
Institutionen för systemteknik
Department of Electrical Engineering

Examensarbete

Optimal Vehicle Speed Control Using a Model
Predictive Controller for an Overactuated Vehicle

Examensarbete utfört i Fordonssystem
vid Tekniska högskolan vid Linköpings universitet

av

Mathias Mattsson och Rasmus Mehler

LiTH-ISY-EX--15/4841--SE

Linköping 2015

Department of Electrical Engineering Linköpings tekniska högskola
Linköpings universitet Linköpings universitet
SE-581 83 Linköping, Sweden 581 83 Linköping

Optimal Vehicle Speed Control Using a Model
Predictive Controller for an Overactuated Vehicle

Examensarbete utfört i Fordonssystem
vid Tekniska högskolan vid Linköpings universitet

av

Mathias Mattsson och Rasmus Mehler

LiTH-ISY-EX--15/4841--SE

Handledare: Dr. Mats Jonasson
Volvo Cars

Dr. Andreas Thomasson
isy, Linköpings universitet

Examinator: Associate Professor Lars Eriksson
isy, Linköpings universitet

Linköping, 15 juni 2015

Avdelning, Institution
Division, Department

Division of Vehicular Systems
Department of Electrical Engineering
SE-581 83 Linköping

Datum
Date

2015-06-15

Språk
Language

� Svenska/Swedish

� Engelska/English

�

�

Rapporttyp
Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

�

URL för elektronisk version

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-XXXXX

ISBN

—

ISRN

LiTH-ISY-EX--15/4841--SE

Serietitel och serienummer
Title of series, numbering

ISSN

—

Titel
Title

Optimal fartreglerig med modelbaserad prediktionsreglering för en överaktuerad personbil

Optimal Vehicle Speed Control Using a Model Predictive Controller for an Overactuated
Vehicle

Författare
Author

Mathias Mattsson och Rasmus Mehler

Sammanfattning
Abstract

To control the speed of an overactuated vehicle there may be many possible ways to use
the actuators of the car achieving the same outcome. The actuators in an ordinary car is a
combustion engine and a friction brake. In some cases it is trivial how to coordinate actuators
for the optimal result, but in many cases it is not.

The goal with the thesis is to investigate if it is possible to achieve the same or improved per-
formance with a more sophisticated control structure than today’s, using a model predictive
controller. A model predictive controller combines the possibility to predict the outcome
through an open-loop controller with the stability of a closed loop controller and gives the
optimal solution for a finite horizon optimization problem.

A simple model of the longitudinal dynamics of a car is developed and used in the model
predictive controller framework. This is then used in simulations and in a real car. It is
shown that it is possible to replace the current controller structure with a model predictive
controller, but there are advantages and disadvantages with the new control structure.

Nyckelord
Keywords MPC, Overactuated, Control Allocation, Vehicle Dynamics, Speed Control

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-XXXXX

Abstract

To control the speed of an overactuated vehicle there may be many possible ways
to use the actuators of the car achieving the same outcome. The actuators in an
ordinary car is a combustion engine and a friction brake. In some cases it is trivial
how to coordinate actuators for the optimal result, but in many cases it is not.

The goal with the thesis is to investigate if it is possible to achieve the same or
improved performance with a more sophisticated control structure than today’s,
using a model predictive controller. A model predictive controller combines the
possibility to predict the outcome through an open-loop controller with the sta-
bility of a closed loop controller and gives the optimal solution for a finite horizon
optimization problem.

A simple model of the longitudinal dynamics of a car is developed and used in the
model predictive controller framework. This is then used in simulations and in a
real car. It is shown that it is possible to replace the current controller structure
with a model predictive controller, but there are advantages and disadvantages
with the new control structure.

iii

Acknowledgments

We would like to thank to our supervisor at Volvo Cars, Mats Jonasson for all the
help he gave us during our thesis work. We would also like to thank the entire
group at Volvo Cars for helpful advices, especially Mikael Thor who helped us
with models and testing our work in a car.

Thanks goes also our supervisor at the university Andreas Thomasson for being
helpful when we wrote this report. Finally we would like to thank our examiner
Lars Eriksson at Linköping University.

Linköping, June 2015
Mathias Mattsson and Rasmus Mehler

v

Contents

Notation ix

1 Introduction 1
1.1 Problem Formulation . 3
1.2 Previous Work . 3
1.3 Delimitations . 4
1.4 Thesis Outline . 5

2 Background 7
2.1 System Overview . 7
2.2 Actuators . 9

2.2.1 Combustion Engine . 10
2.2.2 Friction Brake . 10

2.3 Use Cases . 11

3 Theory 15
3.1 Optimization . 15

3.1.1 Convexity . 16
3.1.2 Convex Optimization . 17

3.2 Discretization . 17
3.2.1 Euler’s Method . 17
3.2.2 Tustin’s Method . 18

3.3 Model Predictive Controller . 19
3.3.1 MPC Algorithm . 20
3.3.2 Construction of Internal Model 20
3.3.3 Extensions to MPC . 23
3.3.4 Stability . 29

4 Method 33
4.1 Plant Models . 33

4.1.1 Road load . 33
4.1.2 Simple Simulink Model . 35
4.1.3 Advanced Simulink Model 35

vii

viii Contents

4.1.4 Test Vehicle . 37
4.2 System Modelling . 43

4.2.1 Car . 43
4.2.2 Powertrain . 43
4.2.3 Friction Brake . 43
4.2.4 Road load . 44
4.2.5 State space model using two actuators 44
4.2.6 Discretization of state space model 46

4.3 Optimization problem . 47
4.3.1 Objective Function . 48

4.4 Implementation . 51

5 Analysis 53
5.1 Simulation Results . 53
5.2 Robustness Analysis . 58
5.3 Test Vehicle Results . 62

6 Conclusions and future work 65
6.1 Conclusions . 65
6.2 Future work . 66

A Derivation of model for inertia in the driveline 69

B CVXgen Code 73

Bibliography 75

ix

x Notation

Notation

Parameters

Notation Description

g Gravity constant
m Mass of car
ρ Density of air
Cd Aerodynamic drag coefficient
Aa Cross sectional area of car
µ Friction coefficient between tire and ground material
Crr Rolling resistance coefficient
α Slope of road
s Time derivative operator
v Longitudinal velocity of car
Feng Longitudinal force from engine
Fbrake Longitudinal force from brakes
Froad load Longitudinal force from road load
Fair Longitudinal force from air resistance
Froll Longitudinal force from rolling resistance
Fslope Longitudinal force from slope
Fdrag Longitudinal force from air resistance and rolling re-

sistance
Fpt,in Force generated by the inertia of the powertrain
x State vector
u Control signal vector
ue Control signal for engine
ub Control signal for brake
Te Time constant for engine model
Tb,up Time constant for brake model when building pres-

sure
Tb,down Time constant for brake model when releasing pres-

sure
Le Time delay for engine model
Lb Time delay for brake model
aref Reference signal in acceleration
Ts Sampling time
ηe Time delay for the engine expresed in number of sam-

ples
Jeng Inertia in the engine

Notation xi

Parameters

Notation Description

ktrans Transmission ratio
p Pressure in the braking system
τb Torque generated by the brakes
rb Distance from the wheel center to the point where the

braking pads are applied on the wheels
rw Wheel radius
Ab Contact area between the braking pads and the wheels
Qref Cost for deviating from reference
Qcone Linear increasing cost for deviating from reference
kcone Number of sample before the linear increasing factor

is applied
Qref,total Total cost for deviating from the reference
ue,min Minimum force that the engine can generate
ue,max Maximum force that the engine can generate
ub,min Minimum force that the brakes can generate
ub,max Maximum force that the brakes can generate
jlim Jerk limit
εj Slack variable on the jerk state

xii Notation

Abbreviations

Abbreviation Descrition

PID Proportional, integral, differential (regulator)
MPC Model Predictive Control

MPCA Model Predictive Control Allocation
LP Liner Programming
QP Quadratic Programming

QCQP Quadraticly Constrained Quadratic Programming
CC Cruise Control

ACC Adaptive Cruise Control
ASDM Active Safety Domain Master
VDDM Vehicle Dynamics Domain Master
ECM Engine Control Module
BCM Brake Control Module

ERAD Electric Rear Axle Drive
PMP Pontryagin Maximum Principle
DP Dynamic Programming

HEV Hybrid Electric Vehicle
ECMS Equivalent Consumption Minimization Strategy

ICE Internal Combustion Engine
RPM Revolutions Per Minute
CIT Cut In Target
CAN Controller Area Network

1
Introduction

If a control system is designed with more control signals than states it is said
to have redundancy [1]. Another expression for this is that the system is over-
actuated. In Figure 1.1 this is illustrated by representing the number of control
signals and states in each system with the dimensions of the systems. The thin
system illustrates an overactuated system with more ways to control the system
than states to control. The square and the fat system illustrates systems with
equally or more states than control signals.

Figure 1.1: Comparisons between the concept of overactuated ,or thin, sys-
tems with non-overactuated systems, square and fat.

1

2 1 Introduction

An actuator controlling a system often has some limitations on what possible
control signals it can deliver. This may vary depending on the current state of
the system. In an overactuated system there can exist regions where the actuators
ranges overlap each other while in other ranges they do not.

In Figure 1.2, an illustrating example of a system with two actuators that for
some states the possible control signals overlaps. This means that there exists
several, or even infinite, ways to combine the actuators to obtain identical effect
on the system output. But even tough the effect is identical there can still be some
combinations that is unwanted, for example if the actuators oppose each other.

Figure 1.2: Illustration of how the actuators overlap in an overactuated sys-
tem with two actuators.

Some systems are designed to be overactuated to achieve stability and robustness
by the additional actuators. One example out of many on overactuated systems is
a multicopter. They often have several more actuators than it actually needs for
control of their movement. In [2] it is shown that a multicopter can be controlled
with one ore more lost actuators. This is because the system is designed to be
overactuated. The performance and stability goes down, but the multicopter is
still able to complete its purpose.

Another example of a system that often is overactuated is a car. To change the
speed in the longitudinal direction an ordinary car is equipped with a combus-
tion engine and a friction brake. The friction brake can be generate a large nega-
tive torque while the combustion engine can generate both negative and positive

1.1 Problem Formulation 3

torques. This makes the car overactuated since the negative torque can be gener-
ated by the two different actuators. In modern cars it is also common to have an
electric machine since it affects the environment less than a combustion engine.
This makes the car even more overactuated.

When driving there are several criterias that needs to be fulfilled. The speed that
is desired by either the driver or some underlying system for speed control, like
cruise control (CC) or adaptive cruise control (ACC), must be kept close to the
desired level. At the same time the energy consumption must be kept as low as
possible to minimize the cost for fuel and to minimize the effects on the environ-
ment because of emissions. Besides this the persons sitting in the vehicle should
be experiencing a good comfort at the same time as the wear on the actuators
should be minimized.

By using the fact that the vehicle is overactuated, these criterias can be accommo-
dated when deciding how to control the vehicle. But this is a complex problem
and this is why it is justified to believe that sophisticated methods are needed to
obtain a near optimal solution.

1.1 Problem Formulation

Today the coordination part of control system in the Volvo cars for the longitu-
dinal propulsion is mostly rule based for the different actuators and the control
of the individual actuators is done with a PID-controller. The benefits with that
solution is the simplicity and the robustness but the performance is not always
optimal.

The goal with the thesis is to investigate if it is possible to achieve the same perfor-
mance or improve the performance with a more sophisticated control structure,
a model predictive controller (MPC). An MPC combines the possibility to predict
the outcome through an open-loop controller with the stability of a closed-loop
controller and gives the optimal solution for a finite horizon optimization prob-
lem.

The system needs to be modelled simple enough to be able to execute in real time
while still reflect the dynamics to an acceptable level. The goal is to make the
performance as good as possible without violating the constraints and limitations
that are given for the system.

1.2 Previous Work

The basic theory of a model predictive controller is described in [3]. This is a
course compendium for a course in industrial control engineering where MPC is
described in a few chapters. There are a few extensions to the basic MPC design
described in this book, for example how to handle integral action. Another pub-
lication that covers the MPC implementation and discussions about stability and
robustness of the MPC is [4]. This article shows that stability can be obtained

4 1 Introduction

by assigning the value function as a Lyapanov function, and therefor Lyapanov
theory can be used to prove stability. Stability and Lyapanov functions is also
covered by [5].

A usual extension of MPC that can be found in literature is the use of soft con-
straints or slack variables. This is done in [6]. The authors of this article intro-
duces slack variables on the constraints they want to relax. They then penalizes
the slack variable by assigning a cost to it instead of having an exact constraint.
The article also shows that this solution will be the same as the exact constraint
solution if the penalty on the slack variables is high enough.

The article [7] discusses the possibility to have a control horizon that is shorter
than the prediction horizon. The benefit of this method is that the computational
time is reduced since the number of variables is reduced. This is also covered in
[8].

A comprehensive book in particular about predictive control for hybrid systems
is [9]. It also covers the background theory of discrete optimization and convex-
ity. It contains numerous useful theorems on convexity which is important to
understand when solving optimization problems. It also describes the quadratic
programming problem.

Many papers have been written about how to optimize the coordination of the
actuators and find a global minimum using offline optimization methods. In [10],
[11] and [12] dynamic programming (DP) and Pontryagin’s maximum principle
(PMP) algorithms are presented to illustrate the possible benefits with hybrid
electrical vehicles (HEV).

[10] and [12] have also compared the offline solutions with equivalent consump-
tion minimization strategy (ECMS) which is an instantaneous minimization method
and the authors claims that it is possible to implement in real time.

An early MPC approach is used in [8] to control a electric vehicle with multiple
energy storage units. The article also describe how zone control can be used in the
MPC framework when it is desired to let a variable vary within a given interval.
The performance of an MPC for a HEV is compared with both a DP and an ECMS
approach in [13]. The conclusion is that the performance is good and there is
several advantages such as it is potentially real-time implementable and rather
easy to tune.

In [14] and [15] model predictive control allocation (MPCA) is described, an ap-
proach to coordinate the actuators for an overactuated system when a specific
behavior is desired. The foucs in [14] is on how to do this for an system with
different limitations and dynamics for the actuators.

1.3 Delimitations

The thesis is delimited to only discuss the use of a car with an internal combus-
tion engine (ICE) and friction brake as actuators. A natural extension to this

1.4 Thesis Outline 5

would have been to use a HEV. This would have required to much effort in mod-
elling that unfortunately there simply is not room for in this thesis. Another
reason for this is that the test vehicle available is not a HEV.

The focus of the thesis will be on control. Advanced plant models are used in the
evaluation of the controller, but these are not created by the thesis workers.

The controller is not designed for use when starting from standstill or stopping.
The modelling close to zero speed is rather different from higher speeds. This
will therefor be left out as a delimitation.

1.4 Thesis Outline

The thesis is divided into 6 chapters which contents are summarized here.

• Chapter 1 - Introduction
The introduction chapter introduces the problem and states it in the prob-
lem formulation. A literature study on previous work is also presented.

• Chapter 2 - Background
The background chapter describes the system on a basic level. It also de-
scribes a real life situation the controller is going to solve.

• Chapter 3 - Theory
The theory chapter covers the theory that is used in the thesis. In some
sections several methods to solve a problem is presented. This chapter does
not describe what solution that is chosen in the implementation.

• Chapter 4 - Theory
The method chapter describes the work developing the controller. First
different plant models used during the development process is described.
After that, the internal model for the controller is derived. The design of
the cost function is presented and at last the implementation is briefly de-
scribed.

• Chapter 5 - Analysis
Results are shown and analyzed.

• Chapter 6 - Conclusions and Future Work
Conclusions from the results are presented along with a section with sug-
gestions on future work from the thesis workers.

2
Background

The complex system of a car has an underlying computer architecture that per-
forms various tasks in a chain to perform the actual control in the actuators. The
actuators in themselves are part of bigger modules. This chapter’s aim is for the
reader to get an understanding of the system that the controller should be operat-
ing within, along with an understanding of the actuators that are used to control
it.

2.1 System Overview

In Figure 2.1 a brief description of the parts of the system that is used for lon-
gitudinal speed control is described. This is, roughly, how it is implemented in
the reference vehicle and therefor necessary to understand to be able to compare
with the new implementation.

The bigger systems, referred to as nodes, Active Safety Domain Master (ASDM)
and Vehicle Dynamics Domain Master (VDDM) are physical components or com-
puters each running a number of tasks. The communication between them is
done with a Control Area Network (CAN) bus.

The ASDM module contains functions like ACC and CC. The ACC is a controller
that controls the speed depending on the traffic. Typically it is set to keep a de-
sired distance to the vehicle ahead. When the situation changes it sends a request
in acceleration to the VDDM node. The CC on the other hand is a controller that
keeps a desired speed. When the speed is deviating from the reference the CC
also sends a request in acceleration to the VDDM node. There are also other type
of request sent by modules in the ASDM node. One examples of such a request is
jerk limit requests that should tell the system the maximum jerk that is accepted.

7

8 2 Background

Figure 2.1: A system overview of the modules that controls the speed in a
vehicle in the longitudinal direction in current implementation.

The different modules in the ASDM node have overlapping interests. In the
VDDM node the set of requests sent from the ASDM node are arbitrated to just
one request in acceleration. This is then passed to the module Vehicle Motion
Control where actuator coordination is performed. The actuator coordination is
a set of rules that depending on the situation calculates acceleration requests to
send to the Engine Control Module (ECM) and Brake Control Module (BCM). The
ECM and BCM module are smart modules and contains controllers that converts
the acceleration requests to a generated torque which affects the vehicle in the
requested way.

When the problem, stated in section 1.1, is solved the system layout will change
into the layout shown in Figure 2.2. The arbitration module and the actuator coor-
dination module is merged to one block, still refered to as actuator coordination
in Figure 2.2. This block is implemented as an MPC that handles all request from
the ASDM node as inputs. Instead of a set of rules, the coordination is now calcu-
lated in a mathematical way to obtain an optimal solution by the MPC. Some of
the smart functionallity in the ECM and BCM is now moved into the actuator co-
ordination since the MPC needs to know the dynamics of these systems. Instead
of acceleration requests, torque requests are now sent directly to the ECM and
BCM.

2.2 Actuators 9

Figure 2.2: A system overview of the modules that controls the speed in
a vehicle in the longitudinal direction if the new actuator coordination is
implemented.

2.2 Actuators

When designing a control system using an MPC it is of great importance to know
the characteristics of the actuators that is to control the system. A basic under-
standing of how the actuator is constructed is needed for doing the modelling in
the controller as well as the plant models used during the development of the
controller.

The three properties of the actuators that is of particular interest is the dynamics,
controllability and the ranges of the actuators. The dynamics refer to how fast
the system responds to a control signal. The meaning of controllability in this
context is the expected difference between the requested and received torque on
the system from the actuator. The range here refer to the range of torques an actu-
ator can deliver to the system. An overview of the specifications of the actuators
is given in Table 2.1.

Combustion Engine Friction Brake
Dynamics Slow Fast

Controllability Mediocre Good
Range [-small , large] [-large, 0]

Table 2.1: Overview of the actuator characteristics.

The range the torques of the different actuators is roughly described in Figure 2.3.
The first plot is the range for the ICE. The second plot describes range for friction
brake.

10 2 Background

Figure 2.3: Conceptual plots of intervals which the different actuator is able
to generate torque for different engine speeds. To the left is the ICE and to
the right is the friction brake.

2.2.1 Combustion Engine

The combustion engine can generate a large torque giving the vehicle acceler-
ation in the forward direction. The lower range is however depending on the
engine speed. For low engine speeds the minimum torque that can be generated
is positive. This means that the combustion engine as an actuator cannot be used
for decelerating the vehicle if the engine speed is low. For high engine speeds
however this can be done.

The controllability is mediocre because of the complex nature of the actuator. It
is hard to get the exact torque as requested from the actuator the model will be
far from exact. The dynamics is also rather slow compared to the friction brake.

2.2.2 Friction Brake

The friction brake has the ability to convert kinetic energy to heat energy by fric-
tion. When braking the brake system is building up a pressure and then applies
the braking pads to create a friction force and slow the car down. When the sys-
tem requests less braking force on the other hand the pressure must be relieved.
That is a faster process than building the pressure but the process of building
pressure is also fast compared to the ICE.

The friction brake can obviously not generate a positive torque, as long as the
vehicle is moving forward, so its upper limit will always be zero. The lower limit
will be a large negative torque that is proportional to the mass of the vehicle and
the friction coefficient between the tires and the ground material. Since these
parameters are not exact, and estimating them is not a part of this thesis, un-
certainties in the range will lead to some effect on the controllability. But the
controllability is still considering good compared to the ICE.

2.3 Use Cases 11

2.3 Use Cases

As a complement for the problem formulation use cases that put the problem
in everyday traffic situations is constructed. In this section visual and verbal
descriptions of the use cases are presented. All scenarios that is considered is
constructed from an ACC perspective. That is situations where the ACC is the
function that is sending the important requests.

There are four scenarios in total. The first two use cases are simple scenarios
where both actuators may not be needed. These are constructed to test the basic
functionality of the controller. The last scenario however is constructed to test
the bridge areas where the actuators are expected to shift roles.

Case I - Deceleration Step

Consider driving in a multi-lane road as a host vehicle (H), following a target
vehicle (T) using ACC. The controller will try to follow the estimated acceleration
of T to keep a desired distance to it. This use case considers another vehicle
cutting in between the target vehicle, called cut in target (CIT), and the target
vehicle from another lane. At some point the CIT will become the new T and
the distance is changed instantly. This will result in a step in the acceleration
reference shown in Figure 2.6. The Figures 2.4 and 2.5 are visualizations of the
scenario where it is obvious how the distance changes instantly. The case starts
in the condition shown in Figure 2.4 and ends in condition shown in Figure 2.5.

Figure 2.4: The start of Use Case Scenario I. The host vehicle is driving in a
lane following a target vehicle when suddenly a cut in target is entering the
lane between them.

12 2 Background

Figure 2.5: The end of Use Case Scenario I. The cut in target has become the
new target vehicle and the distance to the target changes momentarily.

Figure 2.6: The resulting request in acceleration in use case I. The cut in
target becomes the new target at time t = 2 and it has reached the desired
distance at time t = 4.

Case II - Acceleration Step

Consider a host vehicle driving in a single lane road following a target vehicle
with constant velocity by keeping a constant distance to it. The target vehicle is
about to make a turn, and therefor it keeps a low speed. When the target vehicle
turns the host vehicle can speed up to the current speed limit. The resulting
acceleration reference is shown in figure 2.7.

2.3 Use Cases 13

Figure 2.7: The resulting request in acceleration in use case II.

Case III - Deceleration after Acceleration

Consider the same setup as in use case I with the difference that H is accelerating
at the start of the scenario. This means that when the CIT enters the lane be-
coming the new T the reference in acceleration changes from positive to negative
instantly. This is shown in figure 2.8.

Figure 2.8: The resulting request in acceleration in use case III.

3
Theory

This chapter covers the theory needed for this thesis. The basics of mathematical
optimization is presented to have just the right amount of theory needed for ap-
plying it on the MPC. The MPC which is the single most important theoretical
subject in the thesis is covered in more dept. The basic concept of MPC is de-
scribed together with an algorithm that describes roughly how an MPC should be
implemented. After that, a section with extensions to the basic MPC framework
is presented. This section also cover the subjects of following a non constant ref-
erence path, including integral action in the controller and using slack variables
to create soft constraints. Finally stability theory of the MPC is presented.

3.1 Optimization

A mathematical optimization problem is expressed on the form (3.1). Where f0
is the objective function, fi is the inequality constraint functions, bi is the limits
and x is the optimization variable [16].

minimize f0(x)

subject to fi(x) ≤ bi , i = 1, ..., m
(3.1)

The aim when solving a mathematical optimization problem is to find the opti-
mal solution, x∗ for which the objective function in that state, f0(x∗) is the mini-
mum possible value for among all x satisfying all the inequality constraint func-
tions.

15

16 3 Theory

3.1.1 Convexity

A function f : Rn → R is convex if the set of points on and above f is a convex
set. A convex set is a set in which it is possible to connect every two points in the
set with a straight line without touching a point outside of the set [16]. This is
illustrated in the Figures 3.2 and 3.1.

Figure 3.1: An illustration of the difference between a convex and a non-
convex set.

Figure 3.2: An illustration of the difference between a convex and a non-
convex function. This example is in 3D, but the same theory holds for any
dimension.

3.2 Discretization 17

3.1.2 Convex Optimization

The characteristics of the optimization problem (3.1) is determined by the ob-
jective function and the inequality constraint functions. Some useful classes of
optimization problem is linear programming (LP) where the objective function
is linear in x and quadratic programming (QP) where the objective function is on
the form (3.2) where H is a constant square matrix and f is a constant vector.

f0(x) =
1
2
xTHx + f T x (3.2)

These two classes of problems is in some cases both part of a greater class, convex
optimization problems. This is true if f0, ..., fm is convex. The objective function
for an LP problem is always convex since it will be a plane. The objective function
in the QP problem however, is only convex when H in (3.2) is positive semidefi-
nite [16]. The inequality constrain functions in both LP and QP is often assumed
to be linear, and if it is, it is also convex.

A subclass of QP problems is quadratic constraints quadratic programming (QCQP)
problems. This is a QP problem with quadratic inequality constraint functions.
This can of course also be a convex problem.

The strength with convex optimization problems is that there exists many pow-
erful numerical solvers that can solve this class of problems accurately and fast.
LP problems is often solved using simplex method while QP problems often is
solved with interior-point methods. Solvers for QCQP problems is unfortunately
more unfrequently occurring.

3.2 Discretization

A tool that is needed in the implementation of the controller is the ability to
transform a continuous time state space model to a discrete time representation.
Several methods exists for doing this. Examples of such methods are Euler for-
ward or backwards transformations as well as Tustin’s method [3].

3.2.1 Euler’s Method

By making the transformation in (3.3) a system is discretized with backward Eu-
ler’s method. Here Ts is the sampling time of the time discrete system and z is
a time shift operator. The Euler’s transformation projects the entire left half of
the s-plane on a circle contained inside the unit circle in the z-plane. This is
visualized in Figure 3.3

s =
1
Ts

(
1 − z−1

)
(3.3)

18 3 Theory

Figure 3.3: The projection of the s-plane on the z-plane when discretizing a
system with Euler’s backwards method.

3.2.2 Tustin’s Method

Tustin’s method or bilinear transformation as it is also called works by replacing
the time derivative operator occurring in a time continuous system by the expres-
sion (3.4). Here Ts is the sampling time of the time discrete system and z is a time
shift operator.

s =
2
Ts

·
1 − z−1

1 + z−1 (3.4)

This method is a Möbius transform which projects the entire left half plane on
the unit circle. This way stability is guarantied in the discrete system if the con-
tinuous system is stable. The transformation is visualized in Figure 3.4.

3.3 Model Predictive Controller 19

Figure 3.4: The projection of the s-plane on the z-plane when discretizing a
system with Tustin’s method.

3.3 Model Predictive Controller

A model predictive controller (MPC), described in [3], is a controller that uses
mathematical optimization to calculate a control signal. The controller contains
an internal model of the system that is to be controlled that is an approximation
of the real system, called a plant. The output of the plant often needs to be
processed in some way to estimate the actual states. The setup is described in
Figure 3.5.

The idea of the MPC is to solve a mathematical optimization problem in every
time sample. This optimization problem is on the form (3.5). J(x) is the objective
function, a function that introduces penalties on states and inputs. The equation
Ax ≤ b describes a set of linear constraints for the variable that should be mini-
mized. A prediction horizon of N samples is used to make use of the information
contained in the internal model. But the problem grows with N and thus it can
only be as large as the available computational power admits [3].

minimize
x

J(x)

subject to Ax ≤ b
(3.5)

The limited computational power are in many ways correlated to the limits of the

20 3 Theory

Figure 3.5: A conceptual overview of an MPC setup.

MPC. The objective function can in theory be any function. But since minimiz-
ing an arbitrary function often requires numerical methods the computational
time is too high for real time applications. A workaround for this is to let J be
a quadratic function of the form (3.2). The problem will then be a quadratic
programming problem for which there exist numerous solvers.

3.3.1 MPC Algorithm

The loop in which the MPC runs begins every iteration with estimating the states,
x. Some states may be possible to measure directly with a sensor of some kind.
Others may need to be estimated using measurement of other parameters, models
and filters like the Kalman filter. The second step is solving the optimization
problem stated in the form (3.5). When the optimization problem is solved a
sequence of control signals that covers the entire prediction horizon is obtained.
The first control signals in the sequence is applied and the rest of them are thrown
away. After this the loop is closed by performing a time update and start from
the beginning. The algorithm is summarized in Algorithm 1.

3.3.2 Construction of Internal Model

The MPC requires an internal model of the system. This needs do be expressed
in state space form to fit the QP problem formulation. The model is formulated
as (3.6).

3.3 Model Predictive Controller 21

Algorithm 1 The MPC algorithm

1: Measure x(k)
2: Obtain the control signal sequence u(·) by solving (3.5)
3: Apply the first element u(k) in the control signal sequence during one sample.
4: Time update, k := k + 1
5: Repeat from step 1

ẋ(t) =Ax(t) + Bu(t)

y(t) =Cx(t)

z(t) =Mx(t)

(3.6)

Where x(t) is the states, u(t) is the control signals, y(t) is the measured output
from the plant. A, B and C is matrices that describes the system. z(t) is linear
combinations of states that should be controlled.

To be able to implement this the state space model needs to be discretized. The
bilinear transformation discretization method described in section 3.2 is used to
do this. The state space form can then be expressed as equation (3.7). Where F
and G is the new system matrices after the discretization.

xk+1 =Fxk + Guk
yk =Cxk
zk =Mxk

(3.7)

The last step that needs to be done for an implementation supported by the QP
problem formulation is repeating the discretized model trough the prediction
horizon, N , to achieve a vectorized notation.

Given the recursive formula in (3.7) xk+2 can be expressed as in (3.8)

xk+2 =Fxk+1 + Guk+1

=F2xk + FGuk + Guk+1
(3.8)

The same recursive formula can be used for the entire prediction horizon. The
recursion formula then gives the expression (3.9).

xk+N =Fxk+N−1 + Guk+N−1

=FN xk + FN−1Guk + FN−2Guk+1 + · · · + Guk+N−1
(3.9)

By using defining F , G, X and U according to (3.10) and (3.11) the outcome of
the recursive formula in equation (3.9) can be used to express the system in a

22 3 Theory

vectorized notation over the entire prediction horizon. This is done in equation
(3.12).

F =

F
F2

...
FN

 , G =

G 0 . . . 0
FG G . . . 0
...

...
. . .

...
FN−1G FN−2G . . . G

 (3.10)

U =

uk
uk+1
...

uk+N−1

 , X =

xk+1
xk+2
...

xk+N

 (3.11)

X = F xk + GU (3.12)

When using the vectorized notation in equation (3.12) the penalty matrices, Qz
and Qu , as well as the matrix M must be repeated over the prediction horizon
according to equations (3.14) and (3.13).

M =

M

M
.. .

M

 (3.13)

QZ =

Qz

Qz
. . .

Qz

 , QU =

Qu

Qu
. . .

Qu

 (3.14)

With all the definitions above the objective function can now be described in the
vectorized notation. This is done in equation (3.15).

J =
N−1∑
j=0

||zk+j ||2Qz + ||uk+j ||2Qu =

= ZTQZZ + U TQUU = XTMTQZMX + U TQUU =

= (F xk + GU)TMTQZM(F xk + GU) + U TQUU

(3.15)

3.3 Model Predictive Controller 23

Equation (3.15) can then be rewritten to fit the QP-problem formulation described
in section 3.1.2. This is done in eqation (3.16).

J = xTk F
TMTQZMF xk

+2xTKF
TMTQZMGU + U T

(
GTMTQZMG + QU

)
U

(3.16)

With the theory presented in this section a basic MPC can be implemented.

3.3.3 Extensions to MPC

To extend the MPC framework from the standard MPC described in [3] some
areas can be developed further. In this section techniques used in the implemen-
tation of the controller is described in detail. All extensions are presented as an
extension to the standard framework alone and the extensions are not combined
in this section.

Following Reference Path

In the objective function, costs are assigned to the states with the cost matrix Qz
for differences in the states in relation to the origin. This works perfectly fine
for any constant reference signal since the coordinate system can be adjusted to
fit the situation. For a reference signal that changes over time however, the MPC
needs support for keeping the system from differing too much from the reference
signal.

For a reference signal R in (3.17), the objective function is modified to (3.18).
The result of this is that deviations from the reference signal instead of from the
origin is penalized with the cost matrix Qz .

R =

rk
rk+1
...

rk+N−1

 (3.17)

J =
N−1∑
j=0

||zk+j − rk+j ||2Qz + ||uk+j ||2Qu =

= (Z − R)T QZ (Z − R) + U TQUU =

= (MX − R)T QZ (MX − R) + U TQUU =

= (F xk + GU − R)TMTQZM(F xk + GU − R) + U TQUU

(3.18)

24 3 Theory

Integral Action

If the deviation from the reference and the signal amplitude is penalized as in
equation (3.15) there is contradiction between the two wills. At some point the
cost for differing from the reference will be equal to the cost for the signal am-
plitude. The result of this is that there is no gain in using the control signals
such that the deviation from the reference becomes smaller. This is the result of
having no integral action in the controller.

The solution to this problem is to introduce a cost for increment in the control
signals as in equation (3.19). This will serve as integral action.

J =
N−1∑
j=0

||zk+j ||2Qz + ||uk+j − uk+j−1||2Q∆u
(3.19)

A vectorized notation of the increment in the control signal can be seen in (3.20).

uk − uk−1
uk+1 − uk

...
uk+N−1 − uk+N−2

 =

I
−I I

. . .
. . .
−I I

U −

uk−1

0
...
0

 =

= ΩU − δ

(3.20)

With the notation in (3.20) the vectorized objective function can be expressed as
in

J = (F xk + GU)TMTQZM(F xk + GU) + (ΩU − δ)TQU (ΩU − δ) (3.21)

Control Allocation

Consider an overactuated system where several possible combinations of control
signals exist for forcing the system to a desired state. If a specific combination is
desired it is not obvious that the output will be that combination when solving
the optimization problem. To help the controller on its way to a desired state,
information indicating a probable behavior of the controller can be used. In situ-
ations like that control allocation might be needed.

In [14] and [15] the idea is presented to calculate a virtual control signal, uref .
The calculation is made based on the what information the current state of the
system together with the reference signal can provide for predicting where the
system is heading. This technique is called model predictive control allocation
(MPCA). MPCA uses an outer and an inner loop. The inner loop is the standard
MPC loop with a controller and a plant model while the outer loop is the one
containing the control allocation. This is visualized in Figure 3.6.

3.3 Model Predictive Controller 25

Figure 3.6: An illustration of the model predictive control allocation. The
virtual control signal uref is calculated in the outer loop and then the actual
control signal u is calculated in the inner loop with the MPC. The signal uref
is a rough calculation of the desired behavior of the control signal u.

An additional extension to this is to assume a level of uncertainty in the calcu-
lated virtual control signal. That means the MPC should assign a cost to devia-
tions from an interval around uref. This is motivated to use because if it where
believed that the virtual control signal is the best control signal at a specific time
it should be used directly as input to the plant. Since that is most probably not
the case, the control allocator calculation is used as a rough estimate and then the
MPC takes it closer to the optimal solution from there.

In equation (3.22) the objective function of the MPC is extended with the new
feature. Here ε is the size of the interval in which the control signal is allowed to
deviate from the virtual control signal.

J =
N−1∑
j=0

||zk+j ||2Qz + ε2
Qε

||uref − uk+j || ≤ ε
ε ≥ 0

(3.22)

Constraints on the control signal

A big benefit with formulation the MPC problem as a QP problem is the possi-
bility to use linear constraints on the variables, in our case the control signals.
Constraints can be used to describe limitations on the control signals that should
not be violated. A usual technique is to specify an upper and a lower limit on the
control signal in each time sample which is a reasonable assumption that many

26 3 Theory

physical systems have. In (3.24) it is shown how to write the limitations in (3.23)
on the QP customized structure.

umin ≤ u ≤ umax (3.23)

I
. . .

I
−I

. . .
−I

U ≤

umax
...

umax
−umin
...

−umin

= AuU ≤ bu (3.24)

Constraints on the states

Oftentimes it is also desirable to be able to have constraints on the states and let
them vary within a given interval as in (3.25).

zmin ≤ z ≤ zmax (3.25)

However it is only possible in the QP framework to have constraints on the vari-
able, in this case U . A method for overcoming that problem is to express the
states Z as an function of U as in (3.26). Then the interval from (3.25) can be ex-
pressed as (3.27) which is an inequality only containing terms of U or constants.
The inequalities can then be expressed as (3.28) which fits in the QP problem
framework.

Z =M(F xk + GU) (3.26)

M(F xk + GU) ≤

zmax
...

zmax

−M(F xk + GU) ≤ −

zmin
...

zmin

(3.27)

3.3 Model Predictive Controller 27

[
MG
−MG

]
U ≤

zmax
...

zmax
zmin
...

zmin

+

[
−MF xk
MF xk

]
= AzU ≤ bz (3.28)

Soft Constraints

In difference to the constraints described in the previous section, soft constraints
is a method used to soften the constraints and bring the controller back to a
desired state even if the constraints are violated [6].

The soft constraints is constructed with help from slack variables ε. One slack
variable is introduced for every constraint that is desired to be softened. The vari-
able connected to a certain constraint is defined to be zero when the constraint is
not violated and non-zero when it is.

z ≤ zmax + ε

ε ≥ 0
(3.29)

The slack variable, ε, is a variable that the optimization problem solver should
find an optimal solution for just as the control signals. It is therefor placed in the
vector with the real control signals like in (3.30).

Ue =

uk
uk+1
...

uk+N−1
εk
εk+1
...

εk+N−1

(3.30)

A quadratic cost term is applied for the slack variable to penalize behavior that
violates the constraints as in equation (3.31). The cost can be tuned like any
other cost in the cost function. When using this technique it is made sure that the
optimization problem solver finds a feasible solution. But by making it expensive
to violate the constraints it is stated that it is of greatest importance for the solver
not to violate the constraints.

If soft constraints not is used the optimization problem may be too hard for the

28 3 Theory

solver to handle and the controller eventually will end up in an undefined behav-
ior depending on which solver that is used.

J =
N−1∑
j=0

||zk+j ||2Qz + ||uk+j ||2Qu + ||εk+j ||2Qε (3.31)

Time Delays

In physical systems a request to the actuators does not respond immediately,
some delay in the signal is always to expect. Depending on the length of the
delay time it might be necessary include in the model of the actuators to get suf-
ficiently high accuracy.

In the discrete state space model it is more relevant to refer to the delay in terms
of number of samples, η, rather then the delay time, L, which easily can be calcu-
lated by

η = round
(
L
Ts

)
(3.32)

If we considering a discrete system controlled by only one control signal with
input delay, the recursive system can be expressed as (3.33).

xk+1 = Fxk + Guk−η

xk+2 = Fxk+1 + Guk+1−η = F2xk + FGuk−η + Guk+1−η

...

xk+N = Fxk+N + Guk+N−η =

FN xk + FN−1Guk−η + FN−2Guk+1−η + · · · + Guk+N−1−η

(3.33)

In (3.34) this equation is expressed in a more compact manner with vector nota-
tion where F , GU , Gδ, X, δ and U is defined as in (3.35) - (3.37).

X = F xk + GUU + Gδδ (3.34)

3.3 Model Predictive Controller 29

GU =

0 0 . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . 0 0 . . . 0
G 0 . . . 0 0 . . . 0
FG G . . . 0 0 . . . 0
...

...
. . .

... 0 . . . 0
FN−1−ηG FN−2−ηG . . . G 0 . . . 0

(3.35)

Gδ =

G 0 . . . 0
FG G . . . 0
...

...
. . .

...
Fη−1G Fη−2G . . . G
...

...
...

FN−1G FN−2G . . . FN−ηG

(3.36)

δ =

uk−η
uk−η+1
...

uk−1

 , X =

xk+1
xk+2
...

xk+N

 , U =

uk+1
uk+2
...

uk+N

 (3.37)

This formula is also valid for a system with more than one control signal but
with the same time delay on all inputs. However for a system with more than
one control signal and different input delays the matrix G and has to be divided
into several matrices, all with the same size as G but every new matrix, Gi , is
supposed to only include the interaction on the system from actuator i.
By creating the new matrices GUi and Gδi (3.34) can be replaced by (3.38) where
n is the number of control signals.

X = F xk +
n∑
i=1

GUiU +
n∑
i=1

Gδi δ (3.38)

3.3.4 Stability

Before discussing stability of an MPC one should first define what stability means
for an MPC. In [3] stability is defined as the ability to always find a feasible so-
lution without violating the constraints given that the problem initially got a
feasible solution.

In the case with no constraints, it is proved in [3] that it exist an optimal state
feedback which easily can be analytically calculated off-line and implemented

30 3 Theory

on-line. However constraints are usually present in physical systems and the
unconstrained case is not of interest in this thesis.

With constraints present the problem become more complex and one issue with
the finite prediction horizon MPC is the absence of general method to ensure sta-
bility. For an infinite prediction horizon it is possible to prove stability according
to [3] if it initially exist a feasible solution for the optimization problem, even
for a constrained system. Although for obvious reasons that is not an option in
practice to have an infinite prediction horizon.

In [3] and [17] it is considered to mainly be a problem from a theoretical view. In
practice one can achieve an locally stable controller with some well thought-out
strategies.

A common cause for instability is a too short prediction horizon. One should
choose a prediction horizon long enough to cover the significant dynamic of the
system.

Another important aspect to ensure stability is to formulate the constraints so
that a feasible solution always exist. Earlier in section 3.3.3 soft constraints were
introduced, an approach that is highly recommended to use on constraints for
the states of the system. Due to the fact that the internal model never is perfect
and external disturbance may occur the states might assume an illegal values and
cause no feasible solution to exist if hard constraints are used.

Even if it doesn’t exist any general method to obtain stability, many approaches
is developed trying to get a stable closed loop system. Below is a number of
strategies to stabilize the system.

Terminal Equality Constraint

A very straight forward and simple approach to force the system to stability is
to apply a equality constraint on the last state in the prediction horizon, zk+N , as
can be seen in (3.39)

zk+N = 0 (3.39)

In [4] and [17] the method is presented. A major drawback with the terminal
equality constraint is the fact that feasibility not is guaranteed. With a too short
prediction horizon there may not be possible to fulfill the terminal equality con-
traint given the systems dynamics and constraints on the actuators .

Terminal cost function

Another approach to ensure stability for the closed loop system is to add an ter-
minal cost function. The advantage of this method compared to the previous
one is that there will always exist a feasible solution to the optimization problem.
However the system has to be stable for this approach to work which is proven in
[3].

3.3 Model Predictive Controller 31

Contraction Constraint

The final approach that is presented is the contraction constraint approach de-
scribed in [18]. The idea is to require that the norm of the states are decreasing
like in equation(3.40) where α is a scalar that should be chosen such that a feasi-
ble solution exists.

||zk+1|| ≤ α||zk ||, α < 1 (3.40)

4
Method

In this chapter the development process of the MPC is described. First the plant
models used during the process is described in detail including description of the
test vehicle. After that a state space model of the system is derived and reshaped
to a form that can be used in the MPC. This is followed by construction of the
cost function with motivated choices of techniques from the theory presented in
chapter 3. Finally the implementation is presented.

4.1 Plant Models

When developing an MPC in a simulation environment like Simulink a plant
model is needed. The plant model is the substitute for the real world system and
should therefor be as good as it possibly can before the MPC is applied in reality.
But it can also be kept simple to facilitate the development process of the MPC.
Two different plant models was used before moving on to the implementation of
the MPC in a real car. The following is a summary of these.

Stage 1: Use a simple model very much like the one used as internal model
in the controller.

Stage 2: Use a more advanced Simulink model.

Stage 3: Use a real car.

4.1.1 Road load

The road load is the sum of all the external forces that affects the car that not is
seen as a disturbance. That is air resistance, rolling resistance and slope. There
are a few differences in how the road load modelling is done across the different

33

34 4 Method

plant models and the internal controller model. The basic concepts are presented
here while the variations is described in each section.

The air resistance is modelled as

Fair = −1
2
ρCdAav

2 (4.1)

where ρ is the density of air, Cd is the drag coefficient, Aa is the maximum cross
section area of the car and v is the velocity of the car.

The rolling resistance is modelled as

Froll = −Crrmg (4.2)

where Crr is the dimensionless rolling resistance coefficient, µ is the friction coef-
ficient, m is the mass of the car and g is the gravity constant.

The force from the slope is modelled as

Fslope = −mg sinα (4.3)

where m is the mass of the car, g is the gravity constant and α is the angle shown
in Figure 4.1. α is assumed to be known at all times.

Figure 4.1: Visualization of the slope angle, α.

The sum of these three are defined as the road load, Froad load.

Froad load = −1
2
ρCdAv

2 − Crrµmg −mg sinα (4.4)

4.1 Plant Models 35

4.1.2 Simple Simulink Model

At the first stage in the development of the MPC-framework a simple model very
much like the model used in the controller was used. This uses the exact same
models as the controller uses except for the linearization that is performed in the
road load internal model (see section 4.2.4). This model is only used in the devel-
opment process of the MPC-framework because it is a very rough approximation
of the real world. But it has many advantages when it comes to evaluation of the
controller structure.

4.1.3 Advanced Simulink Model

The second stage in the process of developing the controller is using a more ad-
vanced Simulink model developed by Volvo Cars as plant model. The complexity
of this model makes it a good conversion between the simple model and the real
car. Most of the development is done in this environment. The structure of the
advanced Simulink model is shown in Figure 4.2. The parts of this system is
described further in this section.

Figure 4.2: An overview of the subsystems that exists in the advanced
Simulink model. The powertrain model (upper left) consists of a engine
model and a gearbox model. The lower left subsystem is representing the
friction brake. Finally, the right model contains the vehicle dynamics. The
requests to the actuators are two of the signals on the bus signal that is the
input to both actuators. The signals the are outputs from the actuators and
inputs to the vehicle model are torques generated by the actuators.

36 4 Method

Powertrain

The powertrain model consists of a engine model and a gearbox model. On top
of that are several subsystems containing logic for choosing input signals to the
engine. The application of the logics lies outside the scope of this thesis. That is
why it is desired to keep the control of the input outside of the model at this stage.
Therefor these subsystems containing logic is given input such that the control
over the input to the engine is kept outside the model.

The powertrain model also contains a model of the force generated by the mo-
ment of inertia in the powertrain. This is described by equation (4.5) where Jeng
is the moment of inertia in the powertrain, ktrans is the transmission ratio and rw
is the radius of the wheels. The derivation of this expression is done in Appendix
A.

Fpt,in = −
Jengk

2
trans

rw
a (4.5)

Friction Brake

The friction brake works by building a pressure that can be applied to the tires by
the braking pads. When the braking is no longer requested the pressure that have
been built must be released. These are two separate processes that are modelled
by two separate second order systems. The system modelling the building of the
pressure is slower than the system modelling the release of the pressure.

The input signals to the model is safety, comfort and driver minimum brake
torque request. Just like the case with the powertrain model the control is main-
tained outside the model. The different signals are fed trough an arbitration block
that makes the largest negative signal the brake request. To make the control easy,
all signals except the safety brake torque request is set to zero.

Vehicle Dynamics

The vehicle dynamics part of the model is the one implementing the laws of mo-
tion. The torques generated in the powertrain and the friction brake will be trans-
ferred to motion that will affect the vehicle’s states in the longitudinal direction.
The model is roughly described by equation (4.6). This is expressed in terms of
forces, but can trivially be expressed in torques if desired.

F = Feng + Fbrake + Froad load (4.6)

4.1 Plant Models 37

Here Feng and Fbrake are the forces from the engine and the brake models that are
the outputs from the Simulink models in figure 4.2. The road load, Froad load, is
modelled by equation (4.7). The term Fdrag represents both the aerodynamic drag
and the rolling resistance is modelled by the look-up table visualized in Figure
4.3.

Froad load = Fslope + Fdrag (4.7)

Figure 4.3: A visualization of the look-up table used for modelling Fdrag in
the advanced Simulink model.

4.1.4 Test Vehicle

The test vehicle is a Volvo V40 Cross Country. It is equipped with a dSpace
Autobox on which it is possible to load and execute a program generated from a
Simulink model. The Autobox hardware has the ability to read and write to the
CAN-bus and by that it has the ability to control the vehicle.

38 4 Method

Figure 4.4: An image of a car of the same model as the vehicle used for
testing the controller.

Vehicle Data

The controller needs some parameters from the vehicle for its internal model.
These are presented in Table 4.1. The parameters mass and wheel radius are
not expected to be correct. The mass will be slightly different every time due
to different fuel levels and load in the car while the wheel radius will change
with different tires and tire pressures. The parameters that are used in the end
are reasonable estimates that are close enough for the controller to function as
intended. The time constant parameters from the different systems needs to be
extracted from experiments. This process is presented later in this section.

Parameter Value
vehicle mass (m) 2200 kg
wheel radius (rw) 0.37 m
inertia in the engine (Jeng) 0.25 kg · m2

time constant, engine (Te) 0.1 s
time constant, brake up (Tb,up) 0.1 s
time constant, brake down (Tb,down) 0.05 s
time delay, brake (Lb) 0.05 s

Table 4.1: A summary of vehicle specific parameters that are needed in the
controller.

4.1 Plant Models 39

Simulink Interface

The Simulink model that handles the communications with the CAN bus is showed
in Figure 4.5. To the left in the model is a receiver from which necessary signals
are read. To the right is the transmitter block where the writing to CAN is per-
formed. This block has an enable flag that needs to be set to be able to write to
the CAN-bus. In between these two blocks, the controller is placed. From this
model code is generate and loaded into the vehicle’s Autobox.

Figure 4.5: The interface for reading and writing to the CAN-bus.

The interfaces to the CAN bus that is used to control the vehicle is for the ECM a
signal representing minimum torque request. For the BCM however, the interface
is a requested brake pressure for each individual wheel. The back pair of wheels
will only be able to deliver half the braking torque of the front wheel pairs ability.
The torque request that is the controllers interface therefor must be transformed
to a request in pressure and divided over the four wheels whit this in mind. The
transformation is described in equation (4.8) where p is the pressure needed in
each wheel for executing the requested brake torque τb, Ab is the area of contact
between the tire and the braking pads on the wheels and rb is the distance from
the wheel center to the point where the brake pads are applies. For this specific
vehicle the area of the braking pads on the rear wheels are twice the size than the
corresponding area on the front wheels.

p =
1
4
τb
Abrb

(4.8)

There are a number of signals that are read from the can bus to be fed into the
controller. The velocity is read from a CAN and is a fairly good signal that needs

40 4 Method

Figure 4.6: Measurements of the acceleration and jerk before and after fil-
tering for a manual driving sequence. The filter Facc has the bandwidth
ω = 7.18rad/s and the filter Fjerk has the bandwidth ω = 8.36rad/s

no post-processing. The acceleration measurement on the other hand is noisy
and has to be filtered before used as a state. A second order discrete chebychev
filter, described with the transfer function (4.9), is used to obtain this. The jerk is
estimated by taking the derivative of the filtered acceleration measurement. This
signal is also in need of filtering. The same type of filter, with transfer function
(4.10), is used once again for this. An example of the filter effects are shown in
Figure 4.6.

Facc(z) =
0.003z2 + 0.0059z + 0.003
z2 − 1.623z + 0.7024

(4.9)

Fjerk(s) =
0.0188z2 + 0.0375z + 0.0188

z2 − 1.6230z + 0.7024
(4.10)

4.1 Plant Models 41

Step Response Experiments

To identify the time constants of the first order systems that approximates the
ICE, Te, and the friction brake, Tb, along with the time delays for each system Le
and Lb , step response experiments are performed on the test vehicle.

For the ICE the vehicle is allowed to run on the minimum torque keeping the
speed constant. A fixed torque-request is then applied to the vehicle. A first
order system is then approximated to fit the curve as well as it could. This is
shown in Figure 4.7. The parameters are identified as Te = 0.1s and Le = 0.1s.

The same procedure is applied on the friction brake. The difference is that the
vehicle doesn’t have to be in motion, a brake pressure is applied at standstill. The
dynamics are different when the pressure is building and releasing. That is why
step responses for both cases are made and analyzed. This is shown in Figures 4.8
and 4.9. The parameters are identified as Tb = 0.1s and Lb = 0.05s when building
pressure and Tb = 0.05s and Lb = 0.05s when releasing pressure.

Figure 4.7: Step in requested engine force.

42 4 Method

Figure 4.8: Step in the positive direction requested brake force.

Figure 4.9: Step in the negative direction requested brake force.

4.2 System Modelling 43

4.2 System Modelling

This section describes in detail how every part of the system is modelled for the
internal controller model. The models are very simple in comparison with the
plant model for all stages.

4.2.1 Car

The car is represented by a point mass where the longitudinal movement is mod-
elled by Newton’s second law.

mv̇ = Feng + Fbrake + Froad load (4.11)

All the force components that is non-linear in v by the laws of physics will be lin-
earized around v = v0 where v0 i the speed of the vehicle when the linearization
is made. The same linearization will be applied during the prediction horizon
and then update in the next time sample. If equation (4.11) is known to be linear
in v it can be expressed in state space form.

4.2.2 Powertrain

The controller internal model of the powertrain is represented by a first order
system from input ue to the output force Fengine. On top of that, the inertia of the
powertrain, Fpt that is defined in equation (4.5), is modeled.

Fengine =
1

sTe + 1
ue + Fpt,in (4.12)

4.2.3 Friction Brake

The friction brake has the ability to convert kinetic energy to heat energy by fric-
tion. When braking the brake system is building up a pressure and then applies
the braking pads to create a friction force and slow the car down. When the sys-
tem requests less braking force on the other hand the pressure must be relieved.
That is a significantly faster process than building the pressure. This is why it is
modelled as two separate processes as in (4.13). The model will be kept the same
under one prediction horizon and can only change in the beginning of each time
step.

 e−sLb
sTb,up+1ub if aref < a
e−sLb

sTb,down+1ub if aref ≥ a
(4.13)

The logic that determines which system to use is an estimate on which side of
the reference value the actual acceleration is. If the actual acceleration is higher

44 4 Method

than the reference value it is highly probable that the brake, if used, is going to
generate a larger negative torque. For the opposite case it is highly probable that
the brakes are going to be released if used.

4.2.4 Road load

The road load is modelled as the linearization of the expression derived in equa-
tion (4.4). The expression is linearized around v = v0 using the first order Taylor
expansion.

F̄roadload

∣∣∣∣∣
v=v0

= Froad load(v0) +
dFroad load

dv

∣∣∣∣∣
v=v0

(v − v0) =

= −1
2
CdAρv

2
0 −mg sin (α) − Crrµmg − CdAρv0 (v − v0) =

= C1v + C2

(4.14)

Where

C1 = −CdAρv0

C2 =
1
2
CdAρv

2
0 −mg sin (α) − Crrµmg

(4.15)

The expression in equation (4.14) is now linear and can be used when expressing
the full system in a state space form.

4.2.5 State space model using two actuators

All the parts from the internal model is combined to a state space form. This is
done by reshaping equation (4.11) when all the submodels are inserted.

mv̇ =
1

sTe + 1
ue −

Jengk
2
trans

rw
v̇ +

esLb

sTb + 1
ub + C1v + C2 (4.16)

m +
Jengk

2
trans

rw

 v̇ (sTe + 1) (sTb + 1) =

= (sTb + 1) ue + (sTe + 1) e−sLbub + (sTe + 1) (sTb + 1) (C1v + C2)

(4.17)

To simplify further calculations the constant Cm is defined as in equation (4.18).

Cm = m +
Jengk

2
trans

rw
(4.18)

4.2 System Modelling 45

Since s is the Laplace transform of a time derivative operator equation (4.17) can
be rewritten.

Cmv
(3)TbTe + Cmv̈(Tb + Te) + Cmv̇ =

= Tbu̇e + Tee
−sLb u̇b + ue + e−sLbub + TbTeC1v̈ + (Tb + Te)C1v̇ + C1v + C2

(4.19)

v(3) =
Tb

CmTbTe
u̇e +

Te
CmTbTe

e−sLb u̇b +
1

CmTbTe
ue +

1
CmTbTe

e−sLbub

− m (Tb + Te) − TbTeC1

CmTbTe
v̈ +

(Tb + Te)C1 − Cm
CmTbTe

v̇ +
C1

CmTbTe
v +

C2

CmTbTe
(4.20)

The state vector x and the input signal vector u is then defined as in equation
(4.21). An advantage with the choice of this states is that all of them have a
straight forward physical interpretation. The first state is the jerk, the second is
the acceleration and the third is the velocity.

x =

v̈v̇
v

 u =
[
ue
ub

]
(4.21)

From equation (4.20) a state space model can be expressed.

ẋ = Ax + Bu + Du̇ + c (4.22)

where

A =

−
Cm(Tb+Te)−TbTeC1

CmTbTe
(Tb+Te)C1−Cm

CmTbTe
C1

CmTbTe
1 0 0
0 1 0

 (4.23)

B =
1

CmTbTe
·

1 e−sLb

0 0
0 0

 (4.24)

D =
1

CmTbTe
·

Tb Tee
−sLb

0 0
0 0

 (4.25)

46 4 Method

c =

C2

CmTbTe
0
0

 (4.26)

To express this on a standard state space form, without derivatives on the input
signals, a variable substitution is made. A fictive state vector x′ is defined as

x′ = x − Du (4.27)

The time derivative of the new state is then

ẋ′ = ẋ − Du̇ = Ax + Bu + c = A(x′ + Du) + Bu + c = Ax′ + (B + AD)u + c (4.28)

This is now expressed on a state space form

ẋ′ = A′x′ + B′u + c (4.29)

where A′ = A and B′ = AD + B.

4.2.6 Discretization of state space model

The state space model is then discretized using the Euler method presented in
section 3.2. This method is chosen before Tustin’s method from the same sec-
tion because of its simplicity in implementation. Tustin’s method may be more
accurate but the gain is too small to motivate the use of it.

The dynamic system described by equation (4.29) can be rewritten as in equation
(4.30) using the Euler forward approximation.

ẋ′ ≈
x′k+1 − x

′
k

Ts
= A′x′k + B′uk + c⇔

⇔ x′k+1 = (TsA
′ + I)x′k + TsB

′uk + Tsc
(4.30)

This can be summarized as in equation (4.31).

x′k+1 = Fx′k + Guk + H (4.31)

where F = TsA + I , G = Ts (AD + B) and H = Tsc.

To check if the system is stable its poles are determined. It is possible to do the
calculations either on the continuous time system or the discrete system since the

4.3 Optimization problem 47

region of stability in the continuous time system projects inside the discrete time
systems stability region.

The system (4.31) is stable since its poles are contained inside the unit circle. For
linearization around different initial speeds, v0, the systems stays stable as long
as v0 ≥ 0. This is obviously the case since the model only is constructed for
forward driving. For increasing v0 the pole closest to the stability border moves
slightly closer to the origin. The system is by that slightly more stable as the speed
increases. The poles of the system is shown in Figure 4.10 for v0 = 30km/h.

Figure 4.10: The poles of the discrete system for the case where the vehicle
travels in v0 = 30km/h

4.3 Optimization problem

When solving an optimization problem the solution will be optimal for that spe-
cific problem formulation if the solver is allowed to run a large number of itera-
tions and if the criteria for stopping is set to be very accurate. Since the compu-
tational power is a limited resource it is crucial for the implementation to work
that the optimization problem is formulated in a smart way.

The problem needs to be convex for reasons stated in section 3.1.1 and [16] but
for the solver to converge to a desired solution the problem cant be too flat either.
If the problem is too flat in one ore more dimensions it will lead to a solution that
priorities one or more dimension too much making the optimal solution flawed.

48 4 Method

The optimization problem can be formulated as equation (4.32).

minimize
u

N∑
k=0

f (x, u, k)

subject to Au ≤ b

(4.32)

The design of the objective function, f , and the design of the constraints, A and
b is what is going to be the design of the controller.

4.3.1 Objective Function

In section 3.3 the tools for designing an objective function is presented. The
decision to make here is what behaviors to be put a cost on in relation to all the
behaviors that are considered to be of interest. These behaviors are listed below.

• How well the reference is followed.

• How much energy is consumed by the actuators.

• How quickly does the actuators signal energy change.

• How well the comfort criterion are fulfilled

A cost will be assigned to each of these properties as a quadratic cost term in the
objective function since all of these are only dependent on the magnitude of the
quantity and not on the sign.

Following the reference

The cost for deviation for the reference is expressed as equation (4.33). Here it is
possible to assign a cost to deviation from the reference signal. Inspired by one
of the methods to improve the stability, the terminal cost function described in
section 3.3.4 this cost is inconstant during the time horizon. Unlike that method
with an extra cost on the last sample in the prediction horizon, the cost for the
deviation is increased by a linear factor for every sample starting at a specified
sample.
This results in a smoother behavior compared to the terminal cost function. The
idea is to make sure that the solver gets a larger freedom early in the prediction
horizon but, later it gets more important to follow the reference. The parameters
that can be changed for tuning the controller is Qref, Qcone and kcone. Qref is start
cost for deviations from the reference. Qcone is the linear increasing factor which
the cost for deviations from the reference increases every sample after kcone.
Compared with other methods like terminal equality constraint and contraction
constraint, both presented in section 3.3.4, this method never cause infeasibility
and are very straightforward to implement and tune.

4.3 Optimization problem 49

fr (x, u, k) = (ak − aref)
TQref,total(ak − aref)

Qref,total(k) =

Qref (1 + (k − kcone)Qcone) when k > kcone

Qref when k ≤ kcone

(4.33)

Integral action

For this system a nonzero control signal is required in most cases to keep the de-
sired acceleration. Therefor adding a cost for the signal energy to the objective
function, the result is a trade-off between minimizing the signal energy and fol-
lowing the reference. By substitute the cost for the energy to a cost for change
in the control signal, which is described in (4.34), one can avoid this behavior
and integral action will be achieved. The method is more detailed motivated in
section 3.3.3.

Another benefit with this term in the objective function is that the MPC gets a
smoother behavior and it prevents the signals from become too noisy.

f∆U = ∆U TQ∆U∆U (4.34)

Energy consumption

As already mentioned, energy efficiency have become more crucial for today’s
vehicles. For an overactuated vehicle as the one considered in this thesis where
redundancy exist it is therefor of great importance to find a solution to the op-
timization problem with a desired behavior. In this case the desired behavior is
one that is not consuming more energy than needed to achieve the aim.

In section 3.3.3 a method for control allocation is handled. The idea is to first
calculate a desired virtual control signal, uref , and add the deviation from uref
to the objective function as in (4.35)

furef = (u − uref)TQuref (u − uref) (4.35)

To calculate the desired control signal for a stationary reference to follow is fairly
straightforward. To minimize the energy consumption the brake should only be
used when needed, i.e. the brake should only be used if the wanted deceleration
is greater than what the minimum torque and the road load can cause.

uref =

ue = F · rw , ub = ub,max when F · rw ≥ ue,min
ue = ue,min , ub = F · rw − ue,min when F · rw < ue,min

(4.36)

F in (4.36) is the force needed to achieve the required acceleration and is calcu-
lated as in (4.37) where Froad load is the rolling resistance and aerodynamic drag

50 4 Method

and Fpt,in describing the inertia in the powertrain.

F = m · aref − Froad load − Fpt,in (4.37)

Constraints

A big benefit with the MPC framework is the possibilities to include constraints
on the control signals and the states in the optimization problem.

The constraints on the control signals may seems natural. The brake can never
generate a propulsive force while the largest force it can generate is estimated as
the friction coefficient times the normal force. This is summarized in equation
(4.38).

− µmg ≤ ub ≤ 0 (4.38)

For the powertrain the minimum and maximum torque that can be generated is
calculated from a map depending on the engine speed. The map is visualized in
figure 4.11. The map is far from perfect, but will be sufficient for this application
in most cases.

Figure 4.11: The map that is used for setting the constraints on the engine
control signals.

One factor that contribute to discomfort for the driver is the derivative of the ac-
celeration, jerk. By that reason there is a limit for the maximum level of jerk that
are allowed. Unlike the constraints on the control signals a constraint on the jerk

4.4 Implementation 51

may not always be possible to fulfil. If the states initial violates the constraints it
may not be possible to find a feasible solution given the dynamics of the system.
The solution to this is to use soft constraints. As described in section 3.3.3 the
soft constraints are used to ensure that a feasible solution exist. By adding a
slack variable as in (4.40) and add a cost for the size of εj .

To optimize the problem formulation and make sure that the slack variable only
are used when the constraints already are violated, two different solvers are used
as shown in (4.39). Else the solver might find a solution to the optimization prob-
lem that violate the constraints even when it’s not needed.

fj =

fj,hard constraints when |j | ≤ jlim
fj,soft constraints when |j | > jlim

(4.39)

−
(
jlim + εj

)
≤ j ≤ jlim + εj

εJ ≥ 0
(4.40)

4.4 Implementation

The implementation differs between the simulation environment and the real ve-
hicle. Both uses the tool CVXgen. CVXgen is a web tool that lets the user enter
the optimization problem in a custom language. The syntax of language is very
strict to ensure that the problem stated is a convex problem. The outcome of CVX-
gen is a generated solver optimized for the specific optimization problem that has
been stated. The generated solver is available in both C- and Matlab-code.

The implementation in the simulation environment uses the generated Matlab-
code. The code that is generated for Matlab is the same problem defined such
that the CVX Matlab toolbox can interpret it. The actual optimization problem
solver is then chosen in the CVX toolbox.

In the test vehicle the controller is implemented in the Simulink block s-function
builder. This block generates a C MEX s-function from the C-code that is pro-
vided to it. Hence the controller including the solver for the optimization is im-
plemented in C-code.

The test vehicle implementation is a simplification from the simulation environ-
ment. The implantation only uses soft constraints on the jerk limit and does
not switch between hard and soft constraints like the simulation implementation
does. Another feature that is not implemented in the test vehicle is increasing
cost on deviating from the reference. Finally, the prediction horizon is signifi-
cantly smaller in the test vehicle implementation due to limited computational
power.

52 4 Method

Figure 4.12: The s-function builder block that implements the controller.

In Figure 4.12 the implementation of the controller in its Simulink environment
is shown. The C-code that is inserted in the s-function builder block is generated
from the tool CVXgen. The CVXgen code is presented in Appendix B.

5
Analysis

In this chapter the results from simulations and tests are presented and analyzed.
The different use cases, stated in chapter 2, are used when comparing the perfor-
mance of the controller in simulation and implemented in the vehicle with the
performance of the controller available in today’s vehicles.

5.1 Simulation Results

The use case scenarios from 2.3 are simulated using the developed controller
and presented in plots 5.1, 5.3 and 5.5. These result are compared with the
performance of the controller existing in today’s vehicle that is based on a PID-
controller. The result of these are presented along with the corresponding MPC
result in figures 5.2, 5.4 and 5.6.

The tests are performed with the same step sizes, jerk limits, initial states and
a fixed gear to get a fair comparison. The steps sizes are 0.5m/s2, the jerk limit

is set to jlim = 1m/s3 and the initial state is set to x =
(

30
3.6 0 0

)T
. These are

chosen such as the expected behavior of the controller is that both actuators will
need to be used.

In figures 5.1 to 5.6 the left column shows the velocity, acceleration compared
to reference and jerk with limits while the right plot shows control signals and
actual output from the actuators. The blue represent the control signal to the ICE
and the red is the control signal to the friction brake. The dotted lines in each
color shows the actual output from each actuator.

53

54 5 Analysis

Use Case I

Figure 5.1: The simulation result using the MPC on scenario I.

Figure 5.2: The simulation result using the PID on scenario I.

5.1 Simulation Results 55

When comparing the MPC with the PID in scenario I there are obvious differ-
ences in the control signal. In figure 5.2 it can be seen that the control signals is
controlled by a rule-set, specially when observing the control signal to the ICE.
When the change in reference comes it directly sends the minimum force as con-
trol signal. In the MPC in Figure 5.1 on the other hand it has a different shape.

When analyzing the result on the states it can be seen that the MPC takes more ad-
vantage on the jerk limits then the PID. Followed by that is that the acceleration
decreases faster in the MPC resulting in a lower final velocity.

To summarize the scenario it can be said that the MPC is better on using the jerk
limit to maximize the performance. There is a problem with a static error that
can be minimized by a better tuning of the controller. The acceleration is still
closer to the reference for the MPC than the PID during the step, which is the
important part of this scenario.

Use Case II

Figure 5.3: The simulation result using the MPC on scenario II.

56 5 Analysis

Figure 5.4: The simulation result using the PID on scenario II.

The result from the simulation of the second scenario is very similar. Yet again
the MPC is better on using the jerk limit to its maximum potential, maybe a little
too much since it violates the constraints by a little. But yet again, the controller
does not have the optimal tuning.

The MPC deviates from the reference when it is zero after the step. The reason
for this is probably that the internal model in the controller is less accurate for
higher speeds. More comments on this problem can be read in section 6.2.

5.1 Simulation Results 57

Use Case III

Figure 5.5: The simulation result using the MPC on scenario III.

Figure 5.6: The simulation result using the PID on scenario III.

The results from the last scenario shows a problem in the MPC in Figure 5.5.
The controller violates the lower jerk limit when the engine torque goes to its
minimum as the brake is activated. Now it may seem like an unfair comparison

58 5 Analysis

since the MPC is allowed to violate the constraints. Even if the MPC is better at
following the reference in this scenario the PID, in Figure 5.6, must be said to be
the better controller since it solves the problem without violating the constraints.

5.2 Robustness Analysis

To test the robustness of the controller some parameters that are important to the
model was changed in the plant model and simulated with both the MPC and the
PID. The resulting accelerations was compared to each other and the results from
when the correct parameters are used to analyze how dependent the controller is
of a correct model.

The parameters that where changed is presented in Table 5.1. These were chosen
as examples, there are other parameters in the controller that very well may be
important to the robustness of the controller even if they are not presented as
examples here.

Parameter Original Value Change
Mass 2200 kg ±1000 kg
Drag - ±40%
Inertia in the engine 0.25 ±0.15kg · m2

Table 5.1: The parameters that are changed when testing the robustness of
the controller. The mass and the inertia of the engine is changed in absolute
values while the drag is changed by a percentage of its original value.

In Figure 5.7 it can be seen that for an error in the modelled mass the behavior for
constant acceleration differs and will cause a static error in the controllers output.
This is however the case for large differences in mass. If a decent mass estimation
exists, the small variations in mass will not ruin the results. The controlled can
therefor be said to be robust in the parameter that represents the mass. In Figure
5.8 the corresponding test for the PID-controller is shown. It can be seen that it s
not sensitive to changes in mass.

In Figure 5.9 it can be seen that the controller is sensitive for differences in the
modelled drag force, which is the sum of the aerodynamic drag and the rolling
resistance. This means that the controller would need either a model that corre-
sponds good with reality or introducing an integral action to the controller that
can handle this better than today’s implementation. For the best result, having
both alternatives would be preferred. In Figure 5.10 the corresponding test for
the PID-controller is shown. It can be seen that initially it shows sensitivity to
changes in the road load, but after a few seconds it does not matter if the road
load is modelled bad.

The last robustness test is shown in Figure 5.11. Here it is tested how model
errors in the inertia of the engine affects the controllers performance. This test

5.2 Robustness Analysis 59

is made with a constant acceleration reference that is non-zero since the inertia
of the engine only has any effect when not accelerating. The test shows that the
controller is not very sensitive to model errors in this parameter. The same result
can be observed for the PID-controller in Figure 5.12.

To summarize the robustness tests, it can be said that the PID-controller is a lot
more robust than the MPC. This is not a surprise since the MPC is a model based
controller method and PID is not. Maybe the tuning of the PID is optimized for
some assumed model but other than that it should not be dependent of the model
at all.

Figure 5.7: Comparison of simulation results when assuming the vehicle has
more or less mass than it actually has using the MPC.

60 5 Analysis

Figure 5.8: CComparison of simulation results when assuming the vehicle
has more or less mass than it actually has using the PID.

Figure 5.9: Comparison of simulation results when assuming the rolling re-
sistance has smaller or bigger impact than it actually has using the MPC.

5.2 Robustness Analysis 61

Figure 5.10: Comparison of simulation results when assuming the rolling
resistance has smaller or bigger impact than it actually has using the PID.

Figure 5.11: Comparison of simulation results when assuming the inertia in
the engine is smaller and bigger than it actually is using the MPC.

62 5 Analysis

Figure 5.12: Comparison of simulation results when assuming the inertia in
the engine is smaller and bigger than it actually is using the PID.

5.3 Test Vehicle Results

The use case scenarios from 2.3 are tested in a test vehicle, described in section
4.1.4. In Figures 5.13, 5.14 and 5.15 the results from the tests are presented.

The tests are performed on a straight road with a road inclement that is close to
zero. The vehicle’s gear is fixed such that the result not is flawed by the process of
the gear-shift. There was a speed limit on the road that needed to be obeyed and
because of that the initial states differs slightly between the different tests. The
tests are performed with step heights 0.5 and jerk limit, jlim = 1, just like in the
simulations.

What needs to be kept in mind when looking at the results of the tests are that
the acceleration is a measurement from a sensor that is sensitive to noise. Even
a small bump in the road can cause noteworthy noise on the acceleration mea-
surements even when it is filtered. As a consequence of that the jerk, that is a
derivative of the measured acceleration, becomes really noisy.

The results are not optimal in any of the tests due to several reasons. Many of
the parameters involved in the controller are hard to estimate in reality. Another
difference from the simulation environment is that the prediction horizon of the
MPC is shorter than in simulations due to limited computational power. How-
ever, the results are good enough that there is no doubt that the concept works in
reality as well.

5.3 Test Vehicle Results 63

Use Case I

Figure 5.13: The result of use case I when running the MPC in a test vehicle.

Use Case II

Figure 5.14: The result of use case II when running the MPC in a test vehicle.

64 5 Analysis

Use Case III

Figure 5.15: The result of use case III when running the MPC in a test vehi-
cle.

6
Conclusions and future work

6.1 Conclusions

The MPC has been evaluated by comparison to the PID implementation similar
to the one implemented in today’s vehicles to answer the problem formulation.
The main question in the problem formulation is weather it is possible or not
to achieve similar or better performance using the MPC than the PID-controller.
The answer to this question is yes. However, there are several points that needs
to be considered if the question had been if its a motivated switch.

A downside with the MPC is that it is very dependent on a good model. If the
internal model in the controller differs too much from reality the performance is
quickly affected. For example the reason that the controller differs slightly from
the reference when keeping zero acceleration in 5.3 is that the internal models for
air resistance and rolling resistance in the internal model differs too much from
the plants corresponding models, that in this case represents reality. In section
6.2 suggestions are made on how to solve this problem. Another problem with the
MPC is that it sometimes have a hard time keeping the restrictions applied to it
by the jerk limits. The reason for this is model errors. The controller predicts that
the jerk limits will be met for the upcoming steps in the prediction horizon but
when the signals are fed trough the plant model the result is that the constraints
are violated. Yet again the importance of good modeling is shown. The advantage
of the MPC is that it results in a faster response than the PID does in general. As
soon as step in reference is known for the MPC it can prepare how to get there as
fast as possible during its prediction horizon and will therefor be faster.

When summarizing the advantages and disadvantages of the MPC as it performs
today, conclusions can be made that the MPC outperforms the PID on fast events

65

66 6 Conclusions and future work

like the one in scenario I where a rather fast deceleration is needed still keeping
the comfort criteria. In longer events, when a constant acceleration needs to be
kept the PID is a better choice while the correctness of the model is this impor-
tant.

Another factor that always needs to be considered when thinking of implement-
ing an MPC in a real system is how much computational power that is available.
When simulating, the prediction horizon of the MPC can be set high, but when
implementing it in reality a large prediction horizon is very likely demand too
much of the hardware.

6.2 Future work

The natural extension to the work presented in this thesis is to extend it to a HEV.
It is fairly easy to see by the human eye approximately how to coordinate the
actuators when only ICE and friction brake exists. When an electrical machine is
inserted to the equation it is not always that obvious. The MPC approach to the
problem would make use of the electrical machine in a good way and is therefor a
suitable extension to this thesis. When considering a HEV aspects as the state of
charge for the battery also have to be included in the equation and a well thought
out control strategy such as an MPC might be required to reach the full potential
of the HEV.

The robustness of the MPC has been a big drawback of this control strategy. As
ca be seen in Section 5.2, the controller is very sensitive to model errors and also
have both bias in some operating points and slow convergence. As the perfor-
mance of the MPC has proved to be very reliant on the internal model of the
system some kind of error estimation might be essential to make a robust MPC.
Parameters such as the rolling resistance is in reality difficult to estimate but has
proven to make a huge impact on the result. In for example [19] methods to
include the uncertainty and additive disturbance in the state space model are
described. To make the convergence faster a different method to ensure stabil-
ity may be more successfully. In section 3.3.4 some methods are described and
several more exist. With a better model of the system including the uncertainty
some other methods might be more rewarding.

The main focus for the controller have been to fulfil the comfort criteria and
quick response. Another interesting area to investigate is if it’s possible to reduce
the energy consumption with an MPC. With a control signal optimized for a fi-
nite time horizon it should be possible to make smarter decisions in transients.
One way of achieving that can be trough better models of the actuators, espe-
cially their limits. Bad modelled limits of the actuators will either result in the
controller not being able to use its full potential or that controller overestimates
the actuator’s capacities. Another way of achieving this would be to consider a
HEV with a third actuator. With the possibility to use generative braking with
the ERAD the decreased energy consumption with an MPC and a well-optimized
control strategy might be even greater.

Appendix

A
Derivation of model for inertia in the

driveline

In this section the derivation of the inertia in the driveline is presented. The
methods shown here are presented in detail in [20].

Consider a model of the driveline shown in Figure A.1 together with the defini-
tions of torques and angles shown in Figure A.2. Assume that the only part of the
system that contains inertia is the engine, Jeng. Also assume that the transmission
is stiff. If this is true, equation (A.1) to (A.7) describes the powertrain.

Figure A.1: A model of the driveline in a car.

69

70 A Derivation of model for inertia in the driveline

Figure A.2: A model of a driveline in a car with defined torques and angles
in every part of the model.

Jeθ̈e = Me −Mc (A.1)

The equations (A.2) can be stated from the description in Figure A.2.

Mc = Mt

θe = θc
θc = θt it
Mt it = Mp

Mp = Mf

θt = θp
θp = θf if
Mf if = Md

Mw = Md

θf = θw

(A.2)

From the equations (A.2) expressions are derived for Mw and θw expressed in Mc
and θe. This is done in equations (A.3) and (A.4).

Mw = Md = Mf if = Mpif = Mt if it︸︷︷︸
i

= Mci (A.3)

θw = θf =
θp
if

=
θt
if

=
θc
if it

=
θc
i

=
θe
i

(A.4)

The results from the equations (A.3) and (A.4) is inserted into (A.1).

Jeθ̈e = Me −
Mw

i
⇔ Mw = Mei − Jeθ̈ei = Mei − Jeθ̈wi2 (A.5)

71

The angular velocity of the wheel can be expressed as θ̇w = v
rw

. Taking the deriva-
tive of this gives an expression of the angular acceleration of the wheel. This is
shown in equation (A.6).

θ̈w =
d
dt
θ̇w =

d
dt v

r
=
a
r

(A.6)

When this is inserted into equation (A.5) the term that represents the inertia in
the driveline appears.

Mw = Mei −
Jei

2a
r

(A.7)

B
CVXgen Code

dimensions
m = 2
n = 3
T = 7

EngineDelay = 2
BrakeDelay = 1
MaxDelay = 1

end

parameters
u_old_1 (m)
u_old_2 (m)
jLim (1) nonnegative
r (T+1)
u_ref_e (1)
u_ref_b (1)

F (n,n) # dynamics matrix.
G_Engine (n,1)
G_Brake (n,1)
D_a(1,m)
D_j(1,m)
Bc (n,1)

Q_ref (1,1) psd
Q_delta_u1 (1,1) psd
Q_delta_u2 (1,1) psd
Q_eps_j (1,1) psd
Q_eps_u (1,1) psd
Q_energy_u1 (1,1) psd

73

74 B CVXgen Code

Q_energy_u2 (1,1) psd

x[0] (n) # initial state.

u_max (m)
u_min (m)

end
variables

x[t] (n), t=1..T+1 # state.
u[t] (m), t=0..T # input.
epsilon_j[t] (1), t=0..T #Eps
epsilon_u1[t] (1), t=0..T
epsilon_u2[t] (1), t=0..T

end
minimize

sum[t=0..T](quad(x[t+1][2]+D_a*u[t]-r[t+1], Q_ref)
+quad(epsilon_j[t],Q_eps_j))
+ sum[t=0..T](quad(epsilon_u1[t],Q_eps_u)
+ quad(epsilon_u2[t],Q_eps_u))
+ sum[t=1..T](quad(u[t][1]-u[t-1][1],Q_delta_u1))
+ quad(u[0][1]-u_old_1[1],Q_delta_u1)
+ sum[t=1..T](quad(u[t][2]-u[t-1][2],Q_delta_u2))
+ quad(u[0][2]-u_old_1[2],Q_delta_u2)

subject to
x[1] == F*x[0] + G_Engine*u_old_2[1] + G_Brake*u_old_1[2] + Bc
x[2] == F*x[1] + G_Engine*u_old_1[1] + G_Brake*u[0][2] + Bc
x[t+1] == F*x[t] + G_Engine*u[t-EngineDelay][1]

+ G_Brake*u[t-BrakeDelay][2] + Bc , t=2..T
u[t][1] <= u_max[1], t=0..T
u[t][2] <= u_max[2], t=0..T
u[t][1] >= u_min[1], t=0..T
u[t][2] >= u_min[2], t=0..T
abs(x[t+1][1]+D_j*u[t]) - epsilon_j[t]<= jLim, t=0..T
epsilon_j[t] >= 0, t=0..T
abs(u[t][1]-u_ref_e)-epsilon_u1[t] <= 0.1*(1+t*0.01)*u_ref_e, t = 0..T
abs(u[t][2]-u_ref_b)-epsilon_u2[t] <= 0.1*(1+t*0.01)*u_ref_b, t = 0..T
epsilon_u1[t] >= 0, t=0..T
epsilon_u2[t] >= 0, t=0..T

end

Bibliography

[1] Thomas A. Badgwell S.Joe Qin. A survey of industrial model predictive
control technology. 2013. Cited on page 1.

[2] Raffaello D’Andrea Mark W. Mueller. Stability and control of a quadrocopter
despite the complete loss of one, two, or three propellers. IEEE International
Conference on Robotics and Automation, 2014. Cited on page 2.

[3] Svante Gunnarsson Peter Lindskog Lennart Ljung Johan Löfberg Tomas
McKelvey Anders Stenman Jan-Erik Strömberg Martin Enqvist, Torkel Glad.
Industriell reglerteknik: Kurskompendium. Cited on pages 3, 17, 19, 23, 29,
and 30.

[4] C.V. Rao P.O.M. Scokaert D.Q. Mayne, J.B. Rawlings. Constrained model
predictive control: Stability and optimality. Automatica Vol. 36, 2000. Cited
on pages 3 and 30.

[5] Lennart Ljung Torkel Glad. Reglerteori: Flervariabla och olinjära metoder.
Studentlitteratur, 2003. Cited on page 4.

[6] Jan M. Maciejowski Eric C. Kerrigan. Soft constraints and exact penalty func-
tion in model predictive control. UKACC International Conference, 2000.
Cited on pages 4 and 27.

[7] David Di Ruscio. Model predictive control with integral action: A simple
mpc algorithm. Modeling, Identification and Control, 2013. Cited on page
4.

[8] N. Schofield M.J. West, C.M. Bingham. Predictive control for energy man-
agement in all/more electric vehicles with multiple energy storage units.
Electric Machines and Drives Conference, 2003. Cited on page 4.

[9] M. Morari F. Borrelli, A. Bemporad. Predictive Control for linear and hybrid
systems. 2014. Cited on page 4.

[10] Giorgio Rizzoni Lorenzo Serrao, Simona Onori. A comparative analysis of
energy management strategies for hybrid electric vehicles. Journal of Dy-
namic Systems, Measurement, and Control, 2011. Cited on page 4.

75

76 Bibliography

[11] Tao Gao Caiying Shen, Peng Shan. A comprehensive overview of hybrid
electric vehicle: Powertrain configurations, powertrain control techniques
and electronic control units. International Journal of Vehicular Technology,
2011. Cited on page 4.

[12] Huei Peng Jinming Liu. Modeling and control of a power-split hybrid vehi-
cle. Control Systems Technology Vol. 16, 2008. Cited on page 4.

[13] A.M. Phillips M.L. Kuang I.V. Kolmanovsky H.A. Borhan, A. Vahidi. Predic-
tive energy management of a power-split hybrid electric vehicle. American
Control Conference, 2009. Cited on page 4.

[14] Ken Butts Chris Vermillion, Jing Sun. Model predictive control allocation
for overactuated systems - stability and performance. 46th IEEE Conference
on Decision and Control, 2007. Cited on pages 4 and 24.

[15] Tor Aksel N. Heirung Bjarne Foss. Merging optimization and control, 2013.
Cited on pages 4 and 24.

[16] Lieven Vandenberghe Stephen Boyd. Convex Optimization. Cambridge Uni-
versity Press, 2004. Cited on pages 15, 16, 17, and 47.

[17] Johan Löfberg. Linear model predictive control, stability and robustness.
2001. Cited on page 30.

[18] Manfred Morari Alberto Bemporad. Robust Model Predictive Control: A
Survey. Springer London, 1999. Cited on page 31.

[19] Johan Löfberg. Minmax approaches to robust model predictive control. PhD
thesis, Linköping University, 581 83 Linköping, Sweden, 4 2003. Cited on
page 66.

[20] Lars Nielsen Lars Eriksson. Modeling and Control of Engines and Drive-
lines. Preprint edition, 2014. Cited on page 69.

Upphovsrätt

Detta dokument hålls tillgängligt på Internet — eller dess framtida ersättare —
under 25 år från publiceringsdatum under förutsättning att inga extraordinära
omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för icke-
kommersiell forskning och för undervisning. Överföring av upphovsrätten vid
en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman
i den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se förla-
gets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet — or its possi-
ble replacement — for a period of 25 years from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for his/her own use and
to use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be men-
tioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity, please
refer to its www home page: http://www.ep.liu.se/

© Mathias Mattsson och Rasmus Mehler

http://www.ep.liu.se/
http://www.ep.liu.se/

	Front Page
	Title Page
	Library Page
	Abstract
	Acknowledgments
	Contents
	Notation
	1 Introduction
	1.1 Problem Formulation
	1.2 Previous Work
	1.3 Delimitations
	1.4 Thesis Outline

	2 Background
	2.1 System Overview
	2.2 Actuators
	2.2.1 Combustion Engine
	2.2.2 Friction Brake

	2.3 Use Cases

	3 Theory
	3.1 Optimization
	3.1.1 Convexity
	3.1.2 Convex Optimization

	3.2 Discretization
	3.2.1 Euler's Method
	3.2.2 Tustin's Method

	3.3 Model Predictive Controller
	3.3.1 MPC Algorithm
	3.3.2 Construction of Internal Model
	3.3.3 Extensions to MPC
	3.3.4 Stability

	4 Method
	4.1 Plant Models
	4.1.1 Road load
	4.1.2 Simple Simulink Model
	4.1.3 Advanced Simulink Model
	4.1.4 Test Vehicle

	4.2 System Modelling
	4.2.1 Car
	4.2.2 Powertrain
	4.2.3 Friction Brake
	4.2.4 Road load
	4.2.5 State space model using two actuators
	4.2.6 Discretization of state space model

	4.3 Optimization problem
	4.3.1 Objective Function

	4.4 Implementation

	5 Analysis
	5.1 Simulation Results
	5.2 Robustness Analysis
	5.3 Test Vehicle Results

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work

	A Derivation of model for inertia in the driveline
	B CVXgen Code
	Bibliography
	Copyright

