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Abstract
The engine speed is one of the most important signals in the engine management
system of a combustion engine. The signal is used to control the fuel injection,
estimate the engine torque, and to generate reference values. Combustions in the
cylinders result in the engine speed oscillating around a momentary average, and
many applications are depending on stable estimates of this average engine speed
and the average acceleration. This thesis provides a signal model based method
to estimate the momentary average engine speed and acceleration.

The estimation of momentary average engine speed and acceleration is com-
plicated by imperfections in the process of measuring the engine speed. Limited
accuracy in the measurements causes quantization distortion in the engine speed
signal. The effects of these errors are investigated and quantified.

A signal model representing the engine speed is developed and used to esti-
mate the momentary average and acceleration using a Kalman filter. The regular
Kalman filter cannot provide estimates with low noise levels at steady state and
at the same time be fast enough to track the signal during transient behavior.
This problem is overcome by extending the Kalman filter with a change detection
algorithm. While this signal model based method gives a satisfying result, it is
computationally complex. To evaluate its performance, it is compared to a moving
average FIR filter, which is computationally less expensive but does not succeed
as well as the signal model based method in filtering out all oscillations.
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Sammanfattning
Motorvarvtalet är en av de viktigaste signalerna för motorstyrsystemet hos en
förbränningsmotor. Signalen används bland annat för att styra bränsleinsprut-
ning, uppskatta genererat vridmoment från motorn och för börvärdesgenerering.
Förbränningar i motorns cylindrar leder till att motorvarvtalet oscillerar kring ett
momentant medelvärde. Många applikationer är beroende av stabila skattningar
av detta medelvarvtal. I rapporten presenteras en signalmodellbaserad metod för
att skatta medelvarvtal och medelacceleration.

Skattningen av momentant medelvarvtal och medelacceleration kompliceras av
brister i processen för att mäta motorvarvtalet. Begränsad noggrannhet i mätning-
arna leder till att varvtalssignalen lider av viss kvantiseringsdistorsion. Effekterna
av dessa fel utreds och kvantifieras.

En signalmodell som representerar motorvarvtalet utvecklas och används för
att uppskatta momentant medelvarvtal och medelacceleration med hjälp av ett
Kalmanfilter. Ett vanligt Kalmanfilter klarar inte av att framgångsrikt undertryc-
ka brus vid långsamma förändringar i varvtal samtidigt som det är tillräckligt
snabbt för att följa signalen under transienter. Detta problem kringgås genom att
utvidga Kalmanfiltret med en algoritm för detektion av förändringar i signalen.
Den signalmodellbaserade metoden ger ett bra resultat, men är beräkningsmässigt
komplex. För att utvärdera dess prestanda jämförs resultaten med skattningar från
ett glidande medelvärdesfilter, ett FIR-filter, som är beräkningsmässigt billigare
men inte lyckas lika väl i att filtrera ut alla oscillationer.
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Chapter 1

Introduction

This is the report for a Master thesis in Electrical Engineering. The thesis is exam-
ined at the Division of Vehicular Systems at Linköping University and performed
at Scania CV AB in Södertälje. The purpose of this report is to describe the work
and results of the thesis. This chapter gives an introduction to the thesis work,
which includes background and the aims and objectives of the project.

1.1 Background
The engine speed is one of the most important signals in the Scania Engine Man-
agement System (ems). The signal is used among other things to control the fuel
injection and for on-line diagnosis of the fuel injection system. There are also
functionality in the ems whose parameters change with the engine speed. It is
thus important to extract as much information as possible from the signal.

The engine speed ω, or more precisely the rotational speed of the engine fly-
wheel, is not constant over a full combustion cycle. Essentially, combustions in
the cylinders increase the rotational speed while compressions and load decrease
it. As a consequence, the instantaneous engine speed oscillates around a momen-
tary average. This means that the engine speed signal can be approximated as the
superposition of a slowly changing component ω̄ and a periodic component ω̃:

ω = ω̄ + ω̃. (1.1)

A number of applications are dependent on the momentary average ω̄ rather than
the actual engine speed, i.e. estimates of the engine speed where the oscillations
have been filtered out. Also the engine acceleration is an important signal, used
to control the engine speed. As the engine speed oscillations, the fluctuations in
acceleration are undesirable in many applications. Hence, the derivative of the
momentary average engine speed with respect to time, ˙̄ω, is the most interesting
part of the engine acceleration in this work. Since the ems has limited memory
and processing power, an important aspect of the methods is their computational
complexity.

1



2 Introduction

The engine speed is measured by counting the time it takes for the flywheel to
rotate a fixed amount of crank angle degrees cad. The time is measured with an
internal counter that has a limited clock frequency, which leads to quantization
errors in the measurements. The effects of these errors are analyzed in this work.

Figure 1.1 shows an example of the engine speed signal, which is the central
subject of this thesis. The signal suffers from quantization distortion, caused by the
limited accuracy in the measurement process. The oscillations of the continuous
signal resembles a sine wave, which is filtered out to estimate the momentary
average engine speed. The ideal output from a filter estimating the momentary
average engine speed for use in the ems is a straight line for this signal. Estimating
this signal is difficult in practice, since the ems has limitations in memory and
processing power. One approach is to use a moving average filter, but as the
figure shows, this method does not suppress all of the noise in the signal.
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Figure 1.1. The engine speed during two combustion cycles.

1.2 Aims and Objectives
The main objectives of this thesis are to analyze the quantization distortion and
to develop a new method to estimate momentary average engine speed and accel-
eration. These objectives can be summarized as:

Estimation of the momentary average engine speed: By the use of signal
models and different filters, extract the momentary average from an oscil-
lating engine speed signal. The methods will be evaluated from their noise
suppressing ability and computational complexity.
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Estimation of the mean engine acceleration: Develop a method to estimate
the mean engine acceleration, i.e. the derivative of the momentary average
engine speed with respect to time.

Quantization effects in the engine speed signal: Conduct a theoretical study
on how the limitations in the process of measuring the engine speed distorts
the measurements with quantization errors.

1.3 Related Research
The engine speed signal is widely used in research areas such as torque estimation
and misfire detection. In [1] a Kalman filter is used to monitor the engine speed and
torque in order to detect misfires. Unlike in this work, the method used in [1] makes
use of a physical model of the engine. The idea of estimating the average speed by
attenuating the oscillations caused by combustions by means of a moving average
filter in the crank angle domain is treated in [2]. By comparing the properties
and performance of this with the signal model based method developed in this
thesis, the method is used for evaluation in this work. The method is also further
analyzed and combined with an algorithm to estimate the engine acceleration in
[3]. Other papers that cover the acceleration estimation are [4] and [5].

The basic functionality of a rotational speed sensor and discussions regarding
the computations needed to convert from the angular domain to the time domain
are found in [6], and [7] covers problems in event based engine control. In the
process of measuring the instantaneous engine speed, the time between each sample
is measured and uniformly quantized, which leads to distortion in the engine speed
signal. The effects of uniform quantization can often be modeled by an additive
noise that is uniformly distributed, uncorrelated with the input signal, and has a
white spectrum. This model is analyzed in [8] and also investigated in this work.

1.4 Outline
The first chapter of this report presents the background and gives a short intro-
duction to the thesis. The following chapters can be divided into two parts, where
the first part covers the quantization distortion related to the measurement pro-
cess. The second part describes the method derived to estimate the momentary
average engine speed and acceleration, and then a comparison between the new
method and a standard method for the purpose. A more detailed outline, with all
chapters is described is:

Chapter 1: Gives a short introduction to the thesis and describes its aims and
objectives.

Chapter 2: Describes the process of measuring the engine speed and discusses
problems related to the procedure.

Chapter 3: Describes the dynamics of the flywheel and presents a signal model
of the engine speed.



4 Introduction

Chapter 4: Describes the methods used to estimate the momentary average en-
gine speed.

Chapter 5: Describes the methods used to estimate the engine acceleration.

Chapter 6: Presents the results of the thesis.

Chapter 7: Presents the conclusions and suggests improvements and future work.



Chapter 2

Engine Speed Measurements

This chapter describes the process of measuring the engine speed and discusses
problems related to the procedure.

2.1 Event and Time Based Sampling
To describe a continuous signal from the real world in a computer, the first thing
to do is to obtain signal measurements from the continuous signal at several time
instances. This process is called sampling and results in a discrete sequence of
numbers that represent the continuous signal. The time interval between the
samples is denoted Ts and it is either constant or time-varying, depending on
which sampling technique that is used. In this section two different techniques are
compared: time based sampling and event based sampling.

Using the time based sampling technique, the amplitude of a continuous signal
y(k) is sampled at equidistant time instances with intervals Ts.

yk = y(kTs), k = 1, 2, . . . (2.1)

Even though time based sampling may be the traditional way of sampling a contin-
uous signal, there are other alternatives. One option is to sample the signal every
time the amplitude passes certain levels. This technique is called event based
sampling, of which the theory is presented in [9]. With event based sampling, the
discrete signal is described as:

y(tk) = yk, k = 1, 2, . . . , (2.2)

where yk is the pre-defined amplitude sampled at time instance tk. If the time
continuous signal is not monotonously increasing or decreasing the formulation in
(2.2) leads to problems, since the signal y(ti) may be equal to yk for several time
instances ti. However, for applications with monotonous time continuous signals
and uniformly distributed levels, (2.2) can be formulated as

y(tk) = kYs, k = 1, 2, . . . , (2.3)

5



6 Engine Speed Measurements

where Ys is the amplitude sample period.
One way to relate event based sampling to the time based sampling technique is

to consider the event domain signal as a time domain signal with varying sampling
period. Figure 2.1 illustrates the principles and differences between event based
sampling and time based sampling.
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(a) Event based sampling. The continuous signal, solid line in the figure, is sampled at
every instant when the signal amplitude passes an integer (dashed lines).
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(b) Time based sampling. The continuous signal, solid line in the figure, is sampled at
every integer time instant (dashed lines).

Figure 2.1. Illustration of the principles of event based sampling and time based sam-
pling.
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2.1.1 The Sampling Theorem
The sampling theorem [10] states the necessary conditions under which a contin-
uous time signal can be uniformly sampled and reconstructed perfectly. It is also
called Shannon’s rule or the Nyquist theorem. The sampling theorem states that
if the bandwidth, f0, of the continuous time signal is less than a half of the sam-
pling frequency, fs = 1/Ts, the signal can be reconstructed perfectly. Hence, the
critical frequency in sampling is half the sampling frequency, which is also called
the Nyquist frequency:

fN = fs
2 , (2.4)

and perfect reconstruction is possible if

f0 < fN . (2.5)

When the condition of the sampling theorem is fulfilled, it is guaranteed that
the frequency spectrum of the reconstructed signal, if reconstructed ideally, will
be equal to the spectrum of the original continuous time signal. If the sampling
theorem is not fulfilled, i.e. a too low sampling rate is used, frequency content
above the Nyquist frequency will be folded into the interval f ∈ [−fN , fN ]. This
effect is called aliasing and causes high frequencies to appear as lower frequencies.

2.1.2 Orders
When it comes to rotational speed of shafts, dealing with frequencies are not very
common but rather dealing with orders. The orders, or harmonics, are multiples
and sub multiples of the basic frequency, which is exactly equal to the shaft ro-
tational speed. If the shaft is rotating at R rpm, then the second order is simply
2R rpm and the mth order is equal to mR rpm. The corresponding frequency of
the orders for a given rotational speed of R rpm is:

fm = mR

60 , (2.6)

or if the rotational speed is given as ω radians per second

fm = mω

2π , (2.7)

where fm is the frequency of the mth order.
The advantage of using orders instead of frequencies is that they are indepen-

dent of the current rotational speed. The first order is always the shaft speed,
the second order is always twice the shaft speed and so on. By using the rotation
itself as a basis and use event based sampling, i.e. collect data at equal increments
of the rotational angle rather than at equidistant time instances, a signal that is
synchronized with the shaft rotational speed is obtained.

The recorded data is sampled in units of a fraction of a revolution rather than
as a fraction of a second. By applying a Fourier transform to the signal, the result
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is an order spectrum rather than a frequency spectrum. The amplitude and phase
of the transformed signal are given as a function of orders instead of hertz.

If the data is sampled with N points in each revolution, the sampling rate is N
samples/revolution. Completely analogous to time based sampling, the sampling
theorem states that there will be alias effects if there is power above N/2 orders.

2.2 Rotational Speed Sensors
This section discusses the basic functionality of rotational speed sensors and presents
some examples of common sensors used in motor vehicles.

In situations where it is desired to measure the angular velocity of rotating
shafts, a common approach is to use so called rotational speed sensors. An illus-
tration of a rotational speed sensor is shown in Figure 2.2 and its basic functional-
ity is described below. For further information on rotational speed sensors, please
refer to [6].

Sensor

Figure 2.2. Rotational speed sensor used to measure the angular velocity of the rotating
crank shaft. The flywheel has two missing cogs that are used to detect a reference
position.

A cogwheel with Ncog cogs is mounted to the shaft of which the rotational
speed is measured. A sensor placed by the cogwheel is used to detect when an
edge of a cog passes a certain point. The measurement is made by counting the
number of clock cycles of a high frequency clock between two cogs. The angular
speed is then calculated as:

ω = dθ

dt
≈ ∆θ
mTc

, (2.8)

where m is the number of clock cycles of duration Tc that have been counted over
last ∆θ radians.

To set up a simple equation for approximating the instantaneous angular speed,
it is assumed that the cogwheel is ideal. Ideal in this case means that the cogwheel
is completely circular and mounted in its center, and also that the angle between
each cog is 2π/Ncog radians.
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Let the time instance of when cog k is passed be denoted tk. The corresponding
angle, denoted θk = k 2π

Ncog
, can be described either as an angle or a function of

time θ(tk). Hence, there are two different domains in this situation: the angular
domain and the time domain. This makes the rotational speed sensor a typical
example of where event based sampling is used. The sampling procedure can be
described just as in (2.3) by:

θ(tk) = kYs, k = 1, 2, . . . , (2.9)
where Ys is replaced by the angular distance α = 2π

Ncog
.

The sampling period is thus a function of the rotational speed ω and the
distance between cogs α:

Tω(ω) = 2π
Ncog · ω

= α

ω
. (2.10)

If the data samples would had been captured regularly in the time domain, the
number of recorded samples for each revolution would depend on the momentary
rotational speed. With twice the speed and the same sampling frequency, only
half as many samples are recorded for each revolution. Sampling in the angular
domain means that it makes no difference how fast the wheel is rotating, there are
always the same number of samples, Ncog, recorded per revolution.

The basic formula for approximating the angular speed ω(tk) at time tk is:

ω̂k = 2π
Ncog(tk − tk−1) = α

∆tk
, (2.11)

which can be seen as the average speed in the interval t ∈ [tk−1, tk]. It also means
that if ω(t) is constant for t ∈ [tk−1, tk], then ω̂k = ω(t) in the interval. The fact
that the angular speed is measured in the angular domain causes some problems.
The main computational issues are discussed in [6]:

• Sampling time effects
The signal is sampled using event based sampling. This means that the
sampling period of the angular speed is proportional to the current speed.
Since most applications of the rotational speed signals are synchronously
executed in time and not in the angular domain, approximations are needed
to convert from one domain to the other, which may cause distortions such
as aliasing.

• Quantization effects
The time between two samples are counted by an internal clock with a limited
clock frequency. The higher frequency, the more correct the time instances
can be determined. However, there will always be a quantization error that
increases with higher engine speed.

• Non-ideal cogs
Small manufacturing defects cause the angle between two adjacent cogs to
deviate from the ideal 2π/Ncog radians. This leads to minor errors in the
computed angular speed signal.
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• De-centralized cogwheel
If the cogwheel is not mounted to the shaft in its center, periodic errors will
appear in the computed angular speed signal.

2.2.1 Engine Speed Sensors
In motor vehicles, the most common engine speed sensors are magnetic sensors.
They are popular since they allow measuring of the rotational speed without the
sensor physically touching the rotating shaft and are relatively cheap. Another
option is to use optical sensors, which gives a higher accuracy but also are more
expensive. In [11] the principles of a few sensors are presented. Their properties
are summarized here.

Inductive sensor

The inductive sensor is a permanent magnet that is surrounded by a coil, mounted
at a small distance from the cogwheel. As the cogwheel rotates, the distance
between cogwheel and sensor varies, causing a time-varying magnetic flow φM
that induces a sinusoidal voltage Uind, calculated as:

US = Uind = w
∂φM
∂θ

∂θ

∂t
, (2.12)

where w is the number of windings in the coil. The time between the cogs is given
by the zeros of the sinusoidal voltage US in the sensor.

The advantages of the inductive sensor principle are the low production costs,
a wide operating temperature range and that there is no electronic unit to protect.
The disadvantages are that at higher engine speeds higher voltages are induced,
causing errors to occur. Also, vibrations cause the distance between the cogwheel
and sensor to vary which implies additional errors.

Differential Hall sensor

The differential Hall sensor consists just like the inductive sensor of a permanent
magnet. At each end of the magnet, a Hall element is placed facing the ferro-
magnetic cogwheel. As soon as a cog passes the Hall elements, the change in the
magnetic field causes a proportional Hall voltage according to the Hall effect:

US = UH,2 − UH,2 = RHIH
B2 −B1

lH
, (2.13)

where US is the voltage in the sensor, UH,1 and UH,2 are the measured Hall voltages
induced by the magnetic fields B1 and B2, RH is the Hall coefficient and IH
the current in the Hall elements with length lH . The time between two cogs is
measured in the same way as for an inductive sensor. An advantage with the
differential Hall sensors is that they compensate for the varying distance between
sensor and cogwheel. This makes them suitable for engine speed measurements
with higher accuracy demands.
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Optical sensor

The setup for an optical sensor differs a bit from that of an inductive or a differ-
ential Hall sensor. Instead of a ferromagnetic cogwheel, a specially marked disk is
used. The disk reflects or lets light from a light source pass to a photo diode. The
engine speed can then be measured by the photo diode. The marked disk can be
produced with high resolution and hence it is possible to generate more accurate
measurements. The optical sensor is however sensitive to dirt that may distort the
measurements.

2.3 Quantization Effects
The method used to measure the engine speed has limited accuracy, which leads
to quantization effects in the measurements. This section analyzes how the quan-
tization distortion affects the engine speed signal.

2.3.1 Quantization Effects in the Engine Speed Signal
The elapsed time ∆tk between cog k − 1 and k cannot be determined exactly.
Instead, it is approximated by the difference t̂k − t̂k−1, where t̂k is the estimated
time instance when cog k passed the sensor. The time instances tk is estimated
using an internal counter with limited clock frequency, by approximating tk ≈
t̂k = mkTc, where mk is the number of clock cycles counted until cog k and Tc
is the duration of a clock cycle. The faster the clock is, the more accurate the
time instances will be logged. This means that the measurements suffer from
quantization errors:

t̂k = tk − qk, (2.14)

where tk is the actual time instant for the event and qk is the quantization error.
As in [8] and [6], it is reasonable to assume that qk is a sequence of independent
stochastic variables uniformly distributed between 0 and Tc, i.e. qk ∈ U (0, Tc).
The mean and variance of such a variable is:

E {qk} = Tc
2 , (2.15)

Var {qk} = T 2
c

12 . (2.16)

Using (2.11) and (2.14), it is possible to analyze the effects of the quantization
errors on the calculated engine speed.

ω̂k = α

t̂k − t̂k−1
= α

tk − qk − tk−1 + qk−1
= α

∆tk − qk + qk−1
, (2.17)

where ∆tk is the exact elapsed time between cog k − 1 and cog k.
The sequence qk of stochastic variables depends only on the frequency of the

clock and are independent of the current speed. As the rotational speed increases,
the actual time between two cogs, ∆tk, decreases. This means that when the engine
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is rotating at a high speed, qk and qk−1 become the dominating components in the
denominator in (2.17). Thus, when the rotational speed increases, the impact of
the quantization errors increases [6]. The variance of the engine speed estimates
is investigated as follows. The difference t̂k − t̂k−1 contains the difference of two
equally distributed independent variables, qk and qk−1, which means that it is an
unbiased estimate of tk − tk−1 with twice the variance of qk:

Var
{
t̂k − t̂k−1

}
= Var {qk−1 − qk} = 2Var {qk} = T 2

c

6 . (2.18)

By identifying the true angular speed ωk and then using a first order Taylor ex-
pansion, the expression in (2.17) can be approximated as:

ω̂k = α

∆tk︸︷︷︸
ωk

1
1 + qk−1−qk

∆tk

≈ ωk
(

1− qk−1 − qk
∆tk

)
(2.19)

The expression given by the first order Taylor expansion indicates that the quan-
tization leads to angular speed errors with zero mean and variance

Var {ω̂k} ≈
(
ωk

∆tk

)2
T 2
c

6 = T 2
c

6
ω4
k

α2 . (2.20)

This means that the computed speed is unbiased, but has a variance that is pro-
portional to the actual speed to the power of four and to the square of the clock
cycle duration.

By creating a model of the rotational speed of an idling engine and simulating
the sampling of the crank shaft at every 6th degree, both the underlying signal and
a quantized version is generated. In Figure 2.3, the simulated engine speed signals,
where a clock cycle duration of 1 µs has been used, for an engine idling at 700 and
3000 rpm are shown as a function of crank angle degrees. At the lower speed, the
quantization errors are small with a signal-to-noise ratio (snr) of 29 dB. However,
for the signal with an average engine speed of 3000 rpm, the quantization effects
are much more prominent and the snr is just 4 dB.

In Figure 2.3, it is apparent that the engine speed affects the impact of quanti-
zation errors. Another important parameter for the quantization errors, as seen in
(2.20), is the clock frequency or the clock cycle duration fc = 1/Tc. In Figure 2.4,
the snr has been computed and shown for several choices of clock frequencies and
engine speeds. snr levels lower than 0 dB has been set to zero to make the plot
more compact. Not surprisingly, with a higher clock frequency the quantization is
finer also for high engine speeds.
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Figure 2.3. At low engine speeds, the quantization is fine and the signal is not distorted
by quantization errors. As shown in the lower figure, the quantization is coarser at higher
engine speeds.
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Figure 2.4. The signal-to-noise ratio as a function of clock cycle duration and engine
speed. At low engine speeds, a lower clock frequency still gives a satisfactory snr, but
at higher speeds the signal is heavily distorted by the quantization errors.
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2.3.2 Maximum Quantization Error

The maximum quantization error is the largest possible difference between the
actual engine speed and the measured engine speed, due to limitations in the
clock frequency of the internal counter. The maximum error has been calculated
earlier in [11], and is presented here.

With a clock frequency fc, the maximum quantization error is the clock cycle
duration Tc: ∣∣t− t̂∣∣ = |t−mTc| ≤ Tc, (2.21)

where t̂ is the estimate of t, the actual time elapsed between two cogs and m is the
number of clock cycles between the two cogs. With the true engine speed denoted
ω and the measured engine speed ω̂, the relative quantization error is calculated
as:

εq,rel = |ω̂ − ω|
ω

=
∣∣∣∣ α
mTc
− α

t
α
t

∣∣∣∣ =
∣∣∣∣ t−mTcmTc

∣∣∣∣ . (2.22)

Combining (2.21) and (2.22), the relative quantization error becomes:

εq,rel ≤
Tc
mTc

= 1
m

= α

αmTcfc
= ω̂

αfc
. (2.23)

Equation (2.23) shows that the relative quantization error is larger at high engine
speeds than at low. It also shows that a finer quantization as expected reduces the
errors. It is also important to note that a higher angular resolution, i.e. a higher
number of cogs, comes with the price of increased quantization effects.

The maximum quantization error is obtained by multiplying the maximum
relative quantization error by the current engine speed:

εq,max(ω) = εq,relω = ω2

αfc
[rad/s]. (2.24)

So far the engine speed ω has been treated as a value in rad/s. The engine speed
is given in revolutions per minute, rpm, which is a scaled version of rad/s:

rpm = 60
2π rad/s. (2.25)

Using the engine speed in rpm, denoted neng, to calculate the maximum quanti-
zation error the formula is:

εq,max(neng) =
n2
eng

αfc

2π
60 [rpm]. (2.26)

Figure 2.5 shows the maximum quantization error for different engine speeds when
a clock cycle duration of 1 µs is used.
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Figure 2.5. The maximum quantization error as a function of engine speed.

2.3.3 Low Order Distortion
The engine speed oscillates in a sinusoidal manner, with one dominating compo-
nent. The dominating component is the combustion order, which is equal to the
number of cylinders that are igniting in each revolution. Figure 2.6 shows the
Discrete Fourier Transform (dft) of a typical engine speed signal from an engine
with eight cylinders, where the combustion order, that is N

2 = 4 for this engine,
is the is the most prominent component. The amplitude of the combustion order
component, Acomb, is between 10-20 rpm. Typical amplitudes of the lower order
components are around three rpm. Other factors that contribute to the measured
engine speed are low frequency oscillations from the powertrain and high frequency
oscillations due to crankshaft torsion. The road that the vehicle is driving also
induces vibrations in the vehicle, which act as disturbances on the crankshaft [12].

The low orders of the engine speed signal are used for example in diagnosis of
the fuel injection system. An interesting aspect of the quantization is therefore
to investigate when the errors caused by quantization become too large for the
signal to be useful in the diagnosis. Important errors are the amplitude and phase
distortion of low orders, i.e. how A and Ā are related and if there is any phase
shift ϕ after quantization.

QA sin(ωt) Ā sin(ωt+ ϕ)

The errors are likely depending on the engine speed, the amplitude A and also
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Figure 2.6. dft of the engine speed signal from an eight cylinder engine. The com-
bustion order (4) is clearly the dominating component and its first harmonic (8) is also
significantly larger than the other.

the clock frequency fc. A larger amplitude A should mean that the quantization
effects have smaller impact, i.e. that the ratio Ā/A is closer to 1. As already noted
in Section 2.3.2, a higher clock frequency leads to more accurate time stamps and
therefore smaller errors, while a higher engine speed increases the errors. A way
to investigate this is to compare the dft of a quantized signal with the dft of the
original signal. The distortion can then be numerically quantified. The amplitude
distortion is here defined as

DA = A− Ā
A

, (2.27)

where A and Ā are the amplitudes of the order component in the original and
quantized signal’s dft of which the amplitude distortion is sought. The phase
distortion is defined as the absolute value of the difference between phase before
and after quantization:

Dϕ = |ϕ| (2.28)

To verify the assumptions regarding the quantization distortion, an engine
speed signal is simulated and quantized. The simulated signal is constructed so
that it resembles a real engine speed signal, with a dominating combustion order
component and lower order components with amplitudes at around three rpm.
There are also some noise present that in the simulated signal is represented as
uniformly distributed between zero and one rpm on each component in the order
spectrum of the signal. The dft of the simulated engine speed signal looks like the
one in Figure 2.6. During the simulations, the clock frequency is fixed at 1 MHz
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while the average engine speed is varied between zero and 2500 rpm.
By fixing the amplitude of the low order oscillations and clock frequency while

varying Acomb, it is verified that the specific amplitude of the combustion order
component does not affect the distortion for the lower orders. Table 2.1 shows
the amplitude and phase distortion for the second order component is shown for a
number of combustion oscillation amplitudes, Acomb. These results indicate that
it is sufficient to simulate the signal for only one choice of combustion amplitude
when investigating the quantization distortion for low order components.

Table 2.1. Amplitude and phase distortion for oscillations of the second order at different
amplitudes of oscillations at the combustion order. Engine speed at 600 rpm and clock
frequency at 1 MHz.

Acomb DA[%] Dϕ[degrees]
10 0.36 0.20
15 0.36 0.21
20 0.37 0.21
100 0.39 0.23

Figure 2.7 and 2.8 show the amplitude distortion DA and the phase distortion
Dϕ of the second order component for a simulated and quantized engine speed.
They both show a similar behavior consistent with the assumptions: at low engine
speed the errors are very small, but at higher engine speeds both errors increase.
Also the variance of the distortion is larger at high engine speed.
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Figure 2.7. Relative amplitude distortion for the second order component due to quan-
tization effects as a function of engine speed, with clock frequency fixed at fc = 1 MHz.
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Figure 2.8. Phase distortion for the second order component due to quantization effects
as a function of engine speed, with clock frequency fixed at fc = 1 MHz.

Another interesting aspect to investigate is if the errors differ between the or-
ders. If the quantization distorts some of the orders more than the other, it could
be that those order components are useless in the diagnosis of the fuel injection
system. Quantization is a non-linear operation, which could result in quantization
effects differing between the order components or components interfering with each
other and thus deteriorate the possibilities to perform the diagnosis. However, as
Widrow states in [8], the quantization operation can also be seen as adding a white
noise component to the signal. This would mean that the quantization errors de-
pend on the engine speed level rather than the frequency of the oscillations. The
simulations in this work verifies this statement. Table 2.2-2.5 show the amplitude
and phase distortion for low orders with a fixed clock frequency at 1 MHz. Since
all of the oscillation orders fluctuates around the same level and the distortion
levels are very similar for all orders, the results support the theory that the quan-
tization distortion depend on the engine speed level rather than the frequency of
the oscillations.

Since the diagnosis of the injection system requires accurate measurements
of engine speed, it is interesting to investigate whether it might be worth using
a higher clock frequency to reduce the quantization errors. Figure 2.9 and Fig-
ure 2.10 show how the quantization errors decrease as a higher clock frequency is
used. The clock frequency used in the engines in this work is 1 MHz. By increasing
it to 10 MHz, the distortion clearly would not be as severe as it is now. However,
to give a recommendation on whether to increase the clock frequency or not, one
first has to decide on an acceptable distortion level.

All of the quantization investigations above have been done using simulated



2.3 Quantization Effects 19

Table 2.2. Relative amplitude distortion DA for low order components due to quanti-
zation effects at varying engine speed.

Engine speed [rpm]
Order 500 1000 1500 2000 2500
0.5 0.25 0.96 2.28 3.81 6.44
1 0.25 0.98 2.14 4.03 5.96
1.5 0.25 0.95 2.18 3.93 6.27
2 0.26 1.00 2.22 3.80 6.21
2.5 0.25 0.99 2.25 3.84 6.37
3 0.26 0.97 2.27 4.00 6.47
3.5 0.25 1.00 2.24 4.12 6.31

Table 2.3. Standard deviation of the relative amplitude distortion DA for low order
components due to quantization effects at varying engine speed.

Engine speed [rpm]
Order 500 1000 1500 2000 2500
0.5 0.19 0.75 1.73 3.02 4.78
1 0.19 0.75 1.62 2.99 4.50
1.5 0.19 0.74 1.73 2.90 4.63
2 0.19 0.75 1.64 2.91 4.68
2.5 0.20 0.76 1.68 3.03 4.70
3 0.20 0.74 1.67 3.17 4.89
3.5 0.19 0.76 1.70 3.11 4.73

Table 2.4. Phase distortion Dϕ for low order components due to quantization effects at
varying engine speed.

Engine speed [rpm]
Order 500 1000 1500 2000 2500
0.5 0.14 0.57 1.27 2.24 3.63
1 0.15 0.59 1.28 2.31 3.66
1.5 0.14 0.58 1.27 2.28 3.68
2 0.14 0.55 1.30 2.28 3.55
2.5 0.14 0.56 1.30 2.26 3.57
3 0.14 0.57 1.27 2.30 3.52
3.5 0.14 0.57 1.29 2.38 3.65
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Table 2.5. Standard deviation of the phase distortion Dϕ for low order components due
to quantization effects at varying engine speed.

Engine speed [rpm]
Order 500 1000 1500 2000 2500
0.5 0.10 0.46 0.99 1.62 2.81
1 0.11 0.43 1.00 1.70 2.73
1.5 0.11 0.42 0.95 1.71 2.67
2 0.11 0.43 0.97 1.71 2.72
2.5 0.11 0.44 0.99 1.74 2.73
3 0.11 0.42 0.96 1.71 2.68
3.5 0.11 0.43 0.96 1.73 2.75

data, since this is the only way to be able to numerically compare the signal before
quantization with the quantized version of the same. For real engine speed signals,
it is difficult to quantify the distortion numerically, but by visual inspection of the
signals it is apparent that the quantization distortion is affected by the engine
speed. Figure 2.11 shows two measured engine speed signals. One where the
engine speed is low, around 500 rpm, and the other one for a high engine speed,
just over 2300 rpm. For the low engine speed, the quantization effects are minor,
but for the high engine speed, the signal is severely distorted.
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Figure 2.9. Relative amplitude distortion for the second order component due to quan-
tization effects as a function of clock frequency, with engine speed at 2000 rpm.
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Figure 2.10. Phase distortion for the second order component due to quantization
effects as a function of clock frequency, with engine speed at 2000 rpm.
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(a) Severe quantization distortion at high engine speed.
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(b) Fine quantization at low engine speed.

Figure 2.11. These figures show two real engine speed signals, captured with an internal
clock frequency of 1 MHz. It is apparent that the quantization distortion is more severe
in the upper figure (a), where the average engine speed is higher than in the lower figure
(b).



Chapter 3

Modeling

This chapter gives a short description of the operation of the diesel engine, the
generation of engine torque, and how the engine speed dynamics is related to
the torque. By separating both the torque and engine speed into a component
corresponding to the average value and a periodical component, a signal model of
the engine speed is constructed.

3.1 Four Stroke Cycle Diesel Engine
The engine is the power producing component in the powertrain of a vehicle. Power
is produced by fuel combustion in the cylinder, creating a force on the piston that
is converted into torque acting on the crankshaft. For a common diesel engine, a
full combustion cycle lasts for two crankshaft revolutions, where the cylinders in
the engine ignites evenly distributed over the 720 crank angle degrees.

The resulting torque acting on the crankshaft generated by a cylinder during
a full combustion cycle has a distinct maximum at the combustion event. With
several cylinders connected to the crankshaft, the sum of the torque contributions
from all cylinders is reminiscent of a sine wave. This is utilized in the model of
the engine speed that is derived in this chapter.

3.2 Modeling Engine Dynamics
Under the assumption that the crankshaft is infinitely stiff, a dynamic model of the
rotating flywheel under the action of net engine torque Te and load Tl is obtained
from the torque balancing equation [13]:

Jθ̈ = Te − Tl, (3.1)

where J is the effective moment of inertia of the flywheel. The net engine torque
is the sum of the torque contributions from all cylinders, of which each consists
of three main parts: indicated torque, reciprocating torque and friction torque
[14]. The indicated torque is generated as a consequence of gas pressure forces in

23
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a cylinder. The reciprocating torque is generated due to the reciprocating motion
of the piston inside the cylinder. It does not contribute any net energy to the
system, but can cause significant fluctuations at the combustion frequency. The
friction torque represents energy loss due to friction in the engine. There are also
other torques that contribute to the total torque acting on the crankshaft [12],
but the effects of these are insignificant compared to the first three and therefore
neglected here.

As the geometry of the engine under the assumption that the crankshaft is
infinitely stiff causes a periodicity with respect to the crank angle, denoted θ, it is
suitable to create a model based on the crank angle instead of time [15]. With the
notation θ̇ = ω and the derivative chain rule, θ̈ can be transformed to the crank
angle domain:

θ̈ = d2θ

dt2 = dω
dt = dω

dθ
dθ
dt = dω

dθ ω. (3.2)

It is thus possible to rewrite (3.1) as:

Jω
dω
dθ = Te(θ)− Tl(θ) (3.3)

The assumptions of inertia and stiffness imply that the engine is treated with rigid
body motion [13]. A more accurate engine model would include the elasticity and
damping of the crankshaft. While this would increase modeling accuracy, it would
also increase model complexity significantly. Hence, the motor is modeled by a
single lumped inertia.

The periodical nature of the net engine torque Te(θ) is the main reason for the
engine speed oscillations and has complex nonlinear dynamics. By letting each
torque contribution consist of a slowly varying component T̄ (θ), that is constant
at idling and represents the momentary average of the engine torque, and a time-
varying component τ(θ), the net engine torque can be written as:

Te(θ) = T̄e(θ) + τe(θ). (3.4)

The time-varying component τe(θ) can be characterized as a periodic function
in the angular domain. This makes Fourier series expansion a practical tool for
analyzing the signal. Utilizing the hypothesis that all engine processes are band
limited [14], τe(θ) can be expressed in terms of a truncated Fourier series expansion:

τe(θ) = a0 +
M∑
n=1

an cos
(
n
N

2 θ
)

+ bn sin
(
n
N

2 θ
)

+ εM , (3.5)

lim
M→∞

εM = 0, (3.6)

where M is the number of harmonics and N is the number of cylinders in the
engine. By noting that the mean value of τe during a full combustion cycle is
zero, it is realized that a0 = 0. The principle of the spectrum of τe is shown in
Figure 3.1. The distinct peaks at multiples of the combustion order N/2, where
N is the number of cylinders in the engine, is the result of torque variations from
cylinder combustions.
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Figure 3.1. Principle of the spectrum of the time-varying component τe(θ) of the torque
acting on the crankshaft. The distinct peaks at multiples of the combustion order N/2,
where N is the number of cylinders in the engine, is the result of torque variations from
cylinder combustions.

The net engine torque Te(θ) causes the flywheel to rotate at an angular speed
ω(θ). In the same manner as the torque, the resulting engine speed can be split
into an average, or a slowly varying, angular speed ω̄(θ) and an oscillating speed
variation ω̃(θ) around ω̄(θ):

ω(θ) = ω̄(θ) + ω̃(θ),
ω̄(θ) = momentary average engine speed,
ω̃(θ) = oscillating engine speed.

(3.7)

The momentary average engine speed is affected mainly by the slowly varying
torque component T̄ (θ), while the time-varying torque τ(θ) influences the oscil-
lating engine speed ω̃(θ). This idea, in combination with (3.3), means that the
derivative of ω̃ with respect to θ is strongly connected to time-varying torque,
which explains its periodical nature.

It is ω̄(θ), the slowly varying component or the momentary average engine
speed, that is sought in this work. Figure 3.2 shows the principle of the engine
speed signal, with the two components forming the total, and measured, engine
speed.
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Figure 3.2. This figure explains the composition of the engine speed, consisting of a
momentary average ω̄ and an oscillating component ω̃. The superposition of the two
components form the total engine speed ω.

3.3 State Space Representation

In this section a state space representation of the engine speed signal is presented.
The state space model utilizes the fact that, as stated in the previous sections of
this chapter, the torque acting on the crankshaft and thus the engine speed can be
seen as the superposition of a momentary average and an oscillating component.
First, a simple model of the momentary average engine speed is presented. Then,
the oscillations are modeled as noise and the two separate parts are combined
into a full state space model that is used for estimation of the momentary average
engine speed.

3.3.1 Average Speed Model

The purpose of the average speed model is to describe the dynamics of the slowly
varying component of the engine speed. The momentary average is constant during
idling, and at accelerations or gear shifts it has a rather constant derivative. Using
a second order model with two states, the momentary average engine speed ω̄ and
its derivative with respect to the crank angle dω̄

dθ , the basic model in continuous
time is described by

d2ω̄

dθ2 = u, (3.8)
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and the corresponding state space model is:

x̄ =
[
ω̄ dω̄

dθ
]T
,

d
dθ x̄ =

[
0 1
0 0

]
︸ ︷︷ ︸
Ac

x̄+
[
0
1

]
︸︷︷︸
Bc

u,

y =
[
1 0

]
x̄.

(3.9)

The output vector y corresponds to measuring the momentary average engine
speed if there where no oscillations, i.e. ω̃(θ) = 0, ∀θ. For the purpose of discrete
time filtering, the state space model needs to be discretized. By assuming that
the acceleration u is piecewise constant between the sampling instants, which is
reasonable since ω̄ is the slowly varying component of the engine speed, the model
can be discretized using the zero-order hold method [10]. The differential equation
is then integrated from θ = θ0 to the next sampling instance θ = θ0 + α, with the
solution

x̄(θ0 + α) = Aω̄x̄(θ0) +Bω̄u(θ0), (3.10)
where

Aω̄ = eAcα ≈ I +Acα+A2
cα

2/2! +A3
cα

3/3! + . . . ,

Bω̄ =
α∫

0

eAcsBc ds.
(3.11)

By noting that

A2
c =

[
0 1
0 0

] [
0 1
0 0

]
=
[
0 0
0 0

]
, (3.12)

it is realized that
Aω̄ = eAcα = I +Acα =

[
1 α
0 1

]
. (3.13)

Further,

Bω̄ =
α∫

0

eAcsBc ds =
α∫

0

[
1 s
0 1

] [
0
1

]
ds

=
α∫

0

[
s
1

]
ds =

[
α2/2
α

]
.

(3.14)

The deterministic parts of the continuous state space model are then fully
discretized. To get a stochastic model the acceleration u is modeled as Gaussian
white noise w1k with covariance σ2

1 . The resulting model is

x̄k+1 =
[
1 α
0 1

]
x̄k +

[
α2/2
α

]
w1k,

yk =
[
1 0

]
x̄k,

w1 ∼ N
(
0, σ2

1
)
.

(3.15)
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3.3.2 Noise Model
The momentary average engine speed ω̄ is not possible to measure directly, since
it is not the real engine speed. As seen in Figure 3.2, the actual engine speed
consists of the momentary average plus oscillations that are seen as disturbances
in this model:

ω = ω̄ + ω̃. (3.16)
One solution is to model the disturbances as white noise. In this case, it is known
that the disturbances have an apparent oscillating behavior. It is thus not natural
to describe them as white noise but rather as a signal with one or several distinct
peaks in its spectrum, see [16]. From the periodical nature of the engine speed
signal it is understood that the disturbance spectrum, i.e. the spectrum of the
oscillations, have a peak at the combustion order λc = N

2 . This is also seen in the
spectrum of the engine speed signal in Figure 2.6.

To model the noise as a process with distinct peaks in its spectrum is also
motivated by the fact the time-varying torque τe, which in (3.5) and Figure 3.1 is
characterized as a signal with distinct peaks in its spectrum, affects the derivative
of ω̃ with respect to the crank angle θ. The more peaks in the spectrum, the more
complex the noise model is. Hence, only the combustion order and none of its
harmonics is taken into account in the model. The desired spectrum is generated
by letting ω̃ be represented as the output from a second order time continuous
system with poles close to ±iλc, with the real component −ξ that places the poles
in the left half plane, excited by white noise w2.

ω̃ = H (s)w2 = 1
(s− ξ − iλc) (s− ξ + iλc)

w2. (3.17)

For the noise model to be useful in the full state space representation, it needs
to be discretized and transformed to state space form. The discretization is done
using the Tustin approximation [10] and the transformation to state space form
is done by rewriting the model on controllable canonical form [10]. The two poles
of the transfer function H(s) means that the state space representation will have
two states.

x̃k+1 = Aω̃x̃k +Bω̃w2k,

w2 ∼ N
(
0, σ2

2
)

ω̃k = Cω̃x̃k,

(3.18)

where

Aω̃ =
[
a1 a2
1 0

]
,

Bω̃ =
[
1
0

]
,

Cω̃ =
[
0 1

]
.

(3.19)

The final noise model consists of two states, of which the second corresponds to
ω̃, the engine speed oscillations.
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3.3.3 Full Signal Model of the Engine Speed
Putting the two state space models (3.15) and (3.18) together gives a system with
four states:

x =
[
x̄ x̃

]T =
[
x1 x2 x3 x4

]T
, (3.20)

where x1 and x2 represent the average engine speed and x3 and x4 represent the
noise model. Assuming that the two components of the process noise w1 and w2
are mutually independent, the covariance matrix is defined as

Σ =
[
σ2

1 0
0 σ2

2

]
(3.21)

The full state space representation of the engine speed can be summed up as:

xk+1 = Axk +Bwk,

yk = Cxk + ek,
(3.22)

where ek is the measurement noise, modeled as Gaussian white noise with covari-
ance R, and:

A =
[
Aω̄ 0
0 Aω̃

]
=


1 α 0 0
0 1 0 0
0 0 a1 a2
0 0 0 1

 ,

B =
[
Bω̄ 0
0 Bω̃

]
=


α2/2 0
α 0
0 1
0 0

 ,
C =

[
1 0 0 1

]
,

w =
[
w1 w2

]T ∼ N (0,Σ) ,
e ∼ N (0, R) .

(3.23)

This model is a signal model of the engine speed describing the momentary average
and the oscillations at the combustion order.





Chapter 4

Filtering

This chapter discusses methods to retrieve estimates of the momentary average
engine speed ω̄ by trying to filter out the periodic term ω̃ from the engine speed
measurements ω. The signal model from last chapter is used in a signal model
based method and the results are compared to estimates from a frequency selective
filter. Also discussed in the chapter is how a change detection framework can
be used to increase the performance of a filter by changing parameter values at
appropriate times.

4.1 Estimation of the Average Engine Speed

When estimating the momentary average engine speed from the engine speed sig-
nal, the oscillating component ω̃ needs to be canceled out. There are many types
of filtering algorithms to extract desired parts or reject noise in signals. Frequency
selective filters is a class of filters that attempts to pass some bands of frequencies
and reject others. The theory behind this class of filters is covered in [17]. In this
work, one of the methods used to filter out the oscillations in the engine speed
is a frequency selective filter with finite impulse response. A different approach
to extract certain parts of a signal is to create a signal model and use a state
estimating filter. A classic state estimating filter is the Kalman filter, which in
this work is used to estimate the momentary average engine speed.

4.1.1 FIR Filters

A finite impulse response (fir) filter is a linear filter whose impulse response is
of finite duration. The duration of the impulse response corresponds to the filter
order, i.e. the number of poles in the transfer function of the filter. An Lth order
fir filter has an impulse response that lasts for L+ 1 samples. The output yk of
a fir filter is, as for all linear time invariant systems, given by the convolution

31
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between the input signal xk and the system’s impulse response hk:

yk =
L∑
l=0

hlxk−l (4.1)

The main advantages of the fir filters are that they are inherently stable and
simple to implement. For more reading on the theory of frequency selective filters,
please refer to [17].

As stated in Chapter 3, the engine speed can be described as the superposition
of a slowly changing term ω̄ and a periodic term ω̃ that are depending on the
combustions. The period of ω̃ is equal to the angle between the cylinder com-
bustion events. Since all N cylinders ignites in 720 crank angle degrees, there is
a combustion event every 720

N th degree. For the task of suppressing the periodic
term, a Crank Angle Synchronous Moving Average (casma) filter, described in
[2], can be used. The casma filter is a regular moving average fir filter that is
applied in the crank angle domain, with a filter length chosen to fit the angular
period duration. Since the sampling interval α for the signal in this work is fixed
at 6 crank angle degrees, the filter length is chosen as:

M = 720
Nα

, (4.2)

and the filtered engine speed signal is calculated as

ˆ̄ωk = 1
M

M−1∑
l=0

ωk−l. (4.3)

For this choice of filter length, all multiples of the combustion order in the engine
speed signal are attenuated. The order response of such a filter, designed for an
engine with N cylinders, is illustrated in Figure 4.1.
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Figure 4.1. Order response of a moving average fir filter, designed to suppress the
combustion order and its multiples in an engine with N cylinders. This is achieved by
averaging over the last 720
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6N

= 120
N

samples: ˆ̄ω (k) = N
120
∑ 120

N
l=0 ω (k − l).



4.1 Estimation of the Average Engine Speed 33

The main advantage of the moving average filter is that it uses only earlier
samples of the input signal and no samples from the output signal as input to
the filter. This means that not all the samples have to be filtered, but only the
ones representing the last combustion period when the ems needs a new estimated
value of the momentary average engine speed. This makes it possible to get a
crank angle synchronous estimate of the average engine speed without filtering
every single sample and thus keep the number of operations down. Each update
requires M − 1 additions and one division, no matter what the engine speed is.
Here, M is the number of samples during one combustion period.

The filter suppresses all oscillations at the combustion order, but lower frequen-
cies pass through. This causes the estimated momentary average engine speed to
vary with small fluctuations in the engine speed, see Figure 4.2.
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Figure 4.2. Estimated momentary average engine speed of an eight cylinder engine
using a moving average fir filter.

4.1.2 Kalman Filter
The Kalman filter, presented in [18], estimates the states in a state space model
described by

xk+1 = Axk +Buk + wk,

yk = Cxk + ek,

x0 = x̄0,

Q = Cov{w},
R = Cov{e}.

(4.4)
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In the state space model, A, B and C are known matrices, xk an unknown state
vector, and yk measured signals. The process noise is described by wk and ek
is the measurement noise. Independently of the distributions of the process and
measurement noise, the Kalman filter is the best linear filter in the sense that it
minimizes the estimated error covariance [10]. Figure 4.3 summarizes the signal
flow for the signal model and the Kalman filter. Along with the state estimates x̂,
the filter also provides a covariance matrix P of the estimates.

System
uk
wk
ek

Kalman filter x̂k

yk

xk

Figure 4.3. Definition of signals for the signal model and Kalman filter.

The operation of the Kalman filter algorithm can be divided into two update
steps: the time update and the measurement update. The time update is the
prediction part, where the algorithm makes use of the dynamic equation in order
to predict the state to the next time step. In the measurement update step, the
information available in the new measurement is incorporated into the state esti-
mate. The two steps are then iterated, which makes it possible to illustrate the
algorithm as in Figure 4.4. The equations for the two steps are as follows:

Time update

x̂k+1|k = Ax̂k|k, (4.5)
Pk+1|k = APk|kA

T +Q, (4.6)

Measurement update

Kk = Pk|k−1C
T
(
CPk|k−1C

T +R
)−1

, (4.7)
x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1

)
, (4.8)

Pk|k = Pk|k−1 −KkCPk|k−1. (4.9)

It is possible to save computations in the measurement update by introducing
some dummy variables:

Lk = Pk|k−1C
T , (4.10)

Sk = CLk +R. (4.11)

The update is then computed as:

Kk = LkS
−1
k , (4.12)

x̂k|k = x̂k|k−1 +Kk

(
yk − Cx̂k|k−1

)
, (4.13)

Pk|k = Pk|k−1 −KkL
T
k . (4.14)
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The matrix Kk is referred to as the Kalman gain. It is a function of the relative
certainty of the measurements and the current state estimate. With a high gain,
the filter puts more weight on the measurements, and thus follows them more
closely. With a low gain, the filter follows the model predictions more closely,
smoothing out noise but decreasing the responsiveness.

Time update Measurement updateInitial estimates

Figure 4.4. Description of the Kalman filter algorithm.

The covariance matrices of the process noise and measurement noise, Q and R,
are the design parameters of the Kalman filter. The relation between the matrices
determine how much the process and measurement equations are trusted. If the
measurements are scalar, so is R, and the relation between the design parameters
can be described as follows. With a small R/Q relation, the measurements are
trusted more and the filter has a large Kalman gain. If R/Q instead tends to
infinity, the Kalman gain tends to zero and the model dynamics are trusted instead
of the measurements.

Estimation of Average Engine Speed Using Kalman Filter

The signal model (3.22) presented in Chapter 3, has two mutually independent
process noise components. The standard state space model defined for the Kalman
filter in (4.4) has a single process noise. By defining

w = B

[
w1
w2

]
, (4.15)

B =
[
Bω̄ 0
0 Bω̃

]
=


α2/2 0
α 0
0 1
0 0

 , (4.16)

the state space model of the signal is back on standard form, with a process noise
covariance matrix

Σ̄ = BΣBT =


α4σ1/4 α3σ1/2 0 0
α3σ1/2 α2σ1 0 0

0 0 σ2 0
0 0 0 0

 , (4.17)

where Σ is the covariance of the process noise (3.22), and can be summed up as:

xk+1 = Axk + wk,

yk = Cxk + ek,
(4.18)
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where

A =
[
Aω̄ 0
0 Aω̃

]
=


1 α 0 0
0 1 0 0
0 0 a1 a2
0 0 0 1

 ,
C =

[
1 0 0 1

]
,

w ∼ N
(
0, Σ̄

)
,

e ∼ N (0, R) .

(4.19)

Since R is scalar, the R/Σ̄ relation determines how much the process and measure-
ment equations are trusted. For the purpose of estimating the momentary average
engine speed, the filter needs to suppress the oscillations effectively, which requires
a large R/Σ̄. The problem is that makes the filter too slow to track the signal
during quick changes in engine speed, which would require a small R/Σ̄ relation.
This problem is illustrated with a gear shift in Figure 4.5. The fast filter tracks
the signal well during the gear shift, but gives rather noisy estimates during the
normal driving prior to the shift. The slow filter gives a stable signal during the
normal driving, but cannot follow the signal during the gear shift. A solution to
this would be to use different parameters during different parts of the signal.
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Figure 4.5. Illustration of the difficulty to tune the Kalman filter to provide stable
estimates of the momentary average engine without noise, but still follow the signal
during quick changes.
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Number of Operations

Since the ems has limited computational power, it is interesting to examine how
many computations are needed in each iteration when using the Kalman filter. Let
the number of states in the state space model be denoted n and the dimension of the
measurement vector be m. The maximum number of computations needed in each
equation can then be calculated as the sum of the operations in a multiplication
between matrices of the appropriate dimensions. The total number of operations
in the time update is then 4n3 + n2 − n, including additions and multiplications
in the two equations, see Table 4.1.

Table 4.1. The maximum number of operations needed in the time update step of the
Kalman filter for a system with n states and m measurements.

Equation Mult Add
(4.5) n2 n2 − n
(4.6) 2n3 2n3 − n2

Total 2n3 + n2 2n3 − n

For the measurement update, the number of operations are calculated for the
computation saving method. The total number of operations are 4mn2 + 4m2n+
2mn plus the operations needed to compute the matrix inverse in (4.12) and in
Table 4.2 the number of operations for the separate equations are presented.

Table 4.2. The maximum number of operations needed in the measurement update step
of the Kalman filter for a system with n states and m measurements.

Equation Mult Add Sub Other
(4.10) mn2 m

(
n2 − n

)
(4.11) m2n m2n
(4.12) m2n

(
m2 −m

)
n inv

(4.13) 2mn m (2n− 1) m
(4.14) mn2 (m− 1)n2 n2

Total 2mn (m+ n+ 1) 2mn (m+ n)− n2 −m n2 +m inv

The number of operations presented above are calculated for the worst case
scenario, where every element in the matrices are nonzero. By utilizing the struc-
ture of the system, for example by noting that the state transition matrix is a
sparse matrix, it is possible to decrease the number of operations.

Given the model (4.18), there are n = 4 states and the measurements are scalar
values, hence m = 1. With m = 1, the matrix Sk that is inverted in the measure-
ment update is just a scalar. Thus, the inverse operation and n multiplications
can be replaced by n divisions. This means that using a model of the same dimen-
sions as (4.18), for the worst case scenario, the measurement update step takes
44 multiplications, 40 additions, 17 subtractions and 4 divisions. The time update
step takes 144 multiplications and 124 additions. One full filter iteration takes a
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total of 373 operations. The actual number of operations per iteration, after some
optimizing of the computations, are presented in Chapter 6.

4.2 Change Detection
As noted in Section 4.1.2, it is difficult to find parameters for the Kalman filter
that provides stable estimates of the momentary average engine speed without
losing track of the signal during transients. A solution is to detect when the
signal changes too fast for the filter and momentarily change the parameters. This
section introduces the change detection framework, which considers methods for
detection and identification of changes in systems or signals.

4.2.1 Introduction to Change Detection
Many estimation and monitoring problems can be stated as estimating the values
of the parameters in a dynamic stochastic system. The change detection frame-
work is an approach to detecting and identifying abrupt changes in the these
systems [19]. The changes may come from deviations, failures or malfunctions,
but are in all cases reflected by a change in the parameters of the models of the
systems. Statistical decision tools for detecting and estimating abrupt changes in
the properties of dynamical systems are of great interest and useful for several
different purposes:

• Gain updating in adaptive filtering algorithms for improving their tracking
ability.

• Monitoring complex structures and industrial processes for fault detection.

As an illustration, Figure 4.6 shows a signal with two abrupt changes in the mean
detected by a change detection algorithm. For more theory and applications,
please refer to [19].
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Figure 4.6. Example of how a change detection algorithm can be used to detect abrupt
changes in the signal. After 250 and 500 samples, there are steps in the signal and the
change detector sends out alarms.
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The change detection problem can according to [19] be split into two steps:
generation of residuals and residual evaluation. The residuals are ideally zero
under no-fault conditions and non-zero after a change. As long as there is no
change in the system and the correct model is used, the residuals act like white
noise, that is a sequence of independent stochastic variables with zero mean and
known variance. The residuals are then mapped to a distance measure, which can
vary for different purposes.

The residual evaluation step aims to make a decision if a change has occurred
based on these distance measures. The design of a decision rule in the residual
evaluation is a compromise between detecting true changes and avoiding false
alarms. If the threshold for alarm is too low, the alarm will be triggered easily,
leading to a lot of false alarms. A threshold that is too high will instead fail to
detect real changes. Figure 4.7 shows the basic structure of the change detection
framework.

Filteryk Distance measure Decision rule Alarm
ŷk

εk
sk

(a) Structure of a change detection algorithm

Averagingsk Thresholding Alarm
gk

(b) Structure of the decision rule

Figure 4.7. The steps in change detection based on hypothesis tests. The stopping rule
can be seen as an averaging filter and a thresholding decision device.

Performance Measures

A change detector needs to detect all abrupt changes in the system but should
not cause any false alarms. The performance of a change detection algorithm is
evaluated by looking at the following measures:

• False alarm rate
How often a false alarm is generated.

• Time to detection
How many samples there are between a change and the corresponding alarm.

CUSUM algorithm

The cumulative sum (cusum) algorithm [20] is a non-linear decision rule commonly
used in change detection. It has two design parameters, ν and h, and the equations
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used to detect a change in the mean are given by

sk = εk = ŷ − y
gk = max {gk−1 + sk − ν, 0} ,
gk = 0, and alarm if gk > h > 0.

(4.20)

The idea is to sum up the distance measures sk and alarm when the sum exceeds
a predefined threshold h. At an alarm the sum is reset to zero and the process
starts over again. In order to prevent positive drifts of the test statistic gk, a small
term ν is subtracted from each distance measure. To avoid negative drifts that
would increase the detection time after a change, gk is reset to zero each time it
becomes negative.

4.2.2 Change Detection for Adaptive Filtering
The performance of a state estimating filter is often evaluated from its tracking
ability and the variance error of the estimates. The two measures obstruct one
another in the sense that an increased tracking ability often comes at the price
of increased noise sensitivity. The tuning of the filter parameters is hence a com-
promise between the two measures. For the purpose of estimating the momentary
average engine speed, it is desirable to get estimates with low error variance. How-
ever, during gear shifts or accelerations the derivative of the engine speed may be
very large, causing quick changes in the engine speed. A state estimator tuned to
give estimates with low variance will be too slow and cause a delay in the estimate.
In this case, a filter tuned to have a good tracking ability would perform better
than the low variance filter.

The use of change detection makes it possible to select different filters at dif-
ferent signal cases. During steady state operation, a slow filter that dampens all
oscillations and giving low error variance can be used. When the signal changes
too fast for the slow filter, an alarm from the change detection algorithm triggers
the fast filter with focus on tracking ability. The design of the change detector
determines how often the fast filter is used. An improper design results in either
many false alarms or too few alarms, i.e. the fast filter is used too often or not
sufficiently often. Examples are shown in Figure 4.8.

4.2.3 Kalman-CUSUM Filter
In order to improve the tracking ability of the Kalman filter, it is extended by a
change detection algorithm that runs in parallel with the filter. The chosen change
detection algorithm is the cusum algorithm described above. In case of an alarm,
a significant change of the momentary average engine speed has occurred and the
slow the Kalman filter has caused the estimate to be delayed. To increase the
tracking ability of the filter, the Kalman gain needs to be increased. This makes
the algorithm trust the measurements more than the model, which allows a quick
convergence of the estimated average towards the actual average. Figure 4.9 shows
the difference between the response of a conventional Kalman filter and one where
the filter is extended with a change detection algorithm.
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Figure 4.8. Examples of consequences of improper design of the change detection
algorithm. Figure (a) shows the result of a very low alarm threshold, causing many false
alarms. In (b), the threshold is set too high and the delay until the gear shift is detected
is too large.
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Figure 4.9. Comparative responses of Kalman filter with and without a change detection
algorithm when estimating the average engine speed during a simulated gear shift.
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The Kalman gain is a matrix, where each element corresponds to one of the
states. In this work there are four states and the Kalman gain is thus a 4x1 matrix.
The first two elements correspond to the average engine speed and its derivative
while the two other elements correspond to the oscillations. The Kalman gain
is affected by the covariance matrix P of the state estimates which in its turn
is affected by the values of the process noise covariance Σ̄. When the cusum
algorithm indicates that the average engine speed has changed, the elements in
Σ̄ corresponding to the process noise for the average engine speed state are mo-
mentarily increased to a large value. This is done by increasing the parameter σ1
in (4.17). The process noise covariance is only increased during one sample, but
the change is propagated into the P matrix through (4.6), causing the first two
elements in the Kalman gain matrix to stay large for more than one sample. The
same behavior could be achieved by resetting the Kalman filter, e.g. by directly
setting all the elements in the covariance matrix P to large values, but since that
strategy would require more tuning parameters it is convenient to momentarily in-
crease σ1. Figure 4.10 shows the engine speed signal during an acceleration, where
the conventional Kalman filter is too slow to track the actual average engine speed.
As the estimated average falls from the actual, the test statistic g in the cusum
algorithm starts increasing. As it exceeds the alarm threshold, the change detector
generates an alarm. At this event, the process noise σ1 is increased, leading to
an increase in the Kalman gain. With a higher Kalman gain, the tracking ability
of the filter is improved leading to a quicker convergence and a more accurate
estimate of the average engine speed.

The extension of the Kalman filter by using cusum comes at a price of extra
operations in every iteration: two subtractions, one addition, one max operation
and one comparison.



4.2 Change Detection 43

0 500 1000 1500 2000 25001040

1060

1080

1100

Sample

En
gi
ne

sp
ee
d
[rp

m
]

Engine speed signal
Estimated average speed with change detection
Estimated average speed without change detection
Change detected

(a) Engine speed

0 500 1000 1500 2000 2500

20

40

60

Sample

cusum test statistic
Alarm threshold
Change detected

(b) cusum test statistics

0 500 1000 1500 2000 25000

0.005

0.01

0.015

0.02

Sample

Kalman gain for average engine speed state
Change detected

(c) Kalman gain

Figure 4.10. Figure (a) shows the comparative responses of Kalman filter with and
without a change detection algorithm when estimating the average engine speed during
an acceleration. After the change has been detected in (b), the Kalman gain for both
the speed and acceleration states are increased. Figure (c) shows the alarm response of
the engine speed state’s Kalman gain.





Chapter 5

Acceleration Estimation

The mean engine acceleration ˙̄ω, i.e. the time derivative of the momentary aver-
age engine speed, is used to calculate the torque generated by the engine and is
also important in the engine speed control systems. This chapter presents two
approaches to estimating the mean engine acceleration.

5.1 Backwards Difference
A standard ad hoc solution to estimate the derivative of a discrete time signal is to
simply take the difference between the two last estimates scaled by the sampling
period or the time T between the samples:

˙̄ωk ≈
ω̄k − ω̄k−1

T
. (5.1)

This method is called the backwards difference (bd) [21] and is in this work used
in combination with a fir filter to estimate the mean engine acceleration. The
method is sensitive to noise, and since the fir filtered average engine speed es-
timates are noisy, the estimated acceleration is in practice often too noisy to be
useful without further processing. Figure 5.1 shows an example of the mean engine
acceleration estimated with this method, using T = 10 ms between each sample.
The noise level of the raw estimated acceleration is very high, but filtering using
a low pass (lp) filter decreases the noise significantly. Too much low pass filtering
introduces extra delay, and since the acceleration is momentary this makes the
estimates worse. This makes the lp filtering a trade off between noise suppression
and extra delay.

5.2 Signal Model Based Estimation
Instead of using the bd method, it is possible to utilize the structure of the engine
speed model to calculate the mean engine acceleration. Using the chain rule it is

45
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possible to rewrite the mean engine acceleration as:

˙̄ω = dω̄
dt = dω̄

dθ
dθ
dt . (5.2)

Both dθ
dt and dω̄

dθ have corresponding states in the signal model (3.22), since the
state x1 corresponds to ω̄ and the state x2 is the derivative of ω̄ with respect to
the crank angle θ. Since the engine speed is measured in rpm, both x1 and x2
corresponds to the rotational speed in rpm, which needs to be converted to rad/s
in order to get the scaling factor correct. This is done by multiplying with 2π

60 ,
which means that

2π
60 x1 = dθ

dt

[
rad
s

]
, (5.3)

2π
60 x2 = dω̄

dθ

[
rad/s
rad

]
. (5.4)

Using equations (5.3) and (5.4) in (5.2), the mean engine acceleration in rad/s2
can be calculated as

˙̄ω =
(

2π
60

)2
x1x2

[
rad
s2

]
. (5.5)

Since the engine speed is measured in rpm in the rest of this work, it is convenient
to also express the mean engine acceleration in rpm/s:

˙̄ω = 2π
60 x1x2

[ rpm
s

]
. (5.6)

Another signal model approach to estimating the mean engine acceleration would
be to extend the signal model (3.22) with a state corresponding to ˙̄ω. This would
lead to an increased number of operations in each iteration of the filter, since there
would be five states instead of four. By instead using (5.6), the computational cost
is not increased more than necessary. The resulting mean acceleration estimates
from the signal model based method is compared to the bd method in Figure 5.1.
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(a) Mean engine acceleration
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(b) Mean engine acceleration

Figure 5.1. Mean engine acceleration estimated using different methods. The noise
level of the bd method is significantly higher than for the estimates from the signal
model based method. Figures (a) and (b) show the same signal in different scales.





Chapter 6

Results

In this chapter, the main results of this work is presented. The estimation results
from the different methods are compared and discussed.

6.1 Average Engine Speed Estimation
This section presents the difference in performance when estimating the momen-
tary average engine speed using the methods from Chapter 4: a moving average
fir filter and a Kalman-cusum filter. The most important property of the fil-
tering methods is to provide estimates of the momentary average engine speed
that follows the signal during accelerations and retardation with low noise levels.
This means that the algorithms should suppress the oscillations at the combustion
order and dampen minor fluctuations due to combustion variations.

6.1.1 Normal Driving
The measured engine speed consists of both the momentary average and the os-
cillating components, which means that the true momentary average engine speed
is unknown. It is thus difficult, if not impossible, to numerically evaluate the per-
formance of the methods. Instead of using numerical methods, the performance of
the methods is compared by visual inspection of the estimates. The filters should
suppress all oscillations but still track the engine speed during accelerations and
retardations.

Figure 6.1-6.4 show the engine speed and estimated momentary average during
a couple of normal driving scenarios. Both methods suppress the oscillations at the
combustion order, but it is apparent that the signal model based Kalman-cusum
filter gives a more stable estimate of the momentary average. In Figure 6.2, where a
quick acceleration occurs after about 2.5 seconds, the disadvantage of the Kalman-
cusum filter is shown. It is a bit too slow to track the signal during the quick
change in engine speed, causing a lag on the estimated momentary average. This
property is tunable, but to keep the oscillation suppression effective, it is necessary
to let the filter introduce delays in the estimates for a short period after a quick
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change in engine speed. In the same situation, the fir filter shows its advantage
when it follows the engine speed through the acceleration.
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Figure 6.1. Engine speed during normal driving. The noise level for the estimates from
the Kalman-cusum filter is significantly lower than for the fir filtered estimates.
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Figure 6.2. Engine speed during normal driving. In the acceleration after about 2.5
seconds, the estimates from the Kalman-cusum filter is delayed compared to the ones
from the fir filter.
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Figure 6.3. Engine speed during normal driving. The noise level for the estimates from
the Kalman-cusum filter is significantly lower than for the fir filtered estimates.
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Figure 6.4. Engine speed during normal driving. The noise level for the estimates from
the Kalman-cusum filter is significantly lower than for the fir filtered estimates.
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6.1.2 Idling
During idling, the actual engine speed oscillates with an amplitude of about 10 rpm
and also varies a little from combustion variations. However, the average engine
speed is constant and thus the filtering should result in a straight line. Figure 6.5
shows the difference between momentary average engine speed estimates from a
moving average fir filter and a Kalman-cusum filter. The fir filtered signal is
not completely constant, but follows the engine speed in its small variations. For
the idling engine scenario, the true average engine speed is known. Hence, it is
possible to evaluate the methods by computing their standard deviations from the
true average. The standard deviation of the fir filtered signal is 0.8 rpm and the
largest deviation from a straight line at the mean of the full signal is 2.5 rpm.

The Kalman-cusum filter suppresses the oscillations from the combustions
effectively and also dampens the slow oscillations. This makes the filter perform
very well in estimating the average engine speed at steady state. The result is
almost constant, with a small standard deviation of 0.1 rpm. The largest detected
deviation from the mean is 0.4 rpm. The statistics for both methods are presented
in Table 6.2.

0 0.1 0.2 0.3 0.4 0.5 0.6480

490

500

510

520

Time [s]

En
gi
ne

sp
ee
d
[rp

m
]

Engine speed
fir filtered engine speed
Kalman-cusum filtered engine speed

Figure 6.5. Estimated momentary average engine speed for an idling engine. The
result using a moving average fir filter still varies a little, while the Kalman-cusum filter
provides an almost constant estimate.

Table 6.1. Statistics for average engine speed estimation during idling.

Method Std dev [rpm] Max dev [rpm]
Moving average fir filter 0.8 2.5
Kalman-cusum filter 0.1 0.4
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6.1.3 Gear Shifts
Gear shifts leads, just like accelerations, to quick changes in the engine speed. For
good filtering performance, the filters need to be able the follow the signal in its
variations without introducing unnecessary delays.

Since the output from the fir filter always depend on the same number of
measurements, all with the same delay, the phase delay is constant for the average
engine speed estimates from the fir filter. This means that in the ramp of a gear
shift, the estimated average speed is slightly delayed for the full ramp. This is
shown in Figure 6.6, where the gear shift starts after 0.5 seconds.

Unlike for the fir filtered estimates, the phase delay of the estimates from
the Kalman-cusum filter varies. This is due to the change of parameter values in
connection to alarms. In case of quick changes in the signal, the slow Kalman filter
lags behind, which increases the phase delay. When the cusum algorithm detects
the change, it sends out an alarm and the filter parameters are changed. After this
event, the Kalman-cusum filtered engine speed quickly converges to an accurate
estimate of the momentary average engine speed and the phase delay decreases.
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Figure 6.6. Estimated momentary average engine speed for an engine at a gear shift.
The fir filter responds faster to the quick change in engine speed, but the Kalman-cusum
filter catches up after a few more samples.

Table 6.2. Statistics for average engine speed estimation at gear shift.

Method Delay [ms]
Moving average fir filter < 10
Kalman-cusum filter ∼ 20
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6.2 Acceleration Estimation
This section presents the difference in performance when estimating the mean
engine acceleration using the methods from Chapter 5.

6.2.1 Normal Driving
For the bd method, the mean acceleration is calculated from the fir filter es-
timates of the momentary engine speed. These estimates contain a significant
amount of noise that is propagated into the acceleration estimates. In practice,
where the estimated mean acceleration is used to estimate the engine torque, the
noise level of these raw estimates make them useless without further processing.
As a compromise between delay and stability of the signal, the estimates are fil-
tered using a third order Butterworth lp filter. This reduces the noise without
introducing too much delay. The advantage of the bd method is, except for the
low computational cost, its fast response at quick accelerations and retardations.

Using the signal model based Kalman-cusum filter to estimate the mean engine
acceleration, a signal with a lot less noise is obtained. The drawback with the
signal model based method to acceleration estimation is, just as for average speed
estimation, the delay at quick changes. Depending on the application, the filter
can be tuned to provide a more stable estimate at the price of reduced performance
during transients. Here, a set of parameters tuned to give a balance between steady
state and transient performance is used.

Figure 6.7 and 6.8 show the estimated mean engine acceleration corresponding
to the signals in Figure 6.1 and 6.4. The noise level on the estimates from the bd
method is a lot higher than for the signal model based estimates, but also gives a
faster acceleration estimate at quick changes in the engine speed.
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Figure 6.7. Mean engine acceleration during normal driving. The model based estimates
have a lower noise level than the estimates from the bd method.
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Figure 6.8. Closer view of the acceleration estimates during a section where the engine
speed is decreasing.

6.2.2 Gear shifts
During gear shifting, the engine speed changes rapidly and the engine acceleration
has a high absolute value. Performance measures for the acceleration estimates
during a gear shift are:

• Response time
How fast the estimates reach and settle at the correct value.

• Overshoot
An estimated acceleration that is too large is not wanted.

• Noise
A low noise level is desired.

By simulating a gear shift, the actual engine acceleration, i.e. the ground truth,
is known. The advantage of the bd method is that is detects abrupt changes
quickly, which means that it performs well during gear shifts. The first sample after
the start of the gear shift the acceleration estimate has increased, see Figure 6.9.
Just as earlier, the noise of the estimates is very large and some lp filtering is
needed. The filtering reduces the noise but also introduces more delay, which
makes the filter order and cutoff frequency a compromise between the tracking
ability and the tolerated noise level.

The signal model based filter, which is designed to cancel out oscillations, is
too slow to track the engine speed signal immediately at a gear shift that leads
to a delay also in the acceleration estimates. As the change detection algorithm
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signals that a change of parameters is needed and the process noise covariance σ1
increased, the estimated size of the step in engine acceleration gets larger than the
actual step size. The overshoot is often as large as 100 % of the actual step size.
This is due to the fact that the filter tries to bring back the average engine speed
estimate to a correct level as fast as possible, which is not possible without a large
acceleration. This is also apparent in Figure 6.6, where the estimated momentary
average increases much quicker than the actual engine speed about 0.55 seconds
into the plot. As seen in Figure 6.10, the first alarm comes about 20 ms after the
start of the gear shift and the second alarm just after the gear shift is finished.
Compared to the bd method, which responds just after 10 ms, the signal model
based method is a bit slower. However, by tuning the filter a faster response and
better acceleration estimation performance can be obtained at the cost of worse
oscillation canceling in the average engine speed estimation.

It is not only delay until the alarm that is the problem with the signal model
based method. After the overshoot, the time it takes for the acceleration estimate
to settle at the correct level is also significant. In Figure 6.10 it takes almost 0.2
seconds from the start of the gear shift until the acceleration estimates reaches the
correct level. A similar situation occurs after the shifting when the acceleration
quickly switches from a high level to zero. The estimates calculated using the
bd method reaches the correct level almost immediately, but the noise level is
very high. After lp filtering with a third order Butterworth filter with normalized
cutoff frequency 0.1, the settling time is about the same as for the signal model
based estimates but without the large overshoot. On the other hand, the noise
level is still higher for the lp filtered estimates than for the signal model based
ones. Statistics for both methods are presented in Table 6.3.

Summing up, the acceleration estimates calculated with the signal model based
method are more accurate than the ones calculated using the bd method at all
times except at the events of alarms from the change detection algorithm, i.e. very
quick changes in the engine speed. One solution to avoid the overshoot problems
at alarms could be to switch to the bd method when the elements of the state
covariance matrix P exceeds a certain threshold. After an alarm, the elements of
P increase as a consequence of the increase in process noise covariance. To avoid
the overshoot problem, a suitable threshold should be found and used.

Table 6.3. Statistics for acceleration estimation during a gear shift.

Method Settling time [ms] Overshoot [%]
bd 50 0
Signal model based 200 70
bd+lp (wc = 0.2) 90 20
bd+lp (wc = 0.1) 250 10
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Figure 6.9. Estimated engine acceleration during a simulated gear shift using a fir
filter and the bd method. The raw estimates are very noisy, but by using a lp filter the
noise is reduced at the price of slower adaption.
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Figure 6.10. During a gear shift the engine acceleration increases abruptly and stays
high for a moment. This is a comparison between engine acceleration estimated using a
signal model based method and lp filtered bd estimates.
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6.3 Computations
The fact that the state transition matrix A in (3.23) is sparse, with only six
non-zero elements, of which three are equal to one, makes it possible to save
computations. Also, Σ̄ and C have several elements with the value zero. The actual
number of operations in the time and measurement update steps are presented in
Table 6.4 and Table 6.5.

Table 6.4. Operations needed in the time update step of the Kalman filter.

Equation Mult Add
(4.5) 3 2
(4.6) 24 21
Total 27 23

Table 6.5. Operations needed in the measurement update step of the Kalman filter.

Equation Mult Add Sub Div
(4.10) 4
(4.11) 2
(4.12) 4
(4.13) 4 5 1
(4.14) 16 16
Total 20 11 17 4

A total of 50 operations in the time update step and 52 in the measurement
update step gives 102 operations in each iteration of the Kalman filter. With the
cusum check included, the full algorithm takes 107 operations in each iteration.
Since the filter is iterated for each sample and the sampling distance α is six
crank angle degrees, there are 60 iterations each revolution. With a crank angle
based filter, the number of operations per time unit are dependent on the current
engine speed. One iteration per second means that the engine turns six degrees
per second. With one revolution per second, there are 60 iterations per second,
which means that the number of filter iterations per second is equal to the engine
speed in revolutions per minute.

one rpm ↔ one iteration
s

In order to compare the computational complexity of the crank angle based filter
with a time synchronous filter, it is interesting to count the number of operations
that are needed every second or fraction of a second. Since one iteration for
the Kalman-cusum filter in this work costs 107 operations, the total number of
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operations each second is computed as:

107 · rpm = operations
s

The fir filter uses only earlier samples of the input signal and no samples from
the output signal as the input to the filter. This means that not all the samples
have to be filtered, but only the ones representing the last combustion period
when the ems needs a new estimated value of the momentary average engine
speed. Every new update costs 15 operations for an engine with eight cylinders,
no matter what the engine speed is.

6.3.1 Parameter Tuning
For the signal model based Kalman-cusum filter, there are several parameters that
can be tuned for different performance. Different applications may have different
preferences. For one application, the response at accelerations and gear shifts
may be the most important measure, while another application may request a
stable signal at steady state. For the Kalman filter part of the method, there are
three parameters: the covariances of process noise σ1 and σ2 and the measurement
noise covariance R. Since the measurements are scalar, only the relations σ1/R
and σ2/R are important for the filtering properties, so by fixing R = 1, there are
only two parameters to tune.

The parameter σ1 is the covariance of the engine speed and acceleration process
noise in the signal model (3.22). It determines how fast the two states can adapt
to changes in the engine speed signal. This makes σ1 a parameter that controls
the tracking ability of the filter. A low value gives a filter that dampens slow
variations in the engine speed well, but adapts slowly during accelerations and
gear shifts. A high value results in noisy estimates, but also makes the filter follow
the signal better during accelerations. This is illustrated in Figure 6.11.
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Figure 6.11. Effects of using a high (a) and a low (b) value of the σ1 parameter.
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The parameter σ2 is the process noise covariance of the states in (3.22) corre-
sponding to the combustion oscillations. With a very low σ2 value, the oscillation
suppression becomes less effective, causing the estimated momentary average speed
to oscillate at the combustion order. A high value causes the filter to focus too
much on suppressing the oscillations, leading to slower adaption to the real average
and worse tracking ability.

The cusum algorithm has two parameters, h and ν. The alarm threshold h
controls how fast and often the algorithm sends out alarms. A low threshold results
in quick filter response at gear shifts, but may also cause false alarms and thus lead
to worse oscillation suppression. The drift parameter ν has similar effects as the
threshold. A low ν gives fast detections, but also increases the risk of false alarms.
An example of how the ν parameter can be utilized is shown in Figure 6.12. About
0.5 seconds into the plot, a driveline oscillation occur, leading to variations in the
engine speed. With a low ν, the filter detects and follows the oscillations, while a
high value of ν decreases the effect of the oscillation on the average engine speed
estimate. Depending on the application, ν can be tuned either to filter out or let
the driveline oscillations be visible in the average engine speed. Functionality that
aims to actively suppress the driveline resonances using the engine speed as input
naturally do not request the averaging filter to remove the oscillations.
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Figure 6.12. Effects of using a high (a) and a low (b) value of the ν parameter.



Chapter 7

Conclusions and Future
Work

This chapter presents the most important conclusions of the thesis, along with
recommendations for future work on the subject.

7.1 Conclusions
The main contributions of this work, a signal model of the engine speed together
with the Kalman-cusum filter, provide stable estimates of the momentary average
engine speed and mean acceleration with low noise levels. Compared to the fir
filter, the estimation results are improved at an increased computational cost.

7.1.1 Momentary Average Engine Speed
The momentary average engine speed has in this work been estimated using two
methods. This section discusses the differences in performance of the both meth-
ods.

The strength of the fir filter is that it follows the engine speed signal during
quick changes and suppresses oscillations at the combustion order well. However,
its noise suppressing ability is not perfect, which leads to rather noisy estimates
of the momentary average engine speed.

The aim when designing the signal model based filter was to find a method to
effectively suppress the noise in the engine speed, to get a more stable estimate of
the momentary average speed. The filtering properties of the signal model based
Kalman-cusum filter are controlled by its parameters, which can be tuned for
different performance. For a choice of parameter values selected as a compromise
between noise cancellation and tracking ability, the filter suppresses oscillations
and noise in the engine speed well. This gives a stable estimate of the momentary
average with a low noise level. The weakness of the signal model based method
compared to the fir filter is the response time at gear shifts and other quick
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changes in engine speed. In these situations, the estimates are delayed for a few
samples before converging to the actual average. The size of the delay is also
controlled by the filter parameters, of which the tuning is a trade off between
small delay and effective noise suppression.

The effects of the increased delays at gear shifts are however small compared
to the improvements in noise suppression, which make the Kalman-cusum filter
provide more accurate and stable estimates of the momentary average engine speed
than the fir filter. By only looking at the estimation of momentary average engine
speed, the Kalman-cusum filter is to prefer over the fir filter.

7.1.2 Engine Acceleration
To estimate the engine acceleration, i.e. the derivative of the momentary average
engine speed with respect to time, two different algorithms has been used. The
first algorithm, the bd method uses the fir filtered engine speed as input, while
the signal model based method uses the states estimated by the Kalman-cusum
filter to compute the acceleration.

Since the mean acceleration estimates from the bd method are computed from
fir filter estimates of the average engine speed, which contain a high level of
noise, the acceleration estimates are very noisy. In practice, they need to be lp
filtered before being useful. The quick response of the fir filter at gear shifts and
accelerations is immediately propagated into the acceleration estimates, which is
the main advantage of the bd method. The other method, the signal model based
method, is as input using the states estimated by the Kalman-cusum filter, which
succeeds to suppress the noise more effectively than the fir filter. This makes the
signal model based method provide more accurate estimates of the mean engine
acceleration with low influence of noise.

The estimation of the mean engine acceleration is an important feature of
the ems. By using the signal model based method, the noise level is significantly
reduced compared to the bd method in combination with a fir filter. The reduced
noise level is of great value when calculating the engine torque and for control of
the engine speed. There is however one situation where the bd method provides
more accurate estimates than the signal model based method and that is the
moment just after an alarm from the cusum algorithm. After an alarm, the
estimated momentary average converges rapidly towards a more accurate estimate.
This requires a large absolute value of the acceleration and results in overshoots
in the acceleration estimates at for example gear shifts. If the Kalman-cusum
method would to be used in the ems, this problem needs to be worked around, for
example by passing a signal status with the estimates that tells the user when the
estimates can be trusted and not. Another solution would be to use the fir and
bd combination as a backup filter, used the moments after cusum alarms.

7.1.3 Computational Cost
The computational cost is a critical parameter in the evaluation of the two filtering
methods, since there are limitations if the capacity of both the processor and
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memory in the ems. The most important difference between the two methods
in the aspect of computational complexity is that the fir filter only uses new
measurements as input, while the signal model based method also uses earlier
estimates as input. The result of this is that the fir filtering only needs to be
executed when a new estimate of the momentary average engine speed is needed,
while the signal model based method has to be iterated for each new sample, no
matter of how many samples there are between the needed estimates. This means
that the difference in computational cost for the both methods decreases with
higher update frequency of the estimates and increases with higher engine speed.

For a system with limited computational power, a low computational cost might
be more important than the filtering performance of the algorithms. Even though
the Kalman-cusum filter results in better estimates of the momentary average
engine speed and acceleration, the fir filter provides estimates with acceptable
quality and noise level at a much lower cost. Implementing and using a computa-
tionally heavy algorithm such as the Kalman-cusum filter in the ems could lead to
a lack of computational power for other functions in the system. For this reason,
the fir filter is a wiser choice of algorithm in the ems.

7.1.4 Quantization Aspect
The limited clock frequency of the internal counter used when measuring the engine
speed results in quantization distortion in the engine speed signal. This work states
that the quantization distortion of a certain order component is not affected by
other orders. This means that the quantization does not distort the signal in a way
that would destroy the diagnosis of the fuel injection system. Also shown is that
by increasing the clock frequency, the quantization distortion can be significantly
reduced. This would improve and extend the possibilities to perform diagnosis of
the fuel injection system.

7.2 Future Work
This section presents some suggestions of future work in area of momentary average
engine speed and mean acceleration estimation.

External Triggers

The signal model based method proposed in this thesis make use of the change
detection algorithm cusum to increase the adaptivity of the Kalman filter. With
external triggers signaling when a gear shift or quick acceleration occurs, it should
be possible to decrease the delay of the estimates in these situations.

Physical Model

This work uses a random walk model for the momentary average engine speed. A
future improvement of the method could include a physical model of the engine
and the engine speed.
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Computational Saving Method

The reason for computational complexity of the signal model based is that it
needs to process all samples to give stable estimates of the average engine speed
and mean acceleration. To decrease the number of computations, a method with
variable sample distance could be considered.
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