drive train.

Parallel configuration utilizes the engine and motor to co-operate to fulfill high
power demands. The parallel configuration in figure 4.2 can only charge the bat-
tery when the vehicle is moving.

Clearly this can pose issues, if the energy level in the battery does not permit
the motor to be engaged. For instance, SOC level is at minimum level, there-
fore the engine is required to deliver all the power. If the available power is less
than the required it results in that the desired power from the driver is not reached.

This configuration enables possibilities of minimized idle time, presuming that
the transmission allows the engine to be disengaged. Main advantage for parallel
hybrids is the possibilities of directly engage the engine to provide traction to the
vehicle, with no additional losses due to conversion to electricity.
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4.3 Series-parallel Hybrid Electric Vehicles

Figure 4.3. a) An configuration that make it possible to drive in electric mode, engine
only mode or a combination. b) An similar configuration as in this thesis, where the
architecture in this thesis allows the battery to be charged from the grid. The planetary
gear set is in the figure called PGS.

In the architecture in the figure 4.3 the generator can also operate as motor,
i.e. alternator. The planetary gear set, PGS, along with the generator, realize a
Electronically-controlled variable transmission, e-CVT, making it possible to freely
control the engines angular speed. Advantages from series and parallel hybrid can
with proper design both be utilized with a series-parallel configuration. This is pos-
sible since series-parallel HEV can work as series and parallel HEV. Series-parallel
is also referred to as split hybrid, dual-mode and combined HEV. Complexity,
added weight and increased development cost are the main disadvantages.

4.4 Plug-In Hybrid Electric Vehicles
All presented architecture can be equipped to charge the battery externally. The
HEV is then called plug-in hybrid electric vehicle, PIHEV. For these types, it is
important to utilize all the energy in the battery, since externally charged energy
often is inexpensive compared to the fuel.





Chapter 5

System Modeling

5.1 Overview

Figure 5.1. Dashed arrow represents data to the controller, solid arrows are power flows
and small solid arrows are desired torques.

Figure 5.1 illustrates the interaction between the different subsystems in the
HEV system. The components engine, motor and generator are controllable with
the torque demands. Signals that are available for the controller are SOC, vehicle
velocity, GPS data and angular velocity for engine, motor and generator.

5.2 Internal combustion engine
The model and parameters in this section are from [6], parameters are adjusted
to an engine with a volume of 1[dm3] instead of 0.71[dm3]. The engine’s volume
is decided by Tianjin University. An engine with 100% efficiency would produce

17
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a mean effective pressure of pmf from the burning mass. The chemical power is
then described by equation (5.1) and (5.2), substitution lead to the relationship
in equation (5.3).

Pc = pmfVd (5.1)

Pc = qlhvṁf (5.2)

pmf = qlhvṁf

Vd
(5.3)

Normalized angular velocity and torque is done with equation (5.4) and (5.5).

cm = ωeS

π
(5.4)

pme = TeπN

Vd
(5.5)

The equation (5.6) describe power losses derived from the Otto-cycle, i.e. ther-
modynamic cycle and mechanical friction losses. This is a general and simplified
approach, referred to as Willians line. This is used to estimate the fuel consump-
tion as a function of angular velocity and torque.

pme ≈ e(ce)pmf − pme0(ce) (5.6)

A first and second order adaption, as equation (5.7), is made for pme0(ωe) and
e(ωe) respectively. The data is estimated from figures in [6].

e(ce) = e0 + e1ω + e2ω
2 and pme0(ωe) = p0 + p1ω + p2ω

2 (5.7)

Willians lines equation and parameters are from [6]. By solving equation system
(5.6) with (5.3) the fuel consumption is given by (5.8).

ṁf = Vd
pme + pme0(cm)

qlhve(cm) (5.8)

Notation for engine
S Bore length of engine [m]
N Depending on engine, here four stroke N = 4
Vd Engine volume [m3]
Te Engine torque [Nm]
ωe Engine rotational velocity [rad/s]
cm Mean piston velocity [m/s]
pme Mean effective pressure [N/m2]
pme0 Mean effective pressure, mechanical losses [N/m2]
pi Adapted coefficient i = 1, 2, 3 [N/m2]
ei Adapted coefficient i = 1, 2, 3 [*]
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5.3 Motor and Generator
The efficiency, ηi, is describing the losses from the input power to the output
power, this is shown in equation (5.9) for the motor and generator. In [6] a similar
model is presented.

ηiPin,i = Pout,i = Tiωi (5.9)

Power that is required from motor and generator at a certain angular velocity and
torque then becomes:

Pin,i = Tiωi

ηi
i = m, g (5.10)

The electrical prime movers are alternators, i.e. can both work as generator and
motor. Values to ηi is provided from look -up tables.

Pin,i = Tiωiη
−sign(Ti)
i i = m, g (5.11)

Notation for motor and generator
ηi Motor and generator efficiency [*]
Ti Motor and generator torque [Nm]
ωi Motor and generator angular velocity [rad/s]

5.4 Battery

Figure 5.2. Battery is modeled as a resistive circuit with a voltage source.

The model in this section is from [6] and the parameters values are adapted to
a battery with a capacity of 6 [kWh]. The battery is modeled as an open circuit
with a voltage source in series with a resistance. Applying Kirchhoff’s voltage law,
defined as (5.12), the circuit in figure 5.2 results in (5.13).

0 =
n∑
i

Ui (5.12)
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0 = U(t) + Ur − Uoc = U(t) +RI(t)− Uoc (5.13)

Multiplying above equation with U , and using that P (t) = U(t)I(t), the quadratic
equation below is obtained. The power in/out of the system is determined by
auxiliary, motor and generator, P (t) = U(t)I(t) = Paux(t) + Pm(t) + Pg(t).

0 = U(t)2 +RU(t)I(t)− U(t)Uoc =⇒ U(t) =
Uoc −

√
U2

oc − 4RP (t)
2 (5.14)

The batteries energy level is often described with its state of charge, SOC. This is
the ratio of current and maximum electric charge that defines the dimensionless
variable q(t).

q(t) = Q(t)
Q0

with
{
Q̇(t) = −I(t) , discharging
Q̇(t) = −ηcI(t) , charging

(5.15)

Because no battery data is available, columbic losses during charging is disre-
garded, consequently ηc = 1. Assuming constant resistance in the circuit, the
equation (5.15) and with Ohm’s law, the voltage U , is re-written as: (5.16).

U(t) = RI(t) = −RdQ(t)
dt

= −RQ0
dq

dt
(5.16)

Inserting (5.16) in (5.13) yields:

dq

dt
= −

Uoc −
√
U2

oc − 4RP (t)
2RQ0

(5.17)

The fact that the Uoc depends on the SOC is not considered.
Battery
Q0 Maximum battery capacity [Ah]
R Battery resistance [Ω]
Uoc Voltage from voltage source [V]
U Voltage from voltage source [V]
Ur Voltage over resistance [V]
I Circuit current [A]
q State of charge, SOC [*]

5.5 Drive train
In this section, modeling of the dynamic parts is discussed, values of parameters
are both provided by Tianjin University and for the planetary gear set parameters
is from [4]. The resulting non-linear state space model is not presented. Due to the
complexity of the equation system, assistance of the software Maple is required.
A Simulink function called S-Function Builder is utilized to realize the nonlinear
state space model that is summarized in 5.5.4.
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Figure 5.3. A1 and A2 are planetary carrier and gears, B the sun, and C the ring.

5.5.1 Planetary gear set
This thesis project has hybrid architecture consistent with the first Toyota Hybrid
System, which also is found in Toyota Prius 1997-2003. Figure 5.3 illustrates the
planetary gear set, called PGS, where positive orientation is defined as clockwise.
The engine, torque coupler and generator shaft are connected to the planetary
carrier, ring and sun. Internal forces on the planetary gear is assumed as equation

Figure 5.4. Free body diagram of the mechanical parts of the PGS. From the right
in the figure are ring, sun and planetary carrier with the planetary gears shown. F is
denoting force, T torque and n radius.

(5.18). The planetary gear is also assumed massless. Further the PGS, is assumed
not to have any friction losses, it accordingly works as an ideal mechanic component
which distributes power. Euler moment law lead to relationship (5.19), (5.20) and
(5.21).

F = Fij = −Fji (5.18)

Jrω̇r = −Tr + nrF (5.19)

Jsω̇s = −Ts + nsF (5.20)

Jcω̇c = Tc − nrF − nsF (5.21)

Engine and generator connects to the planetary gear shaft and sun shaft. Genera-
tor torque is defined as negative compared to the rings rotation. A service brake is
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mounted on the shaft, leading to a brake torque Tb, occurs in the equation (5.22).

Jeω̇e = Te + Tb − Tc (5.22)

Jgω̇g = Ts − Tg (5.23)

Hence the engine and generator is direct connected to the planetary carrier and
sun, the angular velocity is consequently the same, i.e. ωe = ωc and ωg = ωs.
Eliminating the torque variables Ts and Tc with the relationship (5.22) and (5.23)
lead to (5.24) and (5.25).(

Je + Jc

)
ω̇e = Te + Tb − (nr + ns)F (5.24)(

Jg + Js

)
ω̇g = nsF − Tg (5.25)

5.5.2 Torque Coupler and final drive
Remaining work is to connect the ring shaft with the motor, torque coupler, final
drive and wheel. The figure 5.5 shows the shafts connections. Final drive is

Figure 5.5. Overview of the torque coupler and the final drive.

considered massless and identical ratio in the torque coupler is assumed, i.e. Rr =
Rcf = Rm. This further simplifies calculations.

ωw = −ifωcf (5.26)

ifTw = −Tcf (5.27)

ωr = −ωcf (5.28)

ωm = −ωcf (5.29)

Tm,out = Tm − Jmω̇m (5.30)

Jcf ω̇cf = −Tcf + Tm,out + Tr (5.31)
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Inserting (5.26)-(5.30) in (5.31) lead to the relationship (5.32) for the torque con-
verter and final drive. The torque converter is also assumed to be massless.

Jm

if
ω̇w = ifTw + Tm + Tr (5.32)

Further, Tr is eliminated by (5.19) and concludes in the final relationships below,
together with the longitudinal vehicle model (5.41), becoming the systems differ-
ential equation. The PGS components are always connected, which results in the
kinematic constrains in (5.36). This concludes in that the system has two degrees
of freedom, hence two states has to be controlled, the third state can not freely be
chosen.

(Jm + Jr)
if

ω̇w = ifTw + Tm + nrF (5.33)

(
Je + Jc

)
ω̇e = Te + Tb − (nr + ns)F (5.34)

(
Jg + Js

)
ω̇g = nsF − Tg (5.35)

nrωm + nsωg = (ns + nr)ωe (5.36)

To be consistent with section 5.5.3 the wheels angular velocity is also used in this
section. Thus, with ifωm = ωw the wheels angular velocity can be re-written to
the motors angular velocity.
Notation for torque coupler, final drive and PGS.
F Internal forces in PGS [N]
Jr Ring of PGSs inertia [kg m2]
Js Sun of PGSs inertia [kg m2]
Jc Carrier of PGSs inertia [kg m2]
Je Engine inertia [kg m2]
Jm Motor inertia [kg m2]
Jg Generator inertia [kg m2]
nr Inner diameter for the ring in PGSs [m]
ns Inner diameter for the sun in PGSs [m]
if Final drive ratio [*]
Tr Ring torque [Nm]
Ts Sun torque [Nm]
Tc Carrier torque [Nm]
Te Engine torque [Nm]
Tm Motor torque [Nm]
Tg Generator torque [Nm]
Tw Wheel torque [Nm]
Tcf Torque and final drive torque [Nm]
ωe Engine angular velocity [rad/s]
ωg Generator angular velocity [rad/s]
ωm Motor angular velocity [rad/s]



24 System Modeling

Figure 5.6. Only longitudinal forces are considered, which is referred to as a longitudinal
vehicle model.

5.5.3 Longitudinal vehicle model

The dynamic equation for the vehicle obtained with Euler’s first and second law.

Jw
dωw

dt
= Tw − rwFw (5.37)

mv
dvv

dt
= Fw − F (v) (5.38)

F (vv) = Fr(vv) + Fair(vv) + Fgrav (5.39)

vv = rwωw (5.40)

With the equation (5.37), (5.38), (5.39) and (5.40) becomes (5.41), which describe
the vehicle dynamics.(

mvr
2
w + Jw

)dωw

dt
= Tw − rw

(
Fr(v) + Fgrav + Fair(vv)

)
(5.41)

Subject to equation (5.42)-(5.44) from [12], with the assumption c1 = 0, the rolling
resistances force becomes a constant.

Fr(vv) = Fr = mvgcos(α)(c0 + c1v
2
v) = mvgcos(α)c0 (5.42)

Fair(vv) = 1
2ρaircdAfv

2
v (5.43)

Fgrav = mvgsin(α) (5.44)
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Notation for longitudinal vehicle model
Jw Wheel inertia [kg m2]
rw Wheel radii [m]
mv Vehicle mass [kg]
cd Vehicle drag coefficient [*]
Af Vehicle front area [m2]
ρair Air density [kg/m3]
g Standard gravity [N/kg]
c0 Rolling resistance coefficient [*]
c1 Rolling resistance coefficient [*]
Tw Wheel torque [Nm]
Fw Wheel force [N]
Fair Air resistance force [N]
Fgrav Graviton force [N]
Fr Rolling resistance force [N]
α Road inclination [rad]
vv Vehicle velocity [m/s]
ωw Wheel angular velocity [rad/s]

5.5.4 Dynamic Model
The complete powertrain model is then written as equation (5.45).(

ω̇m

ω̇e

)
=
(
amTm + aeTe + abTb + agTg + r1ωm

bmTm + beTe + bbTb + bgTg + r2ωm

)
(5.45)

The coefficients ai, bi and ri is lumped parameters from sections 5.5.1 -5.5.3.

5.6 Driver

Figure 5.7. A driver is realized by a feed-back PI-controller. Long dashed arrow is
current velocity from the vehicle and short dashed arrow is the velocity from the drive
cycle.

The torque sum of all prime movers should be equal to the desired torque
from the driver acting on the wheels. Due to the different gear ratio between the
engine, motor and generator, the coefficient obtained from the dynamic equation
determine the constraint that the controller is required to fulfill.

Tdriver = ~a~u = amTm + aeTe + abTb + agTg (5.46)
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The equation (5.46) describe driver’s demanded torque and that the controlled
variables, ~u, with the coefficient, ~a, requires to fulfill this demand. The coefficients
is obtained from the first row in the dynamic equation (5.45). These coefficients
describe the torque from engine, service brake, motor and generator impact on the
wheel.



Chapter 6

Supervisory Control System

Figure 6.1. The developed supervisory control system consists of two parts, one MPC
block and a low level block. Desired torques are solid arrows, long dashed arrows are
data and requested angular speed for the engine are the short dashed arrow.

The supervisory control system is divided in two parts, seen in figure 6.1. The
MPC block calculates the desired torque to engine, service brake and motor that
minimizes the utilization of fuel and divergence from SOC reference. The MPC
block provides the low level block with the desired angular speed of the engine.
Depending on the engine torque a rule based strategy send a reference angular
speed to the low level controller.

6.1 The plant model

~̇x =

 q̇
ṁf

ω̇m

 =

−
Uoc−
√

U2
oc−4(Pm(Tm,ωm)−Pg(Tg,ωg)+Paux)

2RQ0

Vd
pme(Te)+pme0(cm(ωe))

qlhve(cm(ωe))
aeTe + abTb + amTm + agTg + r1ωm

 (6.1)

Proceeding from the modeling in chapter 5, the non-linear state space model for
the states SOC, motor angular speed and the fuel mass are denoted as q, ωm and

27
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mf . The matrices in (6.2) are the variables that are used in this thesis. The
disturbance is denoted as ~v, the control variable as ~u and the states as ~x.

~x =

 q
mf

ωm

 , ~u =

Tm

Te

Tb

 , ~v =

Tg

ωg

ωe

 (6.2)

6.2 Model Predictive Control
6.2.1 Linearization
From the section 6.1 the model

~̇x =

 q̇
ṁf

ω̇m

 =

 f1(Tm, Tg, ωm, ωg)
f2(Te, ωe)

f3(Te, Tb, Tm, Tg, vv)

 (6.3)

The MPC block calculates the controlled variables, Tm, Te and Tb, as illustrated
in figure 6.1. With a first order Taylor series expansion a linear state space model
is obtained as (6.5). An example of a first order Taylor expansion with a arbitrary
parameter ξ is shown in (6.4).

f(ξ) ≈ f0(ξ0) + df(ξ0)
dξ0

(ξ − ξ0) (6.4)

The nonlinear state space approximation becomes:

~̇x(t) ≈ ~f0 +Ac (~x− ~x0) +Bc (~u− ~u0) + Ec (~v − ~v0) =

= Ac~x+Bc~u+ Ec~v + ~f0 −Ac~x0 +Bc~u0 + Ec~v0 =

= Ac~x(t) +Bc~u(t) + Ec~v(t) + F̃c

(6.5)

where:

~f0 =

 f1(ωm0, Tm0, Tg0, ωg0)
f2(ωe0, Te0, Tg0)

f3(Tm0, Te0, Tb0, Tg0, ωm0)

 , Ac =

0 0 ∂f1
∂ωm0

0 0 0
0 0 ∂f3

∂ωm0

 (6.6)

Bc =


∂f1

∂Tm0
0 0

0 ∂f2
∂Te0

0
∂f3

∂Tm0

∂f3
∂Te0

∂f3
∂Tb0

 , Ec =


∂f1

∂Tg0

∂f1
∂ωg0

0
0 0 ∂f2

∂ωe0
∂f3

∂Tg0
0 0

 (6.7)

6.2.2 Discretization
Realizing a controller requires a discrete state space model. Assuming the control
signal is constant between sampling, i.e. zero-order hold, the discrete system
matrices are obtained through (6.8).

Ad = eAcTs , Bd =
Ts∫
0

eAcTsBcdt , Ed =
Ts∫
0

eAcTsEcdt , F̃d =
Ts∫
0

eAcTs F̃cdt (6.8)
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Which results in:

~x[k + 1] = Ad~x[k] +Bd~u[k] + Ed~v[k] + F̃d (6.9)

The remaining problem of calculating the discrete matrices can be done with
(6.10). Further explanation is found in [3] and [9]. The usage of the S matrix is
done to simplify (6.8) to (6.11).

S =
Ts∫
0

eAcTsdt = ITs +Ac
T 2

s

2! +A2
c

T 3
s

3! + · · ·+Ak
c

T k+1
s

(k + 1)! (6.10)

Since the matrices Ac, Bc, Ec and F̃d are time independent they simply become
(6.11).

Ad = I +AcS , Bd = BcS , Ed = EcS and F̃d = F̃cS (6.11)

In the Matlab environment the discrete matrices are instead obtained by the com-
mand:
SYSD = C2D(SYSC,Ts,METHOD)
The relationship (6.10) and (6.11) has to be used if the Matlab command is not
available. The command is used with a zero-order hold method, since in this thesis
the Matlab command is available.

6.2.3 Augmented model
In order to remove the constant terms that occur due to linearization the model
is augmented. By subtracting the previous state from the current state, influence
of constant terms vanish.

∆~x[k + 1] = ~x[k + 1]− ~x[k]
∆~u[k] = ~u[k]− ~u[k − 1]
∆~v[k] = ~v[k]− ~v[k − 1]

(6.12)

∆~x[k + 1] = Ad∆~x[k] +Bd∆~u[k] + Ed∆~v[k] + F̃d − F̃d

= Ad∆~x[k] +Bd∆~u[k] + Ed∆~v[k] (6.13)

The SOC, with variable name q, is required to follow a reference, to make this
possible augmenting the state space model with an integrator is required. All the
states are measurable in the simulation environment. By renaming the variables
and matrices in equation (6.14) the final plant model is written as (6.15).

[
∆~x[k + 1]
~y[k + 1]

]
︸ ︷︷ ︸

= x[k+1]

=

= A︷ ︸︸ ︷[
Ad 0T

CAd I

] [
∆~x[k]
~y[k]

]
︸ ︷︷ ︸
= x[k]

+

= B︷ ︸︸ ︷[
Bd

CBd

]
∆~u[k]︸ ︷︷ ︸
= u[k]

+

= E︷ ︸︸ ︷[
Ed

CEd

]
∆~v[k]︸ ︷︷ ︸
= v[k]

(6.14)

~x[k + 1] = A~x[k] + B~u[k] + E~v[k]
~y[k] = C~x[k] (6.15)
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Notation of the implemented variables becomes:

~x[k] =


∆q[k]

∆mf [k]
∆ωm[k]
q[k]
mf [k]
ωm[k]

 , ~u[k] =

∆Tm[k]
∆Te[k]
∆Tb[k]

 , ~v[k] =

∆Tg[k]
∆ωg[k]
∆ωe[k]

 (6.16)

~y[k] =
(

∆mf [k]
q[k]

)
, ~r[k] =

(
0

qref [k]

)
(6.17)

6.2.4 Quadratic Programming

~utot =
tc∑

p=0
~up (6.18)

The control signal that is calculated in this section is added together, as shown
in equation (6.18), in order to obtain the desired torque from the engine, motor
and brake. As shown in equation (6.16), is ~u the increment of the torque. This
requires the usage of equation (6.18), to obtain the demanded torques. The tc is
the current time, ~up is the calculated signal at time p. This sum is calculated after
every time the algorithm is used.

Quadratic programming is selected to solve the optimization problem subject to
minimizing deviation from a reference. For each sample time, k, a general cost
function is expressed as (6.20), constraints as (6.21) subjected to a plant model as
(6.22). The weighting coefficients are written as (6.19). The Q2 is used to weight
the control variable, by wi, i = 3, 4, 5. By punishing ~u, jerky behavior can be
avoided from the engine and motor.

Q1 =
(
w1 0
0 w2

)
and Q2 =

w3 0 0
0 w4 0
0 0 w5

 (6.19)

min
~u
z(~u) = min

~u

T0+Np∑
k=T0

(
Q1

∣∣∣∣∣∣~y[k]− ~r[k]
∣∣∣∣∣∣2 +Q2

∣∣∣∣∣∣~u[k]
∣∣∣∣∣∣2) (6.20)

~γmin
u ≤Mu~u[k] ≤ ~γmax

u

~γmin
y ≤My~y[k] ≤ ~γmax

y

(6.21)

Subject to:
{
~x[k + 1] = A~x[k] + B~u[k] + E~v[k]
~y[k] = C~x[k] (6.22)

An example of a two step open loop predictor, accomplish with recursive use of
the plant model is shown in (6.23). This means that the first step of prediction is



6.2 Model Predictive Control 31

used for the second and both the first and second prediction is used in the third.
Therefore knowledge of the current states and the disturbances is needed to obtain
a system where the decision-variables control the future states. In this thesis the
disturbances are assumed to be constant over time.

~x[k + 1] =
~x[k + 2] =

=

A~x[k] + B~u[k] + E~v[k]
A~x[k + 1] + B~u[k + 1] + E~v[k + 1] =
A2~x[k] + AB~u[k] + B~u[k + 1] + AE~v[k] + E~v[k + 1]

(6.23)
Utilizing the special form above, a general prediction matrix of Np steps is ac-
complished in (6.24). The ideas of the equations are from [3]. The matrices are
described in equation (6.25)-(6.28).

X =

 ~x[k]
...

~x[k +Nc − 1]

 = A~x[k] + BU + EV (6.24)

C =

 C 0 . . . 0
0 C . . . 0
...

. . .
. . .

...
0 . . . 0 C

 , A =


I
A
A2

...
ANp−1B

 (6.25)

B =


0 0 0 . . . 0
B 0 0 . . . 0

AB B 0 . . .
...

...
. . .

. . .
. . . 0

ANp−2B . . . AB 0 0

 , E =


0 0 0 . . . 0
E 0 0 . . . 0

AE E 0 . . .
...

...
. . .

. . .
. . . 0

ANp−2E . . . AE 0 0

 (6.26)

This with the vectors:

R =

 ~r[k]
...

~r[k +Nc]

 , Y =

 ~y[k]
...

~y[k +Nc]

 (6.27)

X =

 ~x[k + 1]
...

~x[k +Nc]

 , U =

 ~u[k]
...

~u[k +Nc]

 , V =

 ~v[k]
...

~v[k +Nc]

 (6.28)

Further the weighting factors are written as (6.29), which makes it possible to
write the cost function with the vectors X and U instead of a sum, (6.30).

Q1 =

 Q1 0 . . . 0
0 Q1 . . . 0
...

. . .
. . .

...
0 . . . 0 Q1

 , Q2 =

 Q2 0 . . . 0
0 Q2 . . . 0
...

. . .
. . .

...
0 . . . 0 Q2

 (6.29)

min
~u
z(~u) = (Y −R)T Q1 (Y −R) + UTQ2U (6.30)
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Y = CX = C (Ax[k] + BU + EV ) (6.31)
With (6.30) and (6.31) yields:

min
~u
z(~u) =

(
C
(
Ax[k]+BU+EV

)
−R

)T

Q1

(
C (Ax[k] + BU + EV )−R

)
+UTQ2U

(6.32)
By re-formulating the constraints and equation (6.32), the standard quadratic
programming form is obtained in the equations (6.33) and (6.34). By formulating
Y in terms of U an optimization algorithm can be used to find the optimum
values for U . Interesting to note is that the constraints is linear, this means that
re-formulation of constraints on Y can be done to fit the framework in section
6.2.6. The constant term that occurs can be removed without effect on the optimal
solution.

min
U

1
2U

THU + fTU (6.33)

Γmin
u ≤MuU ≤ Γmax

u

Γmin
y ≤MyY (U) ≤ Γmax

y

(6.34)

6.2.5 Optimization - Active Set

Figure 6.2. The two dashed lines illustrating two constrains, x∗ is the optimal value
and the solid lines illustrate the topographic of the cost function. The gray area is where
no permitted solution can be found. x1 and x2 is restricted to only positive values.

The QP Problem is defined as in previous section; the following section de-
scribes the algorithm that solves the optimization problem. The figure 6.2 is a
geometric illustration of a QP problem. Proceeding from the MPC formulation,
and re-writing the problem into only less than inequality, the optimization problem
then becomes as (6.35) and (6.36).

min
U

1
2U

THU + fTU (6.35)
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MU ≤ Γ (6.36)

Necessary condition for a non-linear problem to be optimal is the Karush - Kuhn
-Tucker conditions, also called KKT condition. With above problem formulation
the KKT condition becomes:

HU + fT +MTλ = 0
MU − Γ ≤ 0

λT (MU − Γ) = 0
λ ≤ 0

(6.37)

The active constrains, satisfyingMU −Γ = 0 for the j:th row, is divided into two
sets, the problem becomes (6.38)- (6.42).

HU + fT +
∑

j∈Sact

λjMT
j = 0 (6.38)

MjU − Γj ≤ 0 j /∈ Sact (6.39)

MjU − Γj = 0 j ∈ Sact (6.40)

λ < 0 j /∈ Sact (6.41)

λ = 0 j ∈ Sact (6.42)

Assuming the active set of constraints is known, a closed solution becomes (6.43)
and (6.44) which give the optimal solution.

λact = −
(
MactH−1MT

act

)−1 (Γact +MactH−1f
)

(6.43)

U∗ = −H−1 (f +MT
actλact

)
(6.44)

6.2.6 Optimization - Hildreth’s procedure
Finding the active constraints is done with an active set algorithm called Hildreth’s
Quadratic Programming Procedure. This method is used due its relatively simple
structure and no matrix inversion. The idea of Hildreth’s procedure is to identify
the constraints that are not active with the dual problem, proceeding with search-
ing on the not active constraints to find a λ that gives the optimal solution. With
this vector, which is the Lagrange multiplier called λ, the optimal solution is given
by (6.43). The algorithm is only used if there are active constraints, if no con-
straints are violated, finding the optimal solution can be solved by a least squares
method. To guarantee that an optimum is found the problems active constraints
have to satisfy:

• Linearly independent.

• Number of active constrains has to be fewer than the optimization variables.
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The selection of the control, disturbance and state variables as (6.2) makes that
linear independence is accomplished. Number of active constraints is an issue, but
the method is still used because the simplicity of Hildreth’s procedure. The effect
of a violation of this criteria are shown in chapter 7.1, and also how the control
variables is affected. Hence Hildreth’s procedure is a dual and iterative method,
a violation of above requirements will lead to a near-optimal solution. From [11]
is the origin of the structures and motivation of utilizing this procedure origin.
The vector components in λ are only permitted to vary with one component at
each time, λ is defined positive in the direction of the optimal solution. Focusing
only on one component, i.e. λj , adjusting this component to improve the cost
function. If this is not possible without violating the constraints, i.e negative
λi, this component is set to zero. By defining (6.45) and denoting pji as the ji:th
component in the matrix P and lj as the j:th component in the vector L. Iterating
the i:th component in the λ vector at time n a explicit form is obtained as (6.46)
and (6.47).

P =MactH−1MT
act , L = Γ +MH−1f (6.45)

λn+1
j = max{wn+1

j , 0} (6.46)

wn+1
j = − 1

pjj

(
lj +

j−1∑
i=1

pjiλ
n+1
i +

m∑
i=j+1

pjiλ
n
i

)
(6.47)

The converged vector λcon, either contain a positive value or zero. With a prede-
termined accuracy, a closed formula is obtained as (6.48). If λcon = 0 would the
expression describe a solution with no active or no constraints. The termMTλcon

is describing the correction term.

U∗ = −H−1
(
f +

Correction term︷ ︸︸ ︷
MTλcon

)
(6.48)

Further information about duality and optimization theory is found in [5], and for
Hildreth’s procedure in [11].
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6.3 Low level controller

Figure 6.3. The reference angular speed from the MPC block is fed back with the
angular speed of the engine, denoted ωMP C

e and ωmeasured
e respectively.

The low level controller block contains one PI controller with two feed-forward
controllers from the torques demands from the MPC block. The torques demands
are regarded as disturbance in the low level controller block, which is natural if the
dynamic equation from the powertrain, equation (5.45), is regarded. The figure
6.3 illustrates the different parts of the low level controller. Tuning of the param-
eters is done with a method called lambda method, found in [3]. Below is a short
introduction of the lambda method.

FP I(s) = Ti

Kp(λTi + L) (1 + 1
Ti

d

dt
) (6.49)

The PI controller is described as equation (6.49), and the parameters are adjusted
by using the rules in equation (6.50).

K = T

Kp(λT + L) , Ti = T (6.50)

Kp is the loop gain, L the delay time and T is the time constant. The parameter
λ is tuned so the systems rise-time and settling time are acceptable.





Chapter 7

Results

The weighting matrices Q1 and Q2 are tuned by trial and error and kept constant
during all time. The matrices are configurated to be charge sustaining and are not
particular adapted to any driving cycle. A substantial time was spent on finding
the weighting coefficients that are used, further tuning could improve the systems
performance but because lack of time this was not done. An increased value of
the weight that is punishing the difference between the reference SOC and current
SOC would make the system to follow the reference closer, but this would also lead
to a higher cost for some driving cycles. Q1 and Q2 is tuned and is maintained
constant for all simulation, this is made to be able to investigate the influence of
other parameters and how a model error are affecting the system.

7.1 Step response
Result of a driver desire to accelerate up to 110 [km/h] and maintain this speed
until the vehicle is stabilized in CDCS mode is discussed in this section.

As discussed in section 6.2.6; guarantee to find the optimal control variable re-
quires that the number of active constraints must be fewer than the optimization
variables. The variables Tm, Te and Tb are the optimization variables, Tdriver and
Tg are the measurable variables. There are three optimization variables, which
leads that only two constraints can be active. During the acceleration phase, the
variable Tb is always calculated to zero by the controller because braking the en-
gine’s shaft when using the engine would be ineffective. The equation (7.1) is
re-writen with Tb = 0.

Tdriver − agTg = amTm + aeTe + abTb

Te = T max
e

Tm = T max
m

Te = T min
e

Tm = T min
m

Tb=0
=⇒

0->110 [km/h]

T max
driver − agTg = amT max

m + aeT max
e

Te = T max
e

Tm = T max
m

(7.1)
At maximum torque’s demands from the driver must all three constraints in equa-
tion (7.1) be satisfied. During these circumstances, it is not possible to guarantee
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that the algorithm accomplish this. Linear independent and fewer optimization
variables than active constraints that are the two criterion that have to be fulfilled,
as discussed in section 6.2.6, is violated during these circumstances. Linear inde-
pendent between the equations are not possible when there are two variables that
have to fulfill three equations. In the figure 7.1 and 7.2 is the time marked when
the constraints are active. Hildreth’s procedure gives with these circumstances
a converged solution that makes the solution near optimal. When there are two
active constraints this is marked with multiple colors.

7.1.1 Acceleration

Figure 7.1. The top graph illustrates the torque’s demands from the controller to the
engine, motor and generator. Overall efficiency and vehicle speed is shown in the other
two graphs. The different colors show when different constraints are active.

The figure 7.1 illustrate a driver that desires to accelerate up to 110 [km/h],
and after this continuing cruising at this speed. The vehicle is accelerating between
0-20 [s], during this time the motor is assisted by the engine and the generator.
The generator work as motor and is providing power to the wheels during this
acceleration phase, this is a consequence of the kinetic constraints of the PGS,
discussed in 5.5.2, and that the low level controller needs to control the engine
angular velocity. The motor is direct connected to the drive shaft; therefore the
motor is unable to provide the same torque for higher angular velocity as for lower.
This is regarded by the controller, consequently only demanding maximum torque
that is possible for the current angular velocity. A closer look at the time interval
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15-20 [s] illustrates the motor’s decreased torque, and the engine torque remaining
110 [Nm] until 17 [s] before it decreases the torque. When the active constrains is
shifted, disturbance from the torque that the engine and motor deliver can occur.
This is particularly visibly in figure 7.2 at 7.5-15 [s], during this time period is the
desired torque from the driver not fulfilled. During the acceleration the overall
efficiency are around 40 %, to become 90 % after the acceleration part, when the
engine is not required to assist the motor. The overall efficiency increasing when
the vehicle speed is increasing, this is shown in 7.1. This is because the motor is
direct connected to the wheel through the torque coupler, i.e. the motor’s angu-
lar velocity is proportional to the wheels’ angular velocity. The short increase of
efficiency of 9% around 7-7.5[s] is caused by active constraints are shifted, but it
is remarkable that it is so significant and during such short time. A better expla-
nation would have been desirable, but due to lack of time deeper analysis where
not done.

At 16 [s] reaches the vehicle 100 [km/h], even the desired velocity is not reached,
decreases the demanded torque from the driver. The engine’s angular velocity can
freely be controlled, meaning engine can provide, at all vehicle speeds, 110 [Nm].
In figure 7.1 at 17 [s], the engine’s torque decreases despite the reference vehicle
velocity is not reached, this since the required torque from the driver is decreased.
The figure 7.2 illustrate the decreased torque’s demands from the driver. This is
because the driver is realized with a PI-controller, where the demanded torque is
a function of the difference between the driving cycles reference speed and current
vehicle speed.

Figure 7.2. Dashed line is the desired torque from the driver and the solid line is the
actual torque acting on the wheel.

Tdriver = amTm + aeTe + abTb + agTg (7.2)
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The controller is designed to follow the required torque from the driver. The
torque’s demands from the driver have to be fulfilled by the controller, where
the coefficients am, ae, ab and ag in the equation (7.2) are describing the engine’s,
motor’s and generator’s torque acting on the wheels. In the figure 7.2, it is showed
that the torque from the engine, motor and generator deviates from the desired
torque. This is caused by the multiple active constrains.

7.1.2 CDCS

Figure 7.3. Change of strategy from electric drive to CDCS initialize when the SOC
passing the reference at 0.25. tp representing the transient phase, cp representing the
convergence phase, and fp is the final phase.

In this section the vehicle continues driving with a velocity of 110 [km/h]. Due
to the batteries SOC reaches the minimum level, the controller changes strategy
in order to be charge sustaining. The CDCS mode consists of three phases, tran-
sient, convergence and final phase, illustrated in figure 7.3. In the transient phase
the generator provides a negative torque. This because the engine angular velocity
requires to be controlled, due to that the engine is engaged. This phase transiently
gives rise to a positive derivate of the SOC. The time the low level controller needs
to control the engine angular velocity is the same as the time for this phase. After
the transient phase, the convergence phase starts, in this phase the SOC almost
reaches a stationary value. The MPC is unable to directly control the genera-
tor because of the architecture of the designed supervisory control system. The
settling time is 73 [s] with an accuracy of 5 %. The settling time is defined as
the time it takes to reach a stationary value with a predetermined accuracy. The
convergence phase requires the generator to work as a motor, i.e. utilize energy
to provide power to the wheel, this in order to control the engine angular velocity.
The final phase that makes the usage of battery energy to zero is a long phase
where the disturbance of the low level controller is a probable reason why it is so
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Figure 7.4. The generated energy from motor is utilized by the generator.

long. In summary, all the three prime movers, engine, generator and motor are
required to be engaged to maintain charge sustenance. Figure 7.4 illustrates the
power path of the system during CDCS mode.

Figure 7.5. The disturbance of the power to the wheel is illustrated in the bottom
graph. The solid arrow denoted tp is the duration of the transient phase, the dashed
arrow denoted cp is the converge phase and final phase is denoted as fp .

Start of engine is illustrated in figure 7.5, where increased engine and genera-
tor torque with decreased motor torque represents change of strategy. The fast
decreased power acting on the wheel is derived from the negative generator torque
at 136[s]. At this time, the generator is generating power to the battery, for about
1.5 [s] power is re-directed to the battery instead of direct all the power to the
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wheel. During this phase, all the power is directed into the generator, i.e. it is
charging the battery. The overall efficiency is higher at transient phase compared
with the convergence phase, although the power to the wheel is not maintained at
necessary level. The oscillations around zero torque at 150-175[s] from the motor
are amplified by the engine. The efficiency is affected to start to vary between 15-
22%. No reason why the motor’s torque began to oscillate around zero are found,
but a low pass filter after the MPC controller could dampen those oscillations, but
this where not carried out in this work. The figure is showing the effect on the

Figure 7.6. The axes scale is enlarged to illustrate the vehicle’s insignificant deviation
from the reference’s velocity.

vehicles velocity when changing mode, during a time period of 18 [s] the velocity of
the vehicle increases 2.5 [km/h]. The MPC is disturbed by the low level controller
that controls the generator’s angular velocity. The MPC represses the disturbance
and the speed slowly converge to 110 [km/h], a MPC that handles the disturbance
parameter, ~v, faster would be desirable but is not accomplished here.

7.2 Sampling time and control horizon
This section focus on influence of the different design variables; sampling time and
control horizon. The weighting matrices, Q1 and Q2, are tuned so the system
is charge sustaining and follows the driving cycle, if this is possible. The same
value from the beginning of the chapter is used throughout the chapter. Charge
sustenance is accomplished by use a high value on SOC deviation coefficient, ad-
ditionally; a larger value of usage of fuel is used to avoid utilization of fuel. The
coefficients are not adapted to any particular driving cycle. An extension of the
NEDC driving cycle with an extra highway cycle in the start is used during the
simulation, figure 7.7. Criterions for an acceptable simulation are:
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Figure 7.7. Gray is the all electric drive area, where the remaining is in CDCS mode.

• Follow the driving cycle.

• In the figure 7.7 the gray area is the all electric area. No different in perfor-
mance is allowed between electric drive and CDCS drive.

• SOC within 0.25± 0.1.

The ability to follow the reference is considered important. The unknown future
torque’s demands from the driver causes problem. The controller is using the
same desired torque value for the whole prediction time. This causes issues since a
change in speed will also become a change on torque’s demands. A long prediction
horizon is only beneficial when the driving cycle has small variations. The table

Overall efficiency [%]
Ts\Np 6 10 15
0.25 s - 50.9210 52.7812
1 s 53.1454 54.7715 -

State of Charge, SOC [-]
Ts\Np 6 10 15
0.25 s - 0.2333 0.2628
1 s 0.1969 0.2525 -

Table 7.1. The symbol ’-’ representing simulations where one or more criteria is violated.

7.1 is an example of how the overall efficiency and SOC is influenced by different
sampling time and prediction horizon, defined as Ts and Np. Comparing the
different prediction horizons, the table 7.1 illustrates that the overall efficiency
and the SOC is higher with a longer prediction horizon. Utilization of electric
energy offers great possibility of a high efficiency, and despite the usage of electric
energy is higher for the shorter sampling time, the overall efficiency is higher for the
long prediction horizon. The proportion for other sampling time and prediction
horizon follows the results shown in the tables, but for simplicity they are not
presented. The table 7.1 presents the driving cycles end values, whereas the figure
7.8 illustrate the time variation. A longer sampling time allows the SOC to deviate
more than a shorter sampling time. A sampling time of 1 [s] causes the controller to
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Figure 7.8. Four different set of parameters are presented. The reference and minimum
SOC are the horizontal straight lines.

violate the lower bound of the SOC, therefore is not charge sustaining nor robust.
A faster sampling time thus results in a more robust controller. During simulation
the longer sampling time lead to approximate four times shorter simulation time.

7.3 Robustness
The previous section implicate that the best robustness is with a sampling time of
0.25 [s] and prediction horizon of 15 samples. In this section are these parameters
used. The MPC structure used in this thesis does not guarantee stability; therefore
it is important to simulate effects from a model error. There are modified MPC
that guaranty stability, but for simplicity and lack of time this is not implemented.
The controller assumes the vehicle driving on a road with no slopes. Implement-
ing a constant slope of 2◦ and 1◦ in the model, but not in the controller, gives
implication of how a model error affects the performance. The extended driving
cycle, figure 7.7, presented in the previous section, is also used during simulations
for this test. The figure 7.9 illustrates the controller’s ability to follow the pre-
determined extended driving cycle, with a model error. It is important to stress
that the vehicle is constantly driving uphill. During the first acceleration part,
the vehicle speed with a road of 2◦ slope is approximate 4 km/h lower than with
a horizontal road. According to the simulation, the velocity differences from the
horizontal road decreases over time. The first highway phase depletes the battery
significantly faster for the simulation with road slope than the horizontal road.
Conversion to road slope in percent is; slope of 2◦ is 3.49 % and 1◦ is 1.75 %.



7.4 Utilization of GPS 45

Figure 7.9. The slope of 2◦ is close to zero at the SOC level, consequently not charge
sustaining. The slope of 1◦ is in the allowed boundaries of the SOC level.

Percent is used on road signs; therefore are this conversion interesting.

7.4 Utilization of GPS

Information of the driving cycles length is provided by the GPS, here defined as
d0. The vehicles traveled distance is measured and defined as dm. The equation
(7.3), determines the reference SOC, in the equation the SOC is denoted q. The
function is linearly decreasing with the lowest value of 0.25. The functions value is
permitted to vary ±0.1, therefore the lower boundary is 0.15. The term qini − q0

is the start value of the SOC reference. An initial lower reference than the initial
SOC is use to immediate encourage the controller to use the electric energy in the
beginning, the controller will later restrict the use of electric energy to encourage
blended driving. The driving cycles length is always longer than the all electric
range. Use of the fuel is required to extend the vehicles range, if this is not required,
engaging the engine becomes unnecessary. GPS information is considered reliable
and issues derived from length uncertainty of the cycle are addressed in [10].

f(dm) =
{
qini − q0 −

(
qini − q0 − qmin

)
dm

d0
if 0 ≤ dm ≤ d0

qmin else
(7.3)
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The percent in the table 7.2 - 7.4 is defined as equation (7.4). This is used to give
a overview of the different between blended driving and CDCS driving.

∆ = CDCS −Blended
Blended

(7.4)

7.4.1 Highway, Urban and City driving

CDCS vs. Blended - Highway, Urban and City driving
Cycle CDCS q Blended q CDCS Cost Blended Cost ∆q ∆ Cost
A 0.263 0.293 0.466 0.456 -10.2 % 2.2 %
B 0.244 0.254 2.15 1.99 -3.9 % 8.0 %

Table 7.2. q is the SOC, and a positive % value defines as higher CDCS value compared
to the blended value.

The table 7.2 is in line with the conclusion that blended driving can lead to
a lower cost. Additional to the lower cost, it is important to stress that the end
value of the SOC is higher. When blended driving is used on Cycle A, nearly the
entire mission has a higher cost, due to the engine being engaged relative early, see
figure 7.10. During CDCS drive the engine is engaged at 5 [km], consequently the
controller has to utilize fuel to a higher extent than the blended driving. For cycle
A, the difference in cost at city driving section in 7-11[km] maintained constant.
Additionally, during this section, the use of the electric energy is higher for the
CDCS driving than the blended driving. During the second highway section, the
blended driving cost decreases relative to the CDCS driving, and finally result in
a lower total cost for the blended driving.

For driving cycle B, blended driving reduces the cost compared to CDCS more
than for cycle A. At approximate 30 [km] the cost for blended driving becomes
equal to the cost of CDCS driving. Additionally, for this section, the utilization
of electric energy is lower with blended driving.

Blended driving reduces the cost for cycle B significant more than blended driving
for cycle A.

7.4.2 City driving

CDCS vs. Blended - City driving
Cycle CDCS q Blended q CDCS Cost Blended Cost ∆q ∆ Cost
C 0.248 0.260 0.194 0.182 -4.6 % 6.6 %
D 0.241 0.256 0.453 0.366 -5.9 % 23.8 %

Table 7.3. q is SOC, and a positive % value defines a higher CDCS value compared to
the blended value. A significant cost saving can be made when driving in blended driving
for cycle D.
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Blended driving is shown to have lower cost for both of the simulated city cycles,
as shown in table 7.3. The SOC is also higher at the end of the simulation for the
blended driving. Comparing the result between the cycles, D has a significantly
greater increase in fuel economy compared to cycle C. On the cycle C the cost for
blended driving is almost immediately lower than CDCS, whereas cycle D shows
improvement in the end of the cycle. This is illustrated in figure 7.11.

7.4.3 Highway driving

CDCS vs. Blended - Highway driving
Cycle CDCS q Blended q CDCS Cost Blended Cost ∆q ∆ Cost
E 0.247 0.261 1.19 1.12 -5.7 % 6.3 %
F 0.219 0.240 1.96 1.89 -9.6 % 3.7 %

Table 7.4. q is referred as SOC, and a positive % value defines as higher CDCS value
compared to the blended value.

The result from simulation is shown in table 7.4. CDCS driving in both cycle E
and F is using battery energy to a higher extent compared to blended driving. The
cost for blended driving in both cycles is lower than CDCS driving. This shows
the benefits of blended driving. The cycles E and F present similar result the first
half, shown in figure 7.12, where the cost for the blended driving is higher. But
as the simulation proceed; the remaining possibility to use electric energy finally
leads to a lower overall cost.
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Figure 7.10. The dashed line is CDCS simulation and the dash dotted from the blended
simulation.
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Figure 7.11. The dashed line is representing the result from CDCS simulation, and the
dash dotted is the blended simulation.



50 Results

Figure 7.12. In this figure dash doted line is CDCS driving and the blended driving is
dashed lines.



Chapter 8

Conclusions

To solve the problem of blending battery energy with fuel from beginning of a
driving cycle a variable SOC reference was developed, which where depending on
information from a GPS. Result from the simulation, shows that using blended
driving reduce the cost of driving. Some driving cycle’s costs is reduced almost
24%. The mean value for the others cycles were around 5%, where they varied
between 2.2-8%. The developed supervisory control system has acceptable perfor-
mance, meaning it follows the driver’s torque demands when the circumstances to
do so are right, with no model error and a sampling time of 0.25 [s] the system is
charge sustaining and considers constraints. The controller can operate in all pos-
sible modes, the hybrid mode and only electric mode. The controller also presents
robustness against error in the plant model, this for moderate slopes up to 1◦, in
percent this is ≈ 1.5%. Further in this chapter the result discussed more thorough
and also topics for future work are presented.

8.1 Step response
The controller can follow the requested torque from the driver for the most of the
time, but in some particular cases problems arise. Issues are derived from that
the MPC controller uses an active set method. During maximum torque request,
limitations from engine, motor and torque request are active, totally three active
constraints. The implemented algorithm requires that the active constraints are
fewer than the optimization variables, this to guarantee to find the optimal solu-
tion. During these circumstances, the number of active constraints are equal the
number of optimization variables. This is discussed in section 6.2.6 where the nec-
essary conditions are shown. In the section 7.1 effects on performance are shown.
To solve this problem a different method of finding the optimal solution has to be
used.

The generator angular speed is a linear combination of engine and motor angular
velocity, which is a consequence of the vehicle’s configuration, this is addressed
in section 5.5.1 and equation (5.36). The active set method is not guaranteed to

51



52 Conclusions

find the optimum for problems where linear dependency exists, which is addressed
in section 6.2.6. To be able to handle the complexity, the Supervisory Control
System is divided into two parts, one MPC structure controller and one low level
controller. A disadvantage of this structure is that the MPC block is unable to
control the generator. The optimization does not include the generator; further
consequence is that a global optimum might not be obtained.

To solve this, an optimal method which handles linear dependency, and ability
to consider more active constraints than optimization variables, has to be used.

To completely disengage all electrical prime movers is not possible in this architec-
ture; hence the generator is required to control engine angular velocity. Although
when the lower boundary of the SOC is reached, the motor is providing enough of
energy to the generator. In this mode all the utilized energy is derived from the
fuel. All possible modes can be accomplished with the controller; pure EV mode
and hybrid mode.

The structure of the PIHEV when the SOC is at the lowest allowed boundary
is similar to a series hybrid. The power to the wheel is derived from the fuel, but a
part of the fuel energy is converted to electric energy to control the engine angular
velocity.

8.2 Sampling time and control horizon

A short sampling time offer possibilities of a more robust controller. A longer
prediction horizon might give a higher overall efficiency than a short. In this the-
sis the requested torque’s demands is considered as a constant during the whole
prediction horizon, this could cause issues if the torque’s demands from the driver
deviates significantly compared to the predicted. A possible improved solution
with a observer, that predicts the future desired torque from the driver, could
remove the open loop structure. The controller is adjusting the control signal
every sampling period, which provides a simulation with acceptable vehicle per-
formance and charge sustaining properties. This requires selecting a sampling time
of maximum 0.25 [s].

8.3 Robustness

Slopes up to 2◦ give reasonable driving performance, although issues of charge
sustaining are more visible. Slopes up to 1◦ is handled by the controller, and
provide a simulation that is charge sustaining and follow the driving cycle, but
greater slopes cause problems with charge sustaining. Hard constrains on the
SOC could solve this problem, but due to insufficient time and issues derived from
use of an active set method, this was not carried out.
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8.4 Utilization of GPS
The GPS information assist the controller to reduce the cost of driving, which
coincide with the result from [10]. It is important to emphasize that the range the
vehicle travels is required to be longer than the all electric drive. The six presented
drive cycles all indicate positive effects of blended driving. The blended driving
could engage the engine more frequently compared to CDCS driving. Heating the
engine to optimal temperature might be needed to be done more frequent. This
could raise the fuel consumption and consequently increase the cost for the blended
driving. This could also increase emissions and greenhouse gases. No extra cost in
the cost function is implemented due to the higher emissions a cold engine would
cause, which could be a topic for further investigation. Therefore the simulated
result could deviate from real tests. Additionally, slower depletion might gener-
ate less wear on the battery: this would probably be desirable for testing in reality.

For blended driving all cycles, except of cycle F, has higher SOC end values than
the reference value. For blended driving the reference SOC is 0.25 at the end
of simulation. Using the electric energy to a higher extent than the presented
strategy, might further decrease the overall cost.

8.5 Future work
Unfortunately lack of data and test possibilities, the simulation result could never
be verified, which could be a very interesting topic to continue on. Further it would
be interesting to obtain the optimal solution, with assistance of DP, to compare
the algorithms performance.

A different optimization algorithm, than the Hildreth’s procedure, could further
improve the system. The method needs to handle multiple active constraints and
linear dependent constraints.

The plant model could probably be subjected to simplification; this would proba-
bly be desirable in an implementation. Finding suitable linearization points could
also reduce the calculation burden.

Imposing hard constraints on the SOC level would also guarantee charge sustain-
ing. Solving this issue is associated with replacing the current active set algorithm.
However, a different approach of variable weighting factor for the SOC deviation
might be sufficient.
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